
Data Visualization (CSCI 490/680)

Volume Rendering & Vector Fields

Dr. David Koop

D. Koop, CS 490/680, Fall 2019

D. Koop, CS 490/680, Fall 2019
8

Volume Visualization
• 2D visualization

 slice images
 (or multi-planar

 reformating MPR)

• Indirect
 3D visualization

 isosurfaces
 (or surface-shaded

 display SSD)

• Direct
 3D visualization
 (direct volume

 rendering DVR)

Visualizing Volume (3D) Data

�2

[© Weiskopf/Machiraju/Möller]

D. Koop, CS 490/680, Fall 2019

20 2. Marching Cubes and Variants

1

2

2

3

3 3

3

4

4

5

6

6

6

6

7

7

7

7

8

8

8

8

8

9

9

1

2

2

3

3 3

3

4

4

5

6

6

6

6

7

7

7

7

8

8

8

8

8

9

9

(a) Scalar grid. (b) The +/− grid.

1

2

2

3

3 3

3

4

4

5

6

6

6

6

7

7

7

7

8

8

8

8

8

9

9

1

2

2

3

3 3

3

4

4

5

6

6

6

6

7

7

7

7

8

8

8

8

8

9

9

(c) Midpoint vertices. (d) Isocontour.

Figure 2.4. (a) 2D scalar grid. (b) Black vertices are positive. Vertex v with scalar
value sv is positive if sv >= 5 and negative if sv < 5. Note that sv = 5 for one grid
vertex v. (c) Isocontour with vertices at edge midpoints (before linear interpolation).
(d) Isocontour with isovalue 5.

isocontours. The isocontour lookup table, Table, contains sixteen entries, one for

each configuration. Each entry, Table[κ] is a list of the E+/−
κ pairs.

In Figure 2.3 the isocontour edges are drawn connecting the midpoints of
each square edge. This is for illustration purposes only. The geometric locations
of the isocontour vertices are not defined by the lookup table.

The isocontour lookup table is constructed on the unit square with vertices
(0, 0), (1, 0), (0, 1), (1, 1). To construct the isocontour in grid square (i, j), we
have to map pairs of unit square edges to pairs of square (i, j) edges. Each
vertex v = (vx, vy) of the unit square maps to v + (i, j) = (vx, vy) + (i, j) =
(vx + i, vy + j). Each edge e of the unit square with endpoints (v, v′) maps to
edge e+ (i, j) = (v + (i, j), v′ + (i, j)). Finally, each edge pair (e1, e2) maps to
(e1+ (i, j), e2+ (i, j)).

The endpoints of the isocontour edges are the isocontour vertices. To map
each isocontour edge to a geometric line segment, we use linear interpolation to

Generating Isolines (Isovalue = 5)

�3

[R. Wenger, 2013]

http://web.cse.ohio-state.edu/~wenger/publications/

D. Koop, CS 490/680, Fall 2019

26 2. Marching Cubes and Variants

6 7 81 2 3 4 5

14 15 169 10 11 12 13

Figure 2.10. Red, positive regions and blue, negative regions for each square configu-
ration. The green isocontour is part of the positive region. Black vertices are positive.

Proof of Properties 1 & 2: The Marching Squares isocontour consists of a finite
set of line segments, so it is piecewise linear. These line segments intersect only at
their endpoints and thus form a triangulation of the isocontour. The endpoints
of these line segments lie on the grid edges, confirming Property 2. !

Property 3. The isocontour intersects every bipolar grid edge at exactly one
point.

Property 4. The isocontour does not intersect any negative or strictly positive
grid edges.

Proof of Properties 3 & 4: Each isocontour edge is contained in a grid square. Since
the grid squares are convex, only isocontour edges with endpoints (vertices) on
the grid edge intersect the grid edge. If the grid edge has one positive and one
negative endpoint, the unique location of the isocontour vertex on the grid edge
is determined by linear interpolation. Thus the isocontour intersects a bipolar
grid edge at only one point.

If the grid edge is negative or strictly positive, then no isocontour vertex lies
on the grid edge. Thus the isocontour does not intersect negative or strictly
positive grid edges. !

