
Advanced Data Management (CSCI 490/680)

Scalable Database Systems

Dr. David Koop

D. Koop, CSCI 490/680, Spring 2020

D. Koop, CSCI 490/680, Spring 2020

Course Updates
• We want to help you continue learning… but we also realize that COVID-19

has changed a lot in our lives
• I understand that this is not class as normal
• If you have any circumstances that impact coursework, please contact me

2

D. Koop, CSCI 490/680, Spring 2020

Course Updates
• Office hours/Discussion/Questions: Blackboard Ultra Collaborate
- 1:00-2:30pm on Tuesdays and Thursdays

• Lectures: Online, recorded videos on Blackboard
• Discussions/Questions: Either Blackboard Ultra Collaborate or Discussions
• Reading Responses: Same as before (turn in via Blackboard)
• Assignments: Same as before (turn in via Blackboard)
• Reading Quizzes: Online via Blackboard
• Test 2 & Final Exam: Online via Blackboard

3

D. Koop, CSCI 490/680, Spring 2020

Where have we been?
• Focused on how to deal with data
• Topics
- Tools: Python & pandas
- Understanding Data
- Data wrangling, cleaning, and transformation
- Data integration & fusion
- Data exploration & visualization

4

D. Koop, CSCI 490/680, Spring 2020

Where are we going?
• Topics:
- Scalable databases
- Data curation
- Different dataset types: graphs, time series, and spatial data
- Provenance and reproducibility
- Data Management & Machine Learning

5

D. Koop, CSCI 490/680, Spring 2020

Assignment 4
• COVID-19 data
• Data Integration
- Population
- Temperature

• Data Fusion:
- Our World in Data
- Johns Hopkins
- Wikipedia

• Questions?

6

http://faculty.cs.niu.edu/~dakoop/cs680-2020sp/assignment4.html

D. Koop, CSCI 490/680, Spring 2020

Reading Quiz
• Reading for Thursday:
- Spanner: Google's Globally-Distributed Database

• Before watching Thursday's lecture, take Blackboard quiz on the reading
• Quiz will focus on key concepts not the details

7

https://research.google.com/archive/spanner-osdi2012.pdf

D. Koop, CSCI 490/680, Spring 2020 8

Data Discovery and Visualization

D. Koop, CSCI 490/680, Spring 2020

Goal of Dataset Search: Accurate (A) vs. Timely (B)

9

[Chapman et al., 2020]

D. Koop, CSCI 490/680, Spring 2020

Goods: Organizing Google's Datasets
• Tool for Google to help its employees find internal data
• Keep data where it is, how it is, but extract metadata to aid search
• Challenges:
- Dataset size and scale: >26 billion datasets
- Variety: formats (text, csv, Bigtable), storage (GoogleFS, db server)
- Churn: ~5% of datasets deleted each day
- Metadata uncertainty: protocol buffers, primary key identification
- Computing importance: need to understand users
- Recovering semantics: understanding the data aids metadata extraction

10

[Halevy et al., 2016]

D. Koop, CSCI 490/680, Spring 2020Figure 1: Overview of Google Dataset Search (Goods). The figure shows the Goods dataset catalog that collects metadata about datasets from various
storage systems as well as other sources. We also infer metadata by processing additional sources such as logs and information about dataset owners
and their projects, by analyzing content of the datasets, and by collecting input from the Goods users. We use the information in the catalog to build
tools for search, monitoring, and visualizing flow of data.

Based on the information in its catalog, Goods provides a dash-

board for the NLU team (in this case, dataset producers), which
displays all their datasets and enables browsing them by facets (e.g.,
owner, data center, schema). Even if the team’s datasets are in di-
verse storage systems, the engineers get a unified view of all their
datasets and dependencies among them. Goods can monitor fea-
tures of the dataset, such as its size, distribution of values in its
contents, or its availability, and then alert the owners if the features
change unexpectedly.

Another important piece of information that Goods provides is
the dataset provenance: namely, the information about which datasets
were used to create a given dataset (upstream datasets), and those
that rely on it (downstream datasets). Note that both the upstream
and downstream datasets may be created by other teams. When an
engineer in the NLU team observes a problem with a dataset, she
can examine the provenance visualization to determine whether a
change in some upstream dataset had caused the problem. Simi-
larly, if the team is about to make a significant change to its pipeline
or has discovered a bug in an existing dataset that other teams have
consumed already, they can quickly notify those a↵ected by the
problem.

