
Advanced Data Management (CSCI 490/680)

Python

Dr. David Koop

D. Koop, CSCI 490/680, Spring 2020

D. Koop, CSCI 490/680, Spring 2020

JupyterLab

 2

D. Koop, CSCI 490/680, Spring 2020

JupyterLab Notebooks
• Can write code or plain text (can be styled Markdown)
- Choose the type of cell using the dropdown menu

• Cells break up your code, but all data is global
- Defining a variable a in one cell means that variable is accessible in any

other cell
- This includes cells above the cell a was defined in!

• Remember Shift+Enter to execute
• Enter just adds a new line
• Use ?<function_name> for help
• Use Tab for auto-complete or suggestions

 3

D. Koop, CSCI 490/680, Spring 2020

Python
• Started in December 1989 by Guido van Rossum
• “Python has surpassed Java as the top language used to introduce U.S.

students to programming…” (ComputerWorld, 2014)
• Python and R are the two top languages for data science
• High-level, interpreted language
• Supports multiple paradigms (OOP, procedural, imperative)
• Help programmers write readable code
• Use less code to do more
• Lots of libraries for python
- Designed to be extensible

 4

http://www.computerworld.com/article/2489732/it-skills-training/python-bumps-off-java-as-top-learning-language.html

D. Koop, CSCI 490/680, Spring 2020

Python Compared to C++ and Java
• Dynamic Typing
- A variable does not have a fixed type
- Example: a = 1; a = "abc"

• Indentation
- Braces define blocks in Java, good style is to indent but not required
- Indentation is critical in Python
 z = 20
 if x > 0:
 if y > 0:
 z = 100
 else:
 z = 10

 5

D. Koop, CSCI 490/680, Spring 2020

Python Variables and Types
• No type declaration necessary
• Variables are names, not memory locations
a = 0
a = "abc"
a = 3.14159

• Don't worry about types, but think about types
• Strings are a type
• Integers are as big as you want them
• Floats can hold large numbers, too (double-precision)

 6

D. Koop, CSCI 490/680, Spring 2020

Exercise
• Given variables x and y, print the long division answer of x divided by y with

the remainder.
• Examples:

- x = 11, y = 4 should print "2R3"
- x = 15, y =2 should print "7R1"

 7

D. Koop, CSCI 490/680, Spring 2020

Loops
• while <condition>:
 <indented block>
end of while block (indentation done)

• Remember the colon!
• a = 5
while a > 0:
 print(a)
 a -= 2

• a > 0 is the condition
• Python has standard boolean operators (<, >, <=, >=, ==, !=)
- What does a boolean operation return?
- Linking boolean comparisons (and, or)

 8

D. Koop, CSCI 490/680, Spring 2020

break and continue
• break stops the execution of the loop
• continue skips the rest of the loop and goes to the next iteration

• a = 7
while a > 0:
 a -= 2
 if a < 4:
 break
 print(a)

 9

• a = 7
while a > 0:
 a -= 2
 if a < 4 and a > 2:
 continue
 print(a)

D. Koop, CSCI 490/680, Spring 2020

Quiz
• Suppose I want to write Python code to print the numbers from 1 to 100.

What errors do you see?

// print the numbers from 1 to 100
int counter = 1
while counter < 100 {
 print counter
 counter++
}

 10

D. Koop, CSCI 490/680, Spring 2020

Python Containers
• Container: store more than one value
• Mutable versus immutable: Can we update the container?
- Yes → mutable
- No → immutable
- Lists are mutable, tuples are immutable

• Lists and tuples may contain values of different types:
• List: [1,"abc",12.34]
• Tuple: (1, "abc", 12.34)
• You can also put functions in containers!
• len function: number of items: len(l)

 11

D. Koop, CSCI 490/680, Spring 2020

Indexing and Slicing
• Just like with strings
• Indexing:
- Where do we start counting?
- Use brackets [] to retrieve one value
- Can use negative values (count from the end)

• Slicing:
- Use brackets plus a colon to retrieve multiple values:

[<start>:<end>]
- Returns a new list (b = a[:])
- Don't need to specify the beginning or end

 12

D. Koop, CSCI 490/680, Spring 2020

Quiz
• Suppose a = ['a', 'b', 'c', 'd'] and b = (1, 2, 3)
• What happens with?

- a[0]
- b[:-2]
- b.append(4)
- a.extend(b)
- a.pop(0)
- b[0] = "100"
- b + (4,)

 13

D. Koop, CSCI 490/680, Spring 2020

Quiz
• Suppose a = ['a', 'b', 'c', 'd'] and b = (1, 2, 3)
• What happens with?

