
Advanced Data Management (CSCI 490/680)

Python 

Dr. David Koop

D. Koop, CSCI 490/680, Spring 2020



D. Koop, CSCI 490/680, Spring 2020

Data to Knowledge and Beyond

 2

[D. Somerville, based on H. McLeod's original]



D. Koop, CSCI 490/680, Spring 2020

Data to Knowledge and Beyond

 2

[D. Somerville, based on H. McLeod's original]



D. Koop, CSCI 490/680, Spring 2020

Data to Knowledge and Beyond

 2

[D. Somerville, based on H. McLeod's original]

Require People



D. Koop, CSCI 490/680, Spring 2020

Data to Knowledge

 3

[D. Somerville, based on H. McLeod's original]

Can computers do this for us?
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we got about the future of the data science, 

the most salient takeaway was how excited our 

respondents were about the evolution of the 

ĆHOG��7KH\�FLWHG�WKLQJV�LQ�WKHLU�RZQ�SUDFWLFH��KRZ�

they saw their jobs getting more interesting and 

less repetitive, all while expressing a real and 

broad enthusiasm about the value of the work in 

their organization. 

$V�GDWD�VFLHQFH�EHFRPHV�PRUH�FRPPRQSODFH�DQG�

VLPXOWDQHRXVO\�D�ELW�GHP\VWLĆHG��ZH�H[SHFW�WKLV

WUHQG�WR�FRQWLQXH�DV�ZHOO��$IWHU�DOO��ODVW�\HDUèV�

respondents were just as excited about their 

ZRUN��DERXW�����ZHUH�êVDWLVĆHGë�RU�EHWWHU��

How a Data Scientist Spends Their Day

+HUHèV�ZKHUH�WKH�SRSXODU�YLHZ�RI�GDWD�VFLHQWLVWV�GLYHUJHV�SUHWW\�VLJQLĆFDQWO\�IURP�UHDOLW\��*HQHUDOO\��

ZH�WKLQN�RI�GDWD�VFLHQWLVWV�EXLOGLQJ�DOJRULWKPV��H[SORULQJ�GDWD��DQG�GRLQJ�SUHGLFWLYH�DQDO\VLV��7KDWèV�

actually not what they spend most of their time doing, however.
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FRPSDUHG�WR�GLJLWDO�MDQLWRU�ZRUN��(YHU\WKLQJ�IURP�OLVW�YHULĆFDWLRQ�WR�UHPRYLQJ�FRPPDV�WR�GHEXJJLQJ�

databases–that time adds up and it adds up immensely. Messy data is by far the more time- consuming 

DVSHFW�RI�WKH�W\SLFDO�GDWD�VFLHQWLVWèV�ZRUN�ćRZ��$QG�QHDUO\�����VDLG�WKH\�VLPSO\�VSHQW�WRR�PXFK

time doing it.

Data scientist job satisfaction
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[CrowdFlower Data Science Report, 2016]

http://visit.crowdflower.com/rs/416-ZBE-142/images/CrowdFlower_DataScienceReport_2016.pdf
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[S. Dewan]

https://www.grazitti.com/blog/data-lake-vs-data-warehouse-which-one-should-you-go-for/
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[Y. He et al., 2018]
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ABSTRACT
Business analysts and data scientists today increasingly need to
clean, standardize and transform diverse data sets, such as name,
address, date time, phone number, etc., before they can perform
analysis. These ad-hoc transformation problems are typically solved
by one-o� scripts, which is both di�cult and time-consuming.

Our observation is that these domain-speci�c transformation
problems have long been solved by developers with code libraries,
which are often shared in places like GitHub. We thus develop an
extensible data transformation system called Transform-Data-by-
Example (TDE) that can leverage rich transformation logic in source
code, DLLs, web services and mapping tables, so that end-users
only need to provide a few (typically 3) input/output examples, and
TDE can synthesize desired programs using relevant transformation
logic from these sources. The beta version of TDE was released in
O�ce Store for Excel.

