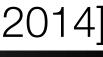
Advanced Data Management (CSCI 490/680)

Data Integration

Dr. David Koop

Three Ways to Present the Same Data

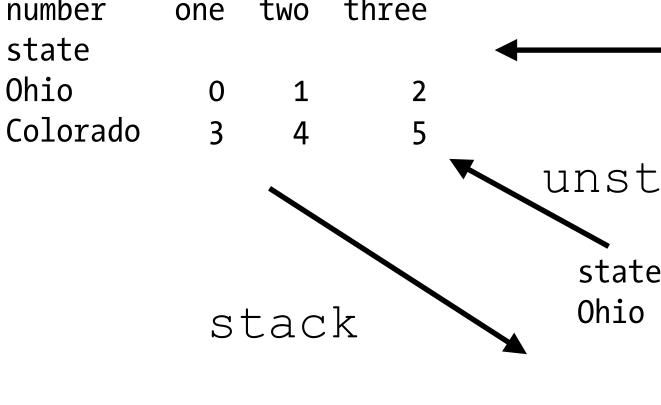

		treatmenta	treatme	entb				
John S	Smith			2				
Jane I	Doe	16		11				
Mary	Johnson	3		1		name	trt	result
						John Smith	a	
	Ir	nitial Data				Jane Doe	a	16
						Mary Johnson	a	3
						John Smith	b	2
						Jane Doe	b	11
	John Smi	ith Jane Do	be Mary	y Johnsor	1	Mary Johnson	b	1
tmenta			_6	6	3	Tidv D	Data	

tr	eatmenta	treatmentb			
John Smith		2			
Jane Doe	16	11			
Mary Johnson	3	1	name	trt	result
			John Smith	a	
Init	al Data		Jane Doe	a	16
			Mary Johnson	\mathbf{a}	3
			John Smith	b	2
			Jane Doe	b	11
John Smith	Jane Doe	e Mary Johnso	n Mary Johnson	b	1
eatmenta —	- 16)		Joto	
reatmentb 2	11	L	1 Tidy [Jala	

Transpose

Tidy Data Principles

- **Tidy Data**: Codd's 3rd Normal Form (Databases)
 - 1. Each variable forms a column
 - 2. Each observation forms a row
 - 3. Each type of observational unit forms a table (DataFrame)
- Other structures are messy data
- Benefits:
 - Easy for analyst to extract variables
 - Works well for vectorized programming
- Organize variables by their role
 - Fixed variables: describe experimental design, known in advance
 - Measured variables: what is measured in study



Stack and Unstack

- stack: pivots from the columns into rows (may produce a Series!)
- unstack: pivots from rows into columns
- unstacking may add missing data
- stacking filters out missing data (unless dropna=False)
- level one two three number

Color

D. Koop, CSCI 490/680, Spring 2020

• can unstack at a different level by passing it (e.g. 0), defaults to innermost

		N						
	Т		_	state number	Ohio	Colorado		
				one	0	3		
				two	1	4		
	1			three	2	5		
tac	K			1				
е	number							
	one	0		uns	tack	(0)		
	two	1		0.110				
	three	2						
rado	one	3						
	two	4						
	three	5			[\	V. McKinne	ey, Python for Data A	Anal
						Z Z M Z	Northern Illinois Univer	sity

Pivot

- "wide" format
- Long format: column names are data values...
- Wide format: more like spreadsheet format
- Example:

	date	item	value	
0	1959-03-31	realgdp	2710.349	
1	1959-03-31	infl	0.000	
2	1959-03-31	unemp	5.800	
3	1959-06-30	realgdp	2778.801	
4	1959-06-30	infl	2.340	
5	1959-06-30	unemp	5.100	
6	1959-09-30	realgdp	2775.488	
7	1959-09-30	infl	2.740	
8	1959-09-30	unemp	5.300	
9	1959-12-31	realgdp	2785.204	

Sometimes, we have data that is given in "long" format and we would like

```
.pivot('date', 'item', 'value')
```

item	infl	realgdp	unemp
date			
1959-03-31	0.00	2710.349	5.8
1959-06-30	2.34	2778.801	5.1
1959-09-30	2.74	2775.488	5.3
1959-12-31	0.27	2785.204	5.6
1960-03-31	2.31	2847.699	5.2

