
Data Visualization (CSCI 490/680)

Data & Isosurfacing

Dr. David Koop

D. Koop, CS 490/680, Fall 2019

D. Koop, CS 490/680, Fall 2019

Embed

Elide Data

Superimpose Layer

Distort Geometry

Reduce

Filter

Aggregate

Embed

Focus+Content Overview

�2

[Munzner (ill. Maguire), 2014]

• DOI = I(x) - D(x,y)
- I: interest function
- D: distance (semantic or spatial)
- x: location of item
- y: current focus point
- Interactive: y changes

D. Koop, CS 490/680, Fall 2019

Elision & Degree of Interest Function

�3

[Heer and Card, 2004]

D. Koop, CS 490/680, Fall 2019

C. Tominski et al. / A Survey on Interactive Lenses in Visualization

(a) Alteration (b) Suppression (c) Enrichment

Figure 5: Basic lens functions. (a) ChronoLenses [ZCPB11] alter existing content; (b) the Sampling Lens [ED06b] suppresses
content; (c) the extended excentric labeling lens [BRL09] enriches with new content.

needs to be inversely projected from the screen space (V) to
the model space (VA), in which the geometry and graphical
properties of the visualization are defined. Further inverse
projection to the data space (DT or DS) enables selection at
the level of data entities or data values. For example, with
the ChronoLenses [ZCPB11] from Figure 5(a), the user ba-
sically selects an interval on a time scale. The Local Edge
Lens [TAvHS06] from Figure 7(a) (see two pages ahead) se-
lects a subset of graph edges that pass through the lens and
actually do connect to a graph node within the lens.

So, by appropriate inverse projection of the lens, the selec-
tion s can be made at any stage of the visualization pipeline,
be it a region of pixels at V , a group of 2D or 3D geometric
primitives at VA, a set of data entities at DT , or a range of
values at DS. However, what sounds simple in theory is not
as straight-forward in real visualization applications. Inverse
projection can lead to ambiguities that need to be resolved
to properly identify the selected entities. Assigning unique
identifiers to data items and maintaining them throughout
the visualization process as well as employing the concept
of half-spaces can help in this regard [TFS08].

The Lens Function The lens function creates the intended
lens effect. Just as any function, so is the lens function char-
acterized by the input it operates on and the output it gener-
ates. Clearly, the selection s is input to the lens function. The
lens function further depends on parameters that control the
lens effect. Possible parameters are as diverse as there are
lens functions. A magnification lens, for example, may ex-
pose the magnification factor as a parameter. A filtering lens
may be parameterized by thresholds to control the amount
of data to be filtered out. Parameters such as these are essen-
tial to the effect generated with a lens. Additional parame-
ters may be available to further fine-tune the lens function.
For example, the alpha value used for dimming filtered data
could be such an additional parameter.

Given selection and parameters, the processing of the lens
function typically involves only a subset of the stages of the

visualization transformation. For example, when the selec-
tion is defined on pixels, the lens function usually manip-
ulates these pixels exclusively at the view stage V . On the
other hand, selecting values directly from the data source
DS opens up the possibility to process the selected values
differently throughout all stages of the pipeline.

The output generated by the lens function will typically be
an alternative visual representation. From a conceptual point
of view, a lens function can alter existing content, suppress
irrelevant content, or enrich with new content, or perform
combinations thereof. Figure 5 illustrates the different op-
tions. For example, ChronoLenses [ZCPB11] transform time
series data on-the-fly, that is, they alter existing content. The
Sampling Lens [ED06b] suppresses data items to de-clutter
the visualization underneath the lens. The extended excen-
tric labeling [BRL09] is an example for a lens that enriches
a visualization, in this case with textual labels.

The Join ./ Finally, the result obtained via the lens func-
tion has to be joined with the base visualization to create the
necessary visual feedback. A primary goal is to realize the
join so that it is easy for the user to understand how the view
seen through the lens relates to the base visualization. In a
narrow sense of a lens, the result generated by the lens func-
tion will replace the content in the lens interior as shown for
ChronoLenses [ZCPB11] and the SamplingLens [ED06b] in
Figures 5(a) and 5(b). For many other lenses the visual effect
manifests exclusively in the lens interior.

