
Advanced Data Management (CSCI 490/680)

Data Cleaning 

Dr. David Koop

D. Koop, CSCI 490/680, Spring 2020



D. Koop, CSCI 490/680, Spring 2020

Reading & Writing Data in Pandas

 2

[https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html]

Format 
Type

Data Description Reader Writer
text CSV read_csv to_csv
text Fixed-Width Text File read_fwf
text JSON read_json to_json
text HTML read_html to_html
text Local clipboard read_clipboard to_clipboard

MS Excel read_excel to_excel
binary OpenDocument read_excel
binary HDF5 Format read_hdf to_hdf
binary Feather Format read_feather to_feather
binary Parquet Format read_parquet to_parquet
binary ORC Format read_orc
binary Msgpack read_msgpack to_msgpack
binary Stata read_stata to_stata
binary SAS read_sas
binary SPSS read_spss
binary Python Pickle Format read_pickle to_pickle
SQL SQL read_sql to_sql
SQL Google BigQuery read_gbq to_gbq

https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html
https://en.wikipedia.org/wiki/Comma-separated_values
https://www.json.org/
https://en.wikipedia.org/wiki/HTML
https://en.wikipedia.org/wiki/Microsoft_Excel
http://www.opendocumentformat.org/
https://support.hdfgroup.org/HDF5/whatishdf5.html
https://github.com/wesm/feather
https://parquet.apache.org/
https://https//orc.apache.org/
https://msgpack.org/index.html
https://en.wikipedia.org/wiki/Stata
https://en.wikipedia.org/wiki/SAS_(software)
https://en.wikipedia.org/wiki/SPSS
https://docs.python.org/3/library/pickle.html
https://en.wikipedia.org/wiki/SQL
https://en.wikipedia.org/wiki/BigQuery


D. Koop, CSCI 490/680, Spring 2020

Types of arguments for readers
• Indexing: choose a column to index the data, get column names from file or user 
• Type inference and data conversion: automatic or user-defined 
• Datetime parsing: can combine information from multiple columns 
• Iterating: deal with very large files 
• Unclean Data: skip rows (e.g. comments) or deal with formatted numbers 

(e.g. 1,000,345)

 3



D. Koop, CSCI 490/680, Spring 2020

JavaScript Object Notation (JSON)
• A format for web data 
• Looks very similar to python dictionaries and lists 
• Example: 

- {"name": "Wes",  
 "places_lived": ["United States", "Spain", "Germany"],  
 "pet": null, 
 "siblings": [{"name": "Scott", "age": 25, "pet": "Zuko"},  
             {"name": "Katie", "age": 33, "pet": "Cisco"}] } 

• Only contains literals (no variables) but allows null 
• Values: strings, arrays, dictionaries, numbers, booleans, or null 
- Dictionary keys must be strings 
- Quotation marks help differentiate string or numeric values

 4



D. Koop, CSCI 490/680, Spring 2020

Binary Formats
• CSV, JSON, and XML are all text formats 
• What is a binary format? 
• Pickle: Python's built-in serialization 
• HDF5: Library for storing large scientific data 
- Hierarchical Data Format, supports compression 
- Interfaces in C, Java, MATLAB, etc. 
- Use pd.HDFStore to access 
- Shortcuts: read_hdf/to_hdf, need to specify object 

• Excel: need to specify sheet when a spreadsheet has multiple sheets 
- pd.ExcelFile or pd.read_excel

 5



D. Koop, CSCI 490/680, Spring 2020

Databases
• Similar syntax from other database systems (MySQL, Microsoft SQL Server, 

Oracle, etc.) 
• SQLAlchemy: Python package that abstracts away differences between 

different database systems 
• SQLAlchemy gives support for reading queries to data frame: 

- import sqlalchemy as sqla 
db = sqla.create_engine('sqlite:///mydata.sqlite') 
pd.read_sql('select * from test', db)

 6

sqlite:///mydata.sqlite


D. Koop, CSCI 490/680, Spring 2020  7

Dirty Data



D. Koop, CSCI 490/680, Spring 2020

Geolocation Errors
• Maxmind helps companies determine where users are located based on IP 

address 
• "How a quiet Kansas home wound up with 600 million IP addresses and a 

world of trouble" [Washington Post, 2016]

 8

https://www.washingtonpost.com/news/morning-mix/wp/2016/08/10/lawsuit-how-a-quiet-kansas-home-wound-up-with-600-million-ip-addresses-and-a-world-of-trouble/


D. Koop, CSCI 490/680, Spring 2020

Numeric Outliers 

Adapted from Joe Hellerstein͛s  2012 CS 194 Guest Lecture 

Numeric Outliers

 9

[J. Hellerstein via J. Canny et al.]

https://bcourses.berkeley.edu/files/50707513/download?download_frd=1&verifier=njoObzWKAmeihDjqFN9EMrY0IRlDbUWy2mFegnXN


D. Koop, CSCI 490/680, Spring 2020

Dirty Data: Data Scientist's View
• Combination of: 
- Statistician's View: data has non-ideal samples for model 
- Database Expert's View: missing data, corrupted data 
- Domain Expert's View: data doesn't pass the smell test 

• All of the views present problems with the data 
• The goal may dictate the solutions: 
- Median value: don't worry too much about crazy outliers 
- Generally, aggregation is less susceptible by numeric errors 
- Be careful, the data may be correct…

 10

[J. Canny et al.]

https://bcourses.berkeley.edu/files/50707513/download?download_frd=1&verifier=njoObzWKAmeihDjqFN9EMrY0IRlDbUWy2mFegnXN


D. Koop, CSCI 490/680, Spring 2020

Be careful how you detect dirty data
• The appearance of a hole in the earth’s ozone layer over Antarctica, first 

detected in 1976, was so unexpected that scientists didn’t pay attention to 
what their instruments were telling them; they thought their instruments were 
malfunctioning.  
– National Center for Atmospheric Research  

 11

[Wikimedia]

https://commons.wikimedia.org/wiki/File:Agujero_en_la_capa_de_ozono_2008.jpg


D. Koop, CSCI 490/680, Spring 2020

Data Wrangling
• Data wrangling: transform raw data to a more meaningful format that can be 

better analyzed 
• Data cleaning: getting rid of inaccurate data 
• Data transformations: changing the data from one representation to another 
• Data reshaping: reorganizing the data 
• Data merging: combining two datasets

 12



D. Koop, CSCI 490/680, Spring 2020

Assignment 2
• Similar to Assignment 1, now with pandas 
• Part 5: 
- CS 680 → Required 
- CS 490 → Extra Credit 

• Due Friday, Feb. 7

 13

http://faculty.cs.niu.edu/~dakoop/cs680-2020sp/assignment2.html


Wrangler: Interactive Visual Specification of Data 
Transformation Scripts

S. Kandel, A. Paepcke, J. Hellerstein, J. Heer

D. Koop, CSCI 490/680, Spring 2020



D. Koop, CSCI 490/680, Spring 2020

Wrangler
• Data cleaning takes a lot of time and human effort 
• "Tedium is the message" 
• Repeating this process on multiple data sets is even worse! 
• Solution: 
- interactive interface (mixed-initiative) 
- transformation language with natural language "translations" 
- suggestions + "programming by demonstration"

 15



D. Koop, CSCI 490/680, Spring 2020

Previous Work: Potter's Wheel
• V. Raman and J. Hellerstein, 2001 
• Defines structure extractions for identifying fields 
• Defines transformations on the data 
• Allows user interaction

 16



D. Koop, CSCI 490/680, Spring 2020

/** Enumerate all structures of domains ds1 . . . dsp

that can be used to match a value vi. */
void enumerate(vi , d1, . . . dp) {
Let vi be a string of characters w1 . . . wm

for all domains dmatching prefixw1 . . . wk of vi

do enumerate(wk+1 . . . wm , ds1 , . . . dsp )
– avoid structures beginning with domains

d′ that satisfy d′.isRedundantAfter(d)
prepend d to all structures enumerated above

}
Figure 4: Enumerating various structures for a set
of values

Example Column Value # Structures Final Structure Chosen
(Example erroneous values) Enumerated (Punc = Punctuation)
-60 5 Integer
UNITED, DELTA, AMERICAN etc. 5 IspellWord
SFO, LAX etc. (JFK to OAK) 12 AllCapsWord
1998/01/12 9 Int Punc(/) Int Punc(/) Int
M, Tu, Thu etc. 5 Capitalized Word
06:22 5 Int(len 2) Punc(:) Int(len 2)
12.8.15.147 (ferret03.webtop.com) 9 Double Punc(’.’) Double
”GET\b (\b) 5 Punc(”) IspellWord Punc(\)
/postmodern/lecs/xia/sld013.htm 4 ξ∗

HTTP 3 AllCapsWord(HTTP)
/1.0 6 Punc(/) Double(1.0)

Figure 5: Structures extracted for different kinds of columns, using the default
domains listed in Section 3.1. Structure parameterizations are given in parenthesis.

with values of constant length. Such parameterized struc-
tures are especially useful for automatically parsing the val-
ues in a column, when inferring Split transforms by example
(Section 4.3).
In addition, users can define domains that infer custom

parameterizations, using the updateStatsmethod. These do-
mains could use specialized algorithms to further refine the
structure of the sub-components that fall within their domain.
For example, the default Integer domain in Potter’s Wheel
computes the mean and standard deviation of its values and
uses these as parameters, to flag values that are more than 2
standard deviations away as potential anomalies. Likewise
a domain can accept all strings by default, but parameterize
itself by inferring a regular expression that matches the sub-
component values.
The description length for values using a structure often

reduces when the structure is parameterized. For the default
parameterizations of constant values and constant lengths it
is easy to adjust the formulas given in the previous section.
For custom parameterizations like the regular expression in-
ference discussed above, the user must define the cardinality
function based on the parameterization.

3.4 Example Structures Extracted
Consider the snapshot shown in Figure 1 containing flight
delay statistics. Figure 5 shows the structures extracted for
some of its column values, and also for some columns from a
web access log. We see that the dominant structure is chosen
even in the face of inconsistencies; thereby the system can
flag these structural inconsistencies as errors to the user, and
parse and apply suitable detection algorithms for other values
that match the structure.
Using these the system flags several discrepancies that we

had earlier added to the data. For example, the system flags
dates such as 19998/05/31 in the date column of Figure 1 as
anomalies because the Integer domain for the year column
parameterizes with a mean of 2043.5 and a standard devia-
tion of 909.2. It finds the poor mapping in the Source and
Destination columns of Figure 1 as structural anomalies.
Figure 5 also shows that a column of IP addresses with

values like 12.8.15.147 has its structure inferred as Dou-
ble.Double, rather than Integer.Integer.Integer.Integer. This
arises because Double is a more concise structure than
Integer.Integer. This could be avoided either by defin-

ing a Short domain for values less than 255 (to form
Short.Short.Short.Short), or even by allowing a parameter-
ization of the form Integer (len ≤ 3).
An interesting example of over-fitting is the choice of

IspellWord for flight carriers. Although most flight carrier
names occur in the ispell dictionary, some like TWA do not.
Still IspellWord is chosen because it is cheaper to encode
TWA explicitly with a ξ∗ structure than to encode all carri-
ers with the next best structure, AllCapsWord. The system
flags TWA as an anomaly – the user could choose to ignore
this, or specify a minimum Recall threshold to avoid over-
fitting. In any case, this example highlights the importance
of involving the user in the data cleaning process.
Figure 10 gives more examples of inferred structures.

