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pandas
• Contains high-level data structures and manipulation tools designed to make 

data analysis fast and easy in Python 
• Built on top of NumPy 
• Requirements: 
- Data structures with labeled axes (aligning data) 
- Time series data 
- Arithmetic operations that include metadata (labels) 
- Handle missing data 
- Merge and relational operations
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Series
• A one-dimensional array (with a type) with an index 
• Index defaults to numbers but can also be text (like a dictionary) 
• Allows easier reference to specific items 
• obj = pd.Series([7,14,-2,1]) 

• Basically two arrays: obj.values and obj.index 
• Can specify the index explicitly and use strings 
• obj2 = pd.Series([4, 7, -5, 3],  
                 index=['d', 'b', 'a', 'c']) 

• Kind of like fixed-length, ordered dictionary + can create from a dictionary 
• obj3 = pd.Series({'Ohio': 35000, 'Texas': 71000, 
                  'Oregon': 16000, 'Utah': 5000})
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Data Frame
• A dictionary of Series (labels for each series) 
• A spreadsheet with column headers 
• Has an index shared with each series 
• Allows easy reference to any cell 
• df = DataFrame({'state': ['Ohio', 'Ohio', 'Ohio', 'Nevada'], 
                'year': [2000, 2001, 2002, 2001], 
                'pop': [1.5, 1.7, 3.6, 2.4]}) 

• Index is automatically assigned just as with a series but can be passed in as 
well via index kwarg 

• Can reassign column names by passing columns kwarg
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Indexing
• Same as with NumPy arrays but can use Series's index labels 
• Slicing with labels: NumPy is exclusive, Pandas is inclusive! 

- s = Series(np.arange(4)) 
s[0:2] # gives two values like numpy 

- s = Series(np.arange(4), index=['a', 'b', 'c', 'd']) 
s['a':'c'] # gives three values, not two! 

• Obtaining data subsets 
- []: get columns by label 
- loc: get rows/cols by label 
- iloc: get rows/cols by position (integer index) 

- For single cells (scalars), also have at and iat
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Indexing Data Frames
• Brackets can be ambiguous: 

- df['Address'] 

- df[0:4] 

• .loc and .iloc require more code (always row and column), but are clearer 
- df.loc[:,'Address'] 

- df.iloc[0:4,:] 

• Putting them together: 
- df.iloc[0:4,:].loc[:,'Address'] 

- df.loc[df.index[0:4],'Address']
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Sorting by Value (sort_values)
• sort_values method on series 

- obj.sort_values() 

• Missing values (NaN) are at the end by default (na_position controls, can be 
first) 

• sort_values on DataFrame: 
- df.sort_values(<list-of-columns>) 

- df.sort_values(by=['a', 'b']) 

- Can also use axis=1 to sort by index labels

 7



D. Koop, CSCI 490/680, Spring 2020

Unique Values and Value Counts
• unique returns an array with only the unique values (no index) 

- s = Series(['c','a','d','a','a','b','b','c','c']) 
s.unique() # array(['c', 'a', 'd', 'b']) 

• Data Frames use drop_duplicates 
• value_counts returns a Series with index frequencies: 

- s.value_counts() # Series({'c': 3,'a': 3,'b': 2,'d': 1})
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Statistics
• sum: column sums (axis=1 gives sums over rows) 
• missing values are excluded unless the whole slice is NaN 
• idxmax, idxmin are like argmax, argmin (return index) 
• describe: shortcut for easy stats!
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    one  two
a  1.40  NaN
b  8.50 -4.5
c   NaN  NaN
d  9.25 -5.8

$QRWKHU�W\SH�RI�PHWKRG�LV�QHLWKHU�D�UHGXFWLRQ�QRU�DQ�DFFXPXODWLRQ��describe�LV�RQH
VXFK�H[DPSOH��SURGXFLQJ�PXOWLSOH�VXPPDU\�VWDWLVWLFV�LQ�RQH�VKRW�

In [204]: df.describe()
Out[204]: 
            one       two
count  3.000000  2.000000
mean   3.083333 -2.900000
std    3.493685  2.262742
min    0.750000 -4.500000
25%    1.075000 -3.700000
50%    1.400000 -2.900000
75%    4.250000 -2.100000
max    7.100000 -1.300000