- a[0] # 'a'
- b[:-2] # (1,)
- b.append(4) # error
- a.extend(b) # ['a', 'b', 'c', 'd', 1, 2, 3]
- a.pop(0) # ['b', 'c', 'd']
- b[0] = "100" # error
- b + (4,) # (1,2,3,4)

 14

D. Koop, CSCI 490/680, Spring 2020

Modifying Lists
• Add to a list l:

- l.append(v): add one value (v) to the end of the list
- l.extend(vlist): add multiple values (vlist) to the end of l
- l.insert(i, v): add one value (v) at index i

• Remove from a list l:
- del l[i]: deletes the value at index i
- l.pop(i): removes the value at index i (and returns it)
- l.remove(v): removes the first occurrence of value v (careful!)

• Changing an entry:
- l[i] = v: changes the value at index i to v (Watch out for IndexError!)

 15

D. Koop, CSCI 490/680, Spring 2020

For loops
• Used much more frequently than while loops
• Is actually a "for-each" type of loop
• In Java, this is:

- for (String item : someList) {
 System.out.println(item);
}

• In Python, this is:
- for item in someList:
 print(item)

• Grabs each element of someList in order and puts it into item
• Be careful modifying container in a for loop! (e.g. someList.append(new_item))

 16

D. Koop, CSCI 490/680, Spring 2020

Dictionaries
• One of the most useful features of Python
• Also known as associative arrays
• Exist in other languages but a core feature in Python
• Associate a key with a value
• When I want to find a value, I give the dictionary a key, and it returns the value
• Example: InspectionID (key) → InspectionRecord (value)
• Keys must be immutable (technically, hashable):
- Normal types like numbers, strings are fine
- Tuples work, but lists do not (TypeError: unhashable type: 'list')

• There is only one value per key!

 17

D. Koop, CSCI 490/680, Spring 2020

Sets
• Sets are like dictionaries but without any values:
• s = {'MA', 'RI', 'CT', 'NH'}; t = {'MA', 'NY', 'NH'}

• {} is an empty dictionary, set() is an empty set
• Adding values: s.add('ME')
• Removing values: s.discard('CT')
• Exists: "CT" in s
• Union: s | t => {'MA', 'RI', 'CT', 'NH', 'NY'}
• Intersection: s & t => {'MA', 'NH'}
• Exclusive-or (xor): s ^ t => {'RI', 'CT', 'NY'}
• Difference: s - t => {'RI', 'CT'}

 18

D. Koop, CSCI 490/680, Spring 2020

Example: Counting Letters
• Write code that takes a string s and creates a dictionary with that counts

how often each letter appears in s
• count_letters("Mississippi") →
 {'s': 4, 'i': 4, 'p': 2', …}

 19

D. Koop, CSCI 490/680, Spring 2020

Solution using Counter
• Use an existing library made to count occurrences
from collections import Counter
Counter("Mississippi")

• produces
Counter({'M': 1, 'i': 4, 's': 4, 'p': 2})

• Improve: convert to lowercase first

 20

D. Koop, CSCI 490/680, Spring 2020

About this course
• Course web page is authoritative:
- http://faculty.cs.niu.edu/~dakoop/cs680-2020sp
- Schedule, Readings, Assignments will be posted online
- Check the web site before emailing me

• Course is meant to be more "cutting edge"
- Still focus on building skills related to data management
- Tune into current research and tools

• Requires student participation: readings and discussions
• Exam Dates: Feb. 18, March 26, May 5 (final)

 21

http://faculty.cs.niu.edu/~dakoop/cs680-2020sp

D. Koop, CSCI 490/680, Spring 2020

Assignment 1
• Using Python for data analysis
• Analyze hurricane data (through 2018)
• Provided a1.ipynb file (right-click and download)
• Use basic python (+ collections module) for now to demonstrate language

knowledge
• Use Anaconda or hosted Python environment
• Due next Wednesday
• Turn .ipynb file in via Blackboard

 22

http://faculty.cs.niu.edu/~dakoop/assignment1.html

D. Koop, CSCI 490/680, Spring 2020

Hosted Jupyter Environments
• Nice to have ability to configure everything locally, but… you have to

configure everything locally
• Solution: Cloud-hosted Jupyter (and Jupyter-like) environments
• Pros: No setup
• Cons: Limitations on resources: data and compute
• Options:
- Azure Notebooks (can use your NIU account)
- Google Colab (need a Google account)
- Binder
- Others…

 23

https://notebooks.azure.com/
https://colab.research.google.com/
https://mybinder.org

D. Koop, CSCI 490/680, Spring 2020

Using Hosted Jupyter Environments
• Data:
- Either point to a public URL or upload the data
- Large datasets may not be supported, data may be deleted if uploaded

(and isn't in Google Drive, etc.)
• Notebooks:
- Can download the notebook locally (e.g. to use with a conda environment)
- Currently, Python 3.6

• Differences:
- Colab has tweaked much of the interface (e.g. different nomenclature)
- Azure is, for the most part, running Jupyter
- Azure is more of a preview than Colab

