Advanced Data Management (CSCI 490/680)

Graph Data

Dr. David Koop

Discussions

- Please post at least once on the discussion board in Blackboard with a question, answer, or discussion point about one of the lectures
- Feedback is useful—I hope the lectures are clear, but I am pretty sure there are still places where I can clarify things better
- You may also post questions about the assignment there if you believe they are relevant to all students

<u>Assignment 4</u>

D. Koop, CSCI 490/680, Spring 2020

- COVID-19 data
- Data Integration
 - Population
 - Temperature
- Data Fusion:
 - Our World in Data
 - Johns Hopkins
 - Wikipedia
- Questions?

Test 2

- Online on Blackboard (webcourses.niu.edu)
- Thursday, April 9 from 3:30-4:45pm
- If you have conflicts, let me know as soon as possible
- Format:
 - Some multiple choice
 - More short answer/free response
- Focus on topics since the first test
- More details this week

What is Data?

Less than 0 Change for U.S.: 32,712,033

D. Koop,

- here

de matin I chlorent genin blin nent and delition & MIT it S'en . It fills to philis in the addition of the the men for addition to the the star

new house is o live in ey want him plastering. He para gitti.

{much money went} Has a tractor.

Date: July 1980 Place:Sakaltutan Zafor:

Household now Zafor and wife; Nazif Unal and wife and youngest son, still a boy. They run two dolmuß; one with a driver from Süleymanti. Goes in and out once a day. He gets 8,000 a month. Zafor then said, keskin deoil. { not sharp - i.e.? not profitable} I said he did very well on 8,000 TL with only two journeys a day. Nazif Unal has "bought" a Durak (dolmuß stop} from Belediye and works all day in Kayseri.

http://onlineqda.hud.ac.uk/Intro_QDA/Examples_of_Qualitative_Data.php

Pisa Griffin

What is data?

- "Data are representations of observations, objects, or other entities used as evidence of phenomena for the purposes of research or scholarship." [C. L. Borgman]
- Data can be digital but can also be physical (e.g. sculptures)
- Semantics are important (e.g. temperature to engineer and biologist)
- Grey Data: surveys, student records—think about privacy

Sharing Data

- Required/encouraged by universities, funding agencies, publishers
- used to support the arguments." [C. L. Borgman]
- Questions:
 - How is data maintained? Who is responsible?
 - What is the process for curating data?
 - How long should data be kept?
 - How should data collection and curation be acknowledged?

"Publications are arguments made by authors, and data are the evidence

Data Curation Lifecycle

The DCC Curation Lifecycle Model

Sequential Actions in Data Curation

- Create or Receive: Create/receive data and make sure metadata exists
- preservation
- Preservation Action: Data cleaning, validation (ensure that data remains) authentic, reliable and usable)
- Store: Store the data in a secure manner adhering to relevant standards Access, Use and Reuse: Make sure is accessible to users and reusers

 Conceptualize: Plan creation of data—capture method and storage options. Appraise and Select: Evaluate data and select for long-term curation and

• Ingest: Transfer data to an archive, repository, data centre or other custodian

Transform: Create new data from the original (migrate formats, subsets, etc.)

FAIR Principles

- computers
- Accessible: Users need to know how data can be accessed, possibly including authentication and authorization
- Interoperable: Can be integrated with other data, and can interoperate with applications or workflows for analysis, storage, and processing
- Reusable: Optimize the reuse of data. Metadata and data should be welldescribed so they can be replicated and/or combined in different settings