4 Interactive Transformation
Having seen how Potter’s Wheel infers structures and iden-
tifies discrepancies, we turn our attention to its support for
interactive transformation. We want users to construct trans-
formations gradually, adjusting them based on continual
feedback. This breaks down into the following sub-goals:
Ease of specification: Transforms must be specifiable
through graphical operations rather than custom program-
ming. Moreover, in these operations, we want to avoid use
of regular-expressions or grammars and instead allow users
to specify transforms by example as far as possible.
Ease of interactive application: Once the user has specified
a transform, they must be given immediate feedback on the
results of its application so that they can correct it.
Undos and Data Lineage: Users must be able to easily undo
transforms after seeing their effect. In addition, the lineage
of errors must be clear – i.e., errors intrinsic to the data must
be differentiable from those resulting from other transforms.

4.1 Transforms supported in Potter’s Wheel
The transforms used in Potter’s Wheel are adapted from ex-
isting literature on transformation languages (e.g. [16, 7]).
We describe them briefly here before proceeding to discuss
their interactive application and graphical specification. Ta-
ble 1 gives formal definitions for these transforms. Addi-
tional illustrative examples and proofs of expressive power
are given in the full version of the paper [22].

Potter's Wheel: Structure Extraction

 17

[V. Raman and J. Hellerstein, 2001]



D. Koop, CSCI 490/680, Spring 2020

Transform Definition
Format φ(R, i, f) = {(a1, . . . , ai−1, ai+1, . . . , an, f(ai)) | (a1, . . . , an) ∈ R}
Add α(R, x) = {(a1, . . . , an, x) | (a1, . . . , an) ∈ R}
Drop π(R, i) = {(a1, . . . , ai−1, ai+1, . . . , an) | (a1, . . . , an) ∈ R}
Copy κ((a1, . . . , an), i) = {(a1, . . . , an, ai) | (a1, . . . , an) ∈ R}
Merge µ((a1, . . . , an), i, j, glue) = {(a1, . . . , ai−1, ai+1, . . . , aj−1, aj+1, . . . , an, ai ⊕ glue⊕ aj) | (a1, . . . , an) ∈ R}
Split ω((a1, . . . , an), i, splitter) = {(a1, . . . , ai−1, ai+1, . . . , an, left(ai, splitter), right(ai, splitter)) | (a1, . . . , an) ∈ R}
Divide δ((a1, . . . , an), i, pred) = {(a1, . . . , ai−1, ai+1, . . . , an, ai, null) | (a1, . . . , an) ∈ R ∧ pred(ai)} ∪

{(a1, . . . , ai−1, ai+1, . . . , an, null, ai) | (a1, . . . , an) ∈ R ∧ ¬pred(ai)}
Fold λ(R, i1, i2, . . . ik) = {(a1, . . . , ai1−1, ai1+1, . . . , ai2−1, ai2+1, . . . , aik−1, aik+1, . . . , an, ail) |

(a1, . . . , an) ∈ R ∧ 1 ≤ l ≤ k}
Select σ(R, pred) = {(a1, . . . , an) | (a1, . . . , an) ∈ R ∧ pred((a1, . . . , an))}

Notation: R is a relation with n columns. i, j are column indices and ai represents the value of a column in a row. x and glue are
values. f is a function mapping values to values. x ⊕ y concatenates x and y. splitter is a position in a string or a regular expression,
left(x, splitter) is the left part of x after splitting by splitter. pred is a function returning a boolean.

Table 1: Definitions of the various transforms. Unfold is defined in the full paper [22].

2 Merges

Format
'(.*), (.*)' to '\2 \1'

Stewart,Bob

Dole,Jerry
Davis

Marsh

Anna

Joan

Stewart
Anna Davis

Dole
Joan Marsh
Jerry

Bob Bob

Jerry

Stewart

Dole
Anna

Joan

Davis

Marsh

Split at ' '

Anna

Joan

Davis

Marsh

Bob Stewart

Jerry Dole

Figure 6: Using Format, Merge and Split to clean name for-
mat differences
Value Translation
The Format transform applies a function to every value in
a column. We provide built-in functions for common oper-
ations like regular-expression based substitutions and arith-
metic operations, but also allow user defined functions. Col-
umn and table names can be demoted into column values us-
ing special characters in regular expressions; these are useful
in conjunction with the Fold transform described below.
One-to-one Mappings of Rows
One-to-one transforms are column operations that transform
individual rows. As illustrated in Figures 6 and 7, they can
be used to unify data collected from different sources.
TheMerge transform concatenates values in two columns,

optionally interposing a constant (the delimiter) in the mid-
dle, to form a single new column. Split splits a column into
two or more parts, and is used typically to parse a value into
its constituent parts. The split positions are often difficult
to specify if the data is not well structured. We allow split-
ting by specifying character positions, regular expressions,
or by interactively performing splits on example values (Sec-
tion 4.3).

Drop, Copy, and Add allow users to drop or copy a col-
umn, or add a new column. Occasionally, logically different
values (maybe from multiple sources) are bunched into the
same column, and we want to transform only some of them.
Divide conditionally divides a column, sending values into
one of two new columns based on a predicate.
Many-to-Many Mappings of Rows
Many-to-Many transforms help to tackle higher-order
schematic heterogeneities [18] where information is stored

partly in data values, and partly in the schema, as shown in
Figure 8. Fold ”flattens” tables by converting one row into
multiple rows, folding a set of columns together into one col-
umn and replicating the rest. Conversely Unfold ”unflattens”
tables; it takes two columns, collects rows that have the same
values for all the other columns, and unfolds the two chosen
columns. Values in one column are used as column names to
align the values in the other column. Figures 8 and 9 show
an example with student grades where the subject names are
demoted into the row via Format, grades are Folded together,
and then Split to separate the subject from the grade. Fold
and UnFold are adapted from the restructuring operators of
SchemaSQL [16], and are discussed in more detail in the
full paper [22].
Power of Transforms: As we prove in the full paper [22],
these transforms can be used to perform all one-to-many row
mappings of rows. Fold andUnfold can also be used to f latten
tables, converting them to a form where column and table
names are all literals and do not have data values. For a for-
mal definition of (un)flattening and an analysis of the power
of Fold and Unfold, see [16].

4.2 Interactive Application of Transforms
We want to apply the transforms on tuples incrementally, as
they stream in, so that the effects of transforms can be imme-
diately shown on tuples visible on the screen of the UI. It also
lets the system pipeline discrepancy detection on the results
of the transforms, thereby giving the interactivity advantages
described in the introduction.
Among the transforms discussed above, all the one-to-one

transforms as well as the Fold transform are functions on a
single row. Hence they are easy to apply incrementally.
However Unfold operates on a set of rows with match-

ing values. Since this could potentially involve scanning the
entire data, we do not allow Unfold to be specified graphi-
cally. For displaying records on the screen we can avoid this
problem by not showing a complete row but instead show-
ing more and more columns as distinct values are found, and
filling data values in these columns as the corresponding in-
put rows are read. Such progressive column addition in the
spreadsheet interface could confuse the user; hence we plan
to implement an abstraction interface where all newly cre-
ated columns are shown as one rolled up column. When

Potter's Wheel: Transforms

 18

[V. Raman and J. Hellerstein, 2001]



D. Koop, CSCI 490/680, Spring 2020

Transform Definition
Format φ(R, i, f) = {(a1, . . . , ai−1, ai+1, . . . , an, f(ai)) | (a1, . . . , an) ∈ R}
Add α(R, x) = {(a1, . . . , an, x) | (a1, . . . , an) ∈ R}
Drop π(R, i) = {(a1, . . . , ai−1, ai+1, . . . , an) | (a1, . . . , an) ∈ R}
Copy κ((a1, . . . , an), i) = {(a1, . . . , an, ai) | (a1, . . . , an) ∈ R}
Merge µ((a1, . . . , an), i, j, glue) = {(a1, . . . , ai−1, ai+1, . . . , aj−1, aj+1, . . . , an, ai ⊕ glue⊕ aj) | (a1, . . . , an) ∈ R}
Split ω((a1, . . . , an), i, splitter) = {(a1, . . . , ai−1, ai+1, . . . , an, left(ai, splitter), right(ai, splitter)) | (a1, . . . , an) ∈ R}
Divide δ((a1, . . . , an), i, pred) = {(a1, . . . , ai−1, ai+1, . . . , an, ai, null) | (a1, . . . , an) ∈ R ∧ pred(ai)} ∪

{(a1, . . . , ai−1, ai+1, . . . , an, null, ai) | (a1, . . . , an) ∈ R ∧ ¬pred(ai)}
Fold λ(R, i1, i2, . . . ik) = {(a1, . . . , ai1−1, ai1+1, . . . , ai2−1, ai2+1, . . . , aik−1, aik+1, . . . , an, ail) |

(a1, . . . , an) ∈ R ∧ 1 ≤ l ≤ k}
Select σ(R, pred) = {(a1, . . . , an) | (a1, . . . , an) ∈ R ∧ pred((a1, . . . , an))}

Notation: R is a relation with n columns. i, j are column indices and ai represents the value of a column in a row. x and glue are
values. f is a function mapping values to values. x ⊕ y concatenates x and y. splitter is a position in a string or a regular expression,
left(x, splitter) is the left part of x after splitting by splitter. pred is a function returning a boolean.

Table 1: Definitions of the various transforms. Unfold is defined in the full paper [22].