When the join is realized at earlier stages of the visu-
alization pipeline, the visual effect is often less confined.
For example, the Layout Lens [TAS09] adjusts the position
of a subset of graph nodes to create a local neighborhood
overview as shown in Figure 6(a). Yet, relocating nodes im-
plies that their incident edges take different routes, which in
turn introduces some (limited) visual change into the base
visualization as well. In a most relaxed sense of a lens, the
result of the lens function can even be shown separately. The
time lens [TSAA12] depicted in Figure 6(b) is an example

c� The Eurographics Association 2014.

Superimposition with Interactive Lenses

�4

[ChronoLenses and Sampling Lens in Tominski et al., 2014]

D. Koop, CS 490/680, Fall 2019

June 21, 2012 / Mike Bostock

Fisheye Distortion

It can be difficult to observe micro and macro features simultaneously with complex graphs. If you
zoom in for detail, the graph is too big to view in its entirety. If you zoom out to see the overall
structure, small details are lost. Focus + context techniques allow interactive exploration of an area

Mouseover to distort the nodes.

Distortion

�5

[M. Bostock]

http://bost.ocks.org/mike/fisheye/

D. Koop, CS 490/680, Fall 2019

(a) (b)

Figure 3. LiveRAC shows a full day of system management time-series data using a reorderable matrix of area-aware

charts. Over 4000 devices are shown in rows, with 11 columns representing groups of monitored parameters. (a): The

user has sorted by the maximum value in the CPU column. The first several dozen rows have been stretched to show

sparklines for the devices, with the top 13 enlarged enough to display text labels. The time period of business hours

has been selected, showing the increase in the In pkts parameter for many devices. (b): The top three rows have been

further enlarged to show fully detailed charts in the CPU column and partially detailed ones in Swap and two other

columns. The time marker (vertical black line on each chart) indicates the start of anomalous activity in several of

spire’s parameters. Below the labeled rows, we see many blocks at the lowest semantic zoom level, and further below

we see a compressed region of highly saturated blocks that aggregate information from many charts.

as the minimum, maximum, or average of the time-series.
Rows can be sorted by device names or metadata such as lo-
cation, customer, or other groupings. Columns can also be
reordered by the user.

Principle: multiple views are most effective when coor-

dinated through explicit linking. The principle of linked
views [15] is that explicit coordination between views en-
hances their value. In LiveRAC, as the user moves the cur-
sor within a chart, the same point in time is marked in all
charts with a vertical line. Similarly, selecting a time seg-
ment in one chart shows a mark in all of them. This tech-
nique allows direct comparison between parameter values
at the same time on different charts. In addition, people can
easily correlate times between large charts with detailed axis
labels, and smaller, more concise charts.

Assertion: showing several levels of detail simultane-

ously provides useful high information density in con-

text. Several technique choices are based on this assertion.
First, LiveRAC uses stretch and squish navigation, where
expanding one or many regions compresses the rest of the
view [11, 17]. The accompanying video shows the look and
feel of this navigation technique. The stretching and squish-
ing operates on rectangular regions, so expanding a single
chart also magnifies the entire row for the device it repre-
sents, and the entire column for the parameters that it shows.
The edges of the display are fixed so that all cells remain
within the visible area, as opposed to conventional zoom-
ing where some regions are pushed off-screen. There are
rapid navigation shortcuts to zoom a single cell, a column,

an aggregated group of devices, the results of a search, or to
zoom out to an overview. Users can also directly drag grid
lines or resize freely drawn on-screen rectangles. Naviga-
tion shortcuts can also be created for any arbitrary grouping,
whose cells do not need to be contiguous. This interaction
mechanism affords multiple focus regions, supporting mul-
tiple levels of detail.

Second, charts in LiveRAC dynamically adapt to show vi-
sual representations adapted in each cell to the available
screen space. This technique, called semantic zooming [13],
allows a hierarchy of representations for a group of device-
parameter time-series. In Figure 3, the largest charts have
multiple overlaid curves and detailed axis and legend labels.
Smaller charts show fewer curves and less labeling, and at
smaller sizes only one curve is shown as a sparkline [24].
On each curve, the maximum value over the displayed time
period is indicated with a red dot, the minimum with a blue
dot, and the current value with a green one. All representa-
tion levels color code the background rectangle according to
dynamically changeable thresholds of the minimum, maxi-
mum, or average values of the parameters within the current
time window. The smallest view is a simple block, where
this color coding is the only information shown.

