
Data Visualization (CSCI 490/680)

Vector Fields & Text

Dr. David Koop

D. Koop, CS 490/680, Fall 2019

D. Koop, CS 490/680, Fall 2019
8

Volume Visualization
• 2D visualization

 slice images
 (or multi-planar

 reformating MPR)

• Indirect
 3D visualization

 isosurfaces
 (or surface-shaded

 display SSD)

• Direct
 3D visualization
 (direct volume

 rendering DVR)

Visualizing Volume (3D) Data

�2

[© Weiskopf/Machiraju/Möller]

D. Koop, CS 490/680, Fall 2019

Object order approach
Image Plane

Data Set

Eye

Volume Ray Casting

�3

[Levine]

D. Koop, CS 490/680, Fall 2019

Image order approach
Image Plane

For each pixel {
 calculate color of the pixel
}

Data Set

Eye

Volume Ray Casting

�4

[Levine]

D. Koop, CS 490/680, Fall 2019

Pixel Compositing
Schemes

depth

max intensity

accumulate

average

first

in
te

ns
ity

color to distinguish structures
opacity to show inside

Types of Compositing

�5

[Levine and Weiskopf/Machiraju/Möller]

Pixel Compositing
Schemes

depth

max intensity

accumulate

average

first

in
te

ns
ity

color to distinguish structures
opacity to show inside

D. Koop, CS 490/680, Fall 2019

Accumulation
• If we're not just calculating a single number (max, average) or a position (first),

how do we determine the accumulation?
• Assume each value has an associated color (c) and opacity (α)
• Over operator (back-to-front):
- c = αf·cf + (1-αf)·αb·cb

- α = αf + (1-αf)·αb

• Order is important!

�6

Blue Last Blue First

D. Koop, CS 490/680, Fall 2019

Transfer Functions
• Where do the colors and opacities come from?
• Idea is that each voxel emits/absorbs light based on its scalar value
• …but users get to choose how that happens
• x-axis: color region definitions, y-axis: opacity

�7

[Kindlmann]

Human Tooth CT

f

RGB
Simple (usual) case: Map data
value f to color and opacityα

Transfer Functions (TFs)

D. Koop, CS 490/680, Fall 2019

s0

2

4
�00 �01 �02

�10 �11 �12

�20 �21 �22

3

5

2

4
v0

v1

v2

3

5

Fields in Visualization

�8

Scalar Fields Vector Fields Tensor Fields
(Order-1 Tensor Fields)(Order-0 Tensor Fields) (Order-2+)

Each point in space has an associated...

Scalar

Vector Fields

Vector Tensor

D. Koop, CS 490/680, Fall 2019

Vector Fields

�9

Wind [earth.nullschool.net, 2014]

D. Koop, CS 490/680, Fall 2019

Vector Fields

�9

Wind [earth.nullschool.net, 2014]

D. Koop, CS 490/680, Fall 2019

Glyphs
• Represent each vector with a symbol
• For vector fields, can encode direction,

magnitude, scalar value
• Good:
- Show precise local measures
- Can encode scalar information as color

• Bad:
- Possible sampling issues
- Clutter (Occlusion): Can remove some

points to help
- Clutter is worse in higher dimensions

�10

D. Koop, CS 490/680, Fall 2019

Streamlines & Variants
• Trace a line along the direction of the vectors
• Streamlines are always tangent to the vector field
• Basic Particle Tracing:
1. Set a starting point (seed)
2. Take a step in the direction of the vector at that point
3. Adjust direction based on the vector where you are now
4. Go to Step 2 and Repeat

�11

D. Koop, CS 490/680, Fall 2019

Euler Integration – Example
!s19 ≈ (0.75 | -3.02)T; v(s19) ≈ (3.02 |0.37)T;
clearly: large integration error, dt too large,
19 steps

0 1 2 3 4
0

1

2

Streamlines

�12

[via Levine]

[x,y] → [-y, (1/2)x], Step: 0.5

D. Koop, CS 490/680, Fall 2019

Euler vs. Runge-Kutta
RK-4: pays off only with complex flows

Here
approx.
like
RK-2

Higher-Order Interpolation Comparison

�13

[via Levine]

D. Koop, CS 490/680, Fall 2019

Project
• Continue to be creative but also remember expressiveness and effectiveness
• Presentations on Dec. 5:
- Turn in state of the visualization to Blackboard by Dec 4 at 11:59pm
- 5 minutes per presenter
- Showcase the visualization (not slides)

• Brief introduction to your data and questions
• Discuss design decisions
• Demonstrate the interactive features of your project

- Should run in a web browser so we will use my laptop
• Have until Dec. 6 to turn in final code and report

�14

D. Koop, CS 490/680, Fall 2019

Final Exam
• Thursday, Dec. 12, 10-11:50am
• Covers all topics but emphasizes second half of the course
• Similar format as Midterm (multiple choice, free response)
• 680 Students will have a few questions related to the research papers

�15

D. Koop, CS 490/680, Fall 2019

Streamlines & Variants
• Steady vs. Unsteady flows
- In unsteady flows, the vector field changes over time

• Variants: Pathlines and Streaklines

© Weiskopf/Machiraju/Möller 16

Characteristic Lines

• Comparison of pathlines, streaklines, and
streamlines

• Pathlines, streaklines, and streamlines are
identical for steady flows

t0 t1 t2 t3

pathline streakline streamline for t3

�16

[T. Möller]

D. Koop, CS 490/680, Fall 2019

Streamlines & Variants
• Steady vs. Unsteady flows
- In unsteady flows, the vector field changes over time

• Variants: Pathlines and Streaklines

© Weiskopf/Machiraju/Möller 16

Characteristic Lines

• Comparison of pathlines, streaklines, and
streamlines

• Pathlines, streaklines, and streamlines are
identical for steady flows

t0 t1 t2 t3

pathline streakline streamline for t3

�16

All are identical in steady flows!
[T. Möller]

D. Koop, CS 490/680, Fall 2019

(a) Tangent curves of s̄
correspond to the stream
lines in v. See eq. (6).

(b) Tangent curves of p̄
correspond to the path
lines in v. See eq. (5).

(c) Streak lines (gray
tubes) as intersections of
a path surface (red) with
t = const. hyperplanes.