2Q�QRQ�QXPHULF�GDWD��describe�SURGXFHV�DOWHUQDWH�VXPPDU\�VWDWLVWLFV�

In [205]: obj = Series(['a', 'a', 'b', 'c'] * 4)

In [206]: obj.describe()
Out[206]: 
count     16
unique     3
top        a
freq       8
dtype: object

6HH�7DEOH������IRU�D�IXOO�OLVW�RI�VXPPDU\�VWDWLVWLFV�DQG�UHODWHG�PHWKRGV�

7DEOH�������'HVFULSWLYH�DQG�VXPPDU\�VWDWLVWLFV

Method Description

count Number of non-NA values

describe Compute set of summary statistics for Series or each DataFrame column

min, max Compute minimum and maximum values

argmin, argmax Compute index locations (integers) at which minimum or maximum value obtained, respectively

idxmin, idxmax Compute index values at which minimum or maximum value obtained, respectively

quantile Compute sample quantile ranging from 0 to 1

sum Sum of values

mean Mean of values

median Arithmetic median (50% quantile) of values

mad Mean absolute deviation from mean value

var Sample variance of values

std Sample standard deviation of values
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Assignment 2
• Similar to Assignment 1, now with pandas 
• Part 5: 
- CS 680 → Required 
- CS 490 → Extra Credit 

• Due Friday, Feb. 7
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Data Formats
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Comma-separated values (CSV) Format
• Comma is a field separator, newlines denote records 

- a,b,c,d,message 
1,2,3,4,hello 
5,6,7,8,world 
9,10,11,12,foo 

• May have a header (a,b,c,d,message), but not required 
• No type information: we do not know what the columns are (numbers, 

strings, floating point, etc.) 
- Default: just keep everything as a string 
- Type inference: Figure out the type to make each column based on values 

• What about commas in a value? → double quotes
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Delimiter-separated Values
• Comma is a delimiter, specifies boundary between fields 
• Could be a tab, pipe (|), or perhaps spaces instead 
• All of these follow similar styles to CSV
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Fixed-width Format
• Old school 
• Each field gets a certain number of spots in the file 
• Example: 

- id8141    360.242940   149.910199   11950.7 
id1594    444.953632   166.985655   11788.4 
id1849    364.136849   183.628767   11806.2 
id1230    413.836124   184.375703   11916.8 
id1948    502.953953   173.237159   12468.3 

• Specify exact character ranges for each field, e.g. 0-6 is the id
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Reading & Writing Data in Pandas
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[https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html]

Format 
Type

Data Description Reader Writer
text CSV read_csv to_csv
text Fixed-Width Text File read_fwf
text JSON read_json to_json
text HTML read_html to_html
text Local clipboard read_clipboard to_clipboard

MS Excel read_excel to_excel
binary OpenDocument read_excel
binary HDF5 Format read_hdf to_hdf
binary Feather Format read_feather to_feather
binary Parquet Format read_parquet to_parquet
binary ORC Format read_orc
binary Msgpack read_msgpack to_msgpack
binary Stata read_stata to_stata
binary SAS read_sas
binary SPSS read_spss
binary Python Pickle Format read_pickle to_pickle
SQL SQL read_sql to_sql
SQL Google BigQuery read_gbq to_gbq

https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html
https://en.wikipedia.org/wiki/Comma-separated_values
https://www.json.org/
https://en.wikipedia.org/wiki/HTML
https://en.wikipedia.org/wiki/Microsoft_Excel
http://www.opendocumentformat.org/
https://support.hdfgroup.org/HDF5/whatishdf5.html
https://github.com/wesm/feather
https://parquet.apache.org/
https://https//orc.apache.org/
https://msgpack.org/index.html
https://en.wikipedia.org/wiki/Stata
https://en.wikipedia.org/wiki/SAS_(software)
https://en.wikipedia.org/wiki/SPSS
https://docs.python.org/3/library/pickle.html
https://en.wikipedia.org/wiki/SQL
https://en.wikipedia.org/wiki/BigQuery
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Types of arguments for readers
• Indexing: choose a column to index the data, get column names from file or user 
• Type inference and data conversion: automatic or user-defined 
• Datetime parsing: can combine information from multiple columns 
• Iterating: deal with very large files 
• Unclean Data: skip rows (e.g. comments) or deal with formatted numbers 

