Advanced Data Management (CSCI 490/680)

Structured Data

Dr. David Koop

D. Koop, CSCI 490/680, Spring 2020 Northern Illinois University



Objects

o 0 =
o | =
®e & =

o S =

dict ()
list ()
set ()

set ([1,2,3,4])

construct an empty dictionary object

construct an empty list object

construct an empty set object

e Calling methods:
- 1l.append('abc')
- d.update({'a': 'b'})
- s.add (3)

e [he method is tied to the object preceding the dot (e.g. append modifies 1 to
add '"abc')

construct a set with 4 numbers

D. Koop, CSCI 490/680, Spring 2020

Northern Illinois University 2



Python Modules

e Python module: a file containing definitions and statements
o Import statement: like Java, get a module that isn't a Python builtin

import collections
d = collections.defaultdict(list)

d[3] .append (1)

e 1mport <name> as <shorter-name>

import collections as c

e from <module> import <name> - don't need to refer to the module

from collections import defaultdict
d = defaultdict (list)
d[3] .append (1)

D. Koop, CSCI 490/680, Spring 2020 Northern Illinois University 3




Other Collections Features

* collections.defaultdict: specify a default value for any item in the
dictionary (instead of KeyError)

e collections.OrderedDict: keep entries ordered according to when the
key was inserted

- dict objects are ordered in Python 3.7 but OrderedDict has some other
features (equality comparison, reversed)

* collections.Counter: counts hashaple objects, has amost common
method

D. Koop, CSCI 490/680, Spring 2020 Northern Illinois University 4



None

e | ke null In other languages, used as a placeholder when no value exists
e [he value returned from a function that doesn't return a value

def f (name) :
print ("Hello,", name)
v = £ ("Patricia") v will have the wvalue None

e Also used as a sentinel value when you need to create a new object:
def add letters (s, d=None):

1f d 1s None:
d = {}

d.update (count letters(s))

return d

e | 0oks like d={} would make more sense, but that causes issues

D. Koop, CSCI 490/680, Spring 2020 Northern Illinois University 5




iterators

e Remember range, values, keys, items”

e [hey return iterators: objects that traverse containers, only need to know
how to get the next element

e Given iterator it, next (it) gives the next element
e StopIteration exception If there isn't another element

e Generally, we don't worry about this as the for loop handles everything
automatically...but you cannot index or slice an iterator

® d.values () [0] will not work!

® [f you need to iIndex or slice, construct a list from an iterator
® Jist(d.values()) [0] Or L1st (range (100)) [-1]

* |n general, this is slower code so we try to avoid creating lists

D. Koop, CSCI 490/680, Spring 2020 Northern Illinois University 6



List Comprehensions

e Shorthand for transformative or filtering for loops
e squares = |[]
for 1 1n range(10):

squares.append (1**2)

e squares = [1**2 for 1 1n range (10) ]

® [ltering:

e squares = |[]
for 1 1n range(10):

1f 1 %5 3 !'= 1:
squares.append (1 ** 2)

e squares = [1**2 for 1 1n range(l0) 1f 1 % 3 != 1]

o [f clause follows the for clause

D. Koop, CSCI 490/680, Spring 2020 Northern Illinois University 7



Dictionary Comprehensions

e Similar idea, but allow dictionary construction
e Could use lists:

- names = dict([(k, v) for k,v 1n ..
e Native comprehension:
- names = {"Al1l": ["Smith", "Brown"],

e Could do this with a for loop as well

1

7

A

] )

Beth": ["Jones"]}

first counts ={k: len(v) for k,v in names.items () }

Northern Illinois University 38

D. Koop, CSCI 490/680, Spring 2020



Assignment 1

e Using Python for data analysis
e Analyze hurricane data (through 2018)
e Provided al.ipynb file (right-click and download)

e Use basic python (+ collections module) for now to demonstrate language
knowledge