Figure 1. Characteristic curves of a simple 2D time-dependent vector
field shown as illuminated field lines (stream and path lines) or gray
tubes (streak lines). The red/green coordinate axes denote the (x,y)-
domain, the blue axis shows time. From [30] with permission.

Hence, tangent curves uniquely describe the directional information
and are therefore an important tool for visualizing vector fields. The
tangent curves of a steady vector field v(x) are called stream lines. A
stream line describes the path of a massless particle in v.

In a time-dependent vector field v(x, t) there are four types of char-
acteristic curves: stream lines, path lines, streak lines and time lines.
We concentrate on the first three for the rest of this paper. In a space-
time point (x0, t0) we can start a stream line (staying in time slice
t = t0) by integrating

d
dt

x(t) = v(x(t), t0) with x(0) = x0 (2)

or a path line by integrating

d
dt

x(t) = v(x(t), t) with x(t0) = x0. (3)

Path lines describe the trajectories of massless particles in time-
dependent vector fields. The ODE system (3) can be rewritten as an
autonomous system at the expense of an increase in dimension by one,
if time is included as an explicit state variable:

d
dt

✓
x
t

◆
=

✓
v(x(t), t)

1

◆
with

✓
x
t

◆
(0) =

✓
x0
t0

◆
. (4)

In this formulation space and time are dealt with on equal footing.
Path lines of the original vector field v in ordinary space now appear
as tangent curves of the vector field

p̄(x, t) =
✓

v(x, t)
1

◆
(5)

in space-time. To treat stream lines of v, one may simply use

s̄(x, t) =
✓

v(x, t)
0

◆
. (6)

Figure 1 illustrates s̄ and p̄ for a simple example vector field v. It
is obtained by a linear interpolation over time of two bilinear vector
fields.

The above space-time formulations for stream and path lines are
powerful mathematical tools that facilitate the analysis of spatio-
temporal features. Theisel et al. [30] use these formulations to develop
tools for stream line and path line oriented topology. Weinkauf et al.
[34] devise a criterion for finding the centers of swirling path lines by
exploiting (5). Furthermore, the space-time formulations for stream
and path lines allow them to introduce a unified notation of swirling
motion in steady and unsteady flows.

Such a powerful formulation is not readily available for streak lines
as we will see in the following.

A streak line is the connection of all particles set out at different
times but the same point location. In an experiment, one can observe
these structures by constantly releasing dye into the flow from a fixed
position. The resulting streak line consists of all particles which have
been at this fixed position sometime in the past. Considering the vector
field p̄ introduced above, streak lines can be obtained in the following
way: apply a path surface1 integration in p̄ where the seeding curve
is a straight line segment parallel to the t-axis, a streak line is the in-
tersection of this path surface with a hyperplane perpendicular to the
t-axis (Figure 1c).

Streak lines fail to have a property of stream and path lines: they
are not locally unique in space-time, i.e., for a particular location and
time there is more than one streak line passing through. As we show in
the following section, we need a (n+2)-dimensional space to achieve
this property for streak lines. Also note, that streak lines coincide with
stream and path lines for steady vector fields v(x, t) = v(x, t0) and are
described by (1) in this setting.

3 STREAK LINES AS TANGENT CURVES

The constructive description of streak lines as intersections of certain
stream surfaces with a hyperplane is not suitable to examine their prop-
erties in a mathematical framework. In the following we develop a de-
scription of streak lines as tangent curves of a derived vector field that
lends itself to mathematical analysis and leads to novel approaches for
feature extraction as we will see in later sections.

3.1 Flow maps and their derivatives
To describe streak lines, we use the concept of flow maps and its
derivatives. The flow map f : D ! D describes the spatial location
of a particle seeded at (x, t) and integrated over a time interval t , de-
noted as f t

t (x) = f(x, t,t). As a side note, the computation of Finite
Time Lyapunov Exponents (FTLE) [9, 7, 20] is essentially based on
the consideration of the (spatial) gradient of f . In fact, —f t

t (x) =
∂f
∂x

is a n⇥n matrix describing the behavior of particles sent out in a small
spatial neighborhood of x.

For the consideration of streak lines, we additionally need the tem-
poral partial derivative ∂f

∂ t of f which describes the behavior of par-
ticles sent out in the same spatial location but slightly before or after
(x, t). To study its properties, we compute the (n+ 1)-dimensional
flow function f̄ of p̄ which is defined as

f̄ : D⇥T ! D⇥T , f̄(x, t,t) = f̄ t
t (x) =

✓
f t

t (x)
t + t

◆
. (7)

Then the gradient of f̄ can be expressed as the (n+1)⇥(n+1) matrix

—f̄(x, t,t) =
✓

—f ∂f
∂ t

0 .. 0 1

◆
. (8)

The fact, that the last component of p̄ is 1, ensures that the last line of
—f̄ is (0, ..,0,1).

3.2 Description of Streak Lines
We formulate the main property:

Theorem 1 Given a time-dependent vector field v(x, t) and its corre-
sponding flow map f t

t (x), every streak line of v is a tangent curve of
the (n+2)-dimensional vector field

¯̄q(x, t,t) =

0

@
(—f t

t (x))
�1 · ∂f t

t (x)
∂ t + v(x, t)

0
�1

1

A (9)

and vice versa. We call ¯̄q the streak line vector field. It is defined in
the domain D⇥T ⇥° with t 2 °.

1Note, that the extraction algorithms for path surfaces are commonly known
as “stream surface algorithms” [10, 26, 8, 23].

Streamlines vs. Pathlines

�17

[Weinkauf & Theisel, 2010]
Streamlines Pathlines

D. Koop, CS 490/680, Fall 2019

streamlines pathlines

streaklines timelines

Streaklines and timelines

�18

[via Levine]

D. Koop, CS 490/680, Fall 2019

Streamline Variants

�19

Streaklines in real life

© Weiskopf/Machiraju/Möller 30

Mapping Methods Based on
Particle Tracing

• Stream ribbons
– Trace two close-by particles
– Keep distance constant

© Weiskopf/Machiraju/Möller 31

Mapping Methods Based on
Particle Tracing

• Stream tubes
– Specify contour, e.g. triangle

or circle, and trace it through
the flow Stream Ribbons [Weiskopf/Machiraju/Möller]

Stream Tubes [Weiskopf/Machiraju/Möller]Streaklines [NASA]

D. Koop, CS 490/680, Fall 2019
Fig. 7. A streak surface in the Ellipsoid dataset as depicted in our interactive visualization tool. The surfaces is seeded upstream of the ellipsoid
in the initial timestep and shows a prominent bubble that precedes the vortex formation. Top: Overview; a time line texture provides temporal
orientation. Bottom left: Surface textured with streak ribbons. Bottom right: Without texturing, spatial and temporal orientation on the surface is
lost.