From the perspective of dataset consumers, such as those not
part of the NLU team in our example, Goods provides a search en-

gine over all the datasets in the company, plus facets for narrowing
search results, to find the most up-to-date or potentially important
datasets. Goods presents a profile page for every dataset, which
helps users unfamiliar with the data to understand its schema and
to create boilerplate code to access and query the data. The profile
page also contains the information on datasets with content simi-

lar to the content of the current dataset. The similarity informa-
tion may enable novel combinations of datasets: for example, if
two datasets share a primary key column, then they may provide
complementary information and are therefore a good candidate for
joining.

Goods allows users to expand the catalog with crowd-sourced
metadata. For instance, dataset owners can annotate datasets with
descriptions, in order to help users figure out which datasets are
appropriate for their use (e.g., which analysis techniques are used
in certain datasets and which pitfalls to watch out for). Dataset au-
ditors can tag datasets that contain sensitive information and alert
dataset owners or prompt a review to ensure that the data is han-
dled appropriately. In this manner, Goods and its catalog become a
hub through which users can share and exchange information about
the generated datasets. Goods also exposes an API through which
teams can contribute metadata to the catalog both for the teams own
restricted use as well as to help other teams and users understand
their datasets easily.

As we discuss in the rest of the paper, we addressed many chal-
lenges in designing and building Goods, arising from the sheer
number of datasets (tens of billions in our case), the high churn in
terms of updates, the sizes of individual datasets (gigabytes or ter-
abytes in many cases), the many di↵erent data formats and stores
they reside in, and the varying quality and importance of informa-
tion collected about each dataset. Many of the challenges that we
addressed in Goods were precipitated by the scale and characteris-
tics of the data lake at Google. However, we believe that our expe-
rience and the lessons that we learned will apply to similar systems
in other enterprises.

Goods: Organizing Google's Datasets

11

[Halevy et al., 2016]

D. Koop, CSCI 490/680, Spring 2020Figure 1: An overview of the Dataset Search components. Google crawler collects the metadata from the Web; Dataset Search
backend normalizes and reconciles the metadata; we then index the reconciled metadata and rank results for user queries.

triples [28]. We then look for the triples that use our vocabular-
ies of interest, Schema.org and DCAT. Speci�cally, we collect all
the triples for all the pages that have elements of speci�c types:
http://schema.org/Dataset, http://schema.org/DataCatalog,
and http://www.w3.org/ns/dcat#Dataset.

For a set of triples from each page, we traverse the graph to
collect all the properties and related objects for each dataset in a
protocol bu�er [32], a nested-relational record corresponding to
each metadata entry. A dataset record can point to other records
such as organizations that provided a dataset or a record describing
the distribution of a dataset. A single Web page can have multiple
dataset records on it.

The speci�cation of the graph traversal captures the mapping
from Schema.org and DCAT vocabularies to the corresponding
elements in the protocol-bu�er de�nition (e.g., example �elds in
Figure 2). The schema of the protocol bu�er for the metadata largely
corresponds to http://schema.org/Dataset and therefore the
transformation of metadata at this stage is rather small.

To improve scalability, we use the graph query independently
on the triples from each individual page rather than try to extract
information from a graph that includes all metadata triples on
the Web. Because the links across di�erent pages must specify
objects on another page directly through a URL (e.g., a provider
of this dataset on page A is described on page B), we can do this
reconciliation post-hoc. So, essentially, each page corresponds to its
own, possibly disconnected graph. At the same time, doing graph
traversal only for a single page is dramatically more scalable.

The information that we extract through graph traversal consti-
tutes the rawmetadata, metadata that closely mimics the structure
of Schema.org properties on the original page.

In the next few steps, we describe how we create reconciled
metadata for each dataset, accounting for the di�erent levels of
quality and variety of the modeling patterns used.

5.2 Normalizing and cleaning the metadata
As we mentioned in Section 4.1, we must assume that we will en-
counter every possible misuse andmis-interpretation of Schema.org
properties when we operate at the scale of the whole Web. Thus,
we perform a number of operations to normalize and clean up the
metadata.