¢ Use Anaconda or hosted Python environment
e Due next Wednesday
e Turn .ipynb file in via Blackboard

D. Koop, CSCI 490/680, Spring 2020 Northern Illinois University 9


http://faculty.cs.niu.edu/~dakoop/cs680-2020sp/assignment1.html

Exceptions

e crrors but potentially something that can be addressed

o {ry-except-else-finally:
- except clause runs if exactly the error(s) you wish to address happen
- else clause will run If N0 exceptions are encounteread

- finally always runs (even if the program is about to crash)
e Can have multiple except clauses
e can also raise exceptions using the raise keyword
¢ (and define your own)

D. Koop, CSCI 490/680, Spring 2020 Northern Illinois University 10




Classes

e Class ClassName:

e Fverything in the class should be indented until the declaration ends
e self: thisIn Javaor C++ IS self Iin Python

e bvery Instance method has self as its first parameter
¢ |nstance variables are defined in methods (usually constructor)

e init :the constructor, should initialize instance variables
e def 1nit (self):

self.a = 12

self.b = "abc'
e def 1nit (self, a, Db):

self.a = a

self.b = Db

D. Koop, CSCI 490/680, Spring 2020 Northern Illinois University 11



Class Example

e class Rectangle:
def init (self, x, vy, w, h):

self.x = X
self.y = vy
self.w = w
self.h = h

def set corner(self, x, Vy):

self.x = X

self.y = vy
def set width(self, w): self.w = w
def set height(self, h): self.h = h

def area(self):
return self.w * self.h

D. Koop, CSCI 490/680, Spring 2020 Northern Illinois University 12



Arrays

What is the difference between an array and a list (or a tuple)”?

D. Koop, CSCI 490/680, Spring 2020 Northern Illinois University 13



Arrays

e Usually a fixed size—Ilists are meant to change size

e Are mutable —tuples are not

e Store only one type of data—Ilists and tuples can store anything

e Are faster to access and manipulate than lists or tuples

e Can be multidimensional:
- Can have list of lists or tuple of tuples but no guarantee on shape
- Multidimensional arrays are rectangles, cubes, etc.

D. Koop, CSCI 490/680, Spring 2020 Northern Illinois University 14



Why NumPy*?

e Fast vectorized array operations for data munging and cleaning, subsetting
and filtering, transformation, and any other kinds of computations

e Common array algorithms like sorting, unique, and set operations
o Efficient descriptive statistics and aggregating/summarizing data

e Data alignment and relational data manipulations for merging and joining
together heterogeneous data sets

e Expressing conditional logic as array expressions instead of loops with if-
elif-else Dranches

o (Group-wise data manipulations (aggregation, transformation, function
application).

[W. McKinney, Python for Data Analysis]

D. Koop, CSCI 490/680, Spring 2020 Northern Illinois University 15



1mport numpy as np

D. Koop, CSCI 490/680, Spring 2020 Northern Illinois University 16



Textbook's Notebooks

o Nitps://qgithub.com/wesm/pydata-book/

e chO4.ipynb

e Click the raw button and save that file to disk
e ..or download/clone the entire repository

D. Koop, CSCI 490/680, Spring 2020 Northern Illinois University 17


https://github.com/wesm/pydata-book/

Creating arrays
e datal = [o6, 7.5, 8, 0, 1]

arrl = np.array(datal)
e data2 = [[1,2,3,4],[5,0,7,38]]
arrZ2 = np.array(dataZz)

e Number of dimensions: arr2 .ndim

e Shape: arr?2.shape

* lypes: arrl.dtype, arr2.dtype, can specify explicitly (np.float64)

D. Koop, CSCI 490/680, Spring 2020 Northern Illinois University 18



Creating Arrays

® /eroS: np.zeros (10)
e Ones: np.ones ((4,5))
o EMpty: np.empty ((2,2))

e |ike versions: pass an existing array and matches shape with specified
contents

e Range: np.arange (15)

