
Advanced Data Management (CSCI 490/680)

Python

Dr. David Koop

D. Koop, CSCI 490/680, Spring 2020

D. Koop, CSCI 490/680, Spring 2020

Data to Knowledge and Beyond

 2

[D. Somerville, based on H. McLeod's original]

D. Koop, CSCI 490/680, Spring 2020

Data to Knowledge and Beyond

 2

[D. Somerville, based on H. McLeod's original]

D. Koop, CSCI 490/680, Spring 2020

Data to Knowledge and Beyond

 2

[D. Somerville, based on H. McLeod's original]

Require People

D. Koop, CSCI 490/680, Spring 2020

Data to Knowledge

 3

[D. Somerville, based on H. McLeod's original]

Can computers do this for us?

D. Koop, CSCI 490/680, Spring 2020

6F INDINGS

we got about the future of the data science,

the most salient takeaway was how excited our

respondents were about the evolution of the

ĆHOG��7KH\�FLWHG�WKLQJV�LQ�WKHLU�RZQ�SUDFWLFH��KRZ�

they saw their jobs getting more interesting and

less repetitive, all while expressing a real and

broad enthusiasm about the value of the work in

their organization.

$V�GDWD�VFLHQFH�EHFRPHV�PRUH�FRPPRQSODFH�DQG�

VLPXOWDQHRXVO\�D�ELW�GHP\VWLĆHG��ZH�H[SHFW�WKLV

WUHQG�WR�FRQWLQXH�DV�ZHOO��$IWHU�DOO��ODVW�\HDUèV�

respondents were just as excited about their

ZRUN��DERXW�����ZHUH�êVDWLVĆHGë�RU�EHWWHU��

How a Data Scientist Spends Their Day

+HUHèV�ZKHUH�WKH�SRSXODU�YLHZ�RI�GDWD�VFLHQWLVWV�GLYHUJHV�SUHWW\�VLJQLĆFDQWO\�IURP�UHDOLW\��*HQHUDOO\��

ZH�WKLQN�RI�GDWD�VFLHQWLVWV�EXLOGLQJ�DOJRULWKPV��H[SORULQJ�GDWD��DQG�GRLQJ�SUHGLFWLYH�DQDO\VLV��7KDWèV�

actually not what they spend most of their time doing, however.

$V�\RX�FDQ�VHH�IURP�WKH�FKDUW�DERYH����RXW�RI�HYHU\���GDWD�VFLHQWLVWV�ZH�VXUYH\HG�DFWXDOO\�VSHQG�WKH�

PRVW�WLPH�FOHDQLQJ�DQG�RUJDQL]LQJ�GDWD��<RX�PD\�KDYH�KHDUG�WKLV�UHIHUUHG�WR�DV�êGDWD�ZUDQJOLQJë�RU�

FRPSDUHG�WR�GLJLWDO�MDQLWRU�ZRUN��(YHU\WKLQJ�IURP�OLVW�YHULĆFDWLRQ�WR�UHPRYLQJ�FRPPDV�WR�GHEXJJLQJ�

databases–that time adds up and it adds up immensely. Messy data is by far the more time- consuming

DVSHFW�RI�WKH�W\SLFDO�GDWD�VFLHQWLVWèV�ZRUN�ćRZ��$QG�QHDUO\�����VDLG�WKH\�VLPSO\�VSHQW�WRR�PXFK

time doing it.

Data scientist job satisfaction

60%

19%

9%

4%
5%3%

 Building training sets: 3%

 Cleaning and organizing data: 60%

 Collecting data sets; 19%

 Mining data for patterns: 9%

�������5HĆQLQJ�DOJRULWKPV����

 Other: 5%

�,!;�&!;!�9$-'2ধ9;9�96'2&�;,'�139;�ধ1'�&3-2+

4.0
5

4

3

2

1

���

47�

���

��

��

How do data scientists spend their time?

 4

[CrowdFlower Data Science Report, 2016]

http://visit.crowdflower.com/rs/416-ZBE-142/images/CrowdFlower_DataScienceReport_2016.pdf

D. Koop, CSCI 490/680, Spring 2020

Finding & Discovering Data (even data you already have!)

 5

[S. Dewan]

https://www.grazitti.com/blog/data-lake-vs-data-warehouse-which-one-should-you-go-for/

D. Koop, CSCI 490/680, Spring 2020

Data Wrangling

 6

[Y. He et al., 2018]

Transform-Data-by-Example (TDE):
Extensible Data Transformation in Excel

Yeye He1, Kris Ganjam1, Kukjin Lee1, Yue Wang1, Vivek Narasayya1,
Surajit Chaudhuri1, Xu Chu2, Yudian Zheng3

1Microsoft Research, Redmond, USA
2Georgia Institute of Technology, Atlanta, USA

3Twitter Inc., San Francisco, USA
{yeyehe,krisgan,kulee,wanyue,viveknar,surajitc}@microsoft.com

xu.chu@cc.gatech.edu,yudianz@twitter.com

ABSTRACT
Business analysts and data scientists today increasingly need to
clean, standardize and transform diverse data sets, such as name,
address, date time, phone number, etc., before they can perform
analysis. These ad-hoc transformation problems are typically solved
by one-o� scripts, which is both di�cult and time-consuming.

Our observation is that these domain-speci�c transformation
problems have long been solved by developers with code libraries,
which are often shared in places like GitHub. We thus develop an
extensible data transformation system called Transform-Data-by-
Example (TDE) that can leverage rich transformation logic in source
code, DLLs, web services and mapping tables, so that end-users
only need to provide a few (typically 3) input/output examples, and
TDE can synthesize desired programs using relevant transformation
logic from these sources. The beta version of TDE was released in
O�ce Store for Excel.

ACM Reference Format:
Yeye He1, Kris Ganjam1, Kukjin Lee1, YueWang1, Vivek Narasayya1, Surajit
Chaudhuri1, Xu Chu2, Yudian Zheng3 . 2018. Transform-Data-by-Example
(TDE): Extensible Data Transformation in Excel. In SIGMOD’18: 2018 Interna-
tional Conference onManagement of Data, June 10–15, 2018, Houston, TX, USA.
ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/3183713.3193539

1 INTRODUCTION
Users such as business analysts and data scientists today regularly
perform ad-hoc analysis using diverse data sets, which however of-
ten need to be prepared (a multi-step process that typically involves
clean, transform, and join, among other things), before analysis
can be performed. This is di�cult and time-consuming for end-
users – studies suggest that users spend up to 80% of time on data
preparation [8].