(e.g. 1,000,345)
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read_csv
• Convenient method to read csv files 
• Lots of different options to help get data into the desired format 
• Basic: df = pd.read_csv(fname) 
• Parameters: 

- path: where to read the data from  
- sep (or delimiter): the delimiter (',', ' ', '\t', '\s+') 
- header: if None, no header 
- index_col: which column to use as the row index 
- names: list of header names (e.g. if the file has no header) 
- skiprows: number of list of lines to skip
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Argument Description
skiprows Number of rows at beginning of !le to ignore or list of row numbers (starting from 0) to skip.
na_values Sequence of values to replace with NA.
comment Character(s) to split comments o" the end of lines.
parse_dates Attempt to parse data to datetime; False by default. If True, will attempt to parse all columns.

Otherwise can specify a list of column numbers or name to parse. If element of list is tuple or list, will
combine multiple columns together and parse to date (e.g., if date/time split across two columns).

keep_date_col If joining columns to parse date, keep the joined columns; False by default.
converters Dict containing column number of name mapping to functions (e.g., {'foo': f} would apply the

function f to all values in the 'foo' column).
dayfirst When parsing potentially ambiguous dates, treat as international format (e.g., 7/6/2012 -> June 7,

2012); False by default.
date_parser Function to use to parse dates.
nrows Number of rows to read from beginning of !le.
iterator Return a TextParser object for reading !le piecemeal.
chunksize For iteration, size of !le chunks.
skip_footer Number of lines to ignore at end of !le.
verbose Print various parser output information, like the number of missing values placed in non-numeric

columns.
encoding Text encoding for Unicode (e.g., 'utf-8' for UTF-8 encoded text).
squeeze If the parsed data only contains one column, return a Series.
thousands Separator for thousands (e.g., ',' or '.').

Reading Text Files in Pieces
When processing very large files or figuring out the right set of arguments to cor‐
rectly process a large file, you may only want to read in a small piece of a file or iterate
through smaller chunks of the file.

Before we look at a large file, we make the pandas display settings more compact:
In [33]: pd.options.display.max_rows = 10

Now we have:
In [34]: result = pd.read_csv('examples/ex6.csv')

In [35]: result
Out[35]: 
           one       two     three      four key
0     0.467976 -0.038649 -0.295344 -1.824726   L
1    -0.358893  1.404453  0.704965 -0.200638   B
2    -0.501840  0.659254 -0.421691 -0.057688   G
3     0.204886  1.074134  1.388361 -0.982404   R
4     0.354628 -0.133116  0.283763 -0.837063   Q
...        ...       ...       ...       ...  ..
9995  2.311896 -0.417070 -1.409599 -0.515821   L

6.1 Reading and Writing Data in Text Format | 173

More read_csv/read_tables arguments
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[W. McKinney, Python for Data Analysis]
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Chunked Reads
• With very large files, we may not want to read the entire file 
• Why? 
- Time 
- Want to understand part of data before processing all of it 

• Reading only a few rows: 
- df = pd.read_csv('example.csv', nrows=5) 

• Reading chunks: 
- Get an iterator that returns the next chunk of the file 
- chunker = pd.read_csv('example.csv', chunksize=1000) 

- for piece in chunker: 
    process_data(piece)
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Python csv module
• Also, can read csv files outside of pandas using csv module 

- import csv 
with open('persons_of_concern.csv', 'r') as f: 
    for i in range(3): 
        next(f) 
    reader = csv.reader(f) 
    records = [r for r in reader] # r is a list 

• or 
- import csv 
with open('persons_of_concern.csv', 'r') as f: 
    for i in range(3): 
        next(f) 
    reader = csv.DictReader(f) 
    records = [r for r in reader] # r is a dict
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Writing CSV data with pandas
• Basic: df.to_csv(<fname>) 
• Change delimiter with sep kwarg: 

- df.to_csv('example.dsv', sep='|') 

• Change missing value representation 
- df.to_csv('example.dsv', na_rep='NULL') 

