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Volume Visualization
•  2D visualization

  slice images
  (or multi-planar 

  reformating MPR)

•  Indirect
  3D visualization

  isosurfaces
  (or surface-shaded

  display SSD)

•  Direct  
  3D visualization
  (direct volume 

  rendering DVR)

Visualizing Volume (3D) Data
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[© Weiskopf/Machiraju/Möller]
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20 2. Marching Cubes and Variants
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(a) Scalar grid. (b) The +/− grid.
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(c) Midpoint vertices. (d) Isocontour.

Figure 2.4. (a) 2D scalar grid. (b) Black vertices are positive. Vertex v with scalar
value sv is positive if sv >= 5 and negative if sv < 5. Note that sv = 5 for one grid
vertex v. (c) Isocontour with vertices at edge midpoints (before linear interpolation).
(d) Isocontour with isovalue 5.

isocontours. The isocontour lookup table, Table, contains sixteen entries, one for

each configuration. Each entry, Table[κ] is a list of the E+/−
κ pairs.

In Figure 2.3 the isocontour edges are drawn connecting the midpoints of
each square edge. This is for illustration purposes only. The geometric locations
of the isocontour vertices are not defined by the lookup table.

The isocontour lookup table is constructed on the unit square with vertices
(0, 0), (1, 0), (0, 1), (1, 1). To construct the isocontour in grid square (i, j), we
have to map pairs of unit square edges to pairs of square (i, j) edges. Each
vertex v = (vx, vy) of the unit square maps to v + (i, j) = (vx, vy) + (i, j) =
(vx + i, vy + j). Each edge e of the unit square with endpoints (v, v′) maps to
edge e+ (i, j) = (v + (i, j), v′ + (i, j)). Finally, each edge pair (e1, e2) maps to
(e1+ (i, j), e2+ (i, j)).

The endpoints of the isocontour edges are the isocontour vertices. To map
each isocontour edge to a geometric line segment, we use linear interpolation to

Generating Isolines (Isovalue = 5)

�3

[R. Wenger, 2013]

http://web.cse.ohio-state.edu/~wenger/publications/


D. Koop, CS 490/680, Fall 2019

26 2. Marching Cubes and Variants

6 7 81 2 3 4 5

14 15 169 10 11 12 13

Figure 2.10. Red, positive regions and blue, negative regions for each square configu-
ration. The green isocontour is part of the positive region. Black vertices are positive.

Proof of Properties 1 & 2: The Marching Squares isocontour consists of a finite
set of line segments, so it is piecewise linear. These line segments intersect only at
their endpoints and thus form a triangulation of the isocontour. The endpoints
of these line segments lie on the grid edges, confirming Property 2. !

Property 3. The isocontour intersects every bipolar grid edge at exactly one
point.

Property 4. The isocontour does not intersect any negative or strictly positive
grid edges.

Proof of Properties 3 & 4: Each isocontour edge is contained in a grid square. Since
the grid squares are convex, only isocontour edges with endpoints (vertices) on
the grid edge intersect the grid edge. If the grid edge has one positive and one
negative endpoint, the unique location of the isocontour vertex on the grid edge
is determined by linear interpolation. Thus the isocontour intersects a bipolar
grid edge at only one point.

If the grid edge is negative or strictly positive, then no isocontour vertex lies
on the grid edge. Thus the isocontour does not intersect negative or strictly
positive grid edges. !

Within each grid square the isocontour partitions the grid square into two
regions. Let the positive region for a grid square c be the set of points which can
be reached by a path ζ from a positive vertex. More precisely, a point p is in the
positive region of c if there is some path ζ ⊂ c connecting p to a positive vertex
of c such that the interior of ζ does not intersect the isocontour. A point p is
in the negative region of c if there is some path ζ ⊂ c connecting p to a negative
vertex of c such that ζ does not intersect the isocontour. Since any path ζ ⊂ c
from a positive to a negative vertex must intersect the isocontour, the positive
and negative regions form a partition of the square c. Figure 2.10 illustrates the
positive and negative regions, colored red and blue, respectively, for each square
configuration.