Fig. 8. Evolution of a time surface in the Ellipsoid dataset. The surface is seeded on rectangle located immediately downstream from the ellipsoid
near the temporal beginning of the dataset and illustrates parts of the flow that remain close to the ellipsoid and twist to envelop the nascent vortex
system as it forms. A two-dimensional color map helps identify distinct parts of the surface despite heavy overlap.

Fig. 9. Left images: Evolution of a time surface in the delta wing dataset, seeded parallel to the wing tip. The texture provides radial distance stripes
to the wing tip for spatial orientation. Right image: Despite numerical difficulties, the surface mesh remains well-conditioned.

Streak Surfaces

�20

[Krishnan et al., 2009]

D. Koop, CS 490/680, Fall 2019

were placed until 250 consecutive attempts failed the spacing
criteria. Theoverall sizeof thewedgeswas scaled so that there
would be about 2,000 strokes in each image.

For LIC, we used a box-shaped convolution kernel of
width 20 pixels. The convolution was performed on a noise
image where each pixel value was set to a uniform random
value in the interval ½0; 1". To correct for loss of contrast due to
the convolution, we applied an intensity mapping that took
intensity I to Ið4=ðIþ 1Þ5Þ.

For OSTR and GSTR, the code from [12], version 0.5, was
modified to allow batch running without a graphical
display and to have the optimization process stop after
60 seconds, without requiring manual intervention. OSTR
was invoked with opt 0.017 given to the stplace

program (the “opt 0.017” parameter invokes optimal
streamline placement using the algorithm from reference
[12] with a separation choice of 0.017), while GSTR was
invoked with square 23 .2 (streamlines 20 percent of the
image width each centered on a square grid of 23 points in
each direction), and both were plotted with “fancy arrows.”
All other options to OSTR and GSTR were left as the
defaults.

3 TWO-DIMENSIONAL VECTOR TASKS

The tasks we used to evaluate the effectiveness of
visualization methods needed to be representative of
typical interactions that users perform with visualizations,
simple enough that users could perform them enough times

for us to calculate meaningful statistics, and able to provide
an objective measure of accuracy.

We chose fluid mechanics as our “representative”
scientific field because it frequently utilizes vector visuali-
zations as a means of studying physical phenomena. We
searched the literature and interviewed fluid mechanics
researchers to identify good representative tasks. Two of the
tasks, locating critical points and identifying their types,
were derived from motivations behind the development of
many of the visualization methods that we tested. Critical
points are the salient features of a flow pattern; given a
distribution of such points and their types, much of the
remaining geometry and topology of a flow field can be
deduced, since there is only a limited number of ways to
join the streamlines. Beyond their importance for the
interpretation of vector fields, these tasks are testable: we
can measure how accurately a user determines the number,
placement, and type of a collection of critical points in a
given image.

Fig. 2 shows an example stimulus for locating all the
critical points in a vector field. The GSTR method is used in
this example. Users indicated the location of each critical
point with the mouse and pressed the “Enter” key (or
clicked on the “Next Image” button) when finished. Users
were not allowed to delete or move their chosen points
because editing operations tend to significantly increase the
variability of response times, making statistical compar-
isons more difficult. We realized that this limitation on the
user’s interactions might reduce accuracy but we felt that
the benefit of more precise timing was an appropriate

LAIDLAW ET AL.: COMPARING 2D VECTOR FIELD VISUALIZATION METHODS: A USER STUDY 61

Fig. 1. One of the approximately 500 vector fields visualized with each of the six visualization methods.

2D Vector Field Visualization Techniques

�21

[Laidlaw et al., 2005]

D. Koop, CS 490/680, Fall 2019
Figure 14: LIC image of the ground surface at time
step 200. The bottom 2 images show increasingly
close-up views of the field.

sualization. We will therefore also investigate the use of a

graphics-enhanced PC cluster as a dedicated visualization

server. The question then is whether our I/O strategies can

keep up with hardware accelerated rendering.

Acknowledgments
This work has been sponsored in part by the U.S. National

Science Foundation under contracts ACI 9983641 (PECASE

award), ACI 0325934 (ITR), ACI 0222991, and CMS-9980063;

and Department of Energy under Memorandum Agreements

No. DE-FC02-01ER41202 (SciDAC) and No. B523578 (ASCI

VIEWS). Pittsburgh Supercomputing Center (PSC) pro-

vided time on their parallel computers through AAB grant

BCS020001P. The authors are grateful to Rajeev Thakur

for his technical advice on using MPI-IO, Jacobo Bielak and

Omar Chattas for providing the earthquake simulation data,

and especially Paul Krystosek for his assistance on setting

up the needed system support at PSC.

8. REFERENCES
[1] J. Ahrens and J. Painter. E�cient sort-last rendering

using compression-based image compositing. In

Proceedings of the 2nd Eurographics Workshop on
Parallel Graphics and Visualization, pages 145–151,

1998.

[2] H. Bao, J. Bielak, O. Ghattas, L. F. Kallivokas, D. R.

O’Hallaron, J. R. Shewchuk, and J. Xu. Large-scale

simulation of elastic wave propagation in

heterogeneous media on parallel computers. Computer
Methods in Applied Mechanics and Engineering,
152(1–2):85–102, Jan. 1998.

[3] H. Bao, J. Bielak, O. Ghattas, D. R. O’Hallaron, L. F.

Kallivokas, J. R. Shewchuk, and J. Xu. Earthquake

ground motion modeling on parallel computers. In

Supercomputing ’96, Pittsburgh, Pennsylvania, Nov.

1996.

[4] W. Bethel, B. Tierney, J. Lee, D. Gunter, and S. Lau.