First, for the properties where we observe di�erent patterns on
the Web, we analyze the common patterns used and try to account
for all of them. For instance Figure 2 shows the di�erent patterns
that we observed for de�ning downloads and distribution. In the
�gure, the �rst example of raw metadata de�nes the format of the
dataset (CSV) at the level of the dataset itself and stores the down-
load URL as the value of the http://schema.org/distribution
property. Other examples in the �gure deal with these two pieces
of information di�erently. All these patterns are commonly used in
our corpus. We mine these patterns by traversing either the initial
graph or the resulting protocol bu�er. Once we identify the patterns,
we write adapters to convert all of them into the same modeling
pattern in the reconciled metadata record. The right-hand side of
Figure 2 shows this reconciled result.

Similarly, we have developed adapters for other metadata �elds:
We understand a lot more representations of dates than the ISO
standard required by the Schema.org speci�cation (Section 4.1. We
will pick up digital object identi�ers (DOIs) for a dataset from a
variety of �elds, and not just http://schema.org/identifier.
We will use a uniform �eld, provider, for the many di�erent �elds
that dataset providers used to identify this property. As we collect
more metadata, our set of such adapters grows. Our decisions in
these steps are guided by two factors: (1) the frequent usage patterns
that we observed in the data; and (2) our understanding of what we
expect the users to see in Dataset Search results.

1369

Google Dataset Search Overview

12

[N. Noy et al., 2019]

https://research.google/pubs/pub47845/

D. Koop, CSCI 490/680, Spring 2020

Requirements
• System must be open so new providers can add their own datasets
• Search is over metadata (a provider may require users to pay/create

account)
• Metadata must be published by the data publishers themselves, adhering to

a standard

13

[N. Noy et al., 2019]

https://research.google/pubs/pub47845/

D. Koop, CSCI 490/680, Spring 2020

Challenges
• Metadata Quality: providers don't adhere to the specs
• Metadata Duplication in Search Results: search results vs. profile pages
• Dataset Replication and Provenance: identify replicas across providers
• Churn and Stale Sites:
- 3% deleted, 7-10% added per day
- standard web crawlers check high-traffic sites more often

• Ranking/Relevance: data citation might help
• Multiple Dataset-Metadata Standards: schema.org vs DCAT

14

[N. Noy et al., 2019]

http://schema.org
https://research.google/pubs/pub47845/

D. Koop, CSCI 490/680, Spring 2020 15

Data Visualization

D. Koop, CSCI 490/680, Spring 2020

What does it mean to summarize data?

16

name country primary_fuel capacity_mw generation_gwh latitude longitude

0 PHILIPPSBURG-2 DEU Nuclear 1468.000 12763.886134 49.2529 8.4364

1 Kvinen NOR Hydro 90.000 403.532191 58.9281 7.0838

2 Torrance Farm Wind Park Extension GBR Wind 5.700 10.342942 55.8766 -3.7452

3 Nam Phom THA Gas 710.000 2906.785455 16.6820 102.7422

4 Winterset USA Oil 13.600 0.103000 41.3372 -94.0126

5 Twin Elm Solar Farm GBR Solar 1.000 0.499932 51.3580 -2.7959

6 Tesoro Hawaii USA Oil 20.000 156.520696 21.3032 -158.0914

7 Prospector Windfarm (Burnt River) USA Wind 10.000 1.774076 44.4181 -117.2550

8 Caterpillar USA Oil 13.300 33.826000 40.4175 -86.8447

9 Bourogne FRA Biomass 8.862 34.817396 47.5647 6.9062

10 CED Ducor 2 USA Solar 20.000 8.918553 35.8442 -119.0681

11 Edenderry IRL Oil 117.600 19.196229 53.2902 -7.0845

12 Kangaroo Valley (Shoalhaven Scheme) AUS Hydro 160.000 140.743389 -34.7230 150.4795

13 Wheelabrator Baltimore Refuse USA Waste 64.500 336.882000 39.2660 -76.6297

14 Guangxi Yulin Darongshan Wind CHN Wind 25.000 76.523288 22.8722 110.2332

15 Bernards Solar USA Solar 3.700 1.649932 40.7027 -74.5816

16 Manor Farm - Shripney GBR Solar 5.000 2.499661 50.8148 -0.6825

17 Saint-Cirgues-en-Montagne FRA Wind 18.450 35.116073 44.7679 4.0883

18 Turweston Solar Farm GBR Solar 16.700 8.348868 52.0328 -1.1053

… … … … … … … …

D. Koop, CSCI 490/680, Spring 2020

Counts & Stats?