There is increasing momentum in the industry towards self-
service data preparation [9], where the key objective is to build

2, 3: Work done at Microsoft Research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
SIGMOD’18, June 10–15, 2018, Houston, TX, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-4703-7/18/06. . . $15.00
https://doi.org/10.1145/3183713.3193539

Figure 1: A sales data set with heterogeneous data values.

intelligent systems that enable business analysts and data scientists
to prepare ad-hoc data sets themselves without needing help from
IT sta�. This, if realized, holds the potential to democratize data
analytics for a wide spectrum of users who often lack technical
skills like scripting. Gartner reckons this fast growing market to
be worth over $1 billion by 2019 [9]. In this work we focus on self-
service data transformation, which is a major component in data
preparation [9].

Figure 1 gives a concrete example for data transformation. This
sales data set has information such as transaction dates, customer
names, their phone numbers and addresses, etc. However, values in
same columns are highly heterogeneous, which can often happen
when data is collected from di�erent sources, or when values are
manually entered. In this example, date values in the �rst column
have many di�erent formats. In the second column, some customer
names are �rst-name followed by last-name, while others are last-
name followed by comma and �rst-name, with various optional
salutations (Mr., Dr., etc.) and su�xes (III, Jr., etc.). Similarly, phone
number and address columns are also highly inconsistent.

This data set is obviously not ready for analysis yet – an analyst
wanting to �gure out which day-of-the-week (Mon, Tue, etc.) has
the most sales, for instance, cannot �nd that out by executing a
SQL query or a pivot table using this data, as day-of-the-week is
missing from the input. However, deriving day-of-the-week from
date strings is non-trivial even for programmers, and the hetero-
geneity of date values only adds to the complexity. Similarly, the
analyst may want to analyze sales with a group-by on area code
from phone-numbers, or zip-code from addresses, both of which
again require di�cult data transformations.

Our observation is that these domain-speci�c transformation
problems like date-time parsing and address standardization have

Demonstrations SIGMOD’18, June 10-15, 2018, Houston, TX, USA

1785

SIGMOD’18, June 10–15, 2018, Houston, TX, USA

Yeye He1, Kris Ganjam1, Kukjin Lee1, Yue Wang1, Vivek Narasayya1,
Surajit Chaudhuri1, Xu Chu2, Yudian Zheng3

Figure 2: TDE transformation for date-time. (Left): input data is in column-C, user provides two desired output examples in
column-D. (Right): After clicking on the “Get Transformation” button, TDE searches over thousands of functions to compose
new programs whose output are consistent with the given examples. Within a few seconds, a ranked list of programs are
returned in the right pane. Hovering over the �rst program (using System.DateTime.Parse from .Net) gives a preview of all
results (shaded in green).

Figure 3: (Left): transformation for names. The �rst three values in column-D are provided as output examples. The desired
�rst-names and last-names are marked in bold for ease of reading. A composed program using library CSharpNameParser
from GitHub is returned. (Right): transformations for addresses. The �rst three values are provided as examples to produce
city, state, and zip-code as output. Note that some of these info are missing from the input. A program invoking Bing Maps
API is returned as the top result.

existed for decades – developers traditionally build custom code li-
braries to solve them, and share their code in places like GitHub and
StackOver�ow. In a recent crawl, we extracted over 1.8M functions
from code libraries crawled at GitHub, and over 2M code snippets
extracted from pages on StackOver�ow.

We have built a production-quality data-transformation engine
called Transform-Data-by-Example (TDE) that can index rich trans-
formation logic from sources such as code, to allow users to search
and reuse existing transformation logic. The front-end of TDE is an
Excel add-in, currently in beta release at O�ce Store [4]. We choose
Excel as the front-end to allow end-users stay in their familiar Excel
environment without switching.

Unique Features. The TDE system has the following features
that we believe are important �rst steps to realize the vision of
self-service data transformation. (More details of the system can be
found in a full research article [11]).
• Search-by-Example. TDE allows end-users to search transforma-
tions by examples, a paradigm known as program-by-example
(PBE) [14], �rst used in FlashFill [10] for data transformation. Com-
pared to existing PBE systems such as FlashFill that compose results
using a small number of string primitivies, TDE synthesizes pro-
grams from a much larger space of arbitrary program functions
and mapping tables [17]. We develop novel algorithms to make this

feasible at an interactive speed, with just a few (typically three)
input/output examples.
• Program Synthesis. Since existing functions rarely produce the
exact output speci�ed by users, TDE automatically synthesizes new
programs, sometimes with multiple functions, to exactly match
target output, all within just a few seconds. Expert-users have the
option to inspect the synthesized programs to ensure correctness.
• Head-domain Support. We have built an instance of TDE that
indexes over 50K functions from GitHub that can already han-
dle many head and tail domains, such as date-time, person-name,
phone-number, us-address, url, unit-conversion, etc. Many of these
transformations cannot be handled by any existing system.
• Extensibility. Although TDE can already support many important
domains out of the box, there will be diverse application domains
where TDE has no built-in support as it has not encountered and
crawled relevant functions from such domains. TDE is therefore
designed to be extensible – users can simply point TDE to their
domain-speci�c source code, DLLs, web services, and mapping
tables, the transformation logic in these resources will be automati-
cally extracted, and made immediately search-able. The way TDE
works is just like a search engine “indexing” a new document.

2 DEMO SCENARIOS
Given the raw data set in Figure 1, a user would like to transform
this data in order to perform analysis. Suppose she wants to �nd

Demonstrations SIGMOD’18, June 10-15, 2018, Houston, TX, USA

1786

SIGMOD’18, June 10–15, 2018, Houston, TX, USA

Yeye He1, Kris Ganjam1, Kukjin Lee1, Yue Wang1, Vivek Narasayya1,
Surajit Chaudhuri1, Xu Chu2, Yudian Zheng3

Figure 2: TDE transformation for date-time. (Left): input data is in column-C, user provides two desired output examples in
column-D. (Right): After clicking on the “Get Transformation” button, TDE searches over thousands of functions to compose
new programs whose output are consistent with the given examples. Within a few seconds, a ranked list of programs are
returned in the right pane. Hovering over the �rst program (using System.DateTime.Parse from .Net) gives a preview of all
results (shaded in green).