Using high-speed WANs and network data caches to

enable remote and distributed visualization. In

Proceedings of Supercomputing 2C00, November 2000.

[5] B. Cabral and L. Leedom. Imaging vector fields using

line integral convolution. In SIGGRAPH ’93
Conference Proceedings, pages 263–270, August 1993.

[6] L. Chen, I. Fujishiro, and K. Nakajima. Parallel

performance optimization of large-scale unstructured

data visualization for the earth simulator. In

Proceedings of the Fourth Eurographics Workshop on
Parallel Graphics and Visualization, pages 133–140,

2002.

[7] W. Daniel, E. Gordon, and E. Thomas. A

texture-based framework for spacetime-coherent

visualization of time-dependent vector fields. In

Proceedings of IEEE Visualization 2003 Conference,
pages 107–114, 2003.

[8] W. Gropp, E. Lusk, and R. Thakur. Using
MPI-2–Advanced Features of the Message Passing
Interface. MIT Press, 1999.

Line Integral Convolution
• Goal: provide a global view of a steady

vector field while avoiding issues with clutter,
seeds, etc.

• Remember convolution?
• Start with random noise texture
• Smear according to the vector field
• Need structured data

�22

© Weiskopf/Machiraju/Möller 42

Line Integral Convolution

Input noise T

Final image

Vector field

Convolution

L-L

kernel
k(s)

Particle tracing

© Weiskopf/Machiraju/Möller 42

Line Integral Convolution

Input noise T

Final image

Vector field

Convolution

L-L

kernel
k(s)

Particle tracing

© Weiskopf/Machiraju/Möller 42

Line Integral Convolution

Input noise T

Final image

Vector field

Convolution

L-L

kernel
k(s)

Particle tracing

* =

[Weiskopf/Machiraju/Möller]

D. Koop, CS 490/680, Fall 2019

Figure 2: Visualization of a LIC volume: The flow field is explored using a clip plane, which is interactively translated.

an underlying geometry (see Figures 4 and 11). In the same way,
complementary information is visually integrated for better orienta-
tion if fusion with another volume is performed. As demonstrated
in Figure 15 a 3D–LIC calculation within the aorta is combined
with the surrounding anatomy. In contrast, the fully opaque assign-
ment shows the flow information directly at the outer surface of the
vector field. According to Figure 2 this is useful if a clip plane is
applied in order to explore the LIC volume.
In Figure 3 the setting of the transfer functions for color and

opacity values is shown which leads to the visualization presented
in Figure 4. Although arbitrary transfer functions are applicable a
piecewise linear mapping is sufficient. The arrows indicate the lo-
cation and the direction of simple manipulation operations which
are required to adjust the lookup tables. As an additional orienta-
tion the intensity histogram of the volume data is displayed within
the diagram. If an opaque representation is envisaged (left side),
opacity is set to a constant high value. However, it is useful to de-
crease it slightly in order to improve the visual continuity and im-
pression. Thereby, stream lines become visible which are directly
below the actual surface. Simultaneously, a linear ramp is specified
for the luminance values enhancing the contrast of the resulting im-
age. Within the histogram this ramp is positioned in the center of
the main peak.

0 data value

di
sp

la
ye

d
va

lu
e

0 data value

di
sp

la
ye

d
va

lu
e

opacity

luminanceluminance

opacity

histogram

histogram

Figure 3: Intensity histogram and transfer functions for the visual-
ization of the LIC volume shown in Figure 4: Setting for the opaque
representation (left)— Setting for the semi-transparent representa-
tion (right).

The semi–transparent representation (right side) requires to use
low opacity values for low data values and high opacity values for
high data values. Further on, a linear ramp of high gradient is used
in between in order to produce a smooth transition. Depending on
the selected background color, the contrast is intensified if there
is another linear ramp for opacity values that increases to lower
data values. This is of importance if light background colors are

chosen. The transfer function for luminance values is positioned
within the transition from low to high opacity values. This leads
to a good impression of depth, as can be seen on the right side of
Figure 4. Moreover, the interactive adjustment of transfer functions
is an efficient way to substitute the separate application of sparse
noise textures as proposed in [15].

Figure 4: Simulated flow around wheel with different setting of
transfer functions: (left) Opaque representation showing details at
the surface and (right) semi–transparent representation efficiently
substituting the application of sparse noise textures.

5 Clipping Functionality
Additional scalar fields such as density, pressure, or absolute value
of velocity are frequently used in order to specify a volume of inter-
est (VOI) to restrict the rendering process to significant parts of the
flow. This VOI is usually applied a priori to the input texture or as
a postprocess to the resulting 3D–LIC texture. Since this operation
modifies the voxel data, it is impossible to change the VOI during
the visualization process.
The above mentioned strategy aims at a visualization of the LIC

volume as an opaque object extracted by the VOI. Due to the in-
tricate and dense structure of stream lines inside a 3D–LIC texture,
higher transparency will result in cluttered displays. In order to
explore the interior structures, the use of clip planes is a straight
forward approach. However, for a static visualization clip planes
are not sufficient when visualizing 3D–LIC, because planar sur-
faces do not generally follow the direction of the flow, resulting
in discontinuous stream lines. However, the interactivity provided

3D LIC

�23

[Rezk-Salama et al., 1999]

D. Koop, CS 490/680, Fall 2019

Critical Points
• Remember finding min/max for functions?
• Want to understand the general structure of

a field, not the exact values
• Find critical points, understand there is a

general trend in between
• How?
- Derivative for functions
- For fields…gradients

�24

[DQ Nykamp, MathInsight]

http://mathinsight.org/image/critical_points_one_variable

D. Koop, CS 490/680, Fall 2019

Topology
• The general shape of data
• Visualizations that can be "stretched" to resemble each other are

topologically equivalent
• Technically, continuous transformations don't change anything
• Connect critical points to obtain a general picture of the data
• Can talk about topology in both scalar and vector fields