D. Koop, CSCI 490/680, Spring 2020 Northern Illinois University 19



lypes

o "But | thought Python wasn't stingy about types..."
® NUMpPYy aims for speed

e Able to do array arithmetic

e Nt106, INt32, Int64, float32, floato4, bool, object

* 5stype Method allows you to convert between different types of arrays:

arr = np.arravy([1l, 2, 3, 4, 5])
arr.dtype
float arr

arr.astype (np.floato4)

D. Koop, CSCI 490/680, Spring 2020 Northern Illinois University 20



nuMpy data types (dtypes)

Type Type code Description

int8, uint8 11, ul Signed and unsigned 8-bit (1 byte) integer types

intl6, uintl6 12, u2 Signed and unsigned 16-bit integer types

int32, uint32 14, u4d Signed and unsigned 32-bit integer types

int64, uint64 18, u8 Signed and unsigned 64-bit integer types

floati6 f2 Half-precision floating point

float32 f4 or f Standard single-precision floating point; compatible with C float

float64 f8 or d Standard double-precision floating point; compatible with C double and
Python float object

float128 f16 or g Extended-precision floating point

complex64, c8, clé6, Complex numbers represented by two 32, 64, or 128 floats, respectively

comp Lex128, c32

comp lex256

bool ! Boolean type storing True and Fa'lse values

object 0 Python object type; a value can be any Python object

string_ S Fixed-length ASCII string type (1 byte per character); for example, to create a

string dtype with length 10, use 'S10'

unicode_ U Fixed-length Unicode type (number of bytes platform specific); same
specification semantics as string_ (e.q., 'U10")

M.-MeKinney, Python for Data Analysis]

D. Koop, CSCI 490/680, Spring 2020 Northern Illinois University 21



Operations

e (Array, Array) Operations (elementwise)

- Addition, Subtraction, Multiplication
e (Scalar, Array) Operations:

- Addition, Subtraction, Multiplication, Division, Exponentiation
* |ndexing

- Same as with lists plus shorthand for 2D+

- arr = np.arrav([[1,2],[3,4]1])
arr|[1l,1]

D. Koop, CSCI 490/680, Spring 2020 Northern Illinois University 22



2D Indexing

axis 1
0 1 2

[W. McKinney, Python for Data Analysis]

D. Koop, CSCI 490/680, Spring 2020 Northern Illinois University 23



Slicing

e 1D: Just like with lists except data is not copied!
- al[2:5] = 3 works with arrays
- a.copy () Oraf2:5].copy () wil copy
o ?D+: comma separated indices as shorthand:
- a[l][2] Oorall,2]
- a[1l] gives a row
- al[:,1] gives a column

D. Koop, CSCI 490/680, Spring 2020 Northern Illinois University 24



2D Array Slicing

How to obtain the blue slice
from array arr?

[W. McKinney, Python for Data Analysis]

D. Koop, CSCI 490/680, Spring 2020 Northern Illinois University 25



2D Array Slicing

Expression Shape

arr[:2, 1:] (2, 2)

How to obtain the blue slice
from array arr?

[W. McKinney, Python for Data Analysis]

D. Koop, CSCI 490/680, Spring 2020 Northern Illinois University 25



2D Array Slicing

How to obtain the blue slice
from array arr?

Expression

arr[:2, 1:]

arr|2
arr(2, :
arr[2:, :

Shape
(2, 2)

(3,)
(3,
(1, 3)

[W. McKinney, Python for Data Analysis]

D. Koop, CSCI 490/680, Spring 2020

Northern Illinois University 25



2D Array Slicing

How to obtain the blue slice
from array arr?