[W. McKinney, Python for Data Analysis]

Melt

- Turn columns into rows
- One or more columns become rows under a new column (column)
- Values become a new column (value)
- After melt, data is **molten**
- **Inverse** of pivot

D. Koop, CSCI 490/680, Spring 2020

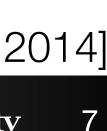
row	a	b	С
A	1	4	7
В	2	5	8
\mathbf{C}	3	6	9

(a) Raw data

row	column	value
A	a	1
В	a	2
\mathbf{C}	a	3
A	b	4
В	b	5
\mathbf{C}	b	6
A	С	7
В	С	8
С	С	9

(b) Molten data

[H. Wickham, 2014]

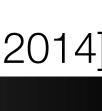

Problem: Variables stored in both rows & columns

Mexico Weather, Global Historical Climatology Network

id	year	month	element	d1	d2	d3	d4	d5	d6	d7	d8
MX17004	2010	1	tmax								
MX17004	2010	1	tmin								
MX17004	2010	2	tmax		27.3	24.1					
MX17004	2010	2	tmin		14.4	14.4					
MX17004	2010	3	tmax					32.1			
MX17004	2010	3	tmin					14.2			
MX17004	2010	4	tmax								
MX17004	2010	4	tmin								
MX17004	2010	5	tmax								
MX17004	2010	5	tmin								

Problem: Variables stored in both rows & columns

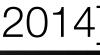
Mexico Weather, Global Historical Climatology Network


year	month	element	d1	d2	d3	d4	d5	d6	d7	d8
2010	1	tmax								
2010	1	tmin								
2010	2	tmax		27.3	24.1					
2010	2	tmin		14.4	14.4					
2010	3	tmax					32.1			
2010	3	tmin					14.2			
2010	4	tmax								
2010	4	tmin								
2010	5	tmax								
2010	5	tmin								
	2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010	$\begin{array}{c c} 2010 & 1 \\ 2010 & 1 \\ 2010 & 2 \\ 2010 & 2 \\ 2010 & 3 \\ 2010 & 3 \\ 2010 & 4 \\ 2010 & 4 \\ 2010 & 5 \end{array}$	2010 1 tmax 2010 1 tmin 2010 2 tmax 2010 2 tmin 2010 2 tmin 2010 3 tmax 2010 3 tmin 2010 4 tmax 2010 4 tmin 2010 5 tmax	2010 1 tmax — 2010 1 tmin — 2010 2 tmax — 2010 2 tmax — 2010 2 tmin — 2010 3 tmax — 2010 3 tmax — 2010 4 tmax — 2010 4 tmax — 2010 5 tmax —	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2010 1 tmax — … </td <td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td> <td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td> <td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td>	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Variable in columns: day; Variable in rows: tmax/tmin

Solution: Melting + Pivot

id	date	element	value	id	date	tmax	tmin
MX17004	2010-01-30	tmax	27.8	MX17004	2010-01-30	27.8	14.5
MX17004	2010-01-30	tmin	14.5	MX17004	2010-02-02	27.3	14.4
MX17004	2010-02-02	tmax	27.3	MX17004	2010-02-03	24.1	14.4
MX17004	2010-02-02	tmin	14.4	MX17004	2010-02-11	29.7	13.4
MX17004	2010-02-03	tmax	24.1	MX17004	2010-02-23	29.9	10.7
MX17004	2010-02-03	tmin	14.4	MX17004	2010-03-05	32.1	14.2
MX17004	2010-02-11	tmax	29.7	MX17004	2010-03-10	34.5	16.8
MX17004	2010-02-11	tmin	13.4	MX17004	2010-03-16	31.1	17.6
MX17004	2010-02-23	tmax	29.9	MX17004	2010-04-27	36.3	16.7
MX17004	2010-02-23	tmin	10.7	MX17004	2010-05-27	33.2	18.2


(a) Molten data

D. Koop, CSCI 490/680, Spring 2020

Tidy data (b)

[H. Wickham, 2014]

<u>Assignment 3</u>

- Data wrangling with
 - Trifacta Wrangler
 - pandas
- Same hurdat2 data
- Start now!
- Due Tuesday, March 3