2 Merges

Format
'(.*), (.*)' to '\2 \1'

Stewart,Bob

Dole,Jerry
Davis

Marsh

Anna

Joan

Stewart
Anna Davis

Dole
Joan Marsh
Jerry

Bob Bob

Jerry

Stewart

Dole
Anna

Joan

Davis

Marsh

Split at ' '

Anna

Joan

Davis

Marsh

Bob Stewart

Jerry Dole

Figure 6: Using Format, Merge and Split to clean name for-
mat differences
Value Translation
The Format transform applies a function to every value in
a column. We provide built-in functions for common oper-
ations like regular-expression based substitutions and arith-
metic operations, but also allow user defined functions. Col-
umn and table names can be demoted into column values us-
ing special characters in regular expressions; these are useful
in conjunction with the Fold transform described below.
One-to-one Mappings of Rows
One-to-one transforms are column operations that transform
individual rows. As illustrated in Figures 6 and 7, they can
be used to unify data collected from different sources.
TheMerge transform concatenates values in two columns,

optionally interposing a constant (the delimiter) in the mid-
dle, to form a single new column. Split splits a column into
two or more parts, and is used typically to parse a value into
its constituent parts. The split positions are often difficult
to specify if the data is not well structured. We allow split-
ting by specifying character positions, regular expressions,
or by interactively performing splits on example values (Sec-
tion 4.3).

Drop, Copy, and Add allow users to drop or copy a col-
umn, or add a new column. Occasionally, logically different
values (maybe from multiple sources) are bunched into the
same column, and we want to transform only some of them.
Divide conditionally divides a column, sending values into
one of two new columns based on a predicate.
Many-to-Many Mappings of Rows
Many-to-Many transforms help to tackle higher-order
schematic heterogeneities [18] where information is stored

partly in data values, and partly in the schema, as shown in
Figure 8. Fold ”flattens” tables by converting one row into
multiple rows, folding a set of columns together into one col-
umn and replicating the rest. Conversely Unfold ”unflattens”
tables; it takes two columns, collects rows that have the same
values for all the other columns, and unfolds the two chosen
columns. Values in one column are used as column names to
align the values in the other column. Figures 8 and 9 show
an example with student grades where the subject names are
demoted into the row via Format, grades are Folded together,
and then Split to separate the subject from the grade. Fold
and UnFold are adapted from the restructuring operators of
SchemaSQL [16], and are discussed in more detail in the
full paper [22].
Power of Transforms: As we prove in the full paper [22],
these transforms can be used to perform all one-to-many row
mappings of rows. Fold andUnfold can also be used to f latten
tables, converting them to a form where column and table
names are all literals and do not have data values. For a for-
mal definition of (un)flattening and an analysis of the power
of Fold and Unfold, see [16].

4.2 Interactive Application of Transforms
We want to apply the transforms on tuples incrementally, as
they stream in, so that the effects of transforms can be imme-
diately shown on tuples visible on the screen of the UI. It also
lets the system pipeline discrepancy detection on the results
of the transforms, thereby giving the interactivity advantages
described in the introduction.
Among the transforms discussed above, all the one-to-one

transforms as well as the Fold transform are functions on a
single row. Hence they are easy to apply incrementally.
However Unfold operates on a set of rows with match-

ing values. Since this could potentially involve scanning the
entire data, we do not allow Unfold to be specified graphi-
cally. For displaying records on the screen we can avoid this
problem by not showing a complete row but instead show-
ing more and more columns as distinct values are found, and
filling data values in these columns as the corresponding in-
put rows are read. Such progressive column addition in the
spreadsheet interface could confuse the user; hence we plan
to implement an abstraction interface where all newly cre-
ated columns are shown as one rolled up column. When

Potter's Wheel: Example

 19

[V. Raman and J. Hellerstein, 2001]



D. Koop, CSCI 490/680, Spring 2020

Example Values Split By User Inferred Structure Comments
(| is user specified split position)

Taylor, Jane |, $52,072
Blair, John |, $73,238
Tony Smith |, $1,00,533

(< ξ∗ > < ’,’ Money >)

Parsing is doable despite no good de-
limiter. A regular expression domain
can infer a structure of $[0-9,]* for
last component.

MAA |to| SIN
JFK |to| SFO
LAX |–| ORD
SEA |/| OAK

(<len 3 identifier> < ξ∗ >
< len 3 identifier> )

Parsing is possible despite multiple
delimiters.

321 Blake #7 |, Berkeley |, CA 94720
719 MLK Road |, Fremont |, CA 95743

(<number ξ∗ > < ’,’ word>
<’,’ (2 letter word) (5 letter integer)>)

Parsing is easy because of consistent
delimiter.

Figure 10: Parse structures inferred from various split-by-examples

ate substrings) of the example values using the structure. The
less specific structures need to be used only after the value
has been decomposed into much smaller substrings, and the
splitting is not too expensive on these.
To study the effect of parsing according to specificity

we ran DecSpecificity, LeftRight, and IncSpecificity on a few
structures. IncSpecificity is the exact opposite of DecSpeci-
ficity and considers structures starting with the least specific
one; it illustrates how crucial the choice of starting struc-
ture is. Figure 12 compares the throughput at which one can
split values using these methods. We see that DecSpecificity
performs much better than the others, with the improvement
being dramatic at splits involving many structures.

4.4 Undoing Transforms and Tracking Data Lineage
The ability to undo incorrect transforms is an important re-
quirement for interactive transformation. However, if the
specified transforms are directly applied on the input data,
many transforms (such as regular-expression-based substi-
tutions and some arithmetic expressions) cannot be undone
unambiguously – there exist no “compensating” transforms.
Undoing these requires “physical undo”, i.e., the system
has to maintain multiple versions of the (potentially large)
dataset.
Instead Potter’s Wheel never changes the actual data

records. It merely collects transforms as the user adds them,
and applies them only on the records displayed on the screen,
in essence showing a view using the transforms specified so
far. Undos are done “logically,” by removing the concerned
transform from the sequence and “redoing” the rest before
repainting the screen.
This approach also solves the ambiguous data lineage

problem of whether a discrepancy is due to an error in the
data or because of a poor transform. If the user wishes to
know the lineage of a particular discrepancy, the system only
needs to apply the transforms one after another, checking for
discrepancies after each transform.

5 Related Work
The commercial data cleaning process is based on ETL tools
and auditing tools, as described in the introduction. [6, 9]
give good descriptions of the process and some popular tools.
There is much literature on transformation languages, es-

pecially for performing higher-order operations on relational

data [1, 7, 16, 18]. Our horizontal transforms are very similar
to the restructuring operators of SchemaSQL [16]. However
our focus is on the ease of specification and incremental ap-
plication, and not merely on expressive power.
The research literature on finding discrepancies in data

has focused on two main things: general-purpose algorithms
for finding outliers in data (e.g. [3]), and algorithms for find-
ing approximate duplicates in data [13, 17, 10]. There has
also been some work on finding hidden dependencies in data
and correspondingly their violations [14]. Such general pur-
pose algorithms are useful as default algorithms for Potter’s
Wheel’s discrepancy detector. However we believe that in
many cases the discrepancies will be domain-specific, and
that data cleaning tools must handle these domains extensi-
bly.
A companion problem to data cleaning is the integration

of schemas from various data sources. We intend to extend
Potter’s Wheel with a system that handles interactive speci-
fication of schema mappings (such as Clio [19]).
Extracting structure from poorly structured data is in-

creasingly important for “wrapping” data from web pages,
and many tools exist in both the research and commercial
world (e.g. [2, 12, 8]). As discussed in Section 4.3, these
tools typically require users to specify regular expressions or
grammars; even these are often not sufficient to unambigu-
ously parse the data, so users have to write custom scripts.
There have also been some learning-based approaches for
automatic text wrapping and segmentation [15, 4]. We be-
lieve, however, that a semi-automatic, interactive approach
using a combination of graphical operations and statistical
methods is more powerful.
There has been some work in the machine learning litera-

ture [20, 5] and the database literature [11] on inferring reg-
ular expressions from a set of values. However as argued be-
fore, for detecting discrepancies it is important to infer struc-
tures in terms of generic user-defined domains, in a way that
is robust to structural data errors.

6 Conclusions and Future Work
Data cleaning and transformation are important tasks in
many contexts such as data warehousing and data integra-
tion. The current approaches to data cleaning are time-
consuming and frustrating due to long-running noninterac-
tive operations, poor coupling between analysis and trans-

Potter's Wheel: Inferring Structure from Examples

 20

[V. Raman and J. Hellerstein, 2001]



D. Koop, CSCI 490/680, Spring 2020

Wrangler Transformation Language
• Based on Potter's Wheel 
• Map: Delete, Extract, Cut, Split, Update 
• Lookup/join: Use external data (e.g. from zipcode→state) 
• Reshape: Fold and Unfold (aka pivot) 
• Positional: Fill and lag 
• Sorting, aggregation, key generation, schema transforms

 21



D. Koop, CSCI 490/680, Spring 2020

Interface
• Automated Transformation Suggestions 
• Editable Natural Language Explanations 

• Visual Transformation Previews 
• Transformation History

 22

[S. Kandel et al., 2011]

intended to enhance analysts’ ability to review and refine
transformation steps. Textual annotations enable communi-
cation of analyst intent. Wrangler also couples verification
(run in the background as data is transformed) with visual-
ization to help users discover data quality issues.

Basic Interactions
The Wrangler interface supports six basic interactions within
the data table. Users can select rows, select columns, click
bars in the data quality meter, select text within a cell, edit
data values within the table (for mass editing [14, 19]), and
assign column names, data types or semantic roles. Users
can also choose transforms from the menu or refine sugges-
tions by editing transform descriptions as described below.

Automated Transformation Suggestions
As a user interacts with data, Wrangler generates a list of
suggested transforms. In some cases the set of possible sug-
gestions is large (in the hundreds), but we wish to show only
a relevant handful to avoid overload. Instead of enumerat-
ing the entire suggestion space, users can prune and reorder
the space in three ways. First, users can provide more exam-
ples to disambiguate input to the inference engine. Providing
examples is especially effective for text selections needed
for splitting, extraction, and reformatting; two or three well-
chosen examples typically suffice. Second, users can filter
the space of transforms by selecting an operator from the
transform menu. Third, users can edit a transform by alter-
ing the parameters of a transform to a desired state.

Wrangler does not immediately execute a selected sugges-
tion. Instead, Wrangler makes it the current working trans-
form. The user can edit this transform directly; as a user edits
parameters, the suggestion space updates to reflect these ed-
its. Also, a user can instead interact with the table to generate
new suggestions that use the working transform as context.

Natural Language Descriptions
To aid apprehension of suggested transforms, Wrangler gen-
erates short natural language descriptions of the transform
type and parameters. These descriptions are editable, with
parameters presented as bold hyperlinks (Fig. 8). Clicking
a link reveals an in-place editor appropriate to the parameter
(Fig. 8b). Enumerable variables (such as the direction of a
fill) are mapped to drop-down menus while free-form text
parameters are mapped to text editors with autocomplete.