Figure 3: (Left): transformation for names. The �rst three values in column-D are provided as output examples. The desired
�rst-names and last-names are marked in bold for ease of reading. A composed program using library CSharpNameParser
from GitHub is returned. (Right): transformations for addresses. The �rst three values are provided as examples to produce
city, state, and zip-code as output. Note that some of these info are missing from the input. A program invoking Bing Maps
API is returned as the top result.

existed for decades – developers traditionally build custom code li-
braries to solve them, and share their code in places like GitHub and
StackOver�ow. In a recent crawl, we extracted over 1.8M functions
from code libraries crawled at GitHub, and over 2M code snippets
extracted from pages on StackOver�ow.

We have built a production-quality data-transformation engine
called Transform-Data-by-Example (TDE) that can index rich trans-
formation logic from sources such as code, to allow users to search
and reuse existing transformation logic. The front-end of TDE is an
Excel add-in, currently in beta release at O�ce Store [4]. We choose
Excel as the front-end to allow end-users stay in their familiar Excel
environment without switching.

Unique Features. The TDE system has the following features
that we believe are important �rst steps to realize the vision of
self-service data transformation. (More details of the system can be
found in a full research article [11]).
• Search-by-Example. TDE allows end-users to search transforma-
tions by examples, a paradigm known as program-by-example
(PBE) [14], �rst used in FlashFill [10] for data transformation. Com-
pared to existing PBE systems such as FlashFill that compose results
using a small number of string primitivies, TDE synthesizes pro-
grams from a much larger space of arbitrary program functions
and mapping tables [17]. We develop novel algorithms to make this

feasible at an interactive speed, with just a few (typically three)
input/output examples.
• Program Synthesis. Since existing functions rarely produce the
exact output speci�ed by users, TDE automatically synthesizes new
programs, sometimes with multiple functions, to exactly match
target output, all within just a few seconds. Expert-users have the
option to inspect the synthesized programs to ensure correctness.
• Head-domain Support. We have built an instance of TDE that
indexes over 50K functions from GitHub that can already han-
dle many head and tail domains, such as date-time, person-name,
phone-number, us-address, url, unit-conversion, etc. Many of these
transformations cannot be handled by any existing system.
• Extensibility. Although TDE can already support many important
domains out of the box, there will be diverse application domains
where TDE has no built-in support as it has not encountered and
crawled relevant functions from such domains. TDE is therefore
designed to be extensible – users can simply point TDE to their
domain-speci�c source code, DLLs, web services, and mapping
tables, the transformation logic in these resources will be automati-
cally extracted, and made immediately search-able. The way TDE
works is just like a search engine “indexing” a new document.

2 DEMO SCENARIOS
Given the raw data set in Figure 1, a user would like to transform
this data in order to perform analysis. Suppose she wants to �nd

Demonstrations SIGMOD’18, June 10-15, 2018, Houston, TX, USA

1786

SIGMOD’18, June 10–15, 2018, Houston, TX, USA

Yeye He1, Kris Ganjam1, Kukjin Lee1, Yue Wang1, Vivek Narasayya1,
Surajit Chaudhuri1, Xu Chu2, Yudian Zheng3

Figure 2: TDE transformation for date-time. (Left): input data is in column-C, user provides two desired output examples in
column-D. (Right): After clicking on the “Get Transformation” button, TDE searches over thousands of functions to compose
new programs whose output are consistent with the given examples. Within a few seconds, a ranked list of programs are
returned in the right pane. Hovering over the �rst program (using System.DateTime.Parse from .Net) gives a preview of all
results (shaded in green).

Figure 3: (Left): transformation for names. The �rst three values in column-D are provided as output examples. The desired
�rst-names and last-names are marked in bold for ease of reading. A composed program using library CSharpNameParser
from GitHub is returned. (Right): transformations for addresses. The �rst three values are provided as examples to produce
city, state, and zip-code as output. Note that some of these info are missing from the input. A program invoking Bing Maps
API is returned as the top result.

existed for decades – developers traditionally build custom code li-
braries to solve them, and share their code in places like GitHub and
StackOver�ow. In a recent crawl, we extracted over 1.8M functions
from code libraries crawled at GitHub, and over 2M code snippets
extracted from pages on StackOver�ow.

We have built a production-quality data-transformation engine
called Transform-Data-by-Example (TDE) that can index rich trans-
formation logic from sources such as code, to allow users to search
and reuse existing transformation logic. The front-end of TDE is an
Excel add-in, currently in beta release at O�ce Store [4]. We choose
Excel as the front-end to allow end-users stay in their familiar Excel
environment without switching.

Unique Features. The TDE system has the following features
that we believe are important �rst steps to realize the vision of
self-service data transformation. (More details of the system can be
found in a full research article [11]).
• Search-by-Example. TDE allows end-users to search transforma-
tions by examples, a paradigm known as program-by-example
(PBE) [14], �rst used in FlashFill [10] for data transformation. Com-
pared to existing PBE systems such as FlashFill that compose results
using a small number of string primitivies, TDE synthesizes pro-
grams from a much larger space of arbitrary program functions
and mapping tables [17]. We develop novel algorithms to make this

feasible at an interactive speed, with just a few (typically three)
input/output examples.
• Program Synthesis. Since existing functions rarely produce the
exact output speci�ed by users, TDE automatically synthesizes new
programs, sometimes with multiple functions, to exactly match
target output, all within just a few seconds. Expert-users have the
option to inspect the synthesized programs to ensure correctness.
• Head-domain Support. We have built an instance of TDE that
indexes over 50K functions from GitHub that can already han-
dle many head and tail domains, such as date-time, person-name,
phone-number, us-address, url, unit-conversion, etc. Many of these
transformations cannot be handled by any existing system.
• Extensibility. Although TDE can already support many important
domains out of the box, there will be diverse application domains
where TDE has no built-in support as it has not encountered and
crawled relevant functions from such domains. TDE is therefore
designed to be extensible – users can simply point TDE to their
domain-speci�c source code, DLLs, web services, and mapping
tables, the transformation logic in these resources will be automati-
cally extracted, and made immediately search-able. The way TDE
works is just like a search engine “indexing” a new document.