U	column2	~ ABC	column1	~	ABC	column3	~	ABC	column23	~	ABC	column4	~	ABC	column5
51,	346 valid values	le lium													
1851 - 2	2018	1,873 (Categories		97 Cat	egories		289 Cat	egories		9 Cate	gories		10 Cate	gories
185106	525	AL011	851		0000			UNNAME	D					HU	
185106	525	AL011	851		0600			UNNAME	D					HU	
185106	525	AL011	851		1200			UNNAME	D					HU	
185106	525	AL011	851		1800			UNNAME	D					HU	
185106	525	AL011	851		2100			UNNAME	D		L			HU	
185106	526	AL011	851		0000			UNNAME	D					HU	
185106	526	AL011	851		0600			UNNAME	D					TS	
185106	526	AL011	851		1200			UNNAME	D					TS	
185106	526	AL011	851		1800			UNNAME	D					TS	
185106	527	AL011	851		0000			UNNAME	D					TS	
185106	527	AL011	851		0600			UNNAME	D					TS	
185106	527	AL011	851		1200			UNNAME	D					TS	
185106	527	AL011	851		1800			UNNAME	D					TS	
185106	528	AL011	851		0000			UNNAME	D					TS	
185107	705	AL021	851		1200			UNNAME	D					HU	
185107	710	AL031	851		1200			UNNAME	D					TS	
185108	316	AL041	851		0000			UNNAME	D					TS	
185108	316	AL041	851		0600			UNNAME	D					TS	
185108	316	AL041	851		1200			UNNAME	D					TS	
185108	316	AL041	851		1800			UNNAME	D					TS	
185108	317	AL041	851		0000			UNNAME	D					TS	
185108	317	AL041	851		0600			UNNAME	D					TS	
185108	317	AL041	851		1200			UNNAME	D					HU	
185108	317	AL041	851		1800			UNNAME	D					HU	

Outline

- Combining Data
- Data Integration
- Data Matching (Entity Resolution)
- Data Fusion (next Tuesday)
 - Reading Response
 - Integrating Conflicting Data: The Role of Source Dependence, X. L. Dong et al., 2009



Databases

- Databases:
 - Have been around for years
 - Organize data by tables, allow powerful queries
 - Most support concurrency: allowing multiple users to work with the database at once
 - Provide many features to ensure data integrity, security
- Database Management Systems (DBMS): software that manages databases and facilitates adding, updating, and removing data as well as queries over the data
- Main language used to interact with databases: Structured Query Language (SQL)

11

Relational Databases

- A specific model for databases [Codd, 1969] • Extremely popular, supported by most major DBMS (IBM DB2, SQLServer,
- mySQL, etc.)
- Consists of **relations** (tables) made up of **tuples** (rows)
- Relations reference each other!
- Types of relationships: one-to-one, many-to-one, many-to-many • Each tuple has a key; to reference a tuple in another relation, use a foreign
- key in the current relation

Example: Football Game Data

- Data about football games, teams, & players
 - Game is between two Teams
 - Each Team has Players
- For each game, we could specify every player and all of their information... why is this bad?