• Don't write row or column labels: 
- df.to_csv('example.csv', index=False, header=False) 

• Series may also be written to csv
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eXtensible Markup Language (XML)
• Older, self-describing format with nesting; each field has tags 
• Example: 

- <INDICATOR> 
  <INDICATOR_SEQ>373889</INDICATOR_SEQ> 
  <PARENT_SEQ></PARENT_SEQ> 
  <AGENCY_NAME>Metro-North Railroad</AGENCY_NAME> 
  <INDICATOR_NAME>Escalator Avail.</INDICATOR_NAME> 
  <PERIOD_YEAR>2011</PERIOD_YEAR> 
  <PERIOD_MONTH>12</PERIOD_MONTH> 
  <CATEGORY>Service Indicators</CATEGORY> 
  <FREQUENCY>M</FREQUENCY> 
  <YTD_TARGET>97.00</YTD_TARGET> 
</INDICATOR> 

• Top element is the root
 22
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XML
• No built-in method 
• Use lxml library (also can use ElementTree) 
• from lxml import objectify  
path = 'datasets/mta_perf/Performance_MNR.xml' 
parsed = objectify.parse(open(path)) 
root = parsed.getroot() 
data = [] 
skip_fields = ['PARENT_SEQ', 'INDICATOR_SEQ', 
               'DESIRED_CHANGE','DECIMAL_PLACES'] 
for elt in root.INDICATOR: 
    el_data = {}  
    for child in elt.getchildren(): 
        if child.tag in skip_fields:  
            continue  
        el_data[child.tag] = child.pyval 
    data.append(el_data) 
perf = pd.DataFrame(data)
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[W. McKinney, Python for Data Analysis]
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JavaScript Object Notation (JSON)
• A format for web data 
• Looks very similar to python dictionaries and lists 
• Example: 

- {"name": "Wes",  
 "places_lived": ["United States", "Spain", "Germany"],  
 "pet": null, 
 "siblings": [{"name": "Scott", "age": 25, "pet": "Zuko"},  
             {"name": "Katie", "age": 33, "pet": "Cisco"}] } 

• Only contains literals (no variables) but allows null 
• Values: strings, arrays, dictionaries, numbers, booleans, or null 
- Dictionary keys must be strings 
- Quotation marks help differentiate string or numeric values
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What is the problem with reading this data?
• [{"name": "Wes",  
  "places_lived": ["United States", "Spain", "Germany"],  
  "pet": null, 
  "siblings": [ 
     {"name": "Scott", "age": 25, "pet": "Zuko"},  
     {"name": "Katie", "age": 33, "pet": "Cisco"}]  
 }, 
 {"name": "Nia", 
  "address": {"street": "143 Main", 
              "city": "New York",  
              "state": "New York"}, 
  "pet": "Fido", 
  "siblings": [ 
     {"name": "Jacques", "age": 15, "pet": "Fido"}] 
 }, 
… 
]
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Reading JSON data
• Python has a built-in json module 

- with open('example.json') as f: 
    data = json.load(f) 

- Can also load/dump to strings: 
• json.loads, json.dumps 

• Pandas has read_json, to_json methods

 26
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JSON Orientation
• Indication of expected JSON string format. Compatible JSON strings can be 

produced by to_json() with a corresponding orient value. The set of 
possible orients is: 

- split: dict like {index -> [index],  
             columns -> [columns],  
             data -> [values]} 

- records: list like [{column -> value}, ... , {column -> value}] 
- index: dict like {index -> {column -> value}} 
- columns: dict like {column -> {index -> value}} 
- values: just the values array

 27
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Binary Formats
• CSV, JSON, and XML are all text formats 
• What is a binary format? 
• Pickle: Python's built-in serialization 
• HDF5: Library for storing large scientific data 
- Hierarchical Data Format 
- Interfaces in C, Java, MATLAB, etc. 
- Supports compression 
- Use pd.HDFStore to access 
- Shortcuts: read_hdf/to_hdf, need to specify object 

• Excel: need to specify sheet when a spreadsheet has multiple sheets 

 28
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Databases

 29

[Wikipedia]

https://en.wikipedia.org/wiki/File:Star-schema-example.png
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Databases
• Relational databases are similar to multiple data frames but have many more 

features 
- links between tables via foreign keys 
- SQL to create, store, and query data 

• sqlite3 is a simple database with built-in support in python 
• Python has a database API which lets you access most database systems 

through a common API.