Within each grid square the isocontour partitions the grid square into two
regions. Let the positive region for a grid square c be the set of points which can
be reached by a path ζ from a positive vertex. More precisely, a point p is in the
positive region of c if there is some path ζ ⊂ c connecting p to a positive vertex
of c such that the interior of ζ does not intersect the isocontour. A point p is
in the negative region of c if there is some path ζ ⊂ c connecting p to a negative
vertex of c such that ζ does not intersect the isocontour. Since any path ζ ⊂ c
from a positive to a negative vertex must intersect the isocontour, the positive
and negative regions form a partition of the square c. Figure 2.10 illustrates the
positive and negative regions, colored red and blue, respectively, for each square
configuration.

Marching Squares

�4

[R. Wenger, 2013]

http://web.cse.ohio-state.edu/~wenger/publications/

D. Koop, CS 490/680, Fall 2019

Ambiguous Configurations
• Either works for marching squares, this isn't the case for 3D

�5

[R. Wenger, 2013]

30 2. Marching Cubes and Variants

8−I 16−I 16−II8−II

168

Figure 2.12. Ambiguous square configurations.

14

2

22 2

1121

2

2

4

2

1

1

14

2

22 2

1121

2

2

4

2

1

1

Figure 2.13. Topologically distinct isocontours created by using different isocontours
for the ambiguous configuration in the central grid square.

scalar grid with two topologically distinct isocontours created by different resolu-
tions of the ambiguous configurations. The first isocontour has two components
while the second has one.

While the choice of isocontours for the ambiguous configurations changes
the isocontour topology, any of the choices will produce isocontours that are 1-
manifolds and strictly separate strictly positive vertices from negative vertices.
As we shall see, this is not true in three dimensions.

2.3 Marching Cubes

2.3.1 Algorithm

The three-dimensional Marching Cubes algorithm follows precisely the steps
in the two-dimensional Marching Squares algorithm. Input to the March-

http://web.cse.ohio-state.edu/~wenger/publications/

D. Koop, CS 490/680, Fall 2019

3D: Marching Cubes
• Same idea, more cases [Lorensen and Cline, 1987]

�6

[R. Wenger, 2013]

2.3. Marching Cubes 33

Positive
Vertices

Zero

One

Two

Three

Four

Five

Six

Seven

Eight

2A 2C

0

1

3A 3B 3C

4A 4B 4C 4D 4E 4F

5A 5B 5C

6A 6B 6C

7

8

2B

Figure 2.16. Isosurfaces for twenty-two distinct cube configurations.

2.3. Marching Cubes 33

Positive
Vertices

Zero

One

Two

Three

Four

Five

Six

Seven

Eight

2A 2C

0

1

3A 3B 3C

4A 4B 4C 4D 4E 4F

5A 5B 5C

6A 6B 6C

7

8

2B

Figure 2.16. Isosurfaces for twenty-two distinct cube configurations.

http://web.cse.ohio-state.edu/~wenger/publications/

D. Koop, CS 490/680, Fall 2019

Multiple Isosurfaces
• Topographical maps have multiple isolines to

show elevation trends
• Problem in 3D? Occlusion
• Solution? Transparent surfaces
• Issues:
- Think about color in order to make each

surface visible
- Compositing: how do colors "add up" with

multiple surfaces
- How to determine good isovalues?

�7

[J. Kniss, 2002]

D. Koop, CS 490/680, Fall 2019

9

(a) Direct volume rendered (b) Isosurface rendered

Figure 1.4: Comparison of volume rendering methods

Volume Rendering vs. Isosurfacing

�8

[Kindlmann, 1998]

D. Koop, CS 490/680, Fall 2019

Assignment 5
• Multiple Views and Interaction using Linked Highlighting
• Due Tomorrow

�9

http://faculty.cs.niu.edu/~dakoop/cs680-2019fa/assignment5.html

D. Koop, CS 490/680, Fall 2019

Project
• Incorporate feedback from Blackboard comments
• Continue to be creative but also remember expressiveness and effectiveness
• Looking forward to presentations on Dec. 5
• Have until Dec. 6 to turn in final code and report

�10

D. Koop, CS 490/680, Fall 2019

Object order approach
Image Plane

Data Set

Eye

Volume Ray Casting

�11

[Levine]

D. Koop, CS 490/680, Fall 2019

Image order approach
Image Plane

For each pixel {
 calculate color of the pixel
}

Data Set

Eye

Volume Ray Casting

�12

[Levine]

D. Koop, CS 490/680, Fall 2019

depth

max intensity

accumulate

average

first

in
te

ns
ity

Pixel Compositing
Schemes

Compositing
• Need one pixel from all values along the ray
• Q: How do we "add up" all of those values

along the ray?
• A: Compositing!
• Different types of compositing
- First: like isosurfacing, first intersection at a

certain intensity
- Max intensity: choose highest val
- Average: mean intensity (density, like x-rays)
- Accumulate: each voxel has some

contribution
�13

[Levine and Weiskopf/Machiraju/Möller]