ACM Reference Format:
Yeye He1, Kris Ganjam1, Kukjin Lee1, YueWang1, Vivek Narasayya1, Surajit
Chaudhuri1, Xu Chu2, Yudian Zheng3 . 2018. Transform-Data-by-Example
(TDE): Extensible Data Transformation in Excel. In SIGMOD’18: 2018 Interna-
tional Conference onManagement of Data, June 10–15, 2018, Houston, TX, USA.
ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/3183713.3193539

1 INTRODUCTION
Users such as business analysts and data scientists today regularly
perform ad-hoc analysis using diverse data sets, which however of-
ten need to be prepared (a multi-step process that typically involves
clean, transform, and join, among other things), before analysis
can be performed. This is di�cult and time-consuming for end-
users – studies suggest that users spend up to 80% of time on data
preparation [8].

There is increasing momentum in the industry towards self-
service data preparation [9], where the key objective is to build

2, 3: Work done at Microsoft Research.
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Figure 1: A sales data set with heterogeneous data values.

intelligent systems that enable business analysts and data scientists
to prepare ad-hoc data sets themselves without needing help from
IT sta�. This, if realized, holds the potential to democratize data
analytics for a wide spectrum of users who often lack technical
skills like scripting. Gartner reckons this fast growing market to
be worth over $1 billion by 2019 [9]. In this work we focus on self-
service data transformation, which is a major component in data
preparation [9].

Figure 1 gives a concrete example for data transformation. This
sales data set has information such as transaction dates, customer
names, their phone numbers and addresses, etc. However, values in
same columns are highly heterogeneous, which can often happen
when data is collected from di�erent sources, or when values are
manually entered. In this example, date values in the �rst column
have many di�erent formats. In the second column, some customer
names are �rst-name followed by last-name, while others are last-
name followed by comma and �rst-name, with various optional
salutations (Mr., Dr., etc.) and su�xes (III, Jr., etc.). Similarly, phone
number and address columns are also highly inconsistent.

This data set is obviously not ready for analysis yet – an analyst
wanting to �gure out which day-of-the-week (Mon, Tue, etc.) has
the most sales, for instance, cannot �nd that out by executing a
SQL query or a pivot table using this data, as day-of-the-week is
missing from the input. However, deriving day-of-the-week from
date strings is non-trivial even for programmers, and the hetero-
geneity of date values only adds to the complexity. Similarly, the
analyst may want to analyze sales with a group-by on area code
from phone-numbers, or zip-code from addresses, both of which
again require di�cult data transformations.

Our observation is that these domain-speci�c transformation
problems like date-time parsing and address standardization have
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Figure 2: TDE transformation for date-time. (Left): input data is in column-C, user provides two desired output examples in
column-D. (Right): After clicking on the “Get Transformation” button, TDE searches over thousands of functions to compose
new programs whose output are consistent with the given examples. Within a few seconds, a ranked list of programs are
returned in the right pane. Hovering over the �rst program (using System.DateTime.Parse from .Net) gives a preview of all
results (shaded in green).

Figure 3: (Left): transformation for names. The �rst three values in column-D are provided as output examples. The desired
�rst-names and last-names are marked in bold for ease of reading. A composed program using library CSharpNameParser
from GitHub is returned. (Right): transformations for addresses. The �rst three values are provided as examples to produce
city, state, and zip-code as output. Note that some of these info are missing from the input. A program invoking Bing Maps
API is returned as the top result.

existed for decades – developers traditionally build custom code li-
braries to solve them, and share their code in places like GitHub and
StackOver�ow. In a recent crawl, we extracted over 1.8M functions
from code libraries crawled at GitHub, and over 2M code snippets
extracted from pages on StackOver�ow.