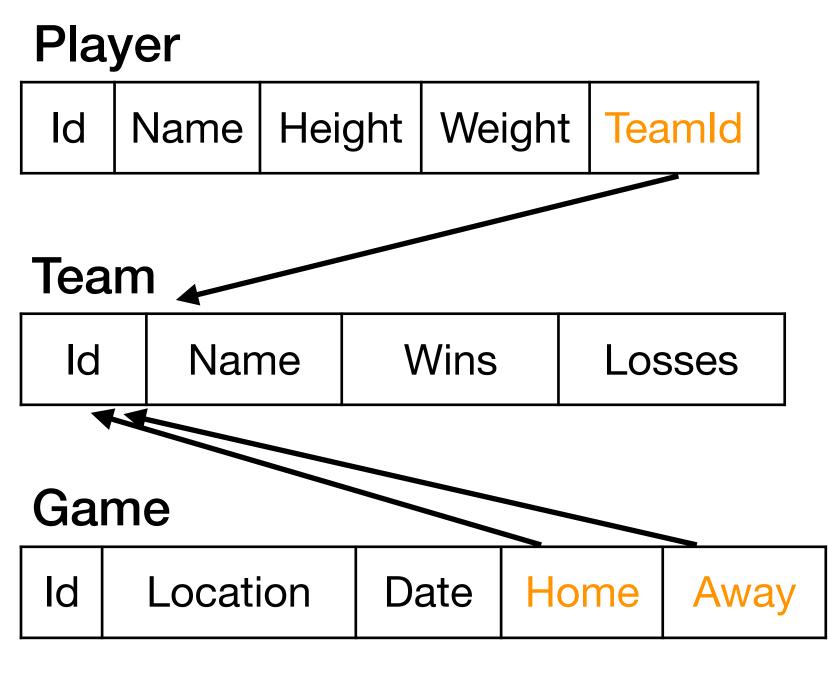
Example: Football Game Data

- Data about football games, teams, & players
 - Game is between two Teams
 - Each Team has Players
- For each game, we could specify evaluate player and all of their information... this bad?
- Normalization: reduce redundancy, keep information that doesn't change separate
- 3 Relations: Team, Player, Game
- Each relation only encodes the data specific to what it represents

Player

very	
why	is

ld	Name	Height		Weight	
		пеідпі		veign	
Team					
ld	Name	Wins		Losses	
Game					
ld	Location			Date	



13

Example: Football Game Data

- Have each game store the id of the home team and the id of the away team (one-toone)
- Have each player store the id of the team he plays on (many-to-one)

• What happens if a player plays on 2+ teams?

How does this relate to pandas?

- DataFrames in pandas are ~relations (tables)
- We may wish to normalize data in a similar manner in pandas
- However, operating on 2+ DataFrames at the same time can be unwieldy, can we merge them together?
- Two potential operations:
 - Have football game data (just the Game table) from 2013, 2014, and 2015 and wish to merge the data into one data frame
 - Have football game data and wish to find the average temperature of the cities where the games were played

Concatenation

- Take two data frames with the same columns and add more rows
- pd.concat([data-frame-1, data-frame-2, ...])
- Default is to add rows (axis=0), but can also add columns (axis=1)
- Can also concatenate Series into a data frame.
- concat preserves the index so this can be confusing if you have two default indices (0,1,2,3...)—they will appear twice
 - Use ignore_index=True to get a 0,1,2...

e columns and add more rows ta-frame-2, ...])

Merges (aka Joins)

- Example: Football game data merged with temperature data

Game

ld	Location	Date	Home	Away
0	Boston	9/2	1	15
1	Boston	9/9	1	7
2	Cleveland	9/16	12	1
3	San Diego	9/23	21	1

No data for San Diego⁻

D. Koop, CSCI 490/680, Spring 2020

Need to merge data from one DataFrame with data from another DataFrame

Weather

wld	City	Date	Temp
0	Boston	9/2	72
1	Boston	9/3	68
7	Boston	9/9	75
21	Boston	9/23	54
36	Cleveland	9/16	81

Merges (aka Joins)

- Want to join the two tables based on the location and date Location and date are the keys for the join
- What happens when we have missing data?
- Merges are **ordered**: there is a left and a right side
- Four types of joins:
 - Inner: intersection of keys (match on both sides)
 - Outer: union of keys (if there is no match on other side, still include with NaN to indicate missing data)
 - Left: always have rows from left table (no unmatched right data) Right: like left, but with no unmatched left data


Inner Strategy

Merged

Id	Location	Date	Home	Away	Temp	wld
0	Boston	9/2	1	15	72	0
1	Boston	9/9	1	7	75	7
2	Cleveland	9/16	12	1	81	36

No San Diego entry

Outer Strategy

Merged

ld	Location	Date	Home	Away	Temp	wld
0	Boston	9/2	1	15	72	0
NaN	Boston	9/3	NaN	NaN	68	1
	•••					
1	Boston	9/9	1	7	75	7
NaN	Boston	9/10	NaN	NaN	76	8
	•••					
NaN	Cleveland	9/2	NaN	NaN	61	22
				• • •		
2	Cleveland	9/16	12	1	81	36
3	San Diego	9/23	21	1	NaN	NaN

Left Strategy

Merged

Id	Location	Date	Home	Away	Temp	wld
0	Boston	9/2	1	15	72	0
1	Boston	9/9	1	7	75	7
2	Cleveland	9/16	12	1	81	36
3	San Diego	9/23	21	1	NaN	NaN