D. Koop, CS 490/680, Fall 2019

depth

max intensity

accumulate

average

first

in
te

ns
ity

Exact Isosurface

Pixel Compositing
SchemesTypes of Compositing

�14

[Levine and Weiskopf/Machiraju/Möller]

Pixel Compositing
Schemes

depth

max intensity

accumulate

average

first

in
te

ns
ity

color to distinguish structures
opacity to show inside

D. Koop, CS 490/680, Fall 2019

depth

max intensity

accumulate

average

first

in
te
ns
ity

maximum intensity projection (MIP)
Pixel Compositing

Schemes

Used in PET and Magnetic
Resonance Angiograms

Types of Compositing

�15

[Levine and Weiskopf/Machiraju/Möller]

Pixel Compositing
Schemes

depth

max intensity

accumulate

average

first

in
te

ns
ity

color to distinguish structures
opacity to show inside

D. Koop, CS 490/680, Fall 2019

depth

max intensity

accumulate

average

first

in
te

ns
ity

Synthetic Reprojection

Pixel Compositing
Schemes

Similar to X-rays

Types of Compositing

�16

[Levine and Weiskopf/Machiraju/Möller]

Pixel Compositing
Schemes

depth

max intensity

accumulate

average

first

in
te

ns
ity

color to distinguish structures
opacity to show inside

D. Koop, CS 490/680, Fall 2019

Pixel Compositing
Schemes

depth

max intensity

accumulate

average

first

in
te

ns
ity

color to distinguish structures
opacity to show inside

Types of Compositing

�17

[Levine and Weiskopf/Machiraju/Möller]

Pixel Compositing
Schemes

depth

max intensity

accumulate

average

first

in
te

ns
ity

color to distinguish structures
opacity to show inside

D. Koop, CS 490/680, Fall 2019

Accumulation
• If we're not just calculating a single number (max, average) or a position (first),

how do we determine the accumulation?
• Assume each value has an associated color (c) and opacity (α)
• Over operator (back-to-front):
- c = αf·cf + (1-αf)·αb·cb

- α = αf + (1-αf)·αb

• Order is important!

�18

Blue Last Blue First

D. Koop, CS 490/680, Fall 2019

Transfer Functions
• Where do the colors and opacities come from?
• Idea is that each voxel emits/absorbs light based on its scalar value
• …but users get to choose how that happens
• x-axis: color region definitions, y-axis: opacity

�19

[Kindlmann]

Human Tooth CT

f

RGB
Simple (usual) case: Map data
value f to color and opacityα

Transfer Functions (TFs)

D. Koop, CS 490/680, Fall 2019

Transfer Function Design
• Transfer function design is non-trivial!
• Lots of tools to help visualization designers to create good transfer functions
• Histograms, more attributes than just value like gradient magnitude

�20

D. Koop, CS 490/680, Fall 2019

Multidimensional Transfer Functions

�21

[J. Kniss]

D. Koop, CS 490/680, Fall 2019

Multidimensional Transfer Functions

�22

[J. Kniss]

D. Koop, CS 490/680, Fall 2019 �23

ParaView Examples

D. Koop, CS 490/680, Fall 2019 �24

Vector Field Visualization

D. Koop, CS 490/680, Fall 2019

Examples of Vector Fields

�25

Wind [earth.nullschool.net, 2014]

D. Koop, CS 490/680, Fall 2019

Examples of Vector Fields

�25

Wind [earth.nullschool.net, 2014]

D. Koop, CS 490/680, Fall 2019

Examples of Vector Fields

�26

Computational Fluid Dynamics [newmerical]

D. Koop, CS 490/680, Fall 2019

Examples of Vector Fields

�27

Earthquake Ground Surface Movement [H. Yu et. al., SC2004]

Figure 14: LIC image of the ground surface at time
step 200. The bottom 2 images show increasingly
close-up views of the field.

sualization. We will therefore also investigate the use of a

graphics-enhanced PC cluster as a dedicated visualization

server. The question then is whether our I/O strategies can

keep up with hardware accelerated rendering.