We designed these descriptions to be concise; default param-
eters that are not critical to understanding may be omitted.
For example, the unless between parameter for split opera-
tions indicates regions of text to ignore while splitting. In
most cases, this parameter is left undefined and including it
would bloat the description. To edit hidden parameters, users
can click the expansion arrow to the left of the description,
revealing an editor with entries for all possible parameters.

We also sought to make parameters within descriptions read-
able by non-experts. For instance, we translate regular ex-
pressions into natural language via pattern substitution (e.g.,
(\d+) to ‘number’). This translation can make some descrip-
tions less concise but increases readability. Translation is

Figure 8. Editable Natural Language Descriptions. (a) An example of

an editable description; highlighted text indicates editable parameters.

(b) Clicking on a parameter reveals an in-place editor. (c) After editing,

the description may update to include new parameters. In this case, a

new window size parameter is displayed for the moving average.

only performed with regular expressions generated by the
Wrangler inference engine. If a user types in a custom ex-
pression, Wrangler will reflect their input.

Visual Transformation Previews
Wrangler uses visual previews to enable users to quickly
evaluate the effect of a transform. For most transforms, Wran-
gler displays these previews in the source data, and not as
a separate visualization (e.g., side-by-side before and after
views). In-place previews provide a visual economy that
serves a number of goals. First, displaying two versions of
a table inherently forces both versions to be small, which
is particularly frustrating when the differences are sparse.
Second, presenting in-place modifications draws user atten-
tion to the effect of the transformation in its original context,
without requiring a shift in focus across multiple tables. As
we discuss next, in-place previews better afford direct ma-
nipulation for users to revise the current transform.

Wrangler maps transforms to at least one of five preview
classes: selection, deletion, update, column and table. In
defining these mappings, we attempted to convey a trans-
form’s effect with minimum displacement of the original
data. This stability allows users to continue interacting with
the original data, e.g., to provide new selection examples.

Selection previews highlight relevant regions of text in all
affected cells (Fig. 3). Deletion previews color to-be-deleted
cells in red (Fig. 2). Update previews overwrite values in a
column and indicate differences with yellow highlights (Fig.
4). Column previews display new derived columns, e.g., as
results from an extract operation (Fig. 3). We show a side-
by-side display of versions when previewing fold and unfold
transforms. These alter the structure of the table to such an
extent that the best preview is to show another table (Fig.
6, 9). These table previews use color highlights to match
input data to their new locations in the output table. Some
transforms map to multiple classes; e.g., extract transforms
use both selection and column previews.

When possible, previews also indicate where the user can
modify the transform through either direct manipulation or
description refinement. Highlighting selected text or cells
works well for certain transformations. For example, by

DataWrangler

ExportImport

Split data repeatedly on
newline into rows

Split split repeatedly on
","

Promote row 0 to header

Delete rows 0,1

Fill row 0 by copying
values from the left

Transform Script

Text

Split

Cut

Columns

Fill

Drop

Rows

Delete

Fill

Promote

Table

Fold

Unfold

Clear

split split1 split2 split3 split4

0 2004 2004 2004 2003
1 STATE Participation Rate 2004 Mean SAT I Verbal Mean SAT I Math Participation Rate 2003
2 New York 87 497 510 82
3 Connecticut 85 515 515 84
4 Massachusetts 85 518 523 82
5 New Jersey 83 501 514 85
6 New Hampshire 80 522 521 75
7 D.C. 77 489 476 77
8 Maine 76 505 501 70
9 Pennsylvania 74 501 502 73

10 Delaware 73 500 499 73
11 Georgia 73 494 493 66

split fold fold1 value

0 New York 2004 Participation Rate 2004
1 New York 2004 Mean SAT I Verbal
2 New York 2004 Mean SAT I Math
3 New York 2003 Participation Rate 2003
4 New York 2003 Mean SAT I Verbal
5 New York 2003 Mean SAT I Math
6 Connecticut 2004 Participation Rate 2004
7 Connecticut 2004 Mean SAT I Verbal
8 Connecticut 2004 Mean SAT I Math
9 Connecticut 2003 Participation Rate 2003

10 Connecticut 2003 Mean SAT I Verbal
11 Connecticut 2003 Mean SAT I Math

87
497
510
82
496
510
85
515
515
84
512
514

Figure 9. Visual preview of a fold operation. For transforms that rear-

range table layout, Wrangler previews the output table and uses color

highlights to show the correspondence of values across table states.

highlighting the text selected by a regular expression in each
cell, users can determine which examples they need to fix.
For reshape transforms, Wrangler highlights the input data
in the same color as the corresponding output in the sec-
ondary table. For instance, in a fold operation, data values
that will become keys are colored to match the keys in the
output table (Fig. 9). Wrangler also highlights the param-
eters in the transform description using the same colors as
those generated in previews (Fig. 3–6). The consistent use
of colors allows users to associate clauses in a description
with their effects in the table.

Transformation Histories and Export
As successive transforms are applied, Wrangler adds their
descriptions to an interactive transformation history viewer.
Users can edit individual transform descriptions and selec-
tively enable and disable prior transforms. Upon changes,
Wrangler runs the edited script and updates the data table.
Toggling or editing a transform may result in downstream er-
rors; Wrangler highlights broken transforms in red and pro-
vides an error message to aid debugging.

Wrangler scripts also support lightweight text annotations.
Analysts can use annotations to document their rationale for
a particular transform and may help future users better un-
derstand data provenance. To annotate a transform, users can
click the edit icon next to the desired transform and write
their annotation in the resulting text editor. Users can view
an annotation by mousing over the same edit icon. These
annotations appear as comments in code-generated scripts.
Users can export both generated scripts and transformed data;
clicking the Export button in the transform history invokes
export options. Analysts can later run saved or exported
scripts on new data sources, modifying the script as needed.

TYPES, ROLES, AND VERIFICATION
It is often difficult to discover data quality issues and there-
fore difficult to address them by constructing the appropri-
ate transform. Wrangler aids discovery of data quality issues
through the use of data types and semantic roles.

As users transform data, Wrangler attempts to infer the data
type and semantic role for each column. Wrangler applies
validation functions to a sample of a column’s data to infer

these types, assigning the type that validates for over half of
the non-missing values. When multiple types satisfy this cri-
teria, Wrangler assigns the more specific one (e.g., integer is
more specific than double). Wrangler infers semantic roles
analogously. An icon in the column header indicates the se-
mantic role of the column, or the underlying data type if no
role has been assigned. Clicking the icon reveals a menu
with which users can manually assign a type or role.

Above each column is a data quality meter: a divided bar
chart that indicates the proportion of values in the column
that verify completely. Values that parse successfully are in-
dicated in green; values that match the type but do not match
the role (e.g., a 6 digit zip code) are shown in yellow; those
that do not match the type (e.g., ‘One’ does not parse as an
integer) are shown in red; and missing data are shown in
gray. Clicking a bar generates suggested transforms for that
category. For instance, clicking the missing values bar will
suggest transforms to fill in missing values or delete those
rows. Clicking the fails role bar will suggest transforms such
as a similarity join on misspelled country names.

THE WRANGLER INFERENCE ENGINE
We now present the design of the Wrangler inference engine,
which is responsible for generating a ranked list of suggested
transforms. Inputs to the engine consist of user interactions;
the current working transform; data descriptions such as col-
umn data types, semantic roles, and summary statistics; and
a corpus of historical usage statistics. Transform sugges-
tion proceeds in three phases: inferring transform parame-
ters from user interactions, generating candidate transforms
from inferred parameters, and finally ranking the results.

Usage Corpus and Transform Equivalence
To generate and rank transforms, Wrangler’s inference en-
gine relies on a corpus of usage statistics. The corpus con-
sists of frequency counts of transform descriptors and initi-
ating interactions. We built our initial corpus by wrangling
our collection of gathered data sets. The corpus updates over
time as more analysts use Wrangler.

For any given transform, we are unlikely to find an exact
match in the corpus. For instance, an analyst may perform
a fold operation over a combination of columns and rows
that does not appear in the corpus. In order to get useful
transform frequencies, we define a relaxed matching routine:
two transforms are considered equivalent in our corpus if (a)
they have an identical transform type (e.g., extract or fold)
and (b) they have equivalent parameters as defined below.

Wrangler transforms accept four basic types of parameters:
row, column or text selections and enumerables. We treat
two row selections as equivalent if they both (a) contain fil-
tering conditions (either index- or predicate-based) or (b)
match all rows in a table. Column selections are equivalent
if they refer to columns with the same data type or semantic
role. We based this rule on the observation that transforms
that operate on identical data types are more likely to be
similar. Text selections are equivalent if both (a) are index-
based selections or (b) contain regular expressions. We con-



D. Koop, CSCI 490/680, Spring 2020

sider enumerable parameters equivalent only if they match
exactly. We chose these equivalency classes based on ex-
ploratory analysis of our corpus and they seem to work well
in practice. As our corpus of transforms grows with more
use, we plan to explore more principled approaches (such as
clustering) to refine our matching routines.

Inferring Parameter Sets from User Interaction
In response to user interaction, Wrangler attempts to infer
three types of transform parameters: row, column, or text
selections. For each type we enumerate possible parameter
values, resulting in a collection of inferred parameter sets.
We infer a parameter’s values independent of the other pa-
rameters. For example, we infer regular expressions for text
selection based solely on the selected text, a process other-
wise independent of which rows or columns are selected.

We infer row selections based on row indices and predicate
matching. We list predicates of the form “row is empty” and
“column [equals | starts with | ends with | contains] selected-
value”, then emit the selections that match the rows and text
currently selected in the interface. For column selections we
simply return the columns that users have interacted with.

Emitted text selections are either simple index ranges (based
directly on selections in the interface) or inferred regular ex-
pressions. To generate regular expressions, we tokenize the
text within a cell and extract both the selected text and any
surrounding text within a 5 token window. We annotate to-
kens with one or more labels of the form number, word, up-
percase word, lowercase word, or whitespace. We then enu-
merate label sequences that match the text before, within,
and after the selection range (see Fig. 10); sequences can
contain either an annotation label or the exact token text.
Next we emit all possible combinations of before, within,
and after sequences that match all current text selection ex-
amples in the interface. It is then straightforward to translate
matching label sequences into regular expressions.

Generating Suggested Transforms
After inferring parameter sets, Wrangler generates a list of
transform suggestions. For each parameter set, we loop over
each transform type in the language, emitting the types that
can accept all parameters in the set. For example, a split
transform can accept a parameter set containing a text selec-
tion, but an unfold transform can not. Wrangler instantiates
each emitted transform with parameters from the parameter
set. To determine values for missing parameters, we query
the corpus for the top-k (default 4) parameterizations that co-
occur most frequently with the provided parameter set. Dur-
ing this process we do not infer complex criteria such as row
predicates or regular expressions; we do infer enumerable
parameters, index-based row selections, and column inputs.
We then filter the suggestion set to remove “degenerate” (no-
op) transforms that would have no effect on the data.