17

primary_fuel num_plants
Hydro 7155
Solar 5929
Wind 5188
Gas 3922
Coal 2390
Oil 2290

Biomass 1396
Waste 1087

Nuclear 198
Geothermal 189

… …

country num_plants
USA 8686
CHN 3041
GBR 2536
BRA 2340
FRA 2017
CAN 1154
DEU 982
IND 861
ESP 614
RUS 505

… …

generation_gwh
mean 806.709784

median 47.308833
std 3696.765694

capacity_mw
mean 186.294810

median 18.900000
std 525.703572

D. Koop, CSCI 490/680, Spring 2020

Visual Summary

18

D. Koop, CSCI 490/680, Spring 2020

Visual Summary

18

D. Koop, CSCI 490/680, Spring 2020

Visual Summary Problems
• Too much data
- Cannot display all of it without overlap (occlusion)
- A limited number of pixels
- A limited amount of human-resolvable resolution

• Prioritizing the display data is non-trivial
- Show a lot of tiny power plants and occlude
- Show only the big power plants

19

D. Koop, CSCI 490/680, Spring 2020

Visual Information-Seeking Mantra

•Overview First
•Zoom & Filter
•Details on Demand

–Schneiderman, 1996

20

D. Koop, CSCI 490/680, Spring 2020

Visual Summarization Projects

21

OO
SS

CC

CC

NN

CC
CC
NN

CC
NN

CC
NN

NN
CC
NN

NN

HH

HH
HH

HH

HH

HH

HH

SS

HH

Graph Collection
Summaries

Graph
Summarization

Trajectory
Summarization

Map Summarization

D. Koop, CSCI 490/680, Spring 2020 22

Scalable Database Systems

D. Koop, CSCI 490/680, Spring 2020

144 Introduction

Fig. 1.1 Main components of a DBMS.

a well-understood point of reference for new extensions and revolutions
in database systems that may arise in the future. As a result, we focus
on relational database systems throughout this paper.

At heart, a typical RDBMS has five main components, as illustrated
in Figure 1.1. As an introduction to each of these components and the
way they fit together, we step through the life of a query in a database
system. This also serves as an overview of the remaining sections of the
paper.

Consider a simple but typical database interaction at an airport, in
which a gate agent clicks on a form to request the passenger list for a
flight. This button click results in a single-query transaction that works
roughly as follows:

1. The personal computer at the airport gate (the “client”) calls
an API that in turn communicates over a network to estab-
lish a connection with the Client Communications Manager
of a DBMS (top of Figure 1.1). In some cases, this connection

Relational Database Architecture

23

[Hellerstein et al., Architecture of a Database System]

http://db.cs.berkeley.edu/papers/fntdb07-architecture.pdf

D. Koop, CSCI 490/680, Spring 2020 24

How to Scale Relational Databases?

D. Koop, CSCI 490/680, Spring 2020

170 Parallel Architecture: Processes and Memory Coordination

3.3 Shared-Disk

A shared-disk parallel system (Figure 3.3) is one in which all processors
can access the disks with about the same performance, but are unable
to access each other’s RAM. This architecture is quite common with
two prominent examples being Oracle RAC and DB2 for zSeries SYS-
PLEX. Shared-disk has become more common in recent years with the
increasing popularity of Storage Area Networks (SAN). A SAN allows
one or more logical disks to be mounted by one or more host systems
making it easy to create shared disk configurations.

One potential advantage of shared-disk over shared-nothing systems
is their lower cost of administration. DBAs of shared-disk systems do
not have to consider partitioning tables across machines in order to
achieve parallelism. But very large databases still typically do require
partitioning so, at this scale, the difference becomes less pronounced.
Another compelling feature of the shared-disk architecture is that the
failure of a single DBMS processing node does not affect the other
nodes’ ability to access the entire database. This is in contrast to both
shared-memory systems that fail as a unit, and shared-nothing sys-
tems that lose access to at least some data upon a node failure (unless
some alternative data redundancy scheme is used). However, even with
these advantages, shared-disk systems are still vulnerable to some single

Fig. 3.3 Shared-disk architecture.