Right Strategy

Merged

ld	Location	Date	Home	Away	Temp	wld
0	Boston	9/2	1	15	72	0
NaN	Boston	9/3	NaN	NaN	68	1
	•••					
1	Boston	9/9	1	7	75	7
NaN	Boston	9/10	NaN	NaN	76	8
NaN	Cleveland	9/2	NaN	NaN	61	22
2	Cleveland	9/16	12	1	81	36

No San Diego entry

Data Merging in Pandas

- pd.merge(left, right, ...)
- Default merge: join on matching column names • Better: specify the column name(s) to join on via on kwarg - If column names differ, use left on and right on
- - Multiple keys: use a list
- how kwarg specifies type of join ("inner", "outer", "left", "right") Can add suffixes to column names when they appear in both tables, but are
- not being joined on
- Can also merge using the index by setting left index Or right index to True

Merge Arguments

Argument	Description
left	DataFrame to be merged on the left side.
right	DataFrame to be merged on the right side
how	One of 'inner', 'outer', 'left',
ΟΠ	Column names to join on. Must be found given, will use the intersection of the colu
left_on	Columns in left DataFrame to use as jo
right_on	Analogous to left_on for left DataFr
left_index	Use row index in left as its join key (or
right_index	Analogous to left_index.
sort	Sort merged data lexicographically by join some cases on large datasets).
suffixes	Tuple of string values to append to colum 'data' in both DataFrame objects, wou
сору	If False, avoid copying data into resulti copies.
indicator	Adds a special column _merge that indic 'right_only', or 'both' based on

D. Koop, CSCI 490/680, Spring 2020

le.

```
or 'right'; defaults to 'inner'.
```

in both DataFrame objects. If not specified and no other join keys lumn names in left and right as the join keys.

oin keys.

-rame.

[•] keys, if a MultiIndex).

in keys; True by default (disable to get better performance in

nn names in case of overlap; defaults to $('_x', '_y')$ (e.g., if uld appear as 'datax' and 'datay' in result). ting data structure in some exceptional cases; by default always

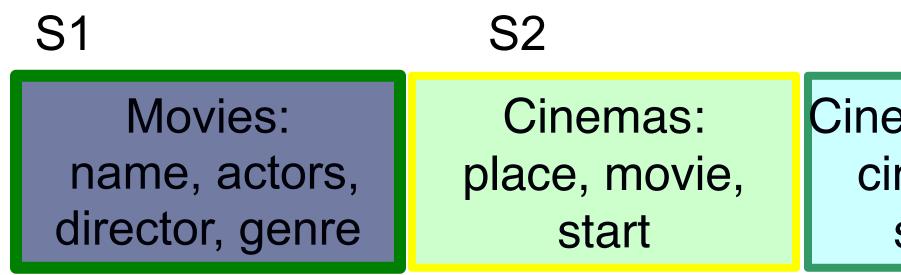
icates the source of each row; values will be 'left_only', the origin of the joined data in each row. [W. McKinney, Python for Data Analysis]

Outline

- Combining Data
- Data Integration
- Data Matching (Entity Resolution)
- Data Fusion (next Tuesday)
 - Reading Response
 - Integrating Conflicting Data: The Role of Source Dependence, X. L. Dong et al., 2009