Ranking Suggested Transforms
Wrangler then rank-orders transform suggestions according
to five criteria. The first three criteria rank transforms by
their type; the remaining two rank transforms within types.

(a)
Reported crime in Alabama

(b)

before: {‘in’, ‘ ’} ‘Alabama’! {‘Alabama’, word}
selection: {‘Alabama’} ‘in’! {‘in’, word, lowercase}
after: ; ‘ ’! {‘ ’}

(c)

before: {(‘ ’), (‘in’, ‘ ’), (word, ‘ ’), (lowercase, ‘ ’)}
selection: {(‘Alabama’), (word)}
after: ;

(d)

{(),(‘Alabama’),()} {(),(word),()}
{(‘ ’),(),()} {(word, ‘ ’),(),()}
{(‘ ’),(‘Alabama’),()} {(word, ‘ ’),(‘Alabama’),()}
{(‘ ’),(word),()} {(word, ‘ ’),(word),()}
{(‘in’, ‘ ’),(),()} {(lowercase, ‘ ’),(),()}
{(‘in’, ‘ ’),(‘Alabama’),()} {(lowercase, ‘ ’),(‘Alabama’),()}
{(‘in’, ‘ ’),(word),()} {(lowercase, ‘ ’),(word),()}

(e) {(lowercase, ‘ ’),(‘Alabama’),()}! /[a-z]+ (Alabama)/

Figure 10. Regular Expression Inference. (a) The user selects text in a

cell. (b) We tokenize selected and surrounding text. For clarity, the fig-

ure only includes two neighboring tokens. For each token, we generate

a set of matching labels. (c) We enumerate all label sequences matching

the text. (d) We then enumerate all candidate before, selection and after
combinations. Patterns that do not uniquely match the selected text are

filtered (indicated by strike-through). (e) Finally, we construct regular

expressions for each candidate pattern.

Ensuring that transforms of the same type are adjacent helps
users compare varying parameterizations more easily.

First, we consider explicit interactions: if a user chooses a
transform from the menu or selects a current working trans-
form, we assign higher rank to transforms of that type. Sec-
ond, we consider specification difficulty. We have observed
that row and text selection predicates are harder to specify
than other parameters. We thus label row and text selections
as hard and all others as easy. We then sort transform types
according to the count of hard parameters they can accept.
Third, we rank transform types based on their corpus fre-
quency, conditioned on their initiating user interaction (e.g.,
text or column selection). In the case of text selection, we
also consider the length of the selected text. If a user selects
three or fewer characters, split transforms are ranked above
extract transforms; the opposite is true for longer selections.

We then sort transforms within type. We first sort trans-
forms by frequency of equivalent transforms in the corpus.
Second, we sort transforms in ascending order using a sim-
ple measure of transform complexity. Our goal is to prefer-
entially rank simpler transforms because users can evaluate
their descriptions more quickly. We define transform com-
plexity as the sum of complexity scores for each parameter.
The complexity of a row selection predicate is the number of
clauses it contains (e.g., “a=5 and b=6” has complexity 2).
The complexity of a regular expression is defined to be the
number of tokens (described previously) in its description.
All other parameters are given complexity scores of zero.

Finally, we attempt to surface diverse transform types in the
final suggestion list. We filter the transforms so that no type
accounts for more than 1/3 of the suggestions, unless the
transform type matches the working transform or the filter
results in fewer suggestions than can appear in the interface.

Automation from past actions
• Infer parameter sets from user 

interaction 
• Generating transforms 
• Ranking and ordering 

transformations: 
- Based on user preferences, 

difficulty, and corpus frequency 
- Sort transforms by type and 

diversify suggestions

 23

[S. Kandel et al., 2011]



D. Koop, CSCI 490/680, Spring 2020

Evaluation
• Compare with Excel 
• Tests: 
- Extract text from a single string entry 
- Fill in missing values with estimates 
- Reshape tables 

• Allowed users to ask questions about Excel, not Wrangler 
• Found significant effect of tool and users found previews and suggestions 

helpful 
• Complaint: No manual fallback, make implications of user choices more 

obvious for users

 24



D. Koop, CSCI 490/680, Spring 2020

COMPARATIVE EVALUATION WITH EXCEL
As an initial evaluation of Wrangler, we conducted a com-
parative user study with Microsoft Excel. Subjects performed
three common data cleaning tasks: value extraction, missing
value imputation, and table reshaping. Our goal was to com-
pare task completion times and observe data cleaning strate-
gies. We chose Excel because it is the most popular data ma-
nipulation tool and provides an ecologically valid baseline
for comparison: all subjects use it regularly and half self-
report as experts. Excel also supports our chosen tasks. Nei-
ther Potter’s Wheel [22] (no support for fill) nor Google Re-
fine [13] (lack of reshaping) support the full set. In contrast,
Excel includes specific tools for each task (text-to-columns,
goto-special & pivot tables) in addition to manual editing.

Participants and Methods
We recruited 12 participants, all professional analysts or grad-
uate students who regularly work with data. Subjects rated
their prior experience with Excel on a 10-point scale (1 be-
ing basic knowledge and 10 being expert); the median score
was 5. Participants had never used the Wrangler interface.

We first presented a 10 minute Wrangler tutorial describ-
ing how to create, edit, and execute transforms. We then
asked subjects to complete three tasks (described below) us-
ing both Wrangler and Excel. We randomized the presenta-
tion of tasks and tools across subjects. In each task, we asked
subjects to transform a data set into a new format, presented
to them as a picture of the final data table.

Task 1: Extract Text. In this task, we asked users to ex-
tract the number of bedrooms and housing price from hous-
ing listings on craigslist. The original data set contained one
cell for each listing, with all the information in a text string.
The target data set consisted of two columns: one for the
number of bedrooms and one for the housing price.

Task 2: Fill Missing Values. We gave users data containing
year-by-year agricultural data for three countries. Some of
the values in the data set were blank. The target data set con-
tained the same data with all missing values replaced with
the closest non-empty value from a previous year.1

Task 3: Reshape Table Structure. Users started with three
columns of housing data: year, month, and price. The target
data set contained the same data formatted as a cross-tab: the
data contained one row for each year, with the 12 months as
column headers and housing prices as cell values.

When using Excel, we allowed subjects to ask for references
to functions they could describe concretely (e.g., we would
answer “how do I split a cell?” but not “how do I get the
number of bedrooms out?”). For Wrangler tasks, we did not
respond to user inquiries. We permitted a maximum of 10
minutes per task. Each data set had at most 30 rows and 4
columns; complete manual manipulation in Excel was eas-
ily attainable within the time limits. Afterwards, each user
completed a post-study questionnaire.
1We acknowledge that this is not an ideal cleaning solution for the
data, but it nonetheless served as a useful test.

0 1 2 3 4 5 6 7 8 9 10

T1

T2

T3

User Study Task Completion Time (minutes) Wrangler Excel

Figure 11. Task completion times. Black bars indicate median values.

Median Wrangler performance is over twice as fast in all tasks.

Wrangler Accelerates Transform Specification
We performed a repeated-measures ANOVA of completion
times with task, tool, and Excel novice/expert2 as indepen-
dent factors; we log-transformed responses to better approx-
imate a normal distribution. We found a significant main
effect of tool (F1,54 = 23.65, p < 0.001), but no main effect
of task (F1,54 = 0.01, p = 0.943) or expertise (F1,54 = 0.30,
p = 0.596). We found a significant interaction effect of task
and expertise (F1,54 = 11.10, p < 0.002) driven by improved
performance by experts (regardless of tool) in the reshaping
task (T3). No other interactions were significant.

Across all tasks, median performance in Wrangler was over
twice as fast as Excel (Fig. 11). Users completed the clean-
ing tasks significantly more quickly with Wrangler than with
Excel, and this speed-up benefitted novice and expert Excel
users alike. Moreover, the user study tasks involved small
data sets amenable to manual manipulation. As data set size
grows, we expect the benefits of Wrangler to come into even
sharper relief. Of course, larger data sets might complicate
the process of assessing transform effects and so may benefit
from additional validation and visualization techniques.

Strategies for Navigating Suggestion Space
When working with Wrangler, users applied different nav-
igation strategies for different tasks. These strategies were
largely consistent across users. For text selection, users fre-
quently provided multiple examples. For other operations,
users performed an initial selection and then previewed each
suggestion. One subject noted, “I just look at the picture.”
Users with a programming background spent time reading
transform descriptions, whereas the other users relied almost
entirely on the previews. When users did not find a transform
among the initial suggestions, they most often filtered the
suggestions by selecting a transform type from the menu. If
only imperfect matches were found, users then selected the
nearest transform and edited its parameters. In other words,
users turned to manual parameterization only as a last resort.

Our post-study questionnaire asked users to rate automated
suggestions, visual previews, and direct editing of transforms
on a scale from 1 (not useful) to 5 (most useful). We per-
formed an ANOVA and found a significant difference among
the ratings (F2,33 = 17.33, p < 0.001). Users rated previews
(µ = 4.8) and suggestions (µ = 4.3) significantly more use-
ful than direct editing (µ = 2.5) (p < 0.001 in both cases by

2We divided subjects into “novices” and “experts” according to
their median self-reported expertise rating (5).

Task Completion Times

 25

[S. Kandel et al., 2011]



D. Koop, CSCI 490/680, Spring 2020

Figure 1: Predictive Interaction for text pattern specification. The left image shows the interface after the user has highlighted the

string mobile in line 34. The right shows the interface after one more gesture: highlighting the string dynamic in line 31. Note

that the top-ranked suggested transform changes after the second highlight, and hence so do the Source and Preview contents.

Figure 2: A ranked list of regular expressions.

a visual rendering of their data in a familiar tabular grid. They can
guide the system by highlighting substrings in the table, which are
added to an example set. Based on this set, an inference algorithm
produces a ranked list of suggested text patterns that model the set
well. For the top-ranked pattern, the table renderer highlights any
matches found, and shows how those matches will be used.

Figure 1 shows the states of the interface after the user makes each
of two guiding interactions: first, highlighting the string mobile
in row 34, and then highlighting the additional string dynamic in
row 31. The user interface shows the highlighted patterns in the
source (blue), and the outcome of a text extraction transform in a
preview column (tan). The user can choose to view the outputs of
other suggested transforms by clicking on them in the top panel;
they can also edit the patterns directly in a Transform Editor. When
the user decides on the best pattern, they can click the “plus” (+) to
the right of the transform to add it to a DSL script.