 30
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Python DBAPI Example
import sqlite3 
query = """CREATE TABLE test(a VARCHAR(20), b VARCHAR(20),  
                             c REAL, d INTEGER);""" 
con = sqlite3.connect('mydata.sqlite') 
con.execute(query) 
con.commit() 
# Insert some data 
data = [('Atlanta', 'Georgia', 1.25, 6), 
        ('Tallahassee', 'Florida', 2.6, 3), 
        ('Sacramento', 'California', 1.7, 5)] 
stmt = "INSERT INTO test VALUES(?, ?, ?, ?)" 
con.executemany(stmt, data) 
con.commit()

 31

[W. McKinney, Python for Data Analysis]
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Databases
• Similar syntax from other database systems (MySQL, Microsoft SQL Server, 

Oracle, etc.) 
• SQLAlchemy: Python package that abstracts away differences between 

different database systems 
• SQLAlchemy gives support for reading queries to data frame: 

- import sqlalchemy as sqla 
db = sqla.create_engine('sqlite:///mydata.sqlite') 
pd.read_sql('select * from test', db)

 32

sqlite:///mydata.sqlite
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What if data isn't correct/trustworthy/in the right format?
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Dirty Data

 34

[Flickr]

http://farm3.static.flickr.com/2558/3717487523_f197ac2fbf.jpg
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Geolocation Errors
• Maxmind helps companies determine where users are located based on IP 

address 
• "How a quiet Kansas home wound up with 600 million IP addresses and a 

world of trouble" [Washington Post, 2016]

 35

https://www.washingtonpost.com/news/morning-mix/wp/2016/08/10/lawsuit-how-a-quiet-kansas-home-wound-up-with-600-million-ip-addresses-and-a-world-of-trouble/
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Numeric Outliers 

Adapted from Joe Hellerstein͛s  2012 CS 194 Guest Lecture 

Numeric Outliers

 36

[J. Hellerstein via J. Canny et al.]

https://bcourses.berkeley.edu/files/50707513/download?download_frd=1&verifier=njoObzWKAmeihDjqFN9EMrY0IRlDbUWy2mFegnXN
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6F INDINGS

we got about the future of the data science, 

the most salient takeaway was how excited our 

respondents were about the evolution of the 

ĆHOG��7KH\�FLWHG�WKLQJV�LQ�WKHLU�RZQ�SUDFWLFH��KRZ�

they saw their jobs getting more interesting and 

less repetitive, all while expressing a real and 

broad enthusiasm about the value of the work in 

their organization. 

$V�GDWD�VFLHQFH�EHFRPHV�PRUH�FRPPRQSODFH�DQG�

VLPXOWDQHRXVO\�D�ELW�GHP\VWLĆHG��ZH�H[SHFW�WKLV

WUHQG�WR�FRQWLQXH�DV�ZHOO��$IWHU�DOO��ODVW�\HDUèV�

respondents were just as excited about their 

ZRUN��DERXW�����ZHUH�êVDWLVĆHGë�RU�EHWWHU��

How a Data Scientist Spends Their Day

+HUHèV�ZKHUH�WKH�SRSXODU�YLHZ�RI�GDWD�VFLHQWLVWV�GLYHUJHV�SUHWW\�VLJQLĆFDQWO\�IURP�UHDOLW\��*HQHUDOO\��

ZH�WKLQN�RI�GDWD�VFLHQWLVWV�EXLOGLQJ�DOJRULWKPV��H[SORULQJ�GDWD��DQG�GRLQJ�SUHGLFWLYH�DQDO\VLV��7KDWèV�

actually not what they spend most of their time doing, however.