�25

D. Koop, CS 490/680, Fall 2019

2D Scalar Field Topology

�26

[Wikipedia]

http://commons.wikimedia.org/wiki/File:Topographic_map_example.png

D. Koop, CS 490/680, Fall 2019

2D Scalar Field Topology

�26

[Wikipedia]

http://commons.wikimedia.org/wiki/File:Topographic_map_example.png

D. Koop, CS 490/680, Fall 2019

Scalar Field Topology
• Examine the gradient (changes between points on the grid) of the scalar field
• Where the gradient is zero, we have critical points (max, min, saddle)
• Can build Reeb Graph, Contour Tree, or Morse-Smale Complex from this

information to show the topology (with some reasonable assumptions about
how the scalar field looks)

�27

D. Koop, CS 490/680, Fall 2019

Key development in topological data analysis (TDA)

1. Abstraction of the data: topological structures and their combinatorial
representations
2. Seperate features from noise: persistent homology

2D Scalar function

Reeb Graph/Contour Tree/Merge Tree

Morse-Smale Complex

Two Types of Topological StructuresScalar Field Topology

�28

[via Levine]

D. Koop, CS 490/680, Fall 2019

Vector Field Topology
• Instead of “guessing” correct seed points for streamlines to understand the

field, try to identify structure (topology) of the field

�29

[M. Henle]

D. Koop, CS 490/680, Fall 2019

Critical Points

�30

[Helman & Hesselink]

D. Koop, CS 490/680, Fall 2019

Critical Points
• Critical Points
- Find where the vector field vanishes (the zero vector or undefined)
- Attracting Nodes (Sinks), Repelling Nodes (Sources), Attracting Foci,

Repelling Foci, Saddles, Centers
• How to find such points?
- Can use a similar idea to Marching Cubes
- Use the eigenvalues of the Jacobian matrix to classify

�31

D. Koop, CS 490/680, Fall 2019

Topological Skeleton

�32

D. Koop, CS 490/680, Fall 2019

Examples
More Examples

�33

[Levine]

D. Koop, CS 490/680, Fall 2019 �34

Text

D. Koop, CS 490/680, Fall 2019

Text Visualization
• Why visualize text? Text is already visual, right?
• How much text? What granularity? (What is an item?)
- Single string
- Words/lines
- One document
- Multiple documents (corpus)

• Considerations:
- Legibility
- Variable length
- Locality
- Occurence

�35

D. Koop, CS 490/680, Fall 2019

Data Sources
• Literature: books, poetry
• Social Media: tweets, posts
• Web: Pages, posts, emails
• Code

�36

D. Koop, CS 490/680, Fall 2019

Tag Cloud (One Document)
• Derived data: number of occurrences of words
• Channel: Font size
• Potential problem: Think about ink…

�37

[Scray, CC-BY-SA-3.0]

D. Koop, CS 490/680, Fall 2019

TextArc (One Document)

�38

[textarc.org]

http://textarc.org

D. Koop, CS 490/680, Fall 2019

TextArc
• Three rules:
- Show the entire text in an ellipse around the page: line-by-line and word-by-

word
- Like tag clouds, use larger font-size and brighter text for frequent words
- Central words move to the middle (links to its mentions)

�39

D. Koop, CS 490/680, Fall 2019

on Many Eyes, for instance, we would not have guessed at the
popularity of religious analyses. Given the broad demand for text
visualizations, however, it seems like a fruitful area of study.

ACKNOWLEDGEMENTS
The authors thank Frank van Ham, Jesse Kriss, Matt McKeon, Lee
Byron, and Eric Gilbert for helpful suggestions. In addition, we are
grateful to the users of Many Eyes for their creativity and willingness
to provide feedback on an experimental visualization technique.

Fig 10: Word Tree showing all occurrences of “I have a dream” in Martin Luther King’s historical speech.

Fig 9. Word tree of the King James Bible showing all occurrences of “love the.”

Word Tree (One Document)

�40

[Wattenberg & Viegas, 2007]

D. Koop, CS 490/680, Fall 2019

Word Tree
• A "Visual Concordance"
• Shows phrasing, relationships between words
• Starting point is a single word or snippet
• Branches to show common words/phrases that follow
• Goal is to show context: "keyword-in-context"

�41

D. Koop, CS 490/680, Fall 2019

Many Eyes word tree provides a choice among three options. The
branches can be arranged alphabetically (making it easy to scan for
particular words), by frequency (so the largest branches are first), or
by order of first occurrence in the text (the default option, since it
often produces a tree that best reflects the underlying text.) As with
clicking, when the user switches between two of these options the
word tree animates smoothly to help make clear what is changing.

As the user interacts with the tree—she may click on a branch,
recenter the tree, choose a different search term, etc.—the word tree
tracks of the sequence of actions just as a web browser does. This
allows the user to click on browser-like “back” and “forward”
buttons to review her previous steps in the visualization. This feature
helps users quickly switch between desired states for comparisons
and easily retreat from navigational dead ends.

As with all visualizations on Many Eyes, users can set particular
states and make comments. In doing so, they may wish to point to
particular items on the visualizations. To support this, users can set
the visualization to a “highlighter mode,” where clicking on words
will not cause a recentering of the tree, but instead highlight words
with translucent brown circles. Thus a user can leave a comment
like, “Note the position of God in this context,” and highlight “God”
so that other readers do not need to search for where it occurs.

Finally, the word tree does not provide any sort of “overview” of
the text nor does it present an initial search term for viewers to start
from. In this way, the visualization resembles an information
retrieval interface, driven by a search term rather than starting with
an overview. The reason for this design choice is that without a
search term, there is no obvious entry point—several alternatives
with suffix-tree-like beginnings were attempted, but seemed busy
and uninformative. A future version might try to automatically find a
good starting point: perhaps a tree centered on the most frequent
terms, a tree that shows the highest number of separate branches, or a
tree with the deepest branches. Having a default start point might
solve certain problems. For instance in the current system, unless the
creator of the word tree actively sets an initial search term, the
visualization will look blank to subsequent viewers on the site.
Another limitation of not having an overview is that users need to
know a bit about the underlying data to make sure that they look for
words that appear in the text. Many other interactive features are

possible. We discuss these in the sections on user feedback and
future work.

4 IMPLEMENTATION CONSIDERATIONS
The current implementation of the Word Tree on Many Eyes is a

Java applet, written using JDK 1.4. It is engineered to handle texts
with up to 1,000,000 tokens. (In addition to being a pleasingly round
figure, this is the approximate number of tokens in the King James
Bible, probably one of the most-visualized text on Many Eyes.) In
this section we discuss some of the implementation details and
decisions that allow the applet to scale—both visually and in
performance—to a million tokens.