In our initial prototype the suggested transforms looked different
than what is shown in Figure 1. Originally, users would see a
ranked list of REs in a traditional syntax, as shown in Figure 2
(corresponding to the ranked list of suggested transforms on the
right of Figure 1). In user studies we found that even experienced
programmers had difficulty deciding quickly and accurately among
alternative REs. It seems that RE syntax is better suited to writing
patterns than to reading them. Hence we changed our DSL to a new
pattern language (compilable to REs) that is better suited to rapid
disambiguation among options.

In essence, we evolved our DSL design to simplify the way that
users can interact with automated predictions. Although simple, this
example illustrates some of the subtleties involved in co-designing
Predictive Interaction across the three streams of traditional research
mentioned above. The visualization has to be informative and the
affordances for user guidance clear; the predictive model has to
receive information-rich guidance from the interactions, and do a
good job of surfacing probable but diverse choices; the DSL has
to be expressive yet sufficiently small for tractable inference and
simple user interaction.

In the remainder of the paper, we provide a general framework for
Predictive Interaction, putting it in context with previous approaches
to visual languages for managing data, and highlighting research

X Y

Z

f

h g compilation

DSL

(a) (b)

Data Results

interactionData Vis Visual Results

visualization

Figure 3: Lifts. A traditional lift (a): given a map f : X !
Y , and a map g : Z ! Y , the lifting problem is to find a

map h : X ! Z such that g � h = f . Lifting in the context

of visual specifications (b): rather than write expressions in a

textual DSL, we define a lift to a domain of data visualization

and interactions, such that the interactions in that domain lead

to final outputs: compilation � interaction � visualization = DSL
programming.

Figure 1 1  Qualified  retrieval 

EMP NAME SAL MGR DEPT 

Figure 12 Partially  underlined 
qualified  retrieval 

328 

Qualijied  retrieval. Print  the  names of the  employees  who  work 
in the toy department  and  earn  more  than $10000. This is shown 
in Figure 11. Note  the specification of the  condition  “more  than 
$lQl&)O.” One has  the  option  of using any of the following in- 
equality  operators: #, >, >=, <, <=. If no inequality operator is 
used’  as  a prefix, equality is implied. The symbol # can  be  re- 
placed by 1 or I=. 

Partially  underlined  qualijied  retrieval. Print  the  green items that 
start with the  letter I .  This is found in Figure 12. The I in IKE is 
not  underlined,  and it is a  constant.  Therefore,  the  system  prints 
all the  green  items  that  start with the  letter I .  The  user can  par- 
tially underline at  the beginning, middle or end of a word, a sen- 
tence,  or a  paragraph, as in the  example, XPAY, which means 
find a word, a sentence  or a paragraph such that  somewhere in 
that  sentence  or  paragraph  there  exist  the  letters PA. Since an 
example  element  can  be blank, then it word, a sentence,  or a 
paragraph  that  starts  or  ends with the  letters PA also qualifies. 

The partial underline  feature is useful if an  entry is a  sentence  or 
text  and  the  user wishes to  search to find all examples  that  con- 
tain a special word or  root.  If,  for  example,  the  query is to find 
entries with the word Texas,  the formulation’ of this  query is P. x 
TEXAS Y. 

- 
- 

Qualijied  retrieval using links. Print all the  green  items sold by 
the  toy  department.  This is shown in Figure 13.  In this  case,  the 
user  displays  both  the TYPE table  and  the SALES table by gener- 
3ting two blank skeletons on the  screen  and filling them in with 
beadings and with required entries. The significance of the  ex- 
ample  element is best  illustrated in this  query. Here,  the same 
example  element must be used in both  tables, indicating that if 
an  example item such as N U T  is green,  that  same item is also 
sold by  the toy department.  Only if these  conditions are met 
simultaneously does  the item qualify as a  solution. The manual 
equivalent is to  scan  the TYPE table  to find a green item and  then 
scan the SALES table  to  check  whether  that  same item is also 
sold by the toy department.  Since  there is no specification of 
how the  query is to  be  processed or where  the  scan is to start, 
the formulation of this  query is neutral  and  symmetric. 

Figure 13 Qualified  retrieval using links ‘“7-1 
P . E T  GREEN - 

Once  the  concept of a linking example  element is understood, 
the  user can link any  number of tables and  any  number of rows 
within a single table, as in the following examples. 

ZLOOF IBM SYST J 

Figure 4: Query By Example: qualified retrieval using

links [32].

challenges and opportunities for the community.

2. LIFTING TO VISUAL LANGUAGES

To set the stage for our discussion, we re-examine the more
traditional integration of two of our three themes: visualization
and data-centric languages. There are a number of influential prior
efforts along these lines, including Query-By-Example (QBE) [32],
Microsoft Access, and Tableau. These interfaces take a textual data
manipulation language (e.g., relational calculus) and “lift” it into
an isomorphic higher-level visual language intended to be more
natural for users. Given a visual specification of a query, a system
can translate (“ground”) to the domain of the textual language for
processing. Lifting is a basic idea from category theory, sometimes
used in the design of functional programming languages (Figure 3).

Lifting to a visual domain has proven to be useful for the specifi-
cation of standard select-project-join-aggregate queries. As illustra-
tion, we review two influential systems: QBE and Tableau.

Example 1: QBE. The main idea in QBE is to lift the database

Improvements in Prediction

 26

[Heer et al., 2015]

Update suggestions when given more information



D. Koop, CSCI 490/680, Spring 2020

Data Wrangling Tasks
• Unboxing: Discovery & Assessment: What's in there? (types, distribution) 
• Structuring: Restructure data (table, nested data, pivot tables) 
• Cleaning: does data match expectations (often involves user) 
• Enriching & Blending: Adding new data 
• Optimizing & Publishing: Structure for storage or visualization

 27

[J. M. Hellerstein et al., 2018]



D. Koop, CSCI 490/680, Spring 2020

Differences with Extract-Transform-Load (ETL)
• ETL: 
- Who: IT Professionals 
- Why: Create static data pipeline 
- What: Structured data 
- Where: Data centers 

• "Modern Data Preparation": 
- Who: Analysts 
- Why: Solve problems by designing recipes to use data 
- What: Original, custom data blended with other data 
- Where: Cloud, desktop

 28

[J. M. Hellerstein et al., 2018]



D. Koop, CSCI 490/680, Spring 2020  29

Trifacta Wrangler

https://www.trifacta.com/start-wrangling/


D. Koop, CSCI 490/680, Spring 2020

Paper Critique
• Foofah: Transforming Data By Example, Z. Jin et al., 2017 
• Due Tuesday before class, submit via Blackboard 
• Read the paper 
• Look up references if necessary 
• Keep track of things you are confused by or that seem problematic 
• Write a few sentences summarizing the paper's contribution 
• Write more sentences discussing the paper and what you think the paper 

does well or doesn't do well at 
• For this response, compare/contrast with Wrangler/Trifacta 
• Length: 1/2-1 page

 30

https://web.eecs.umich.edu/~michjc/papers/p683-jin.pdf


D. Koop, CSCI 490/680, Spring 2020

Data Cleaning in pandas

 31



D. Koop, CSCI 490/680, Spring 2020

Handling Missing Data
• Filtering out missing data: 
- Can choose rows or columns 

• Filling in missing data: 
- with a default value 
- with an interpolated value 

• In pandas:

 32

[W. McKinney, Python for Data Analysis]

In [10]: string_data = pd.Series(['aardvark', 'artichoke', np.nan, 'avocado'])

In [11]: string_data
Out[11]: 
0     aardvark
1    artichoke
2          NaN
3      avocado
dtype: object

In [12]: string_data.isnull()
Out[12]: 
0    False
1    False
2     True
3    False
dtype: bool

In pandas, we’ve adopted a convention used in the R programming language by refer‐
ring to missing data as NA, which stands for not available. In statistics applications, 
NA data may either be data that does not exist or that exists but was not observed
(through problems with data collection, for example). When cleaning up data for
analysis, it is often important to do analysis on the missing data itself to identify data
collection problems or potential biases in the data caused by missing data.

The built-in Python None value is also treated as NA in object arrays:
In [13]: string_data[0] = None

In [14]: string_data.isnull()
Out[14]: 
0     True
1    False
2     True
3    False
dtype: bool

There is work ongoing in the pandas project to improve the internal details of how
missing data is handled, but the user API functions, like pandas.isnull, abstract 
away many of the annoying details. See Table 7-1 for a list of some functions related
to missing data handling.

Table 7-1. NA handling methods
Argument Description
dropna Filter axis labels based on whether values for each label have missing data, with varying thresholds for how

much missing data to tolerate.
fillna Fill in missing data with some value or using an interpolation method such as 'ffill' or 'bfill'.
isnull Return boolean values indicating which values are missing/NA.
notnull Negation of isnull.

192 | Chapter 7: Data Cleaning and Preparation



D. Koop, CSCI 490/680, Spring 2020

Filling in missing data
• fillna arguments:

 33

[W. McKinney, Python for Data Analysis]

Table 7-2. !llna function arguments
Argument Description
value Scalar value or dict-like object to use to !ll missing values
method Interpolation; by default 'ffill' if function called with no other arguments
axis Axis to !ll on; default axis=0
inplace Modify the calling object without producing a copy
limit For forward and backward !lling, maximum number of consecutive periods to !ll

7.2 Data Transformation
So far in this chapter we’ve been concerned with rearranging data. Filtering, cleaning,
and other transformations are another class of important operations.