Introduction to Data Integration

A. Doan, A. Halevy, and Z. Ives



Data Integration

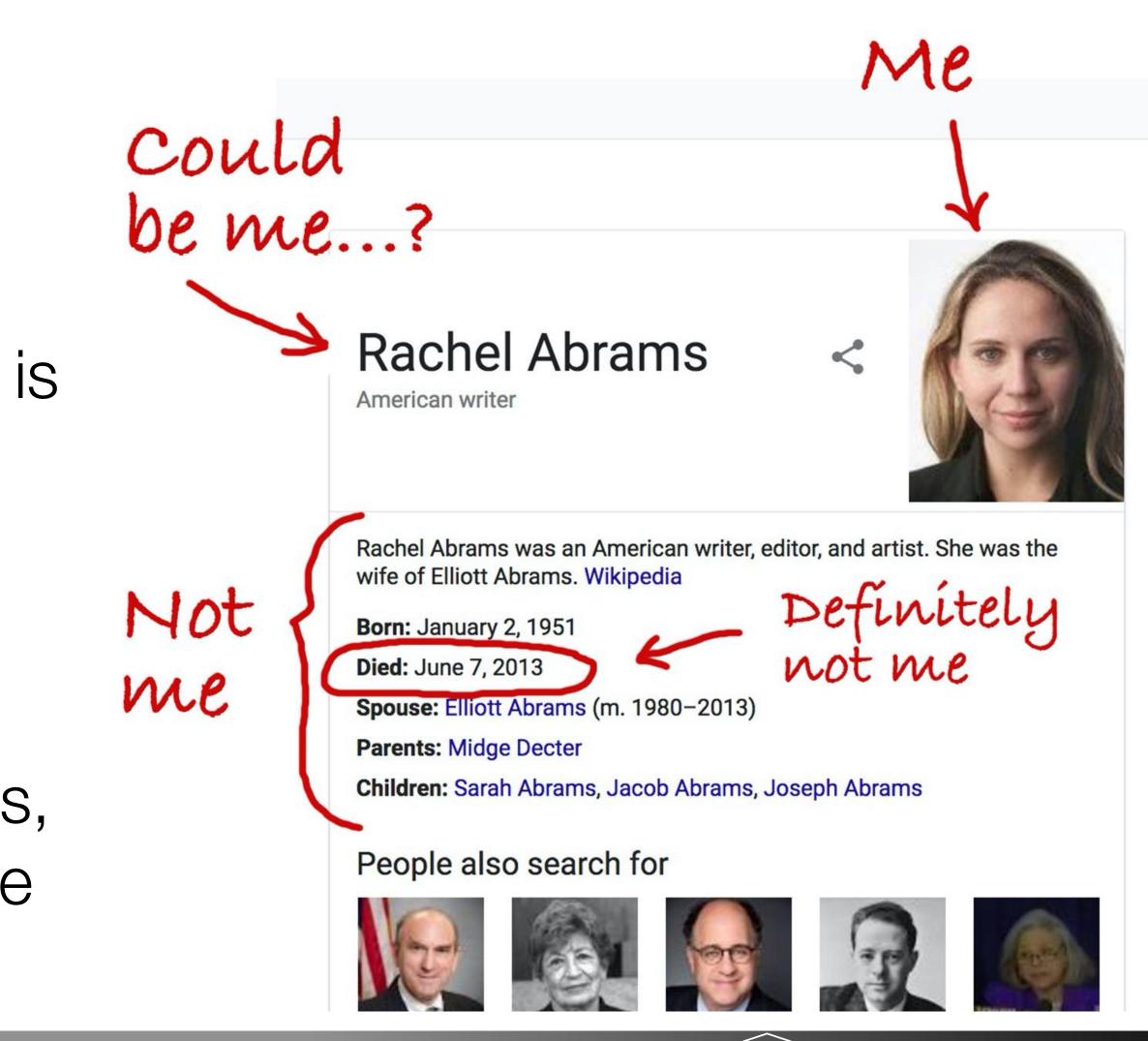
select title, startTime from Movie, Plays where Movie.title=Plays.movie AND location="New York" AND director="Woody Allen"

Sources S1 and S3 are relevant, sources S4 and S5 are irrelevant, and source S2 is relevant but possibly redundant.


D. Koop, CSCI 490/680, Spring 2020

Movie: Title, director, year, genre Actors: title, actor **Plays**: movie, location, startTime **Reviews**: title, rating, description

S3	S4	S5
emas in NYC:	Cinemas in SF:	Reviews:
inema, title,	location, movie,	title, date
startTime	startingTime	grade, review



Data Matching & Data Fusion

- Google Thinks I'm Dead (I know otherwise.) [R. Abrams, NYTimes, 2017]
- Not only Google, but also Alexa:
 - "Alexa replies that Rachel Abrams is a sprinter from the Northern Mariana Islands (which is true of someone else)."
 - "He asks if Rachel Abrams is deceased, and Alexa responds yes, citing information in the Knowledge Graph panel."

Data Integration, Data Matching, & Data Fusion

- Data Integration: focus on integrating data from different sources Data Matching (aka Entity Resolution aka Record Linkage): want to know that two entities (often in different sources) are the same "real"
- entity
- When sources are orthogonal, no problems
- What happens when two sources provide the same type of information and they conflict?
- Data Fusion: create a single object while resolving conflicting values

29

Record Linkage

P. Christen