Acknowledgments
This work has been sponsored in part by the U.S. National

Science Foundation under contracts ACI 9983641 (PECASE

award), ACI 0325934 (ITR), ACI 0222991, and CMS-9980063;

and Department of Energy under Memorandum Agreements

No. DE-FC02-01ER41202 (SciDAC) and No. B523578 (ASCI

VIEWS). Pittsburgh Supercomputing Center (PSC) pro-

vided time on their parallel computers through AAB grant

BCS020001P. The authors are grateful to Rajeev Thakur

for his technical advice on using MPI-IO, Jacobo Bielak and

Omar Chattas for providing the earthquake simulation data,

and especially Paul Krystosek for his assistance on setting

up the needed system support at PSC.

8. REFERENCES
[1] J. Ahrens and J. Painter. E�cient sort-last rendering

using compression-based image compositing. In

Proceedings of the 2nd Eurographics Workshop on
Parallel Graphics and Visualization, pages 145–151,

1998.

[2] H. Bao, J. Bielak, O. Ghattas, L. F. Kallivokas, D. R.

O’Hallaron, J. R. Shewchuk, and J. Xu. Large-scale

simulation of elastic wave propagation in

heterogeneous media on parallel computers. Computer
Methods in Applied Mechanics and Engineering,
152(1–2):85–102, Jan. 1998.

[3] H. Bao, J. Bielak, O. Ghattas, D. R. O’Hallaron, L. F.

Kallivokas, J. R. Shewchuk, and J. Xu. Earthquake

ground motion modeling on parallel computers. In

Supercomputing ’96, Pittsburgh, Pennsylvania, Nov.

1996.

[4] W. Bethel, B. Tierney, J. Lee, D. Gunter, and S. Lau.

Using high-speed WANs and network data caches to

enable remote and distributed visualization. In

Proceedings of Supercomputing 2C00, November 2000.

[5] B. Cabral and L. Leedom. Imaging vector fields using

line integral convolution. In SIGGRAPH ’93
Conference Proceedings, pages 263–270, August 1993.

[6] L. Chen, I. Fujishiro, and K. Nakajima. Parallel

performance optimization of large-scale unstructured

data visualization for the earth simulator. In

Proceedings of the Fourth Eurographics Workshop on
Parallel Graphics and Visualization, pages 133–140,

2002.

[7] W. Daniel, E. Gordon, and E. Thomas. A

texture-based framework for spacetime-coherent

visualization of time-dependent vector fields. In

Proceedings of IEEE Visualization 2003 Conference,
pages 107–114, 2003.

[8] W. Gropp, E. Lusk, and R. Thakur. Using
MPI-2–Advanced Features of the Message Passing
Interface. MIT Press, 1999.

Figure 14: LIC image of the ground surface at time
step 200. The bottom 2 images show increasingly
close-up views of the field.

sualization. We will therefore also investigate the use of a

graphics-enhanced PC cluster as a dedicated visualization

server. The question then is whether our I/O strategies can

keep up with hardware accelerated rendering.

Acknowledgments
This work has been sponsored in part by the U.S. National

Science Foundation under contracts ACI 9983641 (PECASE

award), ACI 0325934 (ITR), ACI 0222991, and CMS-9980063;

and Department of Energy under Memorandum Agreements

No. DE-FC02-01ER41202 (SciDAC) and No. B523578 (ASCI

VIEWS). Pittsburgh Supercomputing Center (PSC) pro-

vided time on their parallel computers through AAB grant

BCS020001P. The authors are grateful to Rajeev Thakur

for his technical advice on using MPI-IO, Jacobo Bielak and

Omar Chattas for providing the earthquake simulation data,

and especially Paul Krystosek for his assistance on setting

up the needed system support at PSC.

8. REFERENCES
[1] J. Ahrens and J. Painter. E�cient sort-last rendering

using compression-based image compositing. In

Proceedings of the 2nd Eurographics Workshop on
Parallel Graphics and Visualization, pages 145–151,

1998.

[2] H. Bao, J. Bielak, O. Ghattas, L. F. Kallivokas, D. R.

O’Hallaron, J. R. Shewchuk, and J. Xu. Large-scale

simulation of elastic wave propagation in

heterogeneous media on parallel computers. Computer
Methods in Applied Mechanics and Engineering,
152(1–2):85–102, Jan. 1998.

[3] H. Bao, J. Bielak, O. Ghattas, D. R. O’Hallaron, L. F.

Kallivokas, J. R. Shewchuk, and J. Xu. Earthquake

ground motion modeling on parallel computers. In

Supercomputing ’96, Pittsburgh, Pennsylvania, Nov.