Removing Duplicates
Duplicate rows may be found in a DataFrame for any number of reasons. Here is an
example:

In [45]: data = pd.DataFrame({'k1': ['one', 'two'] * 3 + ['two'],
   ....:                      'k2': [1, 1, 2, 3, 3, 4, 4]})

In [46]: data
Out[46]: 
    k1  k2
0  one   1
1  two   1
2  one   2
3  two   3
4  one   3
5  two   4
6  two   4

The DataFrame method duplicated returns a boolean Series indicating whether each
row is a duplicate (has been observed in a previous row) or not:

In [47]: data.duplicated()
Out[47]: 
0    False
1    False
2    False
3    False
4    False
5    False
6     True
dtype: bool

Relatedly, drop_duplicates returns a DataFrame where the duplicated array is
False:

7.2 Data Transformation | 197



D. Koop, CSCI 490/680, Spring 2020

Filtering and Cleaning Data
• Find duplicates 

- duplicated: returns boolean Series indicating whether row is a duplicate—
first instance is not marked as a duplicate 

• Remove duplicates: 
- drop_duplicates: drops all rows where duplicated is True 
- keep: which value to keep (first or last) 

• Can pass specific columns to check for duplicates, e.g. check only key 
column

 34



D. Koop, CSCI 490/680, Spring 2020

Changing Data
• Convert strings to upper/lower case 
• Convert Fahrenheit temperatures to Celsius 
• Create a new column based on another column

 35

[W. McKinney, Python for Data Analysis]

3     Pastrami     6.0
4  corned beef     7.5
5        Bacon     8.0
6     pastrami     3.0
7    honey ham     5.0
8     nova lox     6.0

Suppose you wanted to add a column indicating the type of animal that each food
came from. Let’s write down a mapping of each distinct meat type to the kind of
animal:

meat_to_animal = {
  'bacon': 'pig',
  'pulled pork': 'pig',
  'pastrami': 'cow',
  'corned beef': 'cow',
  'honey ham': 'pig',
  'nova lox': 'salmon'
}

The map method on a Series accepts a function or dict-like object containing a map‐
ping, but here we have a small problem in that some of the meats are capitalized and
others are not. Thus, we need to convert each value to lowercase using the str.lower
Series method:

In [55]: lowercased = data['food'].str.lower()

In [56]: lowercased
Out[56]: 
0          bacon
1    pulled pork
2          bacon
3       pastrami
4    corned beef
5          bacon
6       pastrami
7      honey ham
8       nova lox
Name: food, dtype: object

In [57]: data['animal'] = lowercased.map(meat_to_animal)

In [58]: data
Out[58]: 
          food  ounces  animal
0        bacon     4.0     pig
1  pulled pork     3.0     pig
2        bacon    12.0     pig
3     Pastrami     6.0     cow
4  corned beef     7.5     cow
5        Bacon     8.0     pig
6     pastrami     3.0     cow

7.2 Data Transformation | 199

3     Pastrami     6.0
4  corned beef     7.5
5        Bacon     8.0
6     pastrami     3.0
7    honey ham     5.0
8     nova lox     6.0

Suppose you wanted to add a column indicating the type of animal that each food
came from. Let’s write down a mapping of each distinct meat type to the kind of
animal:

meat_to_animal = {
  'bacon': 'pig',
  'pulled pork': 'pig',
  'pastrami': 'cow',
  'corned beef': 'cow',
  'honey ham': 'pig',
  'nova lox': 'salmon'
}

The map method on a Series accepts a function or dict-like object containing a map‐
ping, but here we have a small problem in that some of the meats are capitalized and
others are not. Thus, we need to convert each value to lowercase using the str.lower
Series method:

In [55]: lowercased = data['food'].str.lower()

In [56]: lowercased
Out[56]: 
0          bacon
1    pulled pork
2          bacon
3       pastrami
4    corned beef
5          bacon
6       pastrami
7      honey ham
8       nova lox
Name: food, dtype: object

In [57]: data['animal'] = lowercased.map(meat_to_animal)

In [58]: data
Out[58]: 
          food  ounces  animal
0        bacon     4.0     pig
1  pulled pork     3.0     pig
2        bacon    12.0     pig
3     Pastrami     6.0     cow
4  corned beef     7.5     cow
5        Bacon     8.0     pig
6     pastrami     3.0     cow

7.2 Data Transformation | 199

3     Pastrami     6.0
4  corned beef     7.5
5        Bacon     8.0
6     pastrami     3.0
7    honey ham     5.0
8     nova lox     6.0

Suppose you wanted to add a column indicating the type of animal that each food
came from. Let’s write down a mapping of each distinct meat type to the kind of
animal:

meat_to_animal = {
  'bacon': 'pig',
  'pulled pork': 'pig',
  'pastrami': 'cow',
  'corned beef': 'cow',
  'honey ham': 'pig',
  'nova lox': 'salmon'
}

The map method on a Series accepts a function or dict-like object containing a map‐
ping, but here we have a small problem in that some of the meats are capitalized and
others are not. Thus, we need to convert each value to lowercase using the str.lower
Series method:

In [55]: lowercased = data['food'].str.lower()

In [56]: lowercased
Out[56]: 
0          bacon
1    pulled pork
2          bacon
3       pastrami
4    corned beef
5          bacon
6       pastrami
7      honey ham
8       nova lox
Name: food, dtype: object

In [57]: data['animal'] = lowercased.map(meat_to_animal)

In [58]: data
Out[58]: 
          food  ounces  animal
0        bacon     4.0     pig
1  pulled pork     3.0     pig
2        bacon    12.0     pig
3     Pastrami     6.0     cow
4  corned beef     7.5     cow
5        Bacon     8.0     pig
6     pastrami     3.0     cow

7.2 Data Transformation | 199

7    honey ham     5.0     pig
8     nova lox     6.0  salmon

We could also have passed a function that does all the work:
In [59]: data['food'].map(lambda x: meat_to_animal[x.lower()])
Out[59]: 
0       pig
1       pig
2       pig
3       cow
4       cow
5       pig
6       cow
7       pig
8    salmon
Name: food, dtype: object

Using map is a convenient way to perform element-wise transformations and other
data cleaning–related operations.

Replacing Values
Filling in missing data with the fillna method is a special case of more general value
replacement. As you’ve already seen, map can be used to modify a subset of values in
an object but replace provides a simpler and more flexible way to do so. Let’s con‐
sider this Series:

In [60]: data = pd.Series([1., -999., 2., -999., -1000., 3.])

In [61]: data
Out[61]: 
0       1.0
1    -999.0
2       2.0
3    -999.0
4   -1000.0
5       3.0
dtype: float64

The -999 values might be sentinel values for missing data. To replace these with NA
values that pandas understands, we can use replace, producing a new Series (unless
you pass inplace=True):

In [62]: data.replace(-999, np.nan)
Out[62]: 
0       1.0
1       NaN
2       2.0
3       NaN
4   -1000.0

200 | Chapter 7: Data Cleaning and Preparation



D. Koop, CSCI 490/680, Spring 2020

Replacing Values
• fillna is a special case 
• What if -999 in our dataset was identified as a missing value? 

• Can pass list of values or dictionary to change different values

 36

7    honey ham     5.0     pig
8     nova lox     6.0  salmon

We could also have passed a function that does all the work:
In [59]: data['food'].map(lambda x: meat_to_animal[x.lower()])
Out[59]: 
0       pig
1       pig
2       pig
3       cow
4       cow
5       pig
6       cow
7       pig
8    salmon
Name: food, dtype: object

Using map is a convenient way to perform element-wise transformations and other
data cleaning–related operations.

Replacing Values
Filling in missing data with the fillna method is a special case of more general value
replacement. As you’ve already seen, map can be used to modify a subset of values in
an object but replace provides a simpler and more flexible way to do so. Let’s con‐
sider this Series:

In [60]: data = pd.Series([1., -999., 2., -999., -1000., 3.])

In [61]: data
Out[61]: 
0       1.0
1    -999.0
2       2.0
3    -999.0
4   -1000.0
5       3.0
dtype: float64

The -999 values might be sentinel values for missing data. To replace these with NA
values that pandas understands, we can use replace, producing a new Series (unless
you pass inplace=True):

In [62]: data.replace(-999, np.nan)
Out[62]: 
0       1.0
1       NaN
2       2.0
3       NaN
4   -1000.0

200 | Chapter 7: Data Cleaning and Preparation

7    honey ham     5.0     pig
8     nova lox     6.0  salmon

We could also have passed a function that does all the work:
In [59]: data['food'].map(lambda x: meat_to_animal[x.lower()])
Out[59]: 
0       pig
1       pig
2       pig
3       cow
4       cow
5       pig
6       cow
7       pig
8    salmon
Name: food, dtype: object

Using map is a convenient way to perform element-wise transformations and other
data cleaning–related operations.

Replacing Values
Filling in missing data with the fillna method is a special case of more general value
replacement. As you’ve already seen, map can be used to modify a subset of values in
an object but replace provides a simpler and more flexible way to do so. Let’s con‐
sider this Series:

In [60]: data = pd.Series([1., -999., 2., -999., -1000., 3.])

In [61]: data
Out[61]: 
0       1.0
1    -999.0
2       2.0
3    -999.0
4   -1000.0
5       3.0
dtype: float64

The -999 values might be sentinel values for missing data. To replace these with NA
values that pandas understands, we can use replace, producing a new Series (unless
you pass inplace=True):

In [62]: data.replace(-999, np.nan)
Out[62]: 
0       1.0
1       NaN
2       2.0
3       NaN
4   -1000.0

200 | Chapter 7: Data Cleaning and Preparation

5       3.0
dtype: float64

If you want to replace multiple values at once, you instead pass a list and then the
substitute value:

In [63]: data.replace([-999, -1000], np.nan)
Out[63]: 
0    1.0
1    NaN
2    2.0
3    NaN
4    NaN
5    3.0
dtype: float64

To use a different replacement for each value, pass a list of substitutes:
In [64]: data.replace([-999, -1000], [np.nan, 0])
Out[64]: 
0    1.0
1    NaN
2    2.0
3    NaN
4    0.0
5    3.0
dtype: float64

The argument passed can also be a dict:
In [65]: data.replace({-999: np.nan, -1000: 0})
Out[65]: 
0    1.0
1    NaN
2    2.0
3    NaN
4    0.0
5    3.0
dtype: float64

The data.replace method is distinct from data.str.replace,
which performs string substitution element-wise. We look at these
string methods on Series later in the chapter.

Renaming Axis Indexes
Like values in a Series, axis labels can be similarly transformed by a function or map‐
ping of some form to produce new, differently labeled objects. You can also modify
the axes in-place without creating a new data structure. Here’s a simple example:

7.2 Data Transformation | 201



D. Koop, CSCI 490/680, Spring 2020

Clamping Values
• Values above or below a specified thresholds are set to a max/min value

 37

In [90]: pd.value_counts(cats)
Out[90]: 
(0.62, 3.928]       250
(-0.0265, 0.62]     250
(-0.68, -0.0265]    250
(-2.95, -0.68]      250
dtype: int64

Similar to cut you can pass your own quantiles (numbers between 0 and 1, inclusive):
In [91]: pd.qcut(data, [0, 0.1, 0.5, 0.9, 1.])
Out[91]: 
[(-0.0265, 1.286], (-0.0265, 1.286], (-1.187, -0.0265], (-0.0265, 1.286], (-0.026
5, 1.286], ..., (-1.187, -0.0265], (-1.187, -0.0265], (-2.95, -1.187], (-0.0265, 
1.286], (-1.187, -0.0265]]
Length: 1000
Categories (4, interval[float64]): [(-2.95, -1.187] < (-1.187, -0.0265] < (-0.026
5, 1.286] <
                                    (1.286, 3.928]]

We’ll return to cut and qcut later in the chapter during our discussion of aggregation
and group operations, as these discretization functions are especially useful for quan‐
tile and group analysis.