Third, aggregation techniques achieve visual scalability by
ensuring dense regions show meaningful visual representa-
tions. Given our target scale of dozens of parameters and
thousands of devices, the size of the matrix could easily sur-
pass 100,000 cells. Stretch and squish navigation allows
users to quickly create a mosaic with cells of many differ-

Distortion: Stretch and Squish Navigation

�6

[McLachlan et al., 2008]

D. Koop, CS 490/680, Fall 2019

(a) Bring (step 1) – Selecting a node fades out
all graph elements but the node neighborhood.

(b) Bring (step 2) – Neighbor nodes are pulled
close to the selected node.

(c) Go – After selecting a neighbor (the green
node in Fig. 4(b)), a short animation brings the
focus towards a new neighborhood.

Figure 4: Illustration of the Bring & Go interaction.

on the screen. For instance, a Bézier curve corresponds to
a polynomial whose degree is one less than the number of
control points determining it (other families of polynomi-
als can also be used, such as Hermite’s polynomials). Let
(P0, . . . ,Pn) be control points. The polynomial defined from
these control points is:

Qn(t) =
n

∑
i=0

Bi,n(t)Pi, (1)

where the sum is performed component wise and

Bi,n(t) =

(

n

i

)

(1− t)n−it i, 0≤ t ≤ 1 (2)

are Bernstein polynomials and
(

n
i

)

= n!
i!(n−i)! denotes the

usual binomial coefficient.
In order to be able to easily interact with the edge bun-

dled graphs, even for basic interactions like panning and
zooming, we have to optimize the curves rendering by re-
ducing the computational load on the CPU as much as
possible. One solution could be to pre-compute all curve
points and store them in memory; this obviously is not effi-
cient in terms of memory usage, considering that we want
to draw a large amount of fine-grained rendered curves.
For example, drawing 105 curves (edges) with 100 points
per curves – one point being stored as 3 floats (4 bytes
each), the total amount of memory use would be ∼ 108

bytes (more than 110 Mbytes).
Another solution will be to use the built-in components

of high level graphics API for rendering curves. For in-
stance, in OpenGL, that task can be achieved by using a
standard feature called evaluators. Evaluators can be used
to construct curves and surfaces based on the Bernstein ba-
sis polynomials. This includes Bézier curves and patches,
and B-splines. An evaluator is set up from an array of con-
trol points and allows to compute curve points on the GPU

by sending the parameter t to the rendering pipeline. How-
ever, most of the OpenGL implementations have restrained
the maximum authorized number of control points to eight.
So to draw a Bézier curve or a cubic B-spline with more
than eight control points using evaluators, it has to be done
piecewise by subdividing the curve to render into curves
with fewer control points. Consequently, the performance
to draw high order curves with this technique decreases as
the number of control points grows. So even if evaluators
work well to render curves with a small number of control
points, they are not suitable to resolve our issue of drawing
curves with several dozens of control points efficiently.

4.2 GPU-intensive spline rendering

Our solution delegates the computation of curve points
to the GPU which is perfectly well designed to perform
vectorial computation and floating points operations. By
using the OpenGL Graphics API, we can encapsulate those
tasks in a shader program. This type of program, written
in a C-like language called GLSL (OpenGL Shading Lan-

guage), allows to modify the default behavior of some pro-
cessing units in the rendering pipeline – the vertex process-
ing unit can be customized this way. The purpose of vertex
processing stage is to transform each vertex’s 3D position
in virtual space to the 2D coordinates at which it appears
on the screen. By designing a vertex shader we can ma-
nipulate properties such as node position or color, with all
computations executed on the GPU. Shaders offer tangible
benefits since they are well suited for parallel processing
as most modern GPUs have multiple shader pipelines.

The vertex shader we designed is activated each time
we render a curve on screen. Before sending vertex co-
ordinates to the GPU, the curve’s control points are trans-
ferred to the shader and stored in an array. The maximum
size of that array is hardware dependent and determined at
runtime. On recent GPU, more than one thousand control

Focus+Context in Network Exploration

�7

[Lambert et al., 2010]

D. Koop, CS 490/680, Fall 2019

Distortion Concerns
• Distance and length judgments are harder
- Example: Mac OS X Dock with Magnification
- Spatial position of items changes as the focus changes

• Node-link diagrams not an issue… why?
• Users have to be made aware of distortion
- Back to scatterplot with distortion example
- Lenses or shading give clues to users