2 DEMO SCENARIOS
Given the raw data set in Figure 1, a user would like to transform
this data in order to perform analysis. Suppose she wants to �nd

Demonstrations SIGMOD’18, June 10-15, 2018, Houston, TX, USA

1786

https://www.microsoft.com/en-us/research/publication/transform-data-by-example-tde-extensible-data-transformation-in-excel/

D. Koop, CSCI 490/680, Spring 2020

Data Cleaning/Standardization (Aliases)

 7

[NLP Publishing Stats, M. Rei & R. Allen]

'google brain resident': 'google',
'google brain': 'google',
'google inc': 'google',
'google inc.':'google',
'google research nyc': 'google',
'google research': 'google',
'google, inc.': 'google’,
'deepmind @ google': 'deepmind',
'deepmind technologies': 'deepmind',
'google deepmind': 'deepmind’,

'ibm research - china':'ibm',
'ibm research':'ibm',
'ibm research, ny':'ibm',
'ibm research, usa':'ibm',
'ibm t. j. watson research center':'ibm',
'ibm t. j. watson research':'ibm',
'ibm t.j watson research center':'ibm',
'ibm t.j. watson research center':'ibm',
'ibm t.j.watson research center':'ibm',
'ibm thomas j. watson research center':'ibm',
'ibm tj watson research center':'ibm',

'microsoft research cambridge':'microsoft',
'microsoft research india':'microsoft',
'microsoft research maluuba':'microsoft',
'microsoft research new england':'microsoft',
'microsoft research':'microsoft',
'microsoft research, redmond, w':'microsoft',
'microsoft research, redmond, wa':'microsoft',
'miicrosoft research':'microsoft',

Carnegie Mellon University

Microsoft

Stanford University

Google

Columbia University

UC Berkeley

Massachusetts Institute of Technology

University of Washington

IBM

University of Edinburgh

University of Cambridge

Johns Hopkins University

UT Austin

Princeton University

University of Pennsylvania

INRIA

University of Maryland

University of Toronto

University College London

Cornell University

Tsinghua University

Peking University

Harbin Institute of Technology

Chinese Academy of Sciences

Georgia Institute of Technology

050100

150

200

250

300

ICML
NIPS
EMNLP
NAACL
EACL
ACL

http://webcache.googleusercontent.com/search?q=cache:3go8NtkZZEgJ:www.marekrei.com/blog/analysing-nlp-publication-patterns/
https://medium.com/machine-learning-in-practice/nips-accepted-papers-stats-26f124843aa0

D. Koop, CSCI 490/680, Spring 2020

Data Integration
• Google Thinks I’m Dead

(I know otherwise.) [R. Abrams,
NYTimes, 2017]

• Not only Google, but also Alexa:
- "Alexa replies that Rachel Abrams is

a sprinter from the Northern
Mariana Islands (which is true of
someone else)."

- "He asks if Rachel Abrams is
deceased, and Alexa responds yes,
citing information in the Knowledge
Graph panel."

 8

http://www.apple.com
http://www.apple.com

D. Koop, CSCI 490/680, Spring 2020

Data Storage

 9

[V. Wilkinson]

https://openclassrooms.com/en/courses/5671741-design-the-logical-model-of-your-relational-database/6255746-compare-relational-and-nosql-databases

D. Koop, CSCI 490/680, Spring 2020

Provenance and Reproducibility

 10

Fig. 7: Using the blog to document processes: A visualization expert
created a series of blog posts to explain the problems found when gen-
erating the visualizations for CMOP.

ACKNOWLEDGMENTS

Our research has been funded by the National Science Foun-
dation (grants IIS-0905385, IIS-0746500, ATM-0835821, IIS-
0844546, CNS-0751152, IIS-0713637, OCE-0424602, IIS-0534628,
CNS-0514485, IIS-0513692, CNS-0524096, CCF-0401498, OISE-
0405402, CCF-0528201, CNS-0551724), the Department of En-
ergy SciDAC (VACET and SDM centers), and IBM Faculty Awards
(2005, 2006, 2007, and 2008). E. Santos is partially supported by a
CAPES/Fulbright fellowship.

REFERENCES

[1] L. Bavoil, S. Callahan, P. Crossno, J. Freire, C. Scheidegger, C. Silva, and
H. Vo. VisTrails: Enabling Interactive Multiple-View Visualizations. In
IEEE Visualization 2005, pages 135–142, 2005.

[2] S. P. Callahan, J. Freire, C. E. Scheidegger, C. T. Silva, and H. T. Vo.
Towards provenance-enabling paraview. pages 120–127, 2008.

[3] Chemical blogspace. http://cb.openmolecules.net/.
[4] NSF Center for Coastal Margin Observation and Prediction (CMOP).

http://www.stccmop.org.
[5] S. B. Davidson and J. Freire. Provenance and scientific workflows: chal-

lenges and opportunities. In Proceedings of SIGMOD, pages 1345–1350,
2008.

[6] R. T. Fielding. Architectural Styles and the Design of Network-based Soft-
ware Architectures. PhD thesis, University of California, Irvine, 2000.

[7] S. Fomel and J. Claerbout. Guest editors’ introduction: Reproducible
research. Computing in Science Engineering, 11(1):5 –7, jan.-feb. 2009.

Fig. 8: Visualizing a binary star system simulation. This
is an image that was generated by embedding a workflow di-
rectly in the text. The original workflow is available at
http://www.crowdlabs.org/vistrails/workflows/details/119/.

[8] J. Freire, D. Koop, E. Santos, and C. T. Silva. Provenance for computa-
tional tasks: A survey. Computing in Science & Engineering, 10(3):11–
21, May-June 2008.