The data structure behind the word tree—that is, the hierarchical
structure of the context words—is well-known to computer scientists
as a “suffix tree.” In our context the practical bound on performance
is memory rather than CPU cycles: constructing the tree is fast (at
least for a million-token text) as long as there is sufficient memory.
Java applets often have limited heap space, as low as 64MB.
Although this may seem more than adequate for holding a million-
node tree, it is actually a serious constraint due to the memory-
intensive nature of Java objects. To get around the problem, we do
not create a suffix tree for the entire text, but rather create the suffix
tree on the fly, a new one for each phrase typed in. In practice this
saves a significant amount of memory; for instance, in the King
James Bible (about 1,000,000 tokens), the word tree for “the” has
only about 64,000 leaves. This complicates effects such as animated
transitions, but permits the feeling of instant feedback we desire.

In addition to the data-level scaling, two issues arise in scaling
the tree visually. The first is that the total number of branches is huge
compared to the screen size. When there are tens of thousands of
leaves to a tree, there is no sensible way of displaying all of these on
a screen that is a few hundred pixels high. We resolve this issue by a
standard “level of detail” method. As the geometry of the tree is
defined, when it is determined that a subtree takes up less than 3
pixels of vertical space, we do not draw the entire subtree. Instead,
we find the deepest branch, and draw that. By doing so, we show the
overall shape of the tree, but do not draw more than necessary. This
simplifies the display and also keeps the number of rendered objects
low enough that smooth animated transitions are possible.

Fig 3. Sequence showing some of the interaction options in the word tree. In figure A, the user has typed the word “if” in Romeo and Juliet. In B,
the user has clicked on “blind,” which appears in one of the branches under “if.” This causes the visualization to recenter to the longer phrase “if
love be blind.” In C, the user Control-clicks on “blind,” which causes the visualization to recenter to blind by itself, revealing that there are
additional phrases after this term.

Interaction in Word Tree

�42

[Wattenberg & Viegas, 2007]

D. Koop, CS 490/680, Fall 2019

On the other hand, applying different expressions to the same text
can reveal a series of interrelated conceptual networks. The phrase
nets of Jane Austin’s novel Pride and Prejudice in Fig. 5 illustrate
this. Matching “X and Y” shows a network of concepts and people.
The main characters appear neatly organized in two clusters: Jane,
Elizabeth, Lydia, Kitty, Catherine and Mr. Bingley form a central
cluster, whereas “mother,” “aunt,” and “uncle” keep some distance.
Positive attributes such as “sense,” “disposition,” “humour,”
“kindness” cluster together while less flattering qualities such as
“pride,” “conceit,” “vanity,” “folly,” and “ignorance” form a group
of their own. Perhaps most interesting, to those familiar with the
novel, is that “Darcy” does not appear in the network—in a certain
sense he is the most solitary major character.

If we analyze the same text with the pattern “X at Y” we obtain
an entirely different network that reveals the set of locations
inhabited by the characters in the novel and the events that take place
at those locations. In a sense, the user can direct exploration towards
a particular dimension of the text by intelligently choosing the
pattern to match for.

Figure 1 shows the result of another targeted pattern. Here we
have analyzed the whole bible using the pattern “X begat Y”, a
specific formulation from the King James Bible indicating a parent -
child relationship. The resulting graph illustrates the lengthy
genealogies that are recorded by many different books in the bible.
The network also uncovers a number of defining aspects of these
lineages, such as the importance of Abraham.

4.2 Regular expressions and matching
The patterns we have shown so far are of the form “X <connector>
Y”, where the connector is either a separate word or a phrase.
However, regular expressions also allow us to specify patterns that
match for specific pre- and postfixes to X and Y. Previously, the
authors worked with a humanities scholar to analyze a set of 7,000
British novel titles between 1740 and 1850 [15] —in fact, much of
the motivation behind building phrase net comes from this
collaboration. This scholar was interested in how the use of simple
syntactic constructions such as “X of the Y” reflected changes in
literary style over the centuries.

Fig 5. Matching different patterns on the same text. Here we analyzed Jane Austen’s Pride and Prejudice with “X and Y” and “X at Y”
respectively. The left image shows relationships between the main characters amongst others, while the right image shows relationships
between locations.

Fig 4. Matching the same pattern on different texts. Here we used the pattern “X of Y” to compare the old and new testaments. Israel takes a
central place in the Old Testament, while God acts as the main pattern receiver in the New Testament.

Phrase Nets

�43

[van Ham, 2009]

Pride and Prejudice
Query: X and Y

D. Koop, CS 490/680, Fall 2019

To appear in IEEE Transactions on Visualization and Computer Graphics.

siderable design challenges and open questions remained. Close read-
ing covers a broad range of tasks, encompasses varying styles of anal-
ysis, allows many different points of entry, and accepts an extensive
range of sometimes radically divergent interpretations. In addition,
our collaborators admitted resistance to integrating technology into
their close reading. Thus, we also had to cultivate their trust, com-
mitment, and enthusiasm.

A highly collaborative and exploratory design process proved to
be critical in helping us navigate these challenges. We began by dis-
cussing the poets’ experience with, and the results of, their previous
visualization research. Next, we employed a number of different tech-
niques in an attempt to clarify our point of entry. The first technique
was an observation of a pair of close readings between our two primary
collaborators, starting with the poem “Prayer” by Jorie Graham, fol-
lowed by a close reading of “Night” by Louise Bogan. Close readings
can be performed internally by one poet or externally as a conversation
between two or more people. Throughout many of our future conver-
sations, our collaborators returned to “Night” and other poems and
picked up close readings in order to illustrate particular concepts —
such as how sonic patterns can reinforce or undercut semantic mean-
ing. Other techniques for clarifying our entry point included studying
an annotated poem from one of our collaborators, giving our collabora-
tors a list of potentially interesting sonic devices that could be detected
computationally and having them compile a list articulating the vari-
ous sonic features that they were interested in exploring, and attending
public poetry readings to better understand the nature and practices of
the poets and poetry scholars.