We have built a production-quality data-transformation engine
called Transform-Data-by-Example (TDE) that can index rich trans-
formation logic from sources such as code, to allow users to search
and reuse existing transformation logic. The front-end of TDE is an
Excel add-in, currently in beta release at O�ce Store [4]. We choose
Excel as the front-end to allow end-users stay in their familiar Excel
environment without switching.

Unique Features. The TDE system has the following features
that we believe are important �rst steps to realize the vision of
self-service data transformation. (More details of the system can be
found in a full research article [11]).
• Search-by-Example. TDE allows end-users to search transforma-
tions by examples, a paradigm known as program-by-example
(PBE) [14], �rst used in FlashFill [10] for data transformation. Com-
pared to existing PBE systems such as FlashFill that compose results
using a small number of string primitivies, TDE synthesizes pro-
grams from a much larger space of arbitrary program functions
and mapping tables [17]. We develop novel algorithms to make this

feasible at an interactive speed, with just a few (typically three)
input/output examples.
• Program Synthesis. Since existing functions rarely produce the
exact output speci�ed by users, TDE automatically synthesizes new
programs, sometimes with multiple functions, to exactly match
target output, all within just a few seconds. Expert-users have the
option to inspect the synthesized programs to ensure correctness.
• Head-domain Support. We have built an instance of TDE that
indexes over 50K functions from GitHub that can already han-
dle many head and tail domains, such as date-time, person-name,
phone-number, us-address, url, unit-conversion, etc. Many of these
transformations cannot be handled by any existing system.
• Extensibility. Although TDE can already support many important
domains out of the box, there will be diverse application domains
where TDE has no built-in support as it has not encountered and
crawled relevant functions from such domains. TDE is therefore
designed to be extensible – users can simply point TDE to their
domain-speci�c source code, DLLs, web services, and mapping
tables, the transformation logic in these resources will be automati-
cally extracted, and made immediately search-able. The way TDE
works is just like a search engine “indexing” a new document.

2 DEMO SCENARIOS
Given the raw data set in Figure 1, a user would like to transform
this data in order to perform analysis. Suppose she wants to �nd
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[NLP Publishing Stats, M. Rei & R. Allen] 

'google brain resident': 'google', 
'google brain': 'google', 
'google inc': 'google', 
'google inc.':'google', 
'google research nyc': 'google', 
'google research': 'google', 
'google, inc.': 'google’, 
'deepmind @ google': 'deepmind', 
'deepmind technologies': 'deepmind', 
'google deepmind': 'deepmind’, 

'ibm research - china':'ibm', 
'ibm research':'ibm', 
'ibm research, ny':'ibm', 
'ibm research, usa':'ibm', 
'ibm t. j. watson research center':'ibm', 
'ibm t. j. watson research':'ibm', 
'ibm t.j watson research center':'ibm', 
'ibm t.j. watson research center':'ibm', 
'ibm t.j.watson research center':'ibm', 
'ibm thomas j. watson research center':'ibm', 
'ibm tj watson research center':'ibm', 

'microsoft research cambridge':'microsoft', 
'microsoft research india':'microsoft', 
'microsoft research maluuba':'microsoft', 
'microsoft research new england':'microsoft', 
'microsoft research':'microsoft', 
'microsoft research, redmond, w':'microsoft', 
'microsoft research, redmond, wa':'microsoft', 
'miicrosoft research':'microsoft',

Carnegie Mellon University

Microsoft

Stanford University

Google

Columbia University

UC Berkeley

Massachusetts Institute of Technology

University of Washington

IBM

University of Edinburgh

University of Cambridge

Johns Hopkins University

UT Austin

Princeton University

University of Pennsylvania

INRIA

University of Maryland

University of Toronto

University College London

Cornell University

Tsinghua University

Peking University

Harbin Institute of Technology

Chinese Academy of Sciences

Georgia Institute of Technology

050100

150

200

250

300

ICML
NIPS
EMNLP
NAACL
EACL
ACL

http://webcache.googleusercontent.com/search?q=cache:3go8NtkZZEgJ:www.marekrei.com/blog/analysing-nlp-publication-patterns/
https://medium.com/machine-learning-in-practice/nips-accepted-papers-stats-26f124843aa0
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Data Integration
• Google Thinks I’m Dead 

(I know otherwise.) [R. Abrams, 
NYTimes, 2017] 

• Not only Google, but also Alexa: 
- "Alexa replies that Rachel Abrams is 

a sprinter from the Northern 
Mariana Islands (which is true of 
someone else)." 