1996.

[4] W. Bethel, B. Tierney, J. Lee, D. Gunter, and S. Lau.

Using high-speed WANs and network data caches to

enable remote and distributed visualization. In

Proceedings of Supercomputing 2C00, November 2000.

[5] B. Cabral and L. Leedom. Imaging vector fields using

line integral convolution. In SIGGRAPH ’93
Conference Proceedings, pages 263–270, August 1993.

[6] L. Chen, I. Fujishiro, and K. Nakajima. Parallel

performance optimization of large-scale unstructured

data visualization for the earth simulator. In

Proceedings of the Fourth Eurographics Workshop on
Parallel Graphics and Visualization, pages 133–140,

2002.

[7] W. Daniel, E. Gordon, and E. Thomas. A

texture-based framework for spacetime-coherent

visualization of time-dependent vector fields. In

Proceedings of IEEE Visualization 2003 Conference,
pages 107–114, 2003.

[8] W. Gropp, E. Lusk, and R. Thakur. Using
MPI-2–Advanced Features of the Message Passing
Interface. MIT Press, 1999.

D. Koop, CS 490/680, Fall 2019

Examples of Vector Fields

�28

Gradient Vector Fields

D. Koop, CS 490/680, Fall 2019

Examples of Vector Fields

�29

Wildfire Modeling [E. Anderson]

D. Koop, CS 490/680, Fall 2019

s0

2

4
�00 �01 �02

�10 �11 �12

�20 �21 �22

3

5

2

4
v0

v1

v2

3

5

Fields in Visualization

�30

Scalar Fields Vector Fields Tensor Fields
(Order-1 Tensor Fields)(Order-0 Tensor Fields) (Order-2+)

Each point in space has an associated...

Scalar

Vector Fields

Vector Tensor

D. Koop, CS 490/680, Fall 2019

Visualizing Vector Fields
• Direct: Glyphs, Render statistics as scalars
• Geometry: Streamlines and variants
• Textures: Line Integral Convolution (LIC)
• Topology: Extract relevant features and draw them

�31

D. Koop, CS 490/680, Fall 2019

Glyphs
• Represent each vector with a symbol
• Hedgehogs are primitive glyphs (glyph is a line)
• ParaView Example

�32

D. Koop, CS 490/680, Fall 2019

Glyphs
• Represent each vector with a symbol
• Hedgehogs are primitive glyphs (glyph is a

line)
• Glyphs that show direction and/or magnitude

can convey more information
• If we have a separate scalar value, how

might we encode that?
• Clutter issues

�33

D. Koop, CS 490/680, Fall 2019

Glyphs
• For vector fields, can encode direction, magnitude, scalar value
• Good:
- Show precise local measures
- Can encode scalar information as color

• Bad:
- Possible sampling issues
- Clutter (Occlusion): Can remove some points to help
- Clutter is worse in higher dimensions

�34

D. Koop, CS 490/680, Fall 2019

Rendering Vector Field Statistics as Scalars
• Many statistics we can compute for vector

fields:
- Magnitude
- Vorticity
- Curvature

• These are scalars, can color with our scalar
field visualization techniques (e.g. volume
rendering)

�35

[Color indicates vector magnitude]

D. Koop, CS 490/680, Fall 2019

Streamlines & Variants
• Trace a line along the direction of the vectors
• Streamlines are always tangent to the vector field
• Basic Particle Tracing:
1. Set a starting point (seed)
2. Take a step in the direction of the vector at that point
3. Adjust direction based on the vector where you are now
4. Go to Step 2 and Repeat

�36

D. Koop, CS 490/680, Fall 2019

● Numerical integration of stream lines:

● approximate streamline by polygon xi

● Testing example:
● v(x,y) = (-y, x/2)^T
● exact solution: ellipses
● starting integration from (0,-1)

x

y

Example
• Elliptical path
• Suppose we have the actual equation
• Given point (x,y), the vector is at that point is

[vx, vy] where
- vx = -y
- vy = (1/2)x

• Want a streamline starting at (0,-1)

�37

[LIC (not streamlines!) via Levine]

D. Koop, CS 490/680, Fall 2019

Euler Integration – Example
2D analytic field (no need of grid and interpolation):

vx = dx/dt = −y
vy = dy/dt = x/2
Sample arrows:

Ground truth
flows form
ellipses.