Parallel DB Architecture: Shared Disk

25

[Hellerstein et al., Architecture of a Database System]

http://db.cs.berkeley.edu/papers/fntdb07-architecture.pdf

D. Koop, CSCI 490/680, Spring 2020

170 Parallel Architecture: Processes and Memory Coordination

3.3 Shared-Disk

A shared-disk parallel system (Figure 3.3) is one in which all processors
can access the disks with about the same performance, but are unable
to access each other’s RAM. This architecture is quite common with
two prominent examples being Oracle RAC and DB2 for zSeries SYS-
PLEX. Shared-disk has become more common in recent years with the
increasing popularity of Storage Area Networks (SAN). A SAN allows
one or more logical disks to be mounted by one or more host systems
making it easy to create shared disk configurations.

One potential advantage of shared-disk over shared-nothing systems
is their lower cost of administration. DBAs of shared-disk systems do
not have to consider partitioning tables across machines in order to
achieve parallelism. But very large databases still typically do require
partitioning so, at this scale, the difference becomes less pronounced.
Another compelling feature of the shared-disk architecture is that the
failure of a single DBMS processing node does not affect the other
nodes’ ability to access the entire database. This is in contrast to both
shared-memory systems that fail as a unit, and shared-nothing sys-
tems that lose access to at least some data upon a node failure (unless
some alternative data redundancy scheme is used). However, even with
these advantages, shared-disk systems are still vulnerable to some single

Fig. 3.3 Shared-disk architecture.

Parallel DB Architecture: Shared Disk

25

[Hellerstein et al., Architecture of a Database System]

MAINFRAMES

http://db.cs.berkeley.edu/papers/fntdb07-architecture.pdf

D. Koop, CSCI 490/680, Spring 2020

166 Parallel Architecture: Processes and Memory Coordination

Fig. 3.1 Shared-memory architecture.

buying a smaller number of large, very expensive systems is sometimes
viewed to be an acceptable trade-off.1

Multi-core processors support multiple processing cores on a sin-
gle chip and share some infrastructure such as caches and the memory
bus. This makes them quite similar to a shared-memory architecture in
terms of their programming model. Today, nearly all serious database
deployments involve multiple processors, with each processor having
more than one CPU. DBMS architectures need to be able to fully
exploit this potential parallelism. Fortunately, all three of the DBMS
architectures described in Section 2 run well on modern shared-memory
hardware architectures.

The process model for shared-memory machines follows quite
naturally from the uniprocessor approach. In fact, most database
systems evolved from their initial uniprocessor implementations to
shared-memory implementations. On shared-memory machines, the OS
typically supports the transparent assignment of workers (processes or

1 The dominant cost for DBMS customers is typically paying qualified people to adminis-
ter high-end systems. This includes Database Administrators (DBAs) who configure and
maintain the DBMS, and System Administrators who configure and maintain the hard-
ware and operating systems.

Parallel DB Architecture: Shared Memory

26

[Hellerstein et al., Architecture of a Database System]

http://db.cs.berkeley.edu/papers/fntdb07-architecture.pdf

D. Koop, CSCI 490/680, Spring 2020

Figure 3: Representation of Tile Rendering Server
instances (virtual or physical machines), where each
instance contains a Tra�cDB data store shared
across several application processes.

potentially become the system’s bottleneck. Therefore, no
central process is utilised to translate the application queries
into database-specific queries; instead, the application pro-
cesses are directly “connected” to the shared memory data
store.

4.1 Shared Memory Storage
Tra�cDB was designed for fast read access; directly ac-

cessing the memory location of stored objects is crucial for
the performance of applications, such as the Route Plan-
ning Service. Therefore, data must be stored in a region
of RAM that can be shared and e�ciently accessed by sev-
eral di↵erent application processes. POSIX [13] provides a
standardised API that allows processes to communicate by
sharing a region of memory. Figure 4 shows the interaction
between the shared memory region that stores the data and
the application processes using it. The daemon is a back-
ground process responsible for managing the shared memory
region, which includes creating, updating and deleting the
entire data store. Being the core of Tra�cDB, the daemon
is connected to an external service that injects new tra�c
content. It is the only process allowed to update the data
store.

Figure 4: Representation of the shared-memory
data store updated by the daemon process and ac-
cessed by application processes.