- "He asks if Rachel Abrams is 
deceased, and Alexa responds yes, 
citing information in the Knowledge 
Graph panel."
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http://www.apple.com
http://www.apple.com
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[V. Wilkinson]

https://openclassrooms.com/en/courses/5671741-design-the-logical-model-of-your-relational-database/6255746-compare-relational-and-nosql-databases
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Fig. 7: Using the blog to document processes: A visualization expert
created a series of blog posts to explain the problems found when gen-
erating the visualizations for CMOP.
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Provenance and Reproducibility
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Fig. 7: Using the blog to document processes: A visualization expert
created a series of blog posts to explain the problems found when gen-
erating the visualizations for CMOP.
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About this course
• Course web page is authoritative: 
- http://faculty.cs.niu.edu/~dakoop/cs680-2020sp 
- Schedule, Readings, Assignments will be posted online 
- Check the web site before emailing me 

• Course is meant to be more "cutting edge" 
- Still focus on building skills related to data management 
- Tune into current research and tools 

• Requires student participation: readings and discussions 
• Exam Dates: Feb. 18, March 26, May 5 (final)
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JupyterLab
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JupyterLab
• An interactive, configurable programming 

environment 
• Supports many activities including notebooks 
• Runs in your web browser 
• Notebooks: 
- Originally designed for Python  
- Supports other languages, too 
- Displays results (even interactive maps) inline 
- You decide how to divide code into 

executable cells 
- Shift+Enter to execute a cell
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Installing Python & JupyterLab
• www.anaconda.com/download/ 
• Anaconda has Jupyter Lab 
• Use Python 3.7 version (not 2.7) 
• Anaconda Navigator 
- GUI application for managing Python 

environment 
- Can install packages 
- Can start JupyterLab 

• Can also use the shell to do this: 
- $ jupyter-lab 

- $ conda install <pkg_name>
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JupyterLab Notebook Tips
• Starts with a directory view 
• Create new notebooks using the Launcher (+ icon on the left) 
- New notebooks have the name "Untitled" 
- File → Rename Notebook… (or right-click) to change the name 

• Save a notebook using the command under the File menu 
• Shutting down the notebook requires quitting the kernel 
- Web browser is interface to display code and results 
- Kernel actually runs the code: may see messages in a console/terminal 

window 
- Closing the browser window does not stop Jupyter 
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JupyterLab Notebooks
• Open a notebook using the left panel like you would in a desktop view 
• Past results are displayed—does not mean they are loaded in memory 
• Use "Run All" or "Run All Above" to re-execute past work 
- If you shut down the kernel, all of the data and variables you defined need 

to be redefined (so you need to re-run all) 
- Watch Out—Order Matters: If you went back and re-executed cells in a 

different order than they are shown, doing "Run All" may not produce the 
same results! 

• Edit mode (green) versus Command mode (blue == Be Careful)
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JupyterLab Notebooks
• Can write code or plain text (can be styled Markdown)  
- Choose the type of cell using the dropdown menu 

• Cells break up your code, but all data is global 
- Defining a variable a in one cell means that variable is accessible in any 

other cell 
- This includes cells above the cell a was defined in! 