Marching Squares

�4

[R. Wenger, 2013]

http://web.cse.ohio-state.edu/~wenger/publications/
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Ambiguous Configurations
• Either works for marching squares, this isn't the case for 3D

�5

[R. Wenger, 2013]
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8−I 16−I 16−II8−II

168

Figure 2.12. Ambiguous square configurations.
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Figure 2.13. Topologically distinct isocontours created by using different isocontours
for the ambiguous configuration in the central grid square.

scalar grid with two topologically distinct isocontours created by different resolu-
tions of the ambiguous configurations. The first isocontour has two components
while the second has one.

While the choice of isocontours for the ambiguous configurations changes
the isocontour topology, any of the choices will produce isocontours that are 1-
manifolds and strictly separate strictly positive vertices from negative vertices.
As we shall see, this is not true in three dimensions.

2.3 Marching Cubes

2.3.1 Algorithm

The three-dimensional Marching Cubes algorithm follows precisely the steps
in the two-dimensional Marching Squares algorithm. Input to the March-

http://web.cse.ohio-state.edu/~wenger/publications/
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3D: Marching Cubes
• Same idea, more cases [Lorensen and Cline, 1987]

�6

[R. Wenger, 2013]

2.3. Marching Cubes 33
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Figure 2.16. Isosurfaces for twenty-two distinct cube configurations.

2.3. Marching Cubes 33

# Positive
Vertices

Zero

One

Two

Three

Four

Five

Six

Seven

Eight

2A 2C

0

1

3A 3B 3C

4A 4B 4C 4D 4E 4F

5A 5B 5C

6A 6B 6C

7

8

2B

Figure 2.16. Isosurfaces for twenty-two distinct cube configurations.

http://web.cse.ohio-state.edu/~wenger/publications/
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Multiple Isosurfaces
• Topographical maps have multiple isolines to 

show elevation trends 
• Problem in 3D? Occlusion 
• Solution? Transparent surfaces 
• Issues: 
- Think about color in order to make each 

surface visible 
- Compositing: how do colors "add up" with 

multiple surfaces 
- How to determine good isovalues?

�7

[J. Kniss, 2002]
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(a) Direct volume rendered (b) Isosurface rendered

Figure 1.4: Comparison of volume rendering methods

Volume Rendering vs. Isosurfacing

�8

[Kindlmann, 1998]
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Assignment 5
• Multiple Views and Interaction using Linked Highlighting 
• Due Tomorrow

�9

http://faculty.cs.niu.edu/~dakoop/cs680-2019fa/assignment5.html
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Project
• Incorporate feedback from Blackboard comments 
• Continue to be creative but also remember expressiveness and effectiveness 
• Looking forward to presentations on Dec. 5 
• Have until Dec. 6 to turn in final code and report

�10
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Object order approach
Image Plane

Data Set

Eye

Volume Ray Casting

�11

[Levine]
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Image order approach
Image Plane

For each pixel {
   calculate color of the pixel
}

Data Set

Eye

Volume Ray Casting

�12

[Levine]
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depth

max intensity

accumulate

average

first
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Pixel Compositing 
Schemes

Compositing
• Need one pixel from all values along the ray 
• Q: How do we "add up" all of those values 

along the ray? 
• A: Compositing! 
• Different types of compositing 
- First: like isosurfacing, first intersection at a 

certain intensity 
- Max intensity: choose highest val 
- Average: mean intensity (density, like x-rays) 
- Accumulate: each voxel has some 

contribution 
�13

[Levine and Weiskopf/Machiraju/Möller]
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depth

max intensity

accumulate

average

first
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ity

Exact Isosurface

Pixel Compositing 
SchemesTypes of Compositing
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[Levine and Weiskopf/Machiraju/Möller]

Pixel Compositing 
Schemes

depth

max intensity

accumulate

average

first
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color to distinguish structures
opacity to show inside 
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depth

max intensity

accumulate

average

first
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ity

maximum intensity projection (MIP)
Pixel Compositing 

Schemes

Used in PET and Magnetic 
Resonance Angiograms

Types of Compositing

�15

[Levine and Weiskopf/Machiraju/Möller]

Pixel Compositing 
Schemes
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depth
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Synthetic Reprojection

Pixel Compositing 
Schemes

Similar to X-rays

Types of Compositing
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[Levine and Weiskopf/Machiraju/Möller]
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Pixel Compositing 
Schemes

depth

max intensity

accumulate

average

first
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color to distinguish structures
opacity to show inside 

Types of Compositing
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[Levine and Weiskopf/Machiraju/Möller]
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Schemes
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Accumulation
• If we're not just calculating a single number (max, average) or a position (first), 

how do we determine the accumulation? 
• Assume each value has an associated color (c) and opacity (α) 
• Over operator (back-to-front):  
- c = αf·cf + (1-αf)·αb·cb 

- α = αf + (1-αf)·αb 

• Order is important!