• Findable: Metadata and data should be easy to find for both humans and

Findable: DataCite Workflow

Accessible: DOI to Landing Page with Metadata

Document citing the data

D. Koop, CSCI 490/680, Spring 2020

Repository housing the data

Data store

Interoperable: Standard vocabularies

					fairsharing.	org/standards/		_	Ċ				
FAIRsharing.org standards, databases, policies						Q Search all of FAIRs	haring	Standard	s Databases P	Policies Collec	ctions Add/Clair	n Content Stats L	og in or Regist
		Search	Standards	Q Search		Sea	arch	Reset	Advanced				
						Sh	owingree	cords 1 - 50 o	f 1384.				
View as Table View as Grid Sort by			« 1 2 3	3 4 5	6 7 8 9	10 11 12 13	14	15 16	17 18 19 20	21 22	23 24 25	26 27 28 »	
Name 🗳	Registry	Name	Abbreviation	Type Sub	oject	Domain	Та	axonomy	Related Database	Related Standard	Related Policy	In Collection/Recommendation	n Status
Recommended Records	Å	ABA Adult Mouse Brain	ABA	Standard	Neuroscience	Brain Gene Expression Brain Imaging		Mus musculus	NeuroMorpho.Org	None	None	None	ß
Recommended Associated Publication? No Publication Has Publication Claimed? No Maintainer Has Maintainer		Access to Biological Collection Data	ABCD	Standard	Biodiversity & Biology Life Science	None		🖉 Ali	GBIF ALA IPT - GBIF Australia Repository GBIF Spain IPT - GBIF Spain Repository Canadensys IPT - GBIF Canadensys Repository SiB Colombia IPT - GBIF Colombia Repository Plus 1 more	ABCDDNA ABCDEFG	None	TDWG Biodivensity Information Standard	8
Uncertain Deprecated In development Ready		Access to Biological Collection Databases Extended for Geosciences	ABCDEFG	Standard 🥔	Earth Science Geology Paleontology Soil Science	None	6	🗲 All	GeoCASe Data Portal	XML ABCD	None	None	R
Standard Type Terminology Artifact 771 Model/Format 405 Reporting Guideline 163	Ð	Access to Biological Collection Data DNA extension	ABCDDNA	Standard	Biodiversity Ø Biology	 DNA Sequence Data Experiment Metadata Sequence Deoxyribonucleic Acid Polymerase Chain Reaction Plus 1 more 		🖉 All	GenBank	MOD-CO ABCD	None	TDWG Biodivensity Information Standards	
Metric 30 Identifier Schema 15	Ð	.ACE format	ACE format	Standard 🥏	Life Science	DNA Sequence Data O Deoxyribonucleic Acid	ontig Genome	🕈 Ali	None	None	None	None	ß
Show More	ന്ന	AdaLab-meta	ADALAB-META	Standard None	e	None		🖉 Ali	None	None	None	None	R
Domains	đ,	AdaLab ontology	ADALAB	Standard None	9	None		🛷 Ali	None	None	None	None	R
Report 141 Data Transformation 134	E	Adverse Drug Reaction Markup Language	EU-ADR ML	Standard None	3	Adverse Reaction Electronic Health Record Disesse Orug	Farget	Homo sapiens	None	XML	None	None	0
Chemical Entity 131 Phenotype 88 Show More	đ	Adverse Event Reporting entelogy	AERO	Standard 🥔	Biomedical Science Health Science & Medicine Ontology And Terminology	Adverse Reaction Electronic Health Record		Homo sapiens	ОВО	IAO OGMS OBI	None	None	0

D. Koop, CSCI 490/680, Spring 2020

Reusable: Licensing

- Citation of a dataset is expected as a scholarly norm, not by law
- CC0:
 - "I hereby waive all copyright and related or neighboring rights together with all associated claims and causes of action with respect to this work to the extent possible under the law"
- CC BY: license, not a waiver as CC0
 - "You must give appropriate credit, provide a link to the license, and indicate if changes were made."
- Data Use Agreements (DUA): Used when data are restricted due to proprietary or privacy concerns.

Reusable: Data Citation & Metrics

D. Koop, CSCI 490/680, Spring 2020

Northern Illinois University

D. Koop, CSCI 490/680, Spring 2020

Specific Types of Data

Graphs: Social Networks

What is a Graph?

• An abstract representation of a set of objects where some pairs are connected by links.

Object (Vertex, Node)

Link (Edge, Arc, Relationship)

What is a Graph?