• Remember Shift+Enter to execute 
• Enter just adds a new line 
• Use ?<function_name> for help 
• Use Tab for auto-complete or suggestions 
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Other JupyterLab Features
• Terminal 
- Similar to what you see on turing/

hopper but for your local machine 
• File Viewers 
- CSV 
- Plugins available 

• Console 
- Can be linked to notebooks

 18
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JupyterLab Documentation
• JupyterLab Tutorial Video 
• JupyterLab Documentation
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Jupyter Notebook
• Original Notebook Interface 
• Just notebooks 
• Same rich representations and text 
• Same cell structure 
• Same notebook files .ipynb 
• Web-based

 20
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Python
• Started in December 1989 by Guido van Rossum 
• “Python has surpassed Java as the top language used to introduce U.S. 

students to programming…” (ComputerWorld, 2014) 
• Python and R are the two top languages for data science 
• High-level, interpreted language 
• Supports multiple paradigms (OOP, procedural, imperative) 
• Help programmers write readable code 
• Use less code to do more 
• Lots of libraries for python 
- Designed to be extensible 
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Learning Python Resources
• https://software-carpentry.org/lessons.html 
• https://wiki.python.org/moin/BeginnersGuide 
• https://learnxinyminutes.com/docs/python3/ 
• http://www.pythontutor.com 
• http://www.python-course.eu 
• http://thepythonguru.com 
• https://wiki.python.org/moin/IntroductoryBooks 
• https://en.wikibooks.org/wiki/A_Beginner%27s_Python_Tutorial 
• https://learnpythonthehardway.org 
• learnpython.org
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Python Compared to C++ and Java
• Dynamic Typing 
- A variable does not have a fixed type 
- Example: a = 1; a = "abc" 

• Indentation 
- Braces define blocks in Java, good style is to indent but not required 
- Indentation is critical in Python 
  z = 20 
  if x > 0: 
      if y > 0: 
          z = 100 
  else: 
      z = 10

 23
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Advanced: Python 2 and 3
• https://docs.python.org/3/whatsnew/3.0.html 
• Key Differences: 

- print as a function: print "Hello" vs. print("Hello") 
- Views and iterators instead of lists 
- Integer divison: 5/2 = 2.5, 5//2 = 2 
- Unicode as standard 
- String formatting: 

• Py2: "Hello %s. You are %d years old" % (name, age) 
• Py3: "Hello {}. You are {} years old".format(name, age) 
• Py3.6: f"Hello {name}. You are {age} years old"
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In-Class Notebook
• Try out the examples from the following slides: 
- Download 
- View

 25
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https://nbviewer.jupyter.org/url/faculty.cs.niu.edu/~dakoop/cs680-2020sp/notebooks/lecture02.ipynb


D. Koop, CSCI 490/680, Spring 2020

Print function
•print("Hello World") 

• Can also print variables: 
name = "Jane" 
print("Hello,", name)

 26
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Python Variables and Types
• No type declaration necessary 
• Variables are names, not memory locations 

a = 0 
a = "abc" 
a = 3.14159 

• Don't worry about types, but think about types 
• Strings are a type 
• Integers are as big as you want them 
• Floats can hold large numbers, too (double-precision)

 27
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Python Math and String "Math"
• Standard Operators: +, -, *, /, % 
• Division "does what you want" (new in v3) 
- 5 / 2 = 2.5 
- 5 // 2 = 2 # use // for integer division 

• Shortcuts: +=, -=, *= 
• No ++, -- 
• Exponentiation (Power): ** 
• Order of operations and parentheses: (4 - 3 - 1 vs. 4 - (3 - 1)) 
• "abc" + "def" 

• "abc" * 3
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Python Strings
• Strings can be delimited by single or double quotes 

- "abc" and 'abc' are exactly the same thing 
- Easier use of quotes in strings: "Joe's" or 'He said "Stop!"' 