]l SEJE

Expression

arr[:2, 1:]

arr|2
arr(2, :
arr[2:, :

arr[:, :2]

Shape
(2, 2)

(3,)
(3,
(1, 3)

(3, 2)

[W. McKinney, Python for Data Analysis]

D. Koop, CSCI 490/680, Spring 2020

Northern Illinois University 25



2D Array Slicing

Expression Shape
:::1[!!!!!l arr[:2, 1:] (2, 2)
arr[2. (3,)
How to obtain the blue slice arr([2, :. (3,
from array arr? arr(2:, = (1, 3)
|||||||E§§| arr[:, :2] (3, 2)
arr[1, :2] (2,)
arr[1:2, :2] (1, 2)

[W. McKinney, Python for Data Analysis]

D. Koop, CSCI 490/680, Spring 2020 Northern Illinois University 25



Boolean Indexing

* names == 'Bob' gives back booleans that represent the element-wise
comparison with the array names

e Boolean arrays can be used to index Into another array:

- data|names == 'Bob']
e Can even mix and match with integer slicing

e Can do boolean operations (&, |) between arrays (just like addition,

subtraction)
- data[ (names == 'Bob') | (names == "W1ill") ]

e Note: or and and do not work with arrays
e \\le can set values too! datal[data < 0] = 0

D. Koop, CSCI 490/680, Spring 2020 Northern Illinois University 26




Other Operations

e Fancy Indexing: arr[[1,2,3]]

e [ransposing arrays: arr.T

e Reshaping arrays: arr.reshape ((3,5))

e Unary universal functions (Uufuncs): np.sqgrt, np.exp
e Binary universal functions: np.add, np.maximum

D. Koop, CSCI 490/680, Spring 2020 Northern Illinois University 27



Unary Universal Functions

Function Description

abs, fabs
sqrt
square
exp

log, logio0,
log2, loglp

sign

ceil

floor
rint
modf
isnan

isfinite, isinf

cos, cosh, sin,
sinh, tan, tanh
arccos, arccosh,

arcsin, arcsinh,
arctan, arctanh

logical not

Compute the absolute value element-wise for integer, floating-point, or complex values
Compute the square root of each element (equivalentto arr ** 0.5)
Compute the square of each element (equivalentto arr ** 2)

Compute the exponent e* of each element
Natural logarithm (base e), log base 10, log base 2, and log(1 + x), respectively

Compute the sign of each element: 1 (positive), 0 (zero), or —1 (negative)

Compute the ceiling of each element (i.e., the smallest integer greater than or equal to that
number)

Compute the floor of each element (i.e., the largest integer less than or equal to each element)
Round elements to the nearest integer, preserving the dtype

Return fractional and integral parts of array as a separate array

Return boolean array indicating whether each value is NaN (Not a Number)

Return boolean array indicating whether each element is finite (non-inf, non-NaN) or infinite,
respectively

Regular and hyperbolic trigonometric functions

Inverse trigonometric functions

Compute truth value of not x element-wise (equivalent to ~arr).

[W. McKinney, Python for Data Analysis]

D. Koop, CSCI 490/680, Spring 2020

Northern Illinois University 28



Binary Universal Functions

Function Description

add Add corresponding elements in arrays

subtract Subtract elements in second array from first array

multiply Multiply array elements

divide, floor_divide Divide or floor divide (truncating the remainder)

power Raise elements in first array to powers indicated in second array

maximum, fmax Element-wise maximum; fmax ignores NaN

minimum, fmin Element-wise minimum; fmin ignores NaN

mod Element-wise modulus (remainder of division)

copysign Copy sign of values in second argument to values in first argument
greater, greater_equal, Perform element-wise comparison, yielding boolean array (equivalent to infix
less, less equal, operators >, >=, <, <=, ==, !=)

equal, not_equal

logical_and, Compute element-wise truth value of logical operation (equivalent to infix operators

logical or, logical xor & |, %)
[W. McKinney, Python for Data Analysis]