• Object constancy: understanding when two views show the same object
- What happens under distortion?
- 3D Perspective is distortion… but we are well-trained for that

• Think about what is being shown (filtering) and method (fisheye)
�8

D. Koop, CS 490/680, Fall 2019

Designs Feedback
• Some good prototypes and focus on interactions
• Generally, would like to see more creativity
- You can create scatterplots and choropleth maps using Tableau
- https://xeno.graphics
- https://www.informationisbeautifulawards.com/showcase

• Justify the use of widgets and/or tooltips
• Provide complete overviews, even if interactions will filter views or provide

details
• Be careful with scrolling

�9

https://xeno.graphics
https://www.informationisbeautifulawards.com/showcase

D. Koop, CS 490/680, Fall 2019

Assignment 5
• Multiple Views and Interaction using Linked Highlighting
• Due November 22

�10

http://faculty.cs.niu.edu/~dakoop/cs680-2019fa/assignment5.html

D. Koop, CS 490/680, Fall 2019

Data Wrangling
• Problem 1: Visualizations need data
• Solution: The Web!
• Problem 2: Data has extra information I don't need
• Solution: Filter it
• Problem 3: Data is dirty
• Solution: Clean it up
• Problem 4: Data isn't in the same place
• Solution: Combine data from different sources
• Problem 5: Data isn't structured correctly
• Solution: Reorder, map, and nest it

�11

D. Koop, CS 490/680, Fall 2019

Hosting data
• github.com
• gist.github.com
• figshare.com
• myjson.com
• Other services

�12

http://github.com
http://gist.github.com
http://figshare.com
http://myjson.com

D. Koop, CS 490/680, Fall 2019

Why JavaScript?
• Python and R have great support for this sort of processing
• Data comes from the Web, want to put visualizations on the Web
• Sometimes unnecessary to download, process, and upload!
• More tools are helping JavaScript become a better language

�13

D. Koop, CS 490/680, Fall 2019

JavaScript Data Wrangling Resources
• https://observablehq.com/@dakoop/learn-js-data
• Based on http://learnjsdata.com/
• Good coverage of data wrangling using JavaScript

�14

https://observablehq.com/@dakoop/learn-js-data
http://learnjsdata.com/

D. Koop, CS 490/680, Fall 2019

Comma Separated Values (CSV)
• File structure:

cities.csv:

city,state,population,land area
seattle,WA,652405,83.9
new york,NY,8405837,302.6
boston,MA,645966,48.3
kansas city,MO,467007,315.0

• Loading using D3:
d3.csv("/data/cities.csv").then(function(data) {
 console.log(data[0]);
});

• Result:
=> {city: "seattle", state: "WA", population: 652405, land area: 83.9}

• Values are strings! Convert to numbers via the unary + operator:
- d.population => "652405"

- +d.population => 652405

�15

[http://learnjsdata.com]

http://learnjsdata.com

D. Koop, CS 490/680, Fall 2019

Tab Separated Values (TSV)
• File structure:

animals.tsv:

name type avg_weight
tiger mammal 260
hippo mammal 3400
komodo dragon reptile 150

• Loading using D3:
d3.tsv("/data/animals.tsv").then(function(data) {
 console.log(data[0]);
});

• Result:
=> {name: "tiger", type: "mammal", avg_weight: "260"}

• Can also have other delimiters (e.g. '|', ';')

�16

[http://learnjsdata.com]

http://learnjsdata.com

D. Koop, CS 490/680, Fall 2019

JavaScript Object Notation (JSON)
• File Structure:

employees.json:
[
 {"name":"Andy Hunt",
 "title":"Big Boss",
 "age": 68,
 "bonus": true
 },
 {"name":"Charles Mack",
 "title":"Jr Dev",
 "age":24,
 "bonus": false
 }
]

• Loading using D3:
d3.json("/data/employees.json".then(function(data) {
 console.log(data[0]);
});

• Result:
=> {name: "Andy Hunt", title: "Big Boss", age: 68, bonus: true}

�17

[http://learnjsdata.com]

http://learnjsdata.com

D. Koop, CS 490/680, Fall 2019

Loading Multiple Files
• Use Promise.all to load multiple files and then process them all