In the further discussion, the word “lock” is not used in
the traditional sense, rather it will be used to mean two
things: attaching shared memory segments into process vir-
tual address space and increasing the kernel’s internal counter
of attached processes. The latter is preventing the kernel
from destroying shared memory until it is closed (detached).
With a producer – consumer approach (deamon – appli-

cation process respectively), when a consumer performs a
set of queries, the data store must be locked for reading,
so updates (done by producer) must wait until all the op-
erations are performed in order to gain write access. This
prevents the data from being modified whilst reading is in
progress and creating possible inconsistencies, but limiting
concurrent access to the data store by the application pro-
cesses and the daemon. This is not to mention that possible
starvation and performance degradation could occur due to
lock contention, because the update process can take a few
seconds and during this time no consumer cannot access the
database.
To solve the above mentioned problem, Tra�cDB was

designed to take advantage of the double bu↵ering scheme
widely used on rendering graphics [12]. Moreover, Tra�cDB
utilises the Linux kernel’s Shared Memory Object Manage-
ment for automatic management of the objects lifetime. The
daemon allocates a main segment in shared memory referred
to as the header. The singleton header contains meta-data,
such as the capacity and size of internal data structures, and
any static tra�c information that is known not to change
(e.g. street geometry). Exluding information regarding the
active object, only data appending inside header is allowed.
There is also another Shared Memory Object – the Tra�c
Object (object for short). The object contains the actual
tra�c conditions for a given moment. It contains all the
dynamic content, everything that may change periodically
as the real-time tra�c conditions change. Having separate
shared memory objects to store the dynamic content, al-
lows one object to be constantly available for the application
processes to read and another for the daemon process to up-
date. Both, header and objects are allocated to the full size
upon creation of shared memory, thus eliminating memory
fragmentation or a need for memory reallocation and copy-
ing.

4.1.1 Daemon

When the daemon starts for the first time the database
does not exist. The daemon will create the header segment
and allocate its internal data structures; loading any static
data according to the database settings. If the header al-
ready exists, it attaches to it. Then the daemon enters an
internal loop, waiting for tra�c data updates. Whenever
new tra�c data is available, a new Tra�c Object is created
and the database is updated. Since only the daemon has ac-
cess to this newly created object, it can write data without
need for synchronisation mechanisms. The same applies to
the header. Since new static information is appended and
required only by the newly created object, updates can hap-
pen directly. Moreover, setting proper access rights (write
for daemon, read-only for others), prevents application pro-
cesses from writing to shared memory. Additional perfor-
mance enhancements could also be achieved by using shared
memory with huge pages support (SHM HUGETLB) en-
abled [21]. Once the update stage is completed the daemon
updates the active object field in the header meta-data with

1369

TrafficDB: Shared-Memory Data Store
• Traffic-aware route planning
• Want up-to-date data for all
• Thousands of requests per second
- High-Frequency Reads
- Low-Frequency Writes

• "Data must be stored in a region of
RAM that can be shared and
efficiently accessed by several
different application processes"

27

[R. Fernandes et al., 2016]

D. Koop, CSCI 490/680, Spring 2020

3.2 Shared-Nothing 167

threads) across the processors, and the shared data structures continue
to be accessible to all. All three models run well on these systems and
support the execution of multiple, independent SQL requests in paral-
lel. The main challenge is to modify the query execution layers to take
advantage of the ability to parallelize a single query across multiple
CPUs; we defer this to Section 5.

3.2 Shared-Nothing

A shared-nothing parallel system (Figure 3.2) is made up of a cluster
of independent machines that communicate over a high-speed network
interconnect or, increasingly frequently, over commodity networking
components. There is no way for a given system to directly access the
memory or disk of another system.

Shared-nothing systems provide no hardware sharing abstractions,
leaving coordination of the various machines entirely in the hands of the
DBMS. The most common technique employed by DBMSs to support
these clusters is to run their standard process model on each machine,
or node, in the cluster. Each node is capable of accepting client SQL

Fig. 3.2 Shared-nothing architecture.