     

$V�\RX�FDQ�VHH�IURP�WKH�FKDUW�DERYH����RXW�RI�HYHU\���GDWD�VFLHQWLVWV�ZH�VXUYH\HG�DFWXDOO\�VSHQG�WKH�

PRVW�WLPH�FOHDQLQJ�DQG�RUJDQL]LQJ�GDWD��<RX�PD\�KDYH�KHDUG�WKLV�UHIHUUHG�WR�DV�êGDWD�ZUDQJOLQJë�RU�

FRPSDUHG�WR�GLJLWDO�MDQLWRU�ZRUN��(YHU\WKLQJ�IURP�OLVW�YHULĆFDWLRQ�WR�UHPRYLQJ�FRPPDV�WR�GHEXJJLQJ�

databases–that time adds up and it adds up immensely. Messy data is by far the more time- consuming 

DVSHFW�RI�WKH�W\SLFDO�GDWD�VFLHQWLVWèV�ZRUN�ćRZ��$QG�QHDUO\�����VDLG�WKH\�VLPSO\�VSHQW�WRR�PXFK

time doing it.

Data scientist job satisfaction
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       Building training sets: 3%
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       Collecting data sets; 19%

       Mining data for patterns: 9%
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This takes a lot of time!
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[CrowdFlower Data Science Report, 2016]

http://visit.crowdflower.com/rs/416-ZBE-142/images/CrowdFlower_DataScienceReport_2016.pdf


D. Koop, CSCI 490/680, Spring 2020

7F INDINGS

Why That’s a Problem

6LPSO\�SXW��GDWD�ZUDQJOLQJ�LVQèW�IXQ��,W�WDNHV�IRUHYHU��,Q�IDFW��D�IHZ�\HDUV�EDFN��WKH�1HZ�<RUN�7LPHV

HVWLPDWHG�WKDW�XS�WR�����RI�D�GDWD�VFLHQWLVWèV�WLPH�LV�VSHQW�GRLQJ�WKLV�VRUW�RI�ZRUN�

Here, it’s necessary to point out that data cleaning is incredibly important. You can’t do the sort of 

ZRUN�GDWD�VFLHQWLVWV�WUXO\�HQMR\�GRLQJ�ZLWK�PHVV\�GDWD��,W�QHHGV�WR�EH�FOHDQHG��ODEHOHG��DQG�HQULFKHG�

before you can trust the output.

7KH�SUREOHP�KHUH�LV�WZR�IROG��2QH��GDWD�VFLHQWLVWV�VLPSO\�GRQèW�OLNH�GRLQJ�WKLV�NLQG�RI�ZRUN��DQG�

as mentioned, this kind of work takes up most of their time. We asked our respondents what

was the least enjoyable part of their job.

They had this to say:

1RWH�KRZ�WKRVH�ODVW�WZR�FKDUWV�PLUURU�HDFK�RWKHU��7KH�WKLQJV�GDWD�VFLHQWLVWV�GR�PRVW�DUH�WKH

things they enjoy least. Last year, we found that respondents far prefer doing the more creative,

LQWHUHVWLQJ�SDUWV�RI�WKHLU�MRE��WKLQJV�OLNH�SUHGLFWLYH�DQDO\VLV�DQG�PLQLQJ�GDWD�IRU�SDWWHUQV��7KDWèV

where the real value comes. But again, you simply can’t do that work unless the data is properly

ODEHOHG��$QG�QRERG\�OLNHV�ODEHOLQJ�GDWD�

Do Data Scientists Have What They Need?

:LWK�D�VKRUWDJH�RI�GDWD�VFLHQWLVWV�RXW�WKHUH�LQ�WKH�ZRUOG��ZH�ZDQWHG�WR�ĆQG�RXW�LI�WKH\�WKRXJKW

WKH\�ZHUH�SURSHUO\�VXSSRUWHG�LQ�WKHLU�MRE��$IWHU�DOO��ZKHQ�\RX�QHHG�PRUH�GDWD�VFLHQWLVWV��\RXèOO

RIWHQ�ĆQG�D�VLQJOH�SHUVRQ�GRLQJ�WKH�ZRUN�RI�VHYHUDO�

       Building training sets: 10%

       Cleaning and organizing data: 57%

       Collecting data sets: 21%

       Mining data for patterns: 3%

�������5HĆQLQJ�DOJRULWKPV����

       Other: 5%

57%

21%

10%

5%
4%3% �,!;Z9�;,'�£'!9;�'2/3@!#£'�6!8;�3(�&!;!�9$-'2$'S

…and it isn't the most fun thing to do
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Dirty Data: Statistician's View
• Some process produces the data 
• Want a model but have non-ideal samples: 
- Distortion: some samples corrupted by a process 
- Selection bias: likelihood of a sample depends on its value 
- Left and right censorship: users come and go from scrutiny 
- Dependence: samples are not independent (e.g. social networks) 