D. Koop, CSCI 490/680, Spring 2020

 In computing, a graph is an abstract data structure that represents set objects and their relationships as vertices and edges/ links, and supports a number of graphrelated operations

- Objects (nodes): {A,B,C,D}
- Relationships (edges):

 {(D,B), (D,A), (B,C), (B,A), (C,A)}
- Operation: shortest path from ${}_{\rm D}$ to ${}_{\rm A}$

Different Kinds of Graphs

- Undirected Graph
- Directed Graph
- Pseudo Graph
- Multi Graph
- Hyper Graph

Graphs with Properties

- Each vertex or edge may have properties associated with it
- May include identifiers or classes

Types of Graph Operations

- Connectivity Operations:
 - number of vertices/edges, in- and out-degrees of vertices
 - histogram of degrees can be useful in comparing graphs
- Path Operations: cycles, reachability, shortest path, minimum spanning tree
- Community Operations: clusters (cohesion and separation)
- Centrality Operations: degree, vulnerability, PageRank
- Pattern Matching: subgraph isomorphism
 - can use properties
 - useful in fraud/threat detection, social network suggestions

What is a Graph Database?

- A database with an explicit graph structure
- Each node knows its adjacent nodes
- the same
- Plus an Index for lookups

D. Koop, CSCI 490/680, Spring 2020

• As the number of nodes increases, the cost of a local step (or hop) remains

How do Graph Databases Compare?

Graph Databases Compared to Relational Databases

Optimized for aggregation

D. Koop, CSCI 490/680, Spring 2020

Optimized for connections

Graph Databases Compared to Key-Value Stores

Optimized for simple look-ups

D. Koop, CSCI 490/680, Spring 2020

Optimized for traversing connected data

Graph Databases Compared to Document Stores

Optimized for "trees" of data

D. Koop, CSCI 490/680, Spring 2020

Optimized for seeing the forest and the trees, and the branches, and the trunks

Graph Databases

D. Lembo and R. Rosati

Why Graph Database Models?

- Graphs has been long ago recognized as one of the most simple, natural and intuitive knowledge representation systems
- Graph data structures allow for a natural modeling when data has graph structure
- Queries can address direct and explicitly this graph structure
- Implementation-wise, graph databases may provide special graph storage structures, and take advantage of efficient graph algorithms available for implementing specific graph operations over the data

Relational Model

				_
NAME	LASTNAME	I	PERSON	PARE
George	Jones		Julia	Georg
Ana	Stone		Julia	Ana
Julia	Jones		David	James
James	Deville		David	Julia
David	Deville		Mary	James
Mary	Deville		Mary	Julia
	1		-	l

D. Koop, CSCI 490/680, Spring 2020

[R. Angles and C. Gutierrez, 2017]

Northern Illinois University

Basic Labeled Model (Gram)

- Directed graph with nodes and edges labeled by some vocabulary • Gram is a directed labeled multigraph
- - Each node is labeled with a symbol called a type
 - Each edge has assigned a label representing a relation between types

Hypergraph Model (Groovy)

- nodes
- dependencies (directed), object-ID and (multiple) structural inheritance

D. Koop, CSCI 490/680, Spring 2020

Notion of edge is extended to hyperedge, which relates an arbitrary set of

• Hypergraphs allow the definition of complex objects (undirected), functional

Hypernode Model

- hypernodes), allowing **nesting** of graphs
- Encapsulates information

D. Koop, CSCI 490/680, Spring 2020

Hypernode is a directed graph whose nodes can themselves be graphs (or

Northern Illinois University

Semistructured (Tree) Model: (OEM Graph)

- "Self-describing" data like JSON and XML
- OEM uses pointers to data in the tree

D. Koop, CSCI 490/680, Spring 2020

Northern Illinois University

RDF (Triple) Model

- Schema and instance are mixed together
- SPAQL to query
- Semantic web

D. Koop, CSCI 490/680, Spring 2020

Interconnect resources in an extensible way using graph-like structure for data

Property Graph Model (Cypher in neo4j)

- Directed, labelled, attributed multigraph
- Properties are key/value pairs that represent metadata for nodes and edges

Types of Graph Queries

- Adjacency queries (neighbors or neighborhoods)
- Pattern matching queries (related to graph mining)
 - Graph patterns with structural extension or restrictions
 - Complex graph patterns
 - Semantic matching
 - Inexact matching
 - Approximate matching
- Reachability queries (connectivity)