Detecting and Filtering Outliers
Filtering or transforming outliers is largely a matter of applying array operations.
Consider a DataFrame with some normally distributed data:

In [92]: data = pd.DataFrame(np.random.randn(1000, 4))

In [93]: data.describe()
Out[93]: 
                 0            1            2            3
count  1000.000000  1000.000000  1000.000000  1000.000000
mean      0.049091     0.026112    -0.002544    -0.051827
std       0.996947     1.007458     0.995232     0.998311
min      -3.645860    -3.184377    -3.745356    -3.428254
25%      -0.599807    -0.612162    -0.687373    -0.747478
50%       0.047101    -0.013609    -0.022158    -0.088274
75%       0.756646     0.695298     0.699046     0.623331
max       2.653656     3.525865     2.735527     3.366626

Suppose you wanted to find values in one of the columns exceeding 3 in absolute
value:

In [94]: col = data[2]

In [95]: col[np.abs(col) > 3]
Out[95]: 
41    -3.399312
136   -3.745356
Name: 2, dtype: float64

7.2 Data Transformation | 205

To select all rows having a value exceeding 3 or –3, you can use the any method on a
boolean DataFrame:

In [96]: data[(np.abs(data) > 3).any(1)]
Out[96]: 
            0         1         2         3
41   0.457246 -0.025907 -3.399312 -0.974657
60   1.951312  3.260383  0.963301  1.201206
136  0.508391 -0.196713 -3.745356 -1.520113
235 -0.242459 -3.056990  1.918403 -0.578828
258  0.682841  0.326045  0.425384 -3.428254
322  1.179227 -3.184377  1.369891 -1.074833
544 -3.548824  1.553205 -2.186301  1.277104
635 -0.578093  0.193299  1.397822  3.366626
782 -0.207434  3.525865  0.283070  0.544635
803 -3.645860  0.255475 -0.549574 -1.907459

Values can be set based on these criteria. Here is code to cap values outside the inter‐
val –3 to 3:

In [97]: data[np.abs(data) > 3] = np.sign(data) * 3

In [98]: data.describe()
Out[98]: 
                 0            1            2            3
count  1000.000000  1000.000000  1000.000000  1000.000000
mean      0.050286     0.025567    -0.001399    -0.051765
std       0.992920     1.004214     0.991414     0.995761
min      -3.000000    -3.000000    -3.000000    -3.000000
25%      -0.599807    -0.612162    -0.687373    -0.747478
50%       0.047101    -0.013609    -0.022158    -0.088274
75%       0.756646     0.695298     0.699046     0.623331
max       2.653656     3.000000     2.735527     3.000000

The statement np.sign(data) produces 1 and –1 values based on whether the values
in data are positive or negative:

In [99]: np.sign(data).head()
Out[99]: 
     0    1    2    3
0 -1.0  1.0 -1.0  1.0
1  1.0 -1.0  1.0 -1.0
2  1.0  1.0  1.0 -1.0
3 -1.0 -1.0  1.0 -1.0
4 -1.0  1.0 -1.0 -1.0

Permutation and Random Sampling
Permuting (randomly reordering) a Series or the rows in a DataFrame is easy to do
using the numpy.random.permutation function. Calling permutation with the length
of the axis you want to permute produces an array of integers indicating the new
ordering:

206 | Chapter 7: Data Cleaning and Preparation



D. Koop, CSCI 490/680, Spring 2020

Computing Indicator Values
• Useful for machine learning 
• Want to take possible values and map them to 0-1 indicators 
• Example: 

• Example: Genres in movies

 38

4    4
0    5
4    4
dtype: int64

Computing Indicator/Dummy Variables
Another type of transformation for statistical modeling or machine learning applica‐
tions is converting a categorical variable into a “dummy” or “indicator” matrix. If a
column in a DataFrame has k distinct values, you would derive a matrix or Data‐
Frame with k columns containing all 1s and 0s. pandas has a get_dummies function
for doing this, though devising one yourself is not difficult. Let’s return to an earlier
example DataFrame:

In [109]: df = pd.DataFrame({'key': ['b', 'b', 'a', 'c', 'a', 'b'],
   .....:                    'data1': range(6)})

In [110]: pd.get_dummies(df['key'])
Out[110]: 
   a  b  c
0  0  1  0
1  0  1  0
2  1  0  0
3  0  0  1
4  1  0  0
5  0  1  0

In some cases, you may want to add a prefix to the columns in the indicator Data‐
Frame, which can then be merged with the other data. get_dummies has a prefix argu‐
ment for doing this:

In [111]: dummies = pd.get_dummies(df['key'], prefix='key')

In [112]: df_with_dummy = df[['data1']].join(dummies)

In [113]: df_with_dummy
Out[113]: 
   data1  key_a  key_b  key_c
0      0      0      1      0
1      1      0      1      0
2      2      1      0      0
3      3      0      0      1
4      4      1      0      0
5      5      0      1      0

If a row in a DataFrame belongs to multiple categories, things are a bit more compli‐
cated. Let’s look at the MovieLens 1M dataset, which is investigated in more detail in
Chapter 14:

208 | Chapter 7: Data Cleaning and Preparation



D. Koop, CSCI 490/680, Spring 2020

String Transformation
• One of the reasons for Python's popularity is string/text processing 
• split(<delimiter>): break a string into pieces: 

- s = "12,13, 14" 
slist = s.split(',') # ["12", "13", " 14"] 

• <delimiter>.join([<str>]): join several strings by a delimiter 
- ":".join(slist) # "12:13: 14" 

• strip(): remove leading and trailing whitespace 
- [p.strip() for p in slist] # ["12", "13", "14"]

 39



D. Koop, CSCI 490/680, Spring 2020

String Transformation
• replace(<from>,<to>): change substrings to another substring 

- s.replace(',', ':') # "12:13: 14" 

• upper()/lower(): casing 
- "AbCd".upper () # "ABCD" 

- "AbCd".lower() # "abcd"

 40



D. Koop, CSCI 490/680, Spring 2020

String Transformations
• index(<str>): find where a substring first occurs (Error if not found) 

- s = "12,13, 14" 
s.index(',') # 2 
s.index(':') # ValueError raised 

• find(<str>): same as index but -1 if not found 
- s.find(',') # 2 
s.find(':') # -1 

• startswith()/endswith(): boolean checks for string occurrence 
- s.startswith("1") # True 
s.endswith("5") # False

 41



D. Koop, CSCI 490/680, Spring 2020

See Table 7-3 for a listing of some of Python’s string methods.

Regular expressions can also be used with many of these operations, as you’ll see.

Table 7-3. Python built-in string methods
Argument Description
count Return the number of non-overlapping occurrences of substring in the string.
endswith Returns True if string ends with su!x.
startswith Returns True if string starts with pre"x.
join Use string as delimiter for concatenating a sequence of other strings.
index Return position of "rst character in substring if found in the string; raises ValueError if not found.
find Return position of "rst character of !rst occurrence of substring in the string; like index, but returns –1

if not found.
rfind Return position of "rst character of last occurrence of substring in the string; returns –1 if not found.
replace Replace occurrences of string with another string.
strip, 
rstrip, 
lstrip

Trim whitespace, including newlines; equivalent to x.strip() (and rstrip, lstrip, respectively)
for each element.

split Break string into list of substrings using passed delimiter.
lower Convert alphabet characters to lowercase.
upper Convert alphabet characters to uppercase.
casefold Convert characters to lowercase, and convert any region-speci"c variable character combinations to a

common comparable form.
ljust, 
rjust

Left justify or right justify, respectively; pad opposite side of string with spaces (or some other "ll
character) to return a string with a minimum width.

Regular Expressions
Regular expressions provide a flexible way to search or match (often more complex)
string patterns in text. A single expression, commonly called a regex, is a string
formed according to the regular expression language. Python’s built-in re module is
responsible for applying regular expressions to strings; I’ll give a number of examples
of its use here.

The art of writing regular expressions could be a chapter of its own
and thus is outside the book’s scope. There are many excellent tuto‐
rials and references available on the internet and in other books.

The re module functions fall into three categories: pattern matching, substitution,
and splitting. Naturally these are all related; a regex describes a pattern to locate in the
text, which can then be used for many purposes. Let’s look at a simple example:

7.3 String Manipulation | 213

String Methods

 42

[W. McKinney, Python for Data Analysis]



D. Koop, CSCI 490/680, Spring 2020

Regular Expressions
• AKA regex 
• A syntax to better specify how to decompose strings 
• Look for patterns rather than specific characters 
• "31" in "The last day of December is 12/31/2020."  

• May work for some questions but now suppose I have other lines like:  
"The last day of September is 9/30/2020." 

• …and I want to find dates that look like: 
• <numbers>/<numbers>/<numbers> 

• Cannot search for every combination! 
• \d+/\d+/\d+

 43



D. Koop, CSCI 490/680, Spring 2020

Regular Expressions
• Character classes: 

- \d = digits 
- \s = spaces 
- \w = word character [a-zA-Z0-9_] 
- [a-z] = lowercase letters (square brackets indicate a set of chars) 

• Repeating characters or patterns 
- + = one or more (any number) 
- * = zero or more  (any number) 
- ? = zero or one 
- {<number>} = a specific number (or range) of occurrences

 44



D. Koop, CSCI 490/680, Spring 2020

Regular Expressions in Python
• import re 

• re.search(<pattern>, <str_to_check>) 

- Returns None if no match, information about the match otherwise 
• Capturing information about what is in a string → parentheses 
• (\d+)/\d+/\d+ will capture information about the month 
• match = re.search('(\d+)/\d+/\d+','12/31/2016') 
if match: 
    match.group() # 12 

• re.findall(<pattern>, <str_to_check>) 

- Finds all matches in the string, search only finds the first match 
• Can pass in flags to alter methods: e.g. re.IGNORECASE

 45



D. Koop, CSCI 490/680, Spring 2020

Pandas String Methods
• Any column or series can have the string methods (e.g. replace, split) applied 

to the entire series 
• Fast (vectorized) on whole columns or datasets 
• use .str.<method_name> 
• .str is important! 

- data = pd.Series({'Dave': 'dave@google.com', 
                  'Steve': 'steve@gmail.com', 
                  'Rob': 'rob@gmail.com', 
                  'Wes': np.nan}) 
data.str.contains('gmail') 
data.str.split('@').str[1] 
data.str[-3:]

 46

mailto:dave@google.com
mailto:steve@gmail.com