[9] J. Freire, C. Silva, S. Callahan, E. Santos, C. Scheidegger, and H. Vo.
Managing rapidly-evolving scientific workflows. In International Prove-
nance and Annotation Workshop (IPAW), LNCS 4145, pages 10–18.
Springer Verlag, 2006.

[10] R. Hoffmann. A wiki for the life sciences where authorship matters. Na-
ture Genetics, 40(9):1047–1051, 2008.

[11] IBM. OpenDX. http://www.research.ibm.com/dx.
[12] Kitware. Paraview. http://www.paraview.org.
[13] Kitware. The visualization toolkit. http://www.vtk.org.
[14] Many Eyes Wikified. http://wikified.researchlabs.ibm.com.
[15] M. McKeon. Harnessing the Web Information Ecosystem with Wiki-

based Visualization Dashboards. IEEE Transactions on Visualization and
Computer Graphics, 15(6):1081–1088, 2009.

[16] A. R. Pico, T. Kelder, M. P. van Iersel, K. Hanspers, B. R. Conklin, and
C. Evelo. WikiPathways: Pathway editing for the people. PLoS Biology,
6(7), 2008.

[17] D. D. Roure, C. Goble, and R. Stevens. The design and realisation of
the virtual research environment for social sharing of workflows. Future
Generation Computer Systems, 25(5):561 – 567, 2009.

[18] E. Santos, L. Lins, J. Ahrens, J. Freire, and C. Silva. Vismashup: Stream-
lining the creation of custom visualization applications. IEEE Transac-
tions on Visualization and Computer Graphics, 15(6):1539–1546, 2009.

[19] Swivel. http://www.swivel.com.
[20] J. Tohline and E. Santos. Visualizing a Journal that Serves the Computa-

tional Sciences Community. Computing in Science & Engineering, 12(3),
2010. To appear.

[21] J. E. Tohline. Scientific Visualization: A Necessary Chore. Computing
in Science & Engineering, 9(6):76–81, 2007.

[22] C. Upson, J. Thomas Faulhaber, D. Kamins, D. H. Laidlaw, D. Schlegel,
J. Vroom, R. Gurwitz, and A. van Dam. The Application Visualiza-
tion System: A Computational Environment for Scientific Visualization.
IEEE Computer Graphics and Applications, 9(4):30–42, 1989.

[23] F. B. Viegas, M. Wattenberg, F. van Ham, J. Kriss, and M. McKeon.
ManyEyes: A site for visualization at internet scale. IEEE Transactions
on Visualization and Computer Graphics, 13(6):1121–1128, 2007.

[24] VisIt Visualization Tool. https://wci.llnl.gov/codes/visit.
[25] The VisTrails Project. http://www.vistrails.org.

DATA DATA

Data Management

Computation

Visualization

Paper

D. Koop, CSCI 490/680, Spring 2020

Provenance and Reproducibility

 10

Fig. 7: Using the blog to document processes: A visualization expert
created a series of blog posts to explain the problems found when gen-
erating the visualizations for CMOP.

ACKNOWLEDGMENTS

Our research has been funded by the National Science Foun-
dation (grants IIS-0905385, IIS-0746500, ATM-0835821, IIS-
0844546, CNS-0751152, IIS-0713637, OCE-0424602, IIS-0534628,
CNS-0514485, IIS-0513692, CNS-0524096, CCF-0401498, OISE-
0405402, CCF-0528201, CNS-0551724), the Department of En-
ergy SciDAC (VACET and SDM centers), and IBM Faculty Awards
(2005, 2006, 2007, and 2008). E. Santos is partially supported by a
CAPES/Fulbright fellowship.

REFERENCES

[1] L. Bavoil, S. Callahan, P. Crossno, J. Freire, C. Scheidegger, C. Silva, and
H. Vo. VisTrails: Enabling Interactive Multiple-View Visualizations. In
IEEE Visualization 2005, pages 135–142, 2005.

[2] S. P. Callahan, J. Freire, C. E. Scheidegger, C. T. Silva, and H. T. Vo.
Towards provenance-enabling paraview. pages 120–127, 2008.

[3] Chemical blogspace. http://cb.openmolecules.net/.
[4] NSF Center for Coastal Margin Observation and Prediction (CMOP).

http://www.stccmop.org.
[5] S. B. Davidson and J. Freire. Provenance and scientific workflows: chal-

lenges and opportunities. In Proceedings of SIGMOD, pages 1345–1350,
2008.

[6] R. T. Fielding. Architectural Styles and the Design of Network-based Soft-
ware Architectures. PhD thesis, University of California, Irvine, 2000.

[7] S. Fomel and J. Claerbout. Guest editors’ introduction: Reproducible
research. Computing in Science Engineering, 11(1):5 –7, jan.-feb. 2009.

Fig. 8: Visualizing a binary star system simulation. This
is an image that was generated by embedding a workflow di-
rectly in the text. The original workflow is available at
http://www.crowdlabs.org/vistrails/workflows/details/119/.

[8] J. Freire, D. Koop, E. Santos, and C. T. Silva. Provenance for computa-
tional tasks: A survey. Computing in Science & Engineering, 10(3):11–
21, May-June 2008.

[9] J. Freire, C. Silva, S. Callahan, E. Santos, C. Scheidegger, and H. Vo.
Managing rapidly-evolving scientific workflows. In International Prove-
nance and Annotation Workshop (IPAW), LNCS 4145, pages 10–18.
Springer Verlag, 2006.

[10] R. Hoffmann. A wiki for the life sciences where authorship matters. Na-
ture Genetics, 40(9):1047–1051, 2008.

[11] IBM. OpenDX. http://www.research.ibm.com/dx.
[12] Kitware. Paraview. http://www.paraview.org.
[13] Kitware. The visualization toolkit. http://www.vtk.org.
[14] Many Eyes Wikified. http://wikified.researchlabs.ibm.com.
[15] M. McKeon. Harnessing the Web Information Ecosystem with Wiki-

based Visualization Dashboards. IEEE Transactions on Visualization and
Computer Graphics, 15(6):1081–1088, 2009.

[16] A. R. Pico, T. Kelder, M. P. van Iersel, K. Hanspers, B. R. Conklin, and
C. Evelo. WikiPathways: Pathway editing for the people. PLoS Biology,
6(7), 2008.