Based on these activities, we ideated on a range of design possi-
bilities to pursue, which we then developed into a set of technology
probes [32] — we discuss details of these probes in Section 4. The
probes were successful both in engaging our collaborators and also in
helping us better understand the problem space. We iteratively refined
the probes over the course of several months based on extensive user
feedback, both casual and via formal interviews, from our primary col-
laborators as well as our extended network of poets and poetry schol-
ars. The incremental steps and the adjustments we made in response
to their feedback and critiques helped the poets become familiar with
the technology and also resulted in an interface that reflected their in-
terests, aesthetics, and values. In addition, because our meetings were
highly conversational and interactive, the poets actually generated po-
etic insights in our meetings on the fly, simply in response to develop-
ing and imagining the tool. This gave them confidence that the work,
and eventually the visualization tool, would be useful to them.

Results from the technology probes formed our initial design ideas
for the tool Poemage. These ideas were implemented into an initial
prototype and presented to our primary collaborators. Based on casual
feedback, we refined and improved existing features and added new
features, the details of which are provided in Section 7.

4 TECHNOLOGY PROBES

The technology probes were implemented in Processing [27] and com-
bined into a single, multi-tabbed interface, shown in Figure 2. Users
would load a poem of their choosing into the interface, which dis-
played the text of the poem, along with information about selected sets
of sonic patterns. Following an initial development period in which
versions of the probes were presented for informal feedback to our
primary collaborators, the technology probes were deployed, along
with written documentation, to four of our collaborators. The collab-
orators were given approximately one month to experiment with the
probes, after which formal interviews were conducted. Interviews in-
cluded brief observations of our collaborators using the tool, followed
by questions surrounding approach, capabilities, and general usability.
Interviews were recorded and transcribed, and one observation period
was screen captured.

The initial goal of the technology probes was to explore the many
different aspects of sound within a poem, as well as the role that sonic
analysis plays in close reading. Using these probes, we experimented
broadly in order to better understand, and to help our collaborators bet-
ter understand, what kinds of sonic relationship they were interested

Fig. 2. Interface for the first set of technology probes.

in exploring in a poem. What we found led us to develop a broader
understanding of rhyme, which we discuss further in Section 5. Fur-
thermore, these initial probes indicated to us that our collaborators
were not interested in exploring individual sonic relationships, but in-
stead they sought to understand how different sonic patterns interact
and evolve across a poem. We thus developed a second set of tech-
nology probes to explore this notion of sonic topology. These investi-
gations were instrumental to the development of our data abstraction,
presented in Section 6.

The technology probes also allowed us to establish a common vo-
cabulary with our collaborators; to focus on understanding how to cap-
ture data from a poem, as opposed to how to visualize it; and to define
the space of what we could computationally detect in a poem. Over-
all, the probes helped us create an experimental and playful research
environment that we maintained for the duration of the collaboration.

5 POEMS AND SOUND

Poets and scholars see poems as living and relational, their literary
features interacting not only with each other but also with us as read-
ers. In close reading, a poetry scholar carefully attends directly to
specific texts, tracing the interactions among such literary features as
rhyme and meter, sound, figures, and syntax, while also considering
how a given poem explicitly or implicitly converses with other poems
in the literary canon. Although not viewed as an established technique
for writing poetry, the experience of close reading often leads to the
generation of new poems, and many poets do engage it as a prod to
composition.

As a broad, literary device, sound provides poets with a rich source
of play and can deeply influence the interpretation of the poem. Be-
cause of its emotional power and the way it works directly on the body
of the reader of the poem, sound is an important source of poetic po-
tency and can be used to reinforce or to undercut meaning conveyed
via other poetic devices. In addition, sonic ambiguities — for example,
in homographs like wind and bow as well as in words with multiple
pronunciations — also help generate multiple possible interpretations
of the same poem. Furthermore, unlike many devices which may or
may not be present at a particular moment or even at all in a given
poem, sound is arguably pervasive in every poem at all levels.

Our collaborators consider a broad range of sonic and sound-related
devices in their close readings of poems: from traditional types of
rhyme such as rhyme/sublime and picky/tricky; to patterns involving
the spellings of words, including eye rhymes (cough/bough) and ana-
grams (desserts/stressed), which may or may not relate sonically; to
patterns surrounding the physiological production of speech sounds,
such as the location of the tongue in relation to the lips. In this de-
sign study, we refer to all sonic and linguistic devices as rhyme [40], a
broad definition embraced by our collaborators.

Our collaborators are particularly interested in the conceptual
metaphor of a poem as a flow [36]. By approaching a poem, for the
purposes of visualization, as a fluid moving via its linguistic devices
and figures through a defined space, the flow metaphor captures three

3

Words are more than just character sequences

�44

[N. McCurdy et al., 2015]

D. Koop, CS 490/680, Fall 2019

Poemage
• Support close reading—in-depth reading to generate as much productive

meaning as possible
• Search for poetic devices: affect, imagery, pun, metaphor
• Sound and linguistic devices → Rhyming
- Identical: pare/pair
- Perfect: picky/tricky
- Assonance & consonance: blue/estuaries, shell/chiffon
- Eye rhyme: cough/bough

• Support exploration: scholars do not want computers to "solve" poems

�45

[N. McCurdy et al., 2015]

D. Koop, CS 490/680, Fall 2019

To appear in IEEE Transactions on Visualization and Computer Graphics.

Poemage: Visualizing the Sonic Topology of a Poem

Nina McCurdy, Julie Lein, Katharine Coles, Miriah Meyer

Fig. 1. The Poemage interface comprises three linked views: (left) the set view allows users to browse sets of words linked through

sonic and linguistic resemblances; (middle) the poem view allows users to explore sonically linked words directly via the text; (right)
the path view shows the sonic topology of a poem.

Abstract—The digital humanities have experienced tremendous growth within the last decade, mostly in the context of developing

computational tools that support what is called distant reading — collecting and analyzing huge amounts of textual data for synoptic

evaluation. On the other end of the spectrum is a practice at the heart of the traditional humanities, close reading — the careful,

in-depth analysis of a single text in order to extract, engage, and even generate as much productive meaning as possible. The true

value of computation to close reading is still very much an open question. During a two-year design study, we explored this question

with several poetry scholars, focusing on an investigation of sound and linguistic devices in poetry. The contributions of our design

study include a problem characterization and data abstraction of the use of sound in poetry as well as Poemage, a visualization tool

for interactively exploring the sonic topology of a poem. The design of Poemage is grounded in the evaluation of a series of technology

probes we deployed to our poetry collaborators, and we validate the final design with several case studies that illustrate the disruptive

impact technology can have on poetry scholarship. Finally, we also contribute a reflection on the challenges we faced conducting

visualization research in literary studies.