Parallel DB Architecture: Shared Nothing

28

[Hellerstein et al., Architecture of a Database System]

http://db.cs.berkeley.edu/papers/fntdb07-architecture.pdf

D. Koop, CSCI 490/680, Spring 2020

Sharding

29

[MongoDB]

http://docs.mongodb.org/manual/core/sharding-introduction/

D. Koop, CSCI 490/680, Spring 2020

Relational Databases: One size fits all?
• Lots of work goes into relational database development:
- B-trees
- Cost-based query optimizers
- ACID (Atomicity, Consistency, Isolation, Durability)

• Vendors have stuck with this model since the 1980s
• Having different systems leads to business problems:
- cost problem
- compatibility problem
- sales problem
- marketing problem

30

[Stonebraker and Çetinetmel, 2005]

D. Koop, CSCI 490/680, Spring 2020

ACID Transactions
• Make sure that transactions are processed reliably
• Atomicity: leave the database as is if some part of the transaction fails (e.g.

don't add/remove only part of the data) using rollbacks
• Consistency: database moves from one valid state to another
• Isolation: concurrent execution matches serial execution
• Durability: endure hardware failures, make sure changes hit disk

31

D. Koop, CSCI 490/680, Spring 2020

Stonebraker: The End of an Architectural Era
• "RDBMSs were designed for the business data processing market, which is

their sweet spot"
• "They can be beaten handily in most any other market of significant enough

size to warrant the investment in a specialized engine"
• Changes in markets (science), necessary features (scalability), and

technology (amount of memory)
• RDBMS Overhead: Logging, Latching, and Locking
• Relational model is not necessarily the answer
• SQL is not necessarily the answer

32

D. Koop, CSCI 490/680, Spring 2020 www.percona.com

Typical Table

id scientist death_by movie_name

1 Reinhardt Crew The Black Hole

2 Tyrell Roy Batty Blade Runner

3 Hammond Dinosaur Jurassic Park

4 Soong Lore Star Trek: TNG

5 Morbius The machine Forbidden Planet

6 Dyson SWAT Terminator 2: Judgment Day

Primary Key

Row

Row Stores

33

[J. Swanhart, Introduction to Column Stores]

http://files.meetup.com/107604/intro_to_column_stores.pdf

D. Koop, CSCI 490/680, Spring 2020

OLTP vs. OLAP
• Online Transactional Processing (OLTP) often used in business applications,

data entry and retrieval transactions
• OLTP Examples:
- Add customer's shopping cart to the database of orders
- Find me all information about John Hammond's death

• OLTP is focused on the day-to-day operations while Online Analytical
Processing (OLAP) is focused on analyzing that data for trends, etc.

• OLAP Examples:
- Find the average amount spent by each customer
- Find which year had the most movies with scientists dying

34

D. Koop, CSCI 490/680, Spring 2020
www.percona.com

Row stores can waste IO

6 15 on_hold 247 122 9 72 76 5 66

select sum(metric) as the_sum from fact

247

1. Storage engine gets a whole row from the table

2. SQL inWeUface e[WUacWV onl\ UeTXeVWed SoUWion, addV iW Wo ³the_sum´

3. IF all rows scanned, send results to client, else GOTO 1

Inefficiency in Row Stores for OLAP

35

[J. Swanhart, Introduction to Column Stores]

http://files.meetup.com/107604/intro_to_column_stores.pdf

D. Koop, CSCI 490/680, Spring 2020

www.percona.com

Simple column store on disk

Genre

Comedy
Horror
Horror
Drama
Comedy
Drama

id

1
2
3
4
5
6

Title

Mrs. Doubtfire
Jaws
The Fly
Steel Magnolias
The Birdcage
Erin Brokovitch

Person

Robin Williams
Roy Scheider
Jeff Goldblum
Dolly Parton
Nathan Lane
Julia Roberts

row id = 1

row id = 6

Each column has a file or segment on disk

Column Stores

36

[J. Swanhart, Introduction to Column Stores]

http://files.meetup.com/107604/intro_to_column_stores.pdf

D. Koop, CSCI 490/680, Spring 2020

Horizontal Partitioning vs. Vertical Partitioning

37

[M. Drake]

https://www.digitalocean.com/community/tutorials/understanding-database-sharding

D. Koop, CSCI 490/680, Spring 2020

Horizontal Partitioning vs. Vertical Partitioning

38

[M. Drake]

https://www.digitalocean.com/community/tutorials/understanding-database-sharding

D. Koop, CSCI 490/680, Spring 2020

Problems with Relational Databases

39

[P. Sadalage]

https://www.thoughtworks.com/insights/blog/nosql-databases-overview

D. Koop, CSCI 490/680, Spring 2020

NoSQL: Key-Value Databases
• Always use primary-key access
• Operations:
- Get/put value for key
- Delete key