• You can add/augment models for different problems, but cannot model 
everything 

• Trade-off between accuracy and simplicity

 39

[J. Canny et al.]

https://bcourses.berkeley.edu/files/50707513/download?download_frd=1&verifier=njoObzWKAmeihDjqFN9EMrY0IRlDbUWy2mFegnXN


D. Koop, CSCI 490/680, Spring 2020

Dirty Data: Database Expert's View
• Got a dataset 
• Some values are missing, corrupted, wrong, duplicated 
• Results are absolute (relational model) 
• Better answers come from improving the quality of values in the dataset
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Dirty Data: Domain Expert's View
• Data doesn't look right 
• Answer doesn't look right 
• What happened? 
• Domain experts carry an implicit model of the data they test against 
• You don't always need to be a domain expert to do this 
- Can a person run 50 miles an hour? 
- Can a mountain on Earth be 50,000 feet above sea level? 
- Use common sense
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Dirty Data: Data Scientist's View
• Combination of the previous three views 
• All of the views present problems with the data 
• The goal may dictate the solutions: 
- Median value: don't worry too much about crazy outliers 
- Generally, aggregation is less susceptible by numeric errors 
- Be careful, the data may be correct…
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Be careful how you detect dirty data
• The appearance of a hole in the earth’s ozone layer over Antarctica, first 

detected in 1976, was so unexpected that scientists didn’t pay attention to 
what their instruments were telling them; they thought their instruments were 
malfunctioning.  
– National Center for Atmospheric Research  
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Where does dirty data originate?
• Source data is bad, e.g. person entered it incorrectly 
• Transformations corrupt the data, e.g. certain values processed incorrectly 

due to a software bug 
• Integration of different datasets causes problems 
• Error propagation: one error is magnified
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Types of Dirty Data Problems
• Separator Issues: e.g. CSV without respecting double quotes 

- 12, 13, "Doe, John", 45 

• Naming Conventions: NYC vs. New York 
• Missing required fields, e.g. key 
• Different representations: 2 vs. two 
• Truncated data: "Janice Keihanaikukauakahihuliheekahaunaele" 

becomes "Janice Keihanaikukauakahihuliheek" on Hawaii license 
• Redundant records: may be exactly the same or have some overlap 
• Formatting issues: 2017-11-07 vs. 07/11/2017 vs. 11/07/2017

 45

[J. Canny et al.]

https://bcourses.berkeley.edu/files/50707513/download?download_frd=1&verifier=njoObzWKAmeihDjqFN9EMrY0IRlDbUWy2mFegnXN


D. Koop, CSCI 490/680, Spring 2020

Data Wrangling
• Data wrangling: transform raw data to a more meaningful format that can be 

better analyzed 
• Data cleaning: getting rid of inaccurate data 
• Data transformations: changing the data from one representation to another 
• Data reshaping: reorganizing the data 
• Data merging: combining two datasets
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Data Cleaning
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Wrangler: Interactive Visual Specification of Data 
Transformation Scripts

S. Kandel, A. Paepcke, J. Hellerstein, J. Heer
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Data Wrangler Demo
• http://vis.stanford.edu/wrangler/app/
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DataWrangler

ExportImport

Split data repeatedly on newline into
rows

Split split repeatedly on ','