D. Koop, CSCI 490/680, Spring 2020 Northern Illinois University 29




Statistical Methods

Method Description

sum Sum of all the elements in the array or along an axis; zero-length arrays have sum 0
mean Arithmetic mean; zero-length arrays have NaN mean
std, var Standard deviation and variance, respectively, with optional degrees of freedom adjustment (default

denominator n)
min, max Minimum and maximum
argmin, argmax Indices of minimum and maximum elements, respectively
cumsum Cumulative sum of elements starting from 0
cumprod Cumulative product of elements starting from 1

[W. McKinney, Python for Data Analysis]

D. Koop, CSCI 490/680, Spring 2020 Northern Illinois University 30



More

e Other methods:
- any and all

- SOrt

- unique
e | inear Algebra (numpy.linalg)
e Pseudorandom Number Generation (numpy . random)

D. Koop, CSCI 490/680, Spring 2020 Northern Illinois University 31




Chicago Food Inspections Exploration

e Based on David Beazley's PyData Chicago talk
e Youlube video: https://www.youtube.com/watch”?v=|6VSASKA|98
e Our In-class exploration:

- Don't focus on the syntax

- Focus on:

e \What Is Information is available

* Questions are interesting about this dataset
* How tO decide on good follow-up questions
e \What the computations mean

D. Koop, CSCI 490/680, Spring 2020 Northern Illinois University ~ 32


https://www.youtube.com/watch?v=j6VSAsKAj98

Chicago Food \nspections Exploration

X
Evanston

|
Morton Grove

Des Plalnes
Schaumburg 18 l’
|
| _ - Busse Woods
-\ ( A
4 Elk Grove Village ‘<& Rldg ® .
/s 4 (3 .

tt 4 - Y IL390‘;4: e [
- : Schoumburg n ’ -
Regional , ) T
Airport 7 ;
_ 3’, Wood-Dale ' :
Bloomingdale 3é\7\ Bensenville= Schlller Park '
A 3|1
~ s /
- Franklm Par
- I T Addison,{ - k
29 708\ _
v N, HNorthlake ) N E"“w°°d :
Carol Stream  Gjendale Heights gy -
27 ~\_Eimhurst Melrose Park ™ .‘ ..
144 : ' ]
l Villa Park 146 e Oak-Par ;
15A llwoo '
Glen.Ellyn Lombard 58 Bellwood ' paywood \_‘ ;
=3 T S "Huus.de-'laﬂ-mmzo’—m 216234 NI !
: 14
Winfield WITeStUR: i4 '\ =
4 Westchester Berwyn .
\ 136 IL 1 10 l Cicero
134 \ . 4
_ IL 56 —U 3.5; ! ,
22 278 Brookfield
enville 278 -
1:30 =y g 32 Us 34 | 27A Lyons
125312 5 -r27-.127-—-{| 3 La Grange
isle zoa f \
=t fa  Downers Grove | 2828 PS '
5 . Summit
18 1 .
- 4 ' : :
Naperville 5 |. \ -—;n{:-:f“ |
. 5, ‘ Airp \'. ....................................................
Woodridge 276';. ; :
i ‘ Bridgeview :
1 i »
13 \ Burbank » :
A - 1’3 | ° .‘ ;
i e ) ’33 Hickory Hills Evergreen : k :
T2A AN | Park (@R )~ X
r5}3269 Oak Lawn A A ) “ "«
A BolmgbroV&_A Palos Hills ® us12 v, L
Clow International 267 ] - IL 83 us 20 e e T \'\
Airport 267 - S - Vall A US4 | Indiona %,
- ag Valley Marbor 3
_\" _~temont o
ILS3 Z Forest Preserve Palos Heights Alsip Works ) ’
- - ’
(263 Y 124 .
263 oy 8\ T
: , 1 | T rlnl'e]l C.feek SOB\ o - . -
261 4 Forest Preserve K < Bkl TP
! 1 . ' Leaflet | Map data (c) OpenStreetMap contributors

D. Koop, CSCI 490/680, Spring 2020

L. Northern Illinois University 33