• Examples
- Memcached
- Amazon DynamoDB
- Project Voldemort
- Couchbase

40

[P. Sadalage]

https://www.thoughtworks.com/insights/blog/nosql-databases-overview

D. Koop, CSCI 490/680, Spring 2020

NoSQL: Document Databases
• Documents are the main entity
- Self-describing
- Hierarchical
- Do not have to be the same

• Could be XML, JSON, etc.
• Key-value stores where values are

"examinable"
• Can have query language and

indices overlaid
• Examples: MongoDB, CouchDB,

Terrastore
41

[P. Sadalage]

https://www.thoughtworks.com/insights/blog/nosql-databases-overview

D. Koop, CSCI 490/680, Spring 2020

NoSQL: Column Stores
• Instead of having rows grouped/sharded, we group columns
• …or families of columns
• Put similar columns together
• Examples: Cassandra, HBase

42

[P. Sadalage]

https://www.thoughtworks.com/insights/blog/nosql-databases-overview

D. Koop, CSCI 490/680, Spring 2020

NoSQL: Graph Databases
• Focus on entities and relationships
• Edges may have properties
• Relational databases required a set

traversal
• Traversals in Graph DBs are faster
• Examples:
- Neo4j
- Pregel

43

[P. Sadalage]

https://www.thoughtworks.com/insights/blog/nosql-databases-overview

D. Koop, CSCI 490/680, Spring 2020

Distributing Data
• Aggregate-oriented databases
• Sharding (horizontal partitioning): Sharding distributes different data across

multiple servers, so each server acts as the single source for a subset of data
• Replication: Replication copies data across multiple servers, so each bit of

data can be found in multiple places. Replication comes in two forms,
- Master-slave replication makes one node the authoritative copy that handles

writes while slaves synchronize with the master and may handle reads.
- Peer-to-peer replication allows writes to any node; the nodes coordinate to

synchronize their copies of the data.

44

[P. Sadalage]

https://www.thoughtworks.com/insights/blog/nosql-databases-overview

D. Koop, CSCI 490/680, Spring 2020

CAP Theorem

45

[E. Brewer]

D. Koop, CSCI 490/680, Spring 2020

CAP Theorem
• Consistency: every read would get you the most recent write
• Availability: every node (if not failed) always executes queries
• Partition tolerance: system continues to work even if nodes are down
• Theorem (Brewer): It is impossible for a distributed data store to

simultaneously provide more than two of Consistency, Availability, and
Partition Tolerance

46

D. Koop, CSCI 490/680, Spring 2020 47

Think about RDBMS Transactions…

Cassandra:
A Decentralized Structured Storage System

A. Lakshman and P. Malik

D. Koop, CSCI 490/680, Spring 2020

D. Koop, CSCI 490/680, Spring 2020

What is Cassandra?
• Fast Distributed (Column Family NoSQL) Database
- High availability
- Linear Scalability
- High Performance

• Fault tolerant on Commodity Hardware
• Multi-Data Center Support
• Easy to operate
• Proven: CERN, Netflix, eBay, GitHub, Instagram, Reddit

49

[G. Atil]

https://www.slideshare.net/gokhanatil/introduction-to-cassandra-88223524

D. Koop, CSCI 490/680, Spring 2020

HIGH AVAILABILITY: CAP THEOREM AND CASSANDRA

6

Partition
Tolerance

Availability

Consistency 
(ACID)

RDBMS

Atomicity
Consistency
Isolation
Durability

Cassandra and CAP

50

[G. Atil]

https://www.slideshare.net/gokhanatil/introduction-to-cassandra-88223524

D. Koop, CSCI 490/680, Spring 2020

HIGH AVAILABILITY: THE RING

7

NO MASTER NO SLAVE

PEER TO
PEER

go
ssi

p

gossip

I'm online!

Cassandra: Ring for High Availability

51

[G. Atil]

https://www.slideshare.net/gokhanatil/introduction-to-cassandra-88223524

Slides: Introduction to Cassandra

Robert Stupp

D. Koop, CSCI 490/680, Spring 2020

https://www.slideshare.net/RobertStupp/introduction-to-apache-cassandra-39565320

D. Koop, CSCI 490/680, Spring 2020

Next Class's Reading & Quiz
• Spanner: Google's Globally-Distributed Database
• Quiz available on Thursday:
- Will focus on main concepts in the paper, not details
- On Blackboard

53

https://research.google.com/archive/spanner-osdi2012.pdf