Promote row 0 to header

Delete row 7

Delete empty rows

Fill row 7 by copying values from above

Fill row 7 by copying values from below

Fold using row 7 as a key

Fold Year using row 7 as a key

Transform Script

Text

Split

Cut

Columns

Fill

Drop

Rows

Delete

Fill

Promote

Table

Fold

Unfold

Clear

Year Property_crime_rate

0 Reported crime in Alabama
1

2 2004 4029.3
3 2005 3900
4 2006 3937
5 2007 3974.9
6 2008 4081.9
7

8 Reported crime in Alaska
9

10 2004 3370.9
11 2005 3615
12 2006 3582
13 2007 3373.9
14 2008 2928.3
15

16 Reported crime in Arizona
17

18 2004 5073.3
19 2005 4827
20 2006 4741.6
21 2007 4502.6
22 2008 4087.3
23

24
Reported crime in
Arkansas

25

Figure 1. The Wrangler Interface. The left panel contains (from top-to-bottom) a history of transforms, a transform selection menu, and automat-

ically suggested transforms based on the current selection. Bold text within the transform descriptions indicate parameters that can be clicked and

revised. The right panel contains an interactive data table; above each column is a data quality meter.

short natural language descriptions—which users can refine
via interactive parameters—and visual previews of transform
results. These techniques enable analysts to rapidly navigate
and assess the space of viable transforms.

As analysts transform data, their steps are recorded in a script
to facilitate reuse and provide documentation of data prove-
nance. Wrangler’s interactive history viewer supports re-
view, refinement, and annotation of these scripts. Wran-
gler’s high-level language supports a variety of runtime plat-
forms: Wrangler scripts can be run in a web browser using
JavaScript or translated into MapReduce or Python code.

We also present a controlled user study comparing Wran-
gler and Excel across a set of data wrangling tasks. We find
that Wrangler significantly reduces specification time and
promotes the use of robust transforms rather than manual
editing. Wrangler is one piece of a larger effort to address
bottlenecks in the data lifecycle by integrating insights and
methods from the HCI and database communities.

RELATED WORK
The database and machine learning communities have con-
tributed a number of algorithmic techniques for aiding data
cleaning and integration. These techniques include meth-
ods for detecting erroneous values [10, 11], information ex-
traction [1, 25], entity resolution [6], type inference [7], and
schema matching [9, 21]. In the Wrangler interface we seek
to surface such techniques in an accessible manner.

A number of commercial and research systems provide graph-
ical interfaces leveraging the above methods. Many of these
tools provide interfaces for schema matching or entity reso-
lution [3, 9, 16, 23]. Toped++ [24] is an interface for creating
Topes, objects that validate and transform data. Topes sup-
port transformations such as text formatting and lookups, but
provide little support for filtering, reshaping, or aggregation.
Bellman [5] helps users understand the structure and quality
of a database, but does not enable transformations.

Many data cleaning applications apply direct manipulation
and programming-by-demonstration (PBD) methods to spe-
cific cleaning tasks. Users of SWYN [2] build regular ex-
pressions by providing example text selections and can eval-
uate their effect in visual previews. Potluck [14] applies si-
multaneous text editing [19] to merge data sources. Karma
[26] infers text extractors and transformations for web data
from examples entered in a table. Vegemite [18] applies
PBD to integrate web data, automates the use of web ser-
vices, and generates shareable scripts. Other interfaces [15]
apply PBD to data integration via copy and paste actions.

Wrangler applies a number of these techniques: it infers reg-
ular expressions from example selections [2] and supports
mass editing [14, 19]. Wrangler uses semantic roles akin
to Topes [24] and provides natural language descriptions of
transforms [18]. However, Wrangler differs in important
ways. PBD data tools support text extraction or data integra-
tion, but lack operations such as reshaping, aggregation, and
missing value imputation. Prior tools (except for Vegemite
[18]) also do not generate scripts to document provenance.

Most closely related to Wrangler is prior work on interactive
data cleaning. Potter’s Wheel [22] provides a transformation
language for data formatting and outlier detection. Wrangler
extends the Potter’s Wheel language with key differences
discussed later. Ajax [8] also provides an interface to spec-
ify transforms, with advanced facilities for entity resolution.
Neither tool provides much support for direct manipulation:
interaction is largely restricted to menu-based commands or
entering programming statements. Google Refine [13] (for-
merly Freebase GridWorks) leverages Freebase to enable en-
tity resolution and discrepancy detection. It provides sum-
marization and filtering support through faceted histograms.
Though users can specify some commands graphically, oth-
ers must be written in a command language. Moreover, the
system assumes that input data arrives in a proper tabular
format, limiting the forms of data to which it can be applied.

http://vis.stanford.edu/wrangler/app/