D. Koop, CSCI 490/680, Spring 2020

Northern Illinois University

Types of Graph Queries (continued)

- Analytical queries
 - Summarization queries
 - Complex analytical queries (PageRank, characteristic path length,

connected components, community detection, clustering coefficient)

Graph Query Languages

D. Koop, CSCI 490/680, Spring 2020

[R. Angles and C. Gutierrez, 2017]

Northern Illinois University

Sypher

- Implemented by neo4j system
- Expresses reachability queries via path expressions -p = (a) - [:knows*] -> (b): nodes from a to b following knows edges • START x=node:person(name="John")
- MATCH $(x) [:friend] \rightarrow (y)$ RETURN y.name

D. Koop, CSCI 490/680, Spring 2020

Northern Illinois University

SPARQL (RDF)

- Uses SELECT-FROM-WHERE pattern like SQL
- SELECT ?N FROM <http://example.org/data.rdf> WHERE { ?X rdf:type voc:Person . ?X voc:name ?N }

D. Koop, CSCI 490/680, Spring 2020

Northern Illinois University

Comparing Graph Database Systems: Features

Data Storage

Graph	Main	External	Backend	Indexes
Database	memory	memory	Storage	
AllegroGraph	•	•		•
DEX		•		•
Filament	•		•	
G-Store		•		
HyperGraphDB	•	•	•	•
InfiniteGraph		•		•
Neo4j	•	•		•
Sones				•
vertexDB		•	•	

D. Koop, CSCI 490/680, Spring 2020

Operations/Manipulation

	Data	Data	Query	API	GU
Graph	Definition	Manipulat.	Language		
Database	Language	Language			
AllegroGraph	•	•	•	•	
DEX					
Filament					
G-Store	•		•		
HyperGraphDB					
InfiniteGraph					
Neo4j					
Sones	•				
vertexDB					

Comparing Graph Database Systems: Representation

Graph Data Structures

	Graphs				Nodes		Edges		
Graph Database	Simple graphs	Hypergraphs	Nested graphs	Attributed graphs	Node labeled	Node attribution	Directed	Edge labeled	Edge attribution
AllegroGraph	•				•		•	•	
DEX					•	•	•	•	•
Filament	•				•		•	•	
G-Store	•				•		•	•	
HyperGraphDB		•			•		•	•	
InfiniteGraph					•	•	•	•	•
Neo4j							•	•	
Sones		•							
vertexDB	•						•	•	

D. Koop, CSCI 490/680, Spring 2020

Entites & Relations

	S	Schem	a	Instance					
Graph Database	Node types	Property types	Relation types	Object nodes	Value nodes	Complex nodes	Object relations	Simple relations	Complex relations
AllegroGraph									
DEX	•		•		•		•	•	
Filament					•			•	
G-Store					•				
HyperGraphDB	•		•		•			•	•
InfiniteGraph	•		•		•		•		
Neo4j				•	•			•	
Sones					•			•	•
vertexDB									

Comparing Graph Database Systems: Queries

Query Support

	Туре			Use			
Graph Database	Query Lang.	API	Graphical Q. L.	Retrieval	Reasoning	Analysis	
AllegroGraph	0		•		•		
DEX				•			
Filament		•		•			
G-Store				•			
HyperGraphDB				•			
InfiniteGraph				•			
Neo4j	0	•		•			
Sones			•	•			
vertexDB							

D. Koop, CSCI 490/680, Spring 2020

Types of Queries

	Adjacency		Reachability				
Graph Database	Node/edge adjacency	k-neighborhood	Fixed-length paths	Regular simple paths	Shortest path	Pattern matching	Summarization
Allegro	•						
DEX				●	•		
Filament			•				
G-Store					•		
HyperGraph							
Infinite			•	•	●		
Neo4j					●		
Sones							
vertexDB							

[R. Angles, 2012]

Reminder: Discussions

- Please post at least once this week on the discussion board in Blackboard with a question, answer, or discussion point about one of the lectures
- Feedback is useful—I hope the lectures are clear, but I am pretty sure there are still places where I can clarify things better
- You may also post questions about the assignment there if you believe they are relevant to all students

D. Koop, CSCI 490/680, Spring 2020