Index Terms—Visualization in the humanities, design studies, text and document data, graph/network data

1 INTRODUCTION

The use of digital tools across disciplines in the humanities has ex-
ploded during the last decade. Popular projects such as the Google
Ngram Viewer [37] and Wordle [55] have harnessed the power of com-
putation to look across huge corpora of texts, leading to insights that
had never been available before. Tools such as these are highly ef-
fective in supporting what is called distant reading — a term coined
by literary scholar Franco Moretti to describe critical approaches that
seek to understand literature and literary history by aggregating and
quantitatively analyzing large text corpora.

Despite this new mode of scholarship, traditional humanities schol-
ars continue to engage primarily in a very different type of analysis
called close reading. As its name implies, close reading involves a
detailed analysis of a text in all its complexity, encompassing an anal-
ysis not only of specific operations such as syntax, rhyme, and meter;
such figures as metaphor and allusion; and such linguistic effects as
affect, but also of how these operations interact across the temporal

and spatial field of the text, with each other and with the reader, to
create meanings greater than the sum of the parts. As this description
suggests, much of the work done in close reading is well beyond the
current capabilities of computation. Thus, the true value of computa-
tion to close reading is still very much in question and is the topic of an
ongoing dialogue in the digital humanities. While a handful of com-
putational tools have been designed to support close reading, much of
the problem space remains unexplored.

We conducted a two-year design study with poetry scholars and
practitioners to explore this gap. Our two primary collaborators, both
of whom are co-authors on this paper, identify both as poets and as
academics. We also engaged a network of practitioners, including two
professors and two students of poetry. Together, these collaborators
have literary expertise in medieval, early modern, modernist, and con-
temporary poetry, and they analyze poetry from a range of traditions
and periods. Furthermore, they write formal verse, free verse, and ex-
perimental poems, and thus bring a diversity of theoretical viewpoints
to their critical and creative work.

During this design study, we encountered several specific chal-
lenges that affected our design process. First, supporting close reading

1

Interface

�46

[N. McCurdy et al., 2015]

D. Koop, CS 490/680, Fall 2019

Comparing Documents
• Word choice/usage
• Relationships
• Phrasing

�47

D. Koop, CS 490/680, Fall 2019

Tag Cloud (Two Documents)

�48

[Pyrsmis, CC-BY-SA-3.0]

D. Koop, CS 490/680, Fall 2019 Figure 1: A PTC revealing the differences in drug prevalence amongst the circuits.

ally similar to the connected lists view of Jigsaw [28], however PTCs
use size-weighting of words in the display.

Shneiderman and Aris [26] have previously explored the contents
of a faceted legal document databases using matrix-based visualiza-
tions to reveal the number and type of data items matching each
facet value. Our work differs in that we seek to aggregate and vi-
sualize the contents of the data items, not only their presence or
absence. A matrix visualization approach would not be appropri-
ate as our word-selection method, described later, seeks to maximize
the differences between corpus subsets. Rather than the single ver-
tical column of words that a words ⇥ facets matrix would contain,
our approach allows the entire space to be filled with a wide vari-
ety of words. VisGets, or visualization widgets, have been used to
explore faceted collections of web-based streaming data [5]. Facets
are filtered using scented visual widgets [34] appropriate for the data
type, providing both an overview of the available data items and a
method to drill down along several facets simultaneously. A tag
cloud VisGet consists of a traditional tag cloud summarizing all avail-
able documents — text differentiation along a facet is only achieved
through interactive brushing. The goal of VisGets is to provide coor-
dinated overview and navigation tools in a faceted information space,
where our work is customized to providing meaningful differentiat-
ing overviews across facets within large amounts of textual data.

Finally, the Authorlines visualization [31] provides an overview of
individual messages using arrays of circles, sized according to mes-
sage length. We borrow this visual encoding and extend it to small
multiples of bar charts in the document browser coordinated view,
linked to the PTC.

2.2 U.S. Circuit Court Decisions

“Jargon serves lawyers as a bond of union: it serves them,
at every word, to remind them of that common interest,
by which they are made friends to one another, enemies to
the rest of mankind.” Jeremy Bentham [2, 292]

Figure 2: US Court Circuits are multi-state regions.

The words of the iconoclast Bentham were not the last written on
the topic of legal language. Law and language meet in many aca-
demic ways: forensic linguists help solve crimes, judges make se-
mantic rulings on unclear contract wording, and social scholars take
a high-level view, studying the language of lawyers and judges [29].
By analyzing the written decisions of the US Circuit Courts of Ap-
peal, we hope to shed light on thematic and potentially linguistic dif-
ferences between subsets of the data. Differences in word usage be-
tween courts has been previously studied using legal databases as a
source for historical lexicography [8]. However, in that work, text-
based searches provided information on particular words of interest.
Through text mining and visualization, we select words of interest
and provide a broad overview as an entry point to deeper analysis.

The US Circuit Courts of Appeal are made up of 12 regionally-
based court divisions (numbered First through Eleventh, plus the DC
Circuit) and the Federal Circuit, which hears cases of national rele-
vance, such as patent-related appeals (see Fig. 2). This data contains
of 628,000 court decisions, each labeled by circuit. The judgments
are faceted, because they can be organized along several dimensions,
such as the lead authoring judge, the decision length, the date of the
decision, or whether the lower court was upheld or overturned. For

Parallel Tag Clouds (Multiple Documents)

�49

[Collins et al., 2009]

D. Koop, CS 490/680, Fall 2019

Jigsaw (Multiple Documents)

�50

[http://www.cc.gatech.edu/gvu/ii/jigsaw/]

D. Koop, CS 490/680, Fall 2019

Jigsaw (Multiple Documents)

�50

[http://www.cc.gatech.edu/gvu/ii/jigsaw/]