�18

Blue Last Blue First
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Transfer Functions
• Where do the colors and opacities come from? 
• Idea is that each voxel emits/absorbs light based on its scalar value 
• …but users get to choose how that happens 
• x-axis: color region definitions, y-axis: opacity

�19

[Kindlmann]

Human Tooth CT

f 

RGB
Simple (usual) case: Map data 
value f  to color and opacityα

Transfer Functions (TFs)
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Transfer Function Design
• Transfer function design is non-trivial! 
• Lots of tools to help visualization designers to create good transfer functions 
• Histograms, more attributes than just value like gradient magnitude

�20
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Multidimensional Transfer Functions

�21

[J. Kniss]
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Multidimensional Transfer Functions

�22

[J. Kniss]
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ParaView Examples
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Vector Field Visualization
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Examples of Vector Fields

�25

Wind [earth.nullschool.net, 2014]
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Examples of Vector Fields

�25

Wind [earth.nullschool.net, 2014]
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Examples of Vector Fields

�26

Computational Fluid Dynamics [newmerical]
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Examples of Vector Fields

�27

Earthquake Ground Surface Movement [H. Yu et. al., SC2004]

Figure 14: LIC image of the ground surface at time
step 200. The bottom 2 images show increasingly
close-up views of the field.

sualization. We will therefore also investigate the use of a

graphics-enhanced PC cluster as a dedicated visualization

server. The question then is whether our I/O strategies can

keep up with hardware accelerated rendering.
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Examples of Vector Fields

�28

Gradient Vector Fields
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Examples of Vector Fields

�29

Wildfire Modeling [E. Anderson]
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Fields in Visualization

�30

Scalar Fields Vector Fields Tensor Fields
(Order-1 Tensor Fields)(Order-0 Tensor Fields) (Order-2+)

Each point in space has an associated...

Scalar

Vector Fields

Vector Tensor
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Visualizing Vector Fields
• Direct: Glyphs, Render statistics as scalars 
• Geometry: Streamlines and variants 
• Textures: Line Integral Convolution (LIC) 
• Topology: Extract relevant features and draw them

�31
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Glyphs
• Represent each vector with a symbol 
• Hedgehogs are primitive glyphs (glyph is a line) 
• ParaView Example

�32
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Glyphs
• Represent each vector with a symbol 
• Hedgehogs are primitive glyphs (glyph is a 

line) 
• Glyphs that show direction and/or magnitude 

can convey more information 
• If we have a separate scalar value, how 

might we encode that? 
• Clutter issues

�33
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Glyphs
• For vector fields, can encode direction, magnitude, scalar value 
• Good: 
- Show precise local measures 
- Can encode scalar information as color 

• Bad: 
- Possible sampling issues 
- Clutter (Occlusion): Can remove some points to help 
- Clutter is worse in higher dimensions

�34



D. Koop, CS 490/680, Fall 2019

Rendering Vector Field Statistics as Scalars
• Many statistics we can compute for vector 

fields: 
- Magnitude 
- Vorticity 
- Curvature 

• These are scalars, can color with our scalar 
field visualization techniques (e.g. volume 
rendering)

�35

[Color indicates vector magnitude]
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Streamlines & Variants
• Trace a line along the direction of the vectors 
• Streamlines are always tangent to the vector field 
• Basic Particle Tracing: 
1. Set a starting point (seed) 
2. Take a step in the direction of the vector at that point 
3. Adjust direction based on the vector where you are now 
4. Go to Step 2 and Repeat

�36
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● Numerical integration of stream lines:

● approximate streamline by polygon xi

● Testing example: 
● v(x,y) = (-y, x/2)^T
● exact solution: ellipses
● starting integration from (0,-1)

x

y

Example
• Elliptical path 
• Suppose we have the actual equation  
• Given point (x,y), the vector is at that point is 

[vx, vy] where 
- vx = -y 
- vy = (1/2)x 

• Want a streamline starting at (0,-1)

�37

[LIC (not streamlines!) via Levine]
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Euler Integration – Example
2D analytic field (no need of grid and interpolation):

vx = dx/dt = −y
vy = dy/dt = x/2
Sample arrows:

Ground truth
flows form 
ellipses.