[17] D. D. Roure, C. Goble, and R. Stevens. The design and realisation of
the virtual research environment for social sharing of workflows. Future
Generation Computer Systems, 25(5):561 – 567, 2009.

[18] E. Santos, L. Lins, J. Ahrens, J. Freire, and C. Silva. Vismashup: Stream-
lining the creation of custom visualization applications. IEEE Transac-
tions on Visualization and Computer Graphics, 15(6):1539–1546, 2009.

[19] Swivel. http://www.swivel.com.
[20] J. Tohline and E. Santos. Visualizing a Journal that Serves the Computa-

tional Sciences Community. Computing in Science & Engineering, 12(3),
2010. To appear.

[21] J. E. Tohline. Scientific Visualization: A Necessary Chore. Computing
in Science & Engineering, 9(6):76–81, 2007.

[22] C. Upson, J. Thomas Faulhaber, D. Kamins, D. H. Laidlaw, D. Schlegel,
J. Vroom, R. Gurwitz, and A. van Dam. The Application Visualiza-
tion System: A Computational Environment for Scientific Visualization.
IEEE Computer Graphics and Applications, 9(4):30–42, 1989.

[23] F. B. Viegas, M. Wattenberg, F. van Ham, J. Kriss, and M. McKeon.
ManyEyes: A site for visualization at internet scale. IEEE Transactions
on Visualization and Computer Graphics, 13(6):1121–1128, 2007.

[24] VisIt Visualization Tool. https://wci.llnl.gov/codes/visit.
[25] The VisTrails Project. http://www.vistrails.org.

DATA DATA

Data Management

Computation

Visualization

Paper

Provenance

D. Koop, CSCI 490/680, Spring 2020

About this course
• Course web page is authoritative:
- http://faculty.cs.niu.edu/~dakoop/cs680-2020sp
- Schedule, Readings, Assignments will be posted online
- Check the web site before emailing me

• Course is meant to be more "cutting edge"
- Still focus on building skills related to data management
- Tune into current research and tools

• Requires student participation: readings and discussions
• Exam Dates: Feb. 18, March 26, May 5 (final)

 11

http://faculty.cs.niu.edu/~dakoop/cs680-2020sp

D. Koop, CSCI 490/680, Spring 2020

JupyterLab

 12

D. Koop, CSCI 490/680, Spring 2020

JupyterLab
• An interactive, configurable programming

environment
• Supports many activities including notebooks
• Runs in your web browser
• Notebooks:
- Originally designed for Python
- Supports other languages, too
- Displays results (even interactive maps) inline
- You decide how to divide code into

executable cells
- Shift+Enter to execute a cell

 13

D. Koop, CSCI 490/680, Spring 2020

Installing Python & JupyterLab
• www.anaconda.com/download/
• Anaconda has Jupyter Lab
• Use Python 3.7 version (not 2.7)
• Anaconda Navigator
- GUI application for managing Python

environment
- Can install packages
- Can start JupyterLab

• Can also use the shell to do this:
- $ jupyter-lab

- $ conda install <pkg_name>

 14

https://www.anaconda.com/download/

D. Koop, CSCI 490/680, Spring 2020

JupyterLab Notebook Tips
• Starts with a directory view
• Create new notebooks using the Launcher (+ icon on the left)
- New notebooks have the name "Untitled"
- File → Rename Notebook… (or right-click) to change the name

• Save a notebook using the command under the File menu
• Shutting down the notebook requires quitting the kernel
- Web browser is interface to display code and results
- Kernel actually runs the code: may see messages in a console/terminal

window
- Closing the browser window does not stop Jupyter

 15

D. Koop, CSCI 490/680, Spring 2020

JupyterLab Notebooks
• Open a notebook using the left panel like you would in a desktop view
• Past results are displayed—does not mean they are loaded in memory
• Use "Run All" or "Run All Above" to re-execute past work
- If you shut down the kernel, all of the data and variables you defined need

to be redefined (so you need to re-run all)
- Watch Out—Order Matters: If you went back and re-executed cells in a

different order than they are shown, doing "Run All" may not produce the
same results!

• Edit mode (green) versus Command mode (blue == Be Careful)

 16

D. Koop, CSCI 490/680, Spring 2020

JupyterLab Notebooks
• Can write code or plain text (can be styled Markdown)
- Choose the type of cell using the dropdown menu

• Cells break up your code, but all data is global
- Defining a variable a in one cell means that variable is accessible in any

other cell
- This includes cells above the cell a was defined in!

• Remember Shift+Enter to execute
• Enter just adds a new line
• Use ?<function_name> for help
• Use Tab for auto-complete or suggestions

 17

D. Koop, CSCI 490/680, Spring 2020

Other JupyterLab Features
• Terminal
- Similar to what you see on turing/

hopper but for your local machine
• File Viewers
- CSV
- Plugins available

• Console
- Can be linked to notebooks

 18

D. Koop, CSCI 490/680, Spring 2020

JupyterLab Documentation
• JupyterLab Tutorial Video
• JupyterLab Documentation

 19

https://www.youtube.com/watch?v=RFabWieskak
https://jupyterlab.readthedocs.io/en/stable/getting_started/overview.html

D. Koop, CSCI 490/680, Spring 2020

Jupyter Notebook
• Original Notebook Interface
• Just notebooks
• Same rich representations and text
• Same cell structure
• Same notebook files .ipynb
• Web-based

 20

[Jupyter]

http://jupyter.org

D. Koop, CSCI 490/680, Spring 2020

Python
• Started in December 1989 by Guido van Rossum
• “Python has surpassed Java as the top language used to introduce U.S.

students to programming…” (ComputerWorld, 2014)
• Python and R are the two top languages for data science
• High-level, interpreted language
• Supports multiple paradigms (OOP, procedural, imperative)
• Help programmers write readable code
• Use less code to do more
• Lots of libraries for python
- Designed to be extensible

 21

http://www.computerworld.com/article/2489732/it-skills-training/python-bumps-off-java-as-top-learning-language.html