0 1 2 3 4

0

1

2

Some Glyphs

�38

[via Levine]

[x,y] → [-y, (1/2)x], Step: 0.5

D. Koop, CS 490/680, Fall 2019

Euler Integration – Example
!Seed point s0 = (0 | -1)T;
current flow vector v(s0) = (1 |0)T;
dt = ½
vx = dx/dt = −y

vy = dy/dt = x/2

0 1 2 3 4
0

1

2

Streamlines (Step 1)

�39

[via Levine]

[x,y] → [-y, (1/2)x], Step: 0.5

D. Koop, CS 490/680, Fall 2019

Euler Integration – Example
!New point s1 = s0 + v(s0) · dt = (1/2 | -1)T;
current flow vector v(s1) = (1 |1/4)T;
vx = dx/dt = −y

vy = dy/dt = x/2

0 1 2 3 4
0

1

2

Streamlines (Step 2)

�40

[via Levine]

[x,y] → [-y, (1/2)x], Step: 0.5

D. Koop, CS 490/680, Fall 2019

Euler Integration – Example
!New point s2 = s1 + v(s1) · dt = (1 | -7/8)T;
current flow vector v(s2) = (7/8 |1/2)T;
vx = dx/dt = −y

vy = dy/dt = x/2

0 1 2 3 4
0

1

2

Streamlines (Step 3)

�41

[via Levine]

[x,y] → [-y, (1/2)x], Step: 0.5

D. Koop, CS 490/680, Fall 2019

Euler Integration – Example
!s3 = (23/16| -5/8)T ≈ (1.44 | -0.63)T;
v(s3) = (5/8 |23/32)T ≈ (0.63 |0.72)T;
vx = dx/dt = −y

vy = dy/dt = x/2

0 1 2 3 4

0

1

2

Streamlines (Step 4)

�42

[via Levine]

[x,y] → [-y, (1/2)x], Step: 0.5

D. Koop, CS 490/680, Fall 2019

Euler Integration – Example
!s9 ≈ (0.20 |1.69)T;
v(s9) ≈ (-1.69 |0.10)T;

0 1 2 3 4

0

1

2

Streamlines (Step 10)

�43

[via Levine]

[x,y] → [-y, (1/2)x], Step: 0.5

D. Koop, CS 490/680, Fall 2019

Euler Integration – Example
!s19 ≈ (0.75 | -3.02)T; v(s19) ≈ (3.02 |0.37)T;
clearly: large integration error, dt too large,
19 steps

0 1 2 3 4
0

1

2

Streamlines (Step 19)

�44

[via Levine]

[x,y] → [-y, (1/2)x], Step: 0.5

D. Koop, CS 490/680, Fall 2019

Euler Method
• Seeking to approximate integration of the velocity over time
• Euler method is the starting point for approximating this
• Problems?

�45

D. Koop, CS 490/680, Fall 2019

Euler Method
• Seeking to approximate integration of the velocity over time
• Euler method is the starting point for approximating this
• Problems?
- Choice of step size is important

�45

D. Koop, CS 490/680, Fall 2019

Euler Method
• Seeking to approximate integration of the velocity over time
• Euler method is the starting point for approximating this
• Problems?
- Choice of step size is important
- Choice of seed points are important

�45

D. Koop, CS 490/680, Fall 2019

Euler Method
• Seeking to approximate integration of the velocity over time
• Euler method is the starting point for approximating this
• Problems?
- Choice of step size is important
- Choice of seed points are important

• Also remember that we have a field—we don't have measurements at every
point (interpolation)

�45

D. Koop, CS 490/680, Fall 2019

Comparison Euler, Step Sizes
Euler
quality is
proportional
to dt

Euler Quality by Step Size

�46

[via Levine]

D. Koop, CS 490/680, Fall 2019

Numerical Integration

• How do we generate accurate streamlines?
• Solving an ordinary differential equation  
 
 
 
where is the streamline, is the vector field, and is “time”

• Solution:

�47

dL

dt
= v(L(t)) L(0) = L0

L(t + �t) = L(t) +
Z t+�t

t
v(L(t))dt

L v t

D. Koop, CS 490/680, Fall 2019

Higher-order methods

• Euler method (use single sample)

• Higher-order methods (Runge-Kutta) (use
more samples)

�48

Z t+�t

t
v(L(t))dt

[A. Mebarki]

v v

D. Koop, CS 490/680, Fall 2019

Euler vs. Runge-Kutta
RK-4: pays off only with complex flows

Here
approx.
like
RK-2

Higher-Order Comparison

�49

[via Levine]