Promise.all([d3.csv("/data/cities.csv"),  
 d3.tsv("/data/animals.tsv")])
 .then(analyze);

function analyze(data) {
 cities = data[0]; animals = data[1];

 console.log(cities[0]);
 console.log(animals[0]);
}
=> {city: "seattle", state: "WA", population: "652405", land area: "83.9"}
{name: "tiger", type: "mammal", avg_weight: "260"}

�18

[http://learnjsdata.com]

http://learnjsdata.com

D. Koop, CS 490/680, Fall 2019

Combining Data
• Suppose given products and brands
• Brands have an id and products have a brand_id that matches a brand
• Want to join these two datasets together
- Product.brand_id => Brand.id

• Use a nested forEach/filter
• Use a native join command

�19

[http://learnjsdata.com]

http://learnjsdata.com

D. Koop, CS 490/680, Fall 2019

Summarizing Data
• d3 has min, max, and extent functions of the form
- 1st argument: dataset
- 2nd argument: accessor function

• Example:
var landExtent = d3.extent(data, function(d) { return d.land_area; });
console.log(landExtent);
=> [48.3, 315]

• Summary statistics, e.g. mean, median, deviation → same format
• Median Example:

var landMed = d3.median(data, function(d) { return d.land_area; });
console.log(landMed);
=> 193.25

�20

[http://learnjsdata.com]

http://learnjsdata.com

D. Koop, CS 490/680, Fall 2019

Nesting Data
• Take a flat structure and turn it into something nested
• Often similar to a groupby in databases
• key indicate groupings
• rollup indicates how the groups are processed/aggregated
• Last function specifies the data and how the output should look

- entries: [{key: <key>, value: <value>}]

- object: {<key>: <value>, …}

- map: {<key>: <value>, …} but as a d3.map (safer than object, but uses get/set
instead of square brackets ([])

�21

[http://learnjsdata.com]

http://learnjsdata.com

D. Koop, CS 490/680, Fall 2019

Nesting Example
• Data
var expenses = [{"name":"jim","amount":34,"date":"11/12/2015"},
 {"name":"carl","amount":120.11,"date":"11/12/2015"},
 {"name":"jim","amount":45,"date":"12/01/2015"},
 {"name":"stacy","amount":12.00,"date":"01/04/2016"},
 {"name":"stacy","amount":34.10,"date":"01/04/2016"},
 {"name":"stacy","amount":44.80,"date":"01/05/2016"}
];

• Using d3.nest:
var expensesAvgAmount = d3.nest()
 .key(function(d) { return d.name; })
 .rollup(function(v) { return d3.mean(v, function(d) { return d.amount; }); })
 .entries(expenses);
console.log(JSON.stringify(expensesAvgAmount));

• Result:
=> [{"key":"jim","values":39.5}, 
 {"key":"carl","values":120.11},  
 {"key":"stacy","values":30.3}]

�22

[http://learnjsdata.com]

http://learnjsdata.com

D. Koop, CS 490/680, Fall 2019

d3-array 2.0 Updates
• https://observablehq.com/@d3/d3-array-2-0
• Works with iterables
• group and rollup are separate now
• https://observablehq.com/@d3/d3-group

�23

https://observablehq.com/@d3/d3-array-2-0
https://observablehq.com/@d3/d3-group

D. Koop, CIS 680, Fall 2019

Scivis and Infovis
• Two subfields of visualization
• Scivis deals with data where the spatial position is given with data
- Usually continuous data
- Often displaying physical phenonema
- Techniques like isosurfacing, volume rendering, vector field vis

• In Infovis, the data has no set spatial representation, designer chooses how
to visually represent data

�24

D. Koop, CIS 680, Fall 2019

SciVis

�25

[Google Image Search for "scientific visualization", 2017]

D. Koop, CIS 680, Fall 2019

InfoVis

�26

[Google Image Search for "information visualization", 2017]

D. Koop, CS 490/680, Fall 2019

Fields

- Values come from a continuous domain, infinitely many values
- Sampled at certain positions to approximate the entire domain
- Positions are often aligned in grids
- Often measurements of natural or simulated phenomena
- Examples: temperature, wind speed, tissue density, pressure, speed,

electrical conductance

�27

Data and Dataset Types

Tables Networks &
Trees

Fields Geometry Clusters,
Sets, Lists

Items

Attributes

Items (nodes)

Links

Attributes

Grids

Positions

Attributes

Items

Positions

Items

D. Koop, CS