D. Koop, CSCI 490/680, Spring 2020

Learning Python Resources
• https://software-carpentry.org/lessons.html
• https://wiki.python.org/moin/BeginnersGuide
• https://learnxinyminutes.com/docs/python3/
• http://www.pythontutor.com
• http://www.python-course.eu
• http://thepythonguru.com
• https://wiki.python.org/moin/IntroductoryBooks
• https://en.wikibooks.org/wiki/A_Beginner%27s_Python_Tutorial
• https://learnpythonthehardway.org
• learnpython.org

 22

https://software-carpentry.org/lessons.html
https://wiki.python.org/moin/BeginnersGuide
https://learnxinyminutes.com/docs/python3/
http://www.pythontutor.com
http://www.python-course.eu
http://thepythonguru.com
https://wiki.python.org/moin/IntroductoryBooks
https://en.wikibooks.org/wiki/A_Beginner's_Python_Tutorial
https://learnpythonthehardway.org
http://learnpython.org

D. Koop, CSCI 490/680, Spring 2020

Python Compared to C++ and Java
• Dynamic Typing
- A variable does not have a fixed type
- Example: a = 1; a = "abc"

• Indentation
- Braces define blocks in Java, good style is to indent but not required
- Indentation is critical in Python
 z = 20
 if x > 0:
 if y > 0:
 z = 100
 else:
 z = 10

 23

D. Koop, CSCI 490/680, Spring 2020

Advanced: Python 2 and 3
• https://docs.python.org/3/whatsnew/3.0.html
• Key Differences:

- print as a function: print "Hello" vs. print("Hello")
- Views and iterators instead of lists
- Integer divison: 5/2 = 2.5, 5//2 = 2
- Unicode as standard
- String formatting:

• Py2: "Hello %s. You are %d years old" % (name, age)
• Py3: "Hello {}. You are {} years old".format(name, age)
• Py3.6: f"Hello {name}. You are {age} years old"

 24

https://docs.python.org/3/whatsnew/3.0.html

D. Koop, CSCI 490/680, Spring 2020

In-Class Notebook
• Try out the examples from the following slides:
- Download
- View

 25

http://faculty.cs.niu.edu/~dakoop/cs680-2020sp/notebooks/lecture02.ipynb
https://nbviewer.jupyter.org/url/faculty.cs.niu.edu/~dakoop/cs680-2020sp/notebooks/lecture02.ipynb

D. Koop, CSCI 490/680, Spring 2020

Print function
•print("Hello World")

• Can also print variables:
name = "Jane"
print("Hello,", name)

 26

D. Koop, CSCI 490/680, Spring 2020

Python Variables and Types
• No type declaration necessary
• Variables are names, not memory locations

a = 0
a = "abc"
a = 3.14159

• Don't worry about types, but think about types
• Strings are a type
• Integers are as big as you want them
• Floats can hold large numbers, too (double-precision)

 27

D. Koop, CSCI 490/680, Spring 2020

Python Math and String "Math"
• Standard Operators: +, -, *, /, %
• Division "does what you want" (new in v3)
- 5 / 2 = 2.5
- 5 // 2 = 2 # use // for integer division

• Shortcuts: +=, -=, *=
• No ++, --
• Exponentiation (Power): **
• Order of operations and parentheses: (4 - 3 - 1 vs. 4 - (3 - 1))
• "abc" + "def"

• "abc" * 3

 28

D. Koop, CSCI 490/680, Spring 2020

Python Strings
• Strings can be delimited by single or double quotes

- "abc" and 'abc' are exactly the same thing
- Easier use of quotes in strings: "Joe's" or 'He said "Stop!"'

• String concatenation: "abc" + "def"
• Repetition: "abc" * 3
• Special characters: \n \t like Java/C++

 29

D. Koop, CSCI 490/680, Spring 2020

Python Strings
• Indexing:

a = "abcdef"
a[0]

• Slicing: a[1:3]
• Format:

name = "Jane"
print("Hello, {}".format(name))

- or
print(f"Hello, {name}")

 30

D. Koop, CSCI 490/680, Spring 2020

Exercise
• Given variables x and y, print the long division answer of x divided by y with

the remainder.
• Examples:

- x = 11, y = 4 should print "2R3"
- x = 15, y =2 should print "7R1"

 31

D. Koop, CSCI 490/680, Spring 2020

Loops
• while <condition>:
 <indented block>
end of while block (indentation done)

• Remember the colon!
• a = 5
while a > 0:
 print(a)
 a -= 2

• a > 0 is the condition
• Python has standard boolean operators (<, >, <=, >=, ==, !=)
- What does a boolean operation return?
- Linking boolean comparisons (and, or)

 32

D. Koop, CSCI 490/680, Spring 2020

Conditionals
• if, else
- Again, indentation is required

• elif
- Shorthand for else: if:

• Same type of boolean expressions (and or)

 33

D. Koop, CSCI 490/680, Spring 2020

break and continue
• break stops the execution of the loop
• continue skips the rest of the loop and goes to the next iteration

• a = 7
while a > 0:
 a -= 2
 if a < 4:
 break
 print(a)

 34

• a = 7
while a > 0:
 a -= 2
 if a < 4 and a > 2:
 continue
 print(a)

D. Koop, CSCI 490/680, Spring 2020

True and False
• True and False (captialized) are defined values in Python
• v == 0 will evaluate to either True or False

 35

D. Koop, CSCI 490/680, Spring 2020

Quiz
• Suppose I want to write Python code to print the numbers from 1 to 100.

What errors do you see?

// print the numbers from 1 to 100
int counter = 1
while counter < 100 {
 print counter
 counter++
}

 36

D. Koop, CSCI 490/680, Spring 2020

Functions
• Calling functions is as expected:

mul(2,3) # computes 2*3 (mul from operator package)

- Values passed to the function are parameters
- May be variables!
a = 5
b = 7
mul(a,b)

• print is a function
print("This line doesn't end.", end=" ")
print("See it continues")

- end is also a parameter, but this has a different syntax (keyword argument!)

 37

D. Koop, CSCI 490/680, Spring 2020 38

Why do we create and use functions?