• String concatenation: "abc" + "def" 
• Repetition: "abc" * 3 
• Special characters: \n \t like Java/C++
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Python Strings
• Indexing:  

a = "abcdef" 
a[0] 

• Slicing: a[1:3] 
• Format:  

name = "Jane" 
print("Hello, {}".format(name)) 

- or 
print(f"Hello, {name}")
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Exercise
• Given variables x and y, print the long division answer of x divided by y with 

the remainder. 
• Examples:  

- x = 11, y = 4 should print "2R3" 
- x = 15, y =2 should print "7R1"
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Loops
• while <condition>: 
    <indented block> 
# end of while block (indentation done) 

• Remember the colon! 
• a = 5 
while a > 0: 
    print(a) 
    a -= 2 

• a > 0 is the condition 
• Python has standard boolean operators (<, >, <=, >=, ==, !=) 
- What does a boolean operation return? 
- Linking boolean comparisons (and, or)
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Conditionals
• if, else 
- Again, indentation is required 

• elif 
- Shorthand for else: if: 

• Same type of boolean expressions (and or)
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break and continue
• break stops the execution of the loop 
• continue skips the rest of the loop and goes to the next iteration 

• a = 7 
while a > 0: 
    a -= 2 
    if a < 4: 
        break 
    print(a) 

 34

• a = 7 
while a > 0: 
    a -= 2 
    if a < 4 and a > 2: 
        continue 
    print(a) 



D. Koop, CSCI 490/680, Spring 2020

True and False
• True and False (captialized) are defined values in Python 
• v == 0 will evaluate to either True or False

 35
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Quiz
• Suppose I want to write Python code to print the numbers from 1 to 100. 

What errors do you see? 

// print the numbers from 1 to 100 
int counter = 1 
while counter < 100 { 
    print counter 
    counter++ 
} 
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Functions
• Calling functions is as expected: 

mul(2,3) # computes 2*3 (mul from operator package) 

- Values passed to the function are parameters 
- May be variables! 
a = 5 
b = 7 
mul(a,b) 

• print is a function 
print("This line doesn't end.", end=" ") 
print("See it continues") 

- end is also a parameter, but this has a different syntax (keyword argument!)
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Defining Functions
• def keyword 
• Arguments have names but no types 

def hello(name): 
    print(f"Hello {name}") 

• Can have defaults: 
def hello(name="Jane Doe"): 
    print(f"Hello {name}") 

• With defaults, we can skip the parameter: hello() or hello("John") 
• Also can pick and choose arguments: 

def hello(name1="Joe", name2="Jane"): 
    print(f"Hello {name1} and {name2}") 
hello(name2="Mary")
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Return statement
• Return statement gives back a value: 

def mul(a,b): 
    return a * b 

• Variables changed in the function won't be updated: 
def increment(a): 
    a += 1 
    return a 
b = 12 
c = increment(b) 
print(b,c) 
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Python Containers
• Container: store more than one value 
• Mutable versus immutable: Can we update the container? 
- Yes → mutable 
- No → immutable 
- Lists are mutable, tuples are immutable 

• Lists and tuples may contain values of different types: 
• List: [1,"abc",12.34] 
• Tuple: (1, "abc", 12.34) 
• You can also put functions in containers! 
• len function: number of items: len(l)
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Indexing and Slicing
• Just like with strings 
• Indexing: 
- Where do we start counting? 
- Use brackets [] to retrieve one value 
- Can use negative values (count from the end) 

• Slicing: 
- Use brackets plus a colon to retrieve multiple values: 

[<start>:<end>] 
- Returns a new list (b = a[:]) 
- Don't need to specify the beginning or end 
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Examples
• Suppose a = ['a', 'b', 'c', 'd'] 
• What are? 