0 1 2 3 4

0

1

2

Some Glyphs

�38

[via Levine]

[x,y] → [-y, (1/2)x], Step: 0.5
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Euler Integration – Example
!Seed point s0 = (0 | -1 )T;
current flow vector v(s0) = (1 |0 )T;
dt = ½
vx = dx/dt = −y

vy = dy/dt = x/2

0 1 2 3 4
0

1

2

Streamlines (Step 1)

�39

[via Levine]

[x,y] → [-y, (1/2)x], Step: 0.5



D. Koop, CS 490/680, Fall 2019

Euler Integration – Example
!New point s1 = s0 + v(s0) · dt = (1/2 | -1 )T;
current flow vector v(s1) = (1 |1/4 )T;
vx = dx/dt = −y

vy = dy/dt = x/2

0 1 2 3 4
0

1

2

Streamlines (Step 2)

�40

[via Levine]

[x,y] → [-y, (1/2)x], Step: 0.5
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Euler Integration – Example
!New point s2 = s1 + v(s1) · dt = (1 | -7/8 )T;
current flow vector v(s2) = (7/8 |1/2 )T;
vx = dx/dt = −y

vy = dy/dt = x/2

0 1 2 3 4
0

1

2

Streamlines (Step 3)

�41

[via Levine]

[x,y] → [-y, (1/2)x], Step: 0.5
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Euler Integration – Example
!s3 = (23/16| -5/8 )T ≈ (1.44 | -0.63)T;
v(s3) = (5/8 |23/32)T ≈ (0.63 |0.72)T;
vx = dx/dt = −y

vy = dy/dt = x/2

0 1 2 3 4

0

1

2

Streamlines (Step 4)

�42

[via Levine]

[x,y] → [-y, (1/2)x], Step: 0.5
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Euler Integration – Example
!s9 ≈ (0.20 |1.69)T;
v(s9) ≈ ( -1.69 |0.10)T;

0 1 2 3 4

0

1

2

Streamlines (Step 10)

�43

[via Levine]

[x,y] → [-y, (1/2)x], Step: 0.5
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Euler Integration – Example
!s19 ≈ (0.75 | -3.02)T; v(s19) ≈ (3.02 |0.37)T;
clearly: large integration error, dt too large,
19 steps

0 1 2 3 4
0

1

2

Streamlines (Step 19)

�44

[via Levine]

[x,y] → [-y, (1/2)x], Step: 0.5
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Euler Method
• Seeking to approximate integration of the velocity over time
• Euler method is the starting point for approximating this
• Problems?

�45
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• Seeking to approximate integration of the velocity over time
• Euler method is the starting point for approximating this
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- Choice of step size is important
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Euler Method
• Seeking to approximate integration of the velocity over time
• Euler method is the starting point for approximating this
• Problems?
- Choice of step size is important
- Choice of seed points are important
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Euler Method
• Seeking to approximate integration of the velocity over time
• Euler method is the starting point for approximating this
• Problems?
- Choice of step size is important
- Choice of seed points are important

• Also remember that we have a field—we don't have measurements at every 
point (interpolation)

�45
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Comparison Euler, Step Sizes
Euler
quality is 
proportional
to dt

Euler Quality by Step Size

�46

[via Levine]
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Numerical Integration

• How do we generate accurate streamlines? 
• Solving an ordinary differential equation  
 
 
 
where    is the streamline,    is the vector field, and   is “time” 

• Solution:

�47

dL

dt
= v(L(t)) L(0) = L0

L(t + �t) = L(t) +
Z t+�t

t
v(L(t))dt

L v t
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Higher-order methods

• Euler method (use single sample) 

• Higher-order methods (Runge-Kutta) (use 
more samples)
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Z t+�t

t
v(L(t))dt

[A. Mebarki]

v v
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Euler vs. Runge-Kutta
RK-4: pays off only with complex flows

Here 
approx.
like 
RK-2

Higher-Order Comparison
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[via Levine]