D. Koop, CSCI 490/680, Spring 2020

Defining Functions
• def keyword
• Arguments have names but no types

def hello(name):
 print(f"Hello {name}")

• Can have defaults:
def hello(name="Jane Doe"):
 print(f"Hello {name}")

• With defaults, we can skip the parameter: hello() or hello("John")
• Also can pick and choose arguments:

def hello(name1="Joe", name2="Jane"):
 print(f"Hello {name1} and {name2}")
hello(name2="Mary")

 39

D. Koop, CSCI 490/680, Spring 2020

Return statement
• Return statement gives back a value:

def mul(a,b):
 return a * b

• Variables changed in the function won't be updated:
def increment(a):
 a += 1
 return a
b = 12
c = increment(b)
print(b,c)

 40

D. Koop, CSCI 490/680, Spring 2020

Python Containers
• Container: store more than one value
• Mutable versus immutable: Can we update the container?
- Yes → mutable
- No → immutable
- Lists are mutable, tuples are immutable

• Lists and tuples may contain values of different types:
• List: [1,"abc",12.34]
• Tuple: (1, "abc", 12.34)
• You can also put functions in containers!
• len function: number of items: len(l)

 41

D. Koop, CSCI 490/680, Spring 2020

Indexing and Slicing
• Just like with strings
• Indexing:
- Where do we start counting?
- Use brackets [] to retrieve one value
- Can use negative values (count from the end)

• Slicing:
- Use brackets plus a colon to retrieve multiple values:

[<start>:<end>]
- Returns a new list (b = a[:])
- Don't need to specify the beginning or end

 42

D. Koop, CSCI 490/680, Spring 2020

Examples
• Suppose a = ['a', 'b', 'c', 'd']
• What are?

- a[0]
- a[1:2]
- a[3:]
- a[:-2]
- a[::-1]

 43

D. Koop, CSCI 490/680, Spring 2020

Tuples
• months = ('January','February','March','April',
'May','June','July','August','September','October',
'November','December')

• Useful when you know you're not going to change the contents or add or
delete values

• Can index and slice
• Also, can create new tuples from existing ones:

- t = (1,2,3)
u = (4,5,6)

- v = t + u # v points to a new object
- t += u # t is a new object

 44

D. Koop, CSCI 490/680, Spring 2020

Modifying Lists
• Add to a list l:

- l.append(v): add one value (v) to the end of the list
- l.extend(vlist): add multiple values (vlist) to the end of l
- l.insert(i, v): add one value (v) at index i

• Remove from a list l:
- del l[i]: deletes the value at index i
- l.pop(i): removes the value at index i (and returns it)
- l.remove(v): removes the first occurrence of value v (careful!)

• Changing an entry:
- l[i] = v: changes the value at index i to v (Watch out for IndexError!)

 45

D. Koop, CSCI 490/680, Spring 2020

Modifying a list
• v = [1,2,3]
w = [4,5,6]

• x = v + w # x is a new list [1,2,3,4,5,6]
• v.extend(w) # v is mutated to [1,2,3,4,5,6]
• v += w # v is mutated to [1,2,3,4,5,6]
• v.append(w) # v is mutated to [1,2,3,[4,5,6]]
• x = v + 4 # error
• v += 4 # error
• v += [4] # v is mutated to [1,2,3,4]

 46

D. Koop, CSCI 490/680, Spring 2020

in: Checking for a value
• The in operator:

- 'a' in l

- 'a' not in l
• Not very fast for lists

 47

D. Koop, CSCI 490/680, Spring 2020

For loops
• Used much more frequently than while loops
• Is actually a "for-each" type of loop
• In Java, this is:

- for (String item : someList) {
 System.out.println(item);
}

• In Python, this is:
- for item in someList:
 print(item)

• Grabs each element of someList in order and puts it into item
• Be careful modifying container in a for loop! (e.g. someList.append(new_item))

 48

D. Koop, CSCI 490/680, Spring 2020

What about counting?
• In C++:
• for(int i = 0; i < 100; i++) {
 cout << i << endl;
}

• In Python:
• for i in range(0,100): # or range(100)
 print(i)

• range(100) vs. list(range(100))
• What about only even integers?

 49

D. Koop, CSCI 490/680, Spring 2020

Dictionaries
• One of the most useful features of Python
• Also known as associative arrays
• Exist in other languages but a core feature in Python
• Associate a key with a value
• When I want to find a value, I give the dictionary a key, and it returns the value
• Example: InspectionID (key) → InspectionRecord (value)
• Keys must be immutable (technically, hashable):
- Normal types like numbers, strings are fine
- Tuples work, but lists do not (TypeError: unhashable type: 'list')

• There is only one value per key!

 50

D. Koop, CSCI 490/680, Spring 2020

Dictionaries
• Defining a dictionary: curly braces
• states = {'MA': 'Massachusetts, 'RI': 'Road Island', 'CT':
'Connecticut'}

• Accessing a value: use brackets!
• states['MA'] or states.get('MA')
• Adding a value:
• states['NH'] = 'New Hampshire'

• Checking for a key:
• 'ME' in states → returns True or False
• Removing a value: states.pop('CT') or del states['CT']
• Changing a value: states['RI'] = 'Rhode Island'

 51

D. Koop, CSCI 490/680, Spring 2020

Dictionaries
• Combine dictionaries: d1.update(d2)

- update overwrites any key-value pairs in d1
when the same key appears in d2

• len(d) is the number of entries in d

 52

D. Koop, CSCI 490/680, Spring 2020

Extracting Parts of a Dictionary
• d.keys(): the keys only
• d.values(): the values only
• d.items(): key-value pairs as a collection of tuples:
[(k1, v1), (k2, v2), …]

• Unpacking a tuple or list
- t = (1,2)
a, b = t

• Iterating through a dictionary:
for (k,v) in d.items():
 if k % 2 == 0:
 print(v)

• Important: keys, values, and items are not in any specific order!
 53

D. Koop, CSCI 490/680, Spring 2020

Sets
• Just the keys from a dictionary
• Only one copy of each item
• Define like dictionaries without values

- s = {'a','b','c','e'}

- 'a' in s # True

• Mutation
- s.add('f')
s.add('a') # only one copy
s.remove('c')

• One gotcha:
- {} is an empty dictionary not an empty set

 54