 24

D. Koop, CSCI 490/680, Spring 2020

Nesting Containers
• Can have lists inside of lists, tuples inside of tuples, dictionaries inside of

dictionaries
• Can also have dictionaries inside of lists, tuples inside of dictionaries, …
• d = {"Brady": [(2015, 4770, 36), (2014, 4109, 33)],
 "Luck": [(2015, 1881, 15), (2014, 4761, 40)],
 …
 }

• JavaScript Object Notation (JSON) looks very similar for literal values; Python
allows variables in these types of structures

 25

D. Koop, CSCI 490/680, Spring 2020

Nesting Code
• Can have loops inside of loops, if statements inside of if statements
• Careful with variable names:
• l = {0: 0, 1: 3, 4: 5, 9: 12}
for i in range(100):
 square = i ** 2
 max_val = l[square]
 for i in range(max_val):
 print(i)

• Strange behavior, likely unintended, but Python won't complain!

 26

D. Koop, CSCI 490/680, Spring 2020

None
• Like null in other languages, used as a placeholder when no value exists
• The value returned from a function that doesn't return a value

def f(name):
 print("Hello,", name)
v = f("Patricia") # v will have the value None

• Also used when you need to create a new list or dictionary:
def add_letters(s, d=None):
 if d is None:
 d = {}
 d.update(count_letters(s))

• Looks like d={} would make more sense, but that causes issues
• None serves as a sentinel value in add_letters

 27

D. Koop, CSCI 490/680, Spring 2020

is and ==
• == does a normal equality comparison
• is checks to see if the object is the exact same object
• Common style to write statements like if d is None: …
• Weird behavior:

- a = 4 - 3
a is 1 # True

- a = 10 ** 3
a is 1000 # False

- a = 10 ** 3
a == 1000 # True

• Generally, avoid is unless writing is None

 28

D. Koop, CSCI 490/680, Spring 2020

is and ==
• == does a normal equality comparison
• is checks to see if the object is the exact same object
• Common style to write statements like if d is None: …
• Weird behavior:

- a = 4 - 3
a is 1 # True

- a = 10 ** 3
a is 1000 # False

- a = 10 ** 3
a == 1000 # True

• Generally, avoid is unless writing is None

 28

Python caches common integer objects

D. Koop, CSCI 490/680, Spring 2020

Objects
• d = dict() # construct an empty dictionary object

• l = list() # construct an empty list object

• s = set() # construct an empty set object

• s = set([1,2,3,4]) # construct a set with 4 numbers
• Calling methods:

- l.append('abc')

- d.update({'a': 'b'})

- s.add(3)

• The method is tied to the object preceding the dot (e.g. append modifies l to
add 'abc')

 29

D. Koop, CSCI 490/680, Spring 2020

Python Modules
• Python module: a file containing definitions and statements
• Import statement: like Java, get a module that isn't a Python builtin

import collections
d = collections.defaultdict(list)
d[3].append(1)

• import <name> as <shorter-name>
import collections as c

• from <module> import <name> : don't need to refer to the module
from collections import defaultdict
d = defaultdict(list)
d[3].append(1)

 30

D. Koop, CSCI 490/680, Spring 2020

Other Collections
• collections.defaultdict: specify a default value for any item in the

dictionary (instead of KeyError)
• collections.OrderedDict: keep entries ordered according to when the

key was inserted
- dict objects are ordered in Python 3.7 but OrderedDict has some other

features (equality comparison, reversed)
• collections.Counter: counts hashable objects, has a most_common

method

 31

D. Koop, CSCI 490/680, Spring 2020

Iterators
• Remember range, values, keys, items?
• They return iterators: objects that traverse containers, only need to know

how to get the next element
• Given iterator it, next(it) gives the next element
• StopIteration exception if there isn't another element
• Generally, we don't worry about this as the for loop handles everything

automatically…but you cannot index or slice an iterator
• d.values()[0] will not work!
• If you need to index or slice, construct a list from an iterator
• list(d.values())[0] or list(range(100))[-1]

 32

D. Koop, CSCI 490/680, Spring 2020

List Comprehensions
• Shorthand for transformative or filtering for loops
• squares = []
for i in range(10):
 squares.append(i**2)

• squares = [i**2 for i in range(10)]

• Filtering:
• squares = []
for i in range(10):
 if i % 3 != 1:
 squares.append(i ** 2)

• squares = [i**2 for i in range(10) if i % 3 != 1]

• if clause follows the for clause

 33

D. Koop, CSCI 490/680, Spring 2020

Dictionary Comprehensions
• Similar idea, but allow dictionary construction
• Could use lists:

- names = dict([(k, v) for k,v in … if …])

• Native comprehension:
- names = {"Al": ["Smith", "Brown"], "Beth":["Jones"]}
first_counts ={k: len(v) for k,v in names.items()}

• Could do this with a for loop as well

 34