- a[0] 
- a[1:2] 
- a[3:] 
- a[:-2] 
- a[::-1]
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Tuples
• months = ('January','February','March','April', 
'May','June','July','August','September','October', 
'November','December') 

• Useful when you know you're not going to change the contents or add or 
delete values 

• Can index and slice 
• Also, can create new tuples from existing ones: 

- t = (1,2,3) 
u = (4,5,6) 

- v = t + u # v points to a new object 
- t += u # t is a new object
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Modifying Lists
• Add to a list l: 

- l.append(v): add one value (v) to the end of the list 
- l.extend(vlist): add multiple values (vlist) to the end of l 
- l.insert(i, v): add one value (v) at index i 

• Remove from a list l: 
- del l[i]: deletes the value at index i 
- l.pop(i): removes the value at index i (and returns it) 
- l.remove(v): removes the first occurrence of value v (careful!) 

• Changing an entry: 
- l[i] = v: changes the value at index i to v (Watch out for IndexError!)
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Modifying a list
• v = [1,2,3] 
w = [4,5,6] 

• x = v + w # x is a new list [1,2,3,4,5,6] 
• v.extend(w) # v is mutated to [1,2,3,4,5,6] 
• v += w # v is mutated to [1,2,3,4,5,6] 
• v.append(w) # v is mutated to [1,2,3,[4,5,6]] 
• x = v + 4 # error 
• v += 4 # error 
• v += [4] # v is mutated to [1,2,3,4]

 46



D. Koop, CSCI 490/680, Spring 2020

in: Checking for a value 
• The in operator: 

- 'a' in l 

- 'a' not in l 
• Not very fast for lists
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For loops
• Used much more frequently than while loops 
• Is actually a "for-each" type of loop 
• In Java, this is: 

- for (String item : someList) { 
    System.out.println(item); 
} 

• In Python, this is:  
- for item in someList: 
    print(item) 

• Grabs each element of someList in order and puts it into item 
• Be careful modifying container in a for loop! (e.g. someList.append(new_item))
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What about counting?
• In C++: 
• for(int i = 0; i < 100; i++) { 
    cout << i << endl; 
} 

• In Python: 
• for i in range(0,100): # or range(100) 
    print(i) 

• range(100) vs. list(range(100)) 
• What about only even integers?
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Dictionaries
• One of the most useful features of Python 
• Also known as associative arrays 
• Exist in other languages but a core feature in Python 
• Associate a key with a value 
• When I want to find a value, I give the dictionary a key, and it returns the value 
• Example: InspectionID (key) → InspectionRecord (value) 
• Keys must be immutable (technically, hashable): 
- Normal types like numbers, strings are fine 
- Tuples work, but lists do not (TypeError: unhashable type: 'list') 

• There is only one value per key!
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Dictionaries
• Defining a dictionary: curly braces 
• states = {'MA': 'Massachusetts, 'RI': 'Road Island', 'CT': 
'Connecticut'} 

• Accessing a value: use brackets! 
• states['MA'] or states.get('MA') 
• Adding a value: 
• states['NH'] = 'New Hampshire' 

• Checking for a key: 
• 'ME' in states → returns True or False 
• Removing a value: states.pop('CT') or del states['CT'] 
• Changing a value: states['RI'] = 'Rhode Island'
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Dictionaries
• Combine dictionaries: d1.update(d2) 

- update overwrites any key-value pairs in d1  
when the same key appears in d2 

• len(d) is the number of entries in d
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Extracting Parts of a Dictionary
• d.keys(): the keys only 
• d.values(): the values only 
• d.items(): key-value pairs as a collection of tuples: 
[(k1, v1), (k2, v2), …] 

• Unpacking a tuple or list 
- t = (1,2) 
a, b = t 

• Iterating through a dictionary: 
for (k,v) in d.items(): 
    if k % 2 == 0: 
        print(v) 

• Important: keys, values, and items are not in any specific order!
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Sets
• Just the keys from a dictionary 
• Only one copy of each item 
• Define like dictionaries without values 

- s = {'a','b','c','e'} 

- 'a' in s # True 

• Mutation 
- s.add('f') 
s.add('a') # only one copy 
s.remove('c') 

• One gotcha: 
- {} is an empty dictionary not an empty set
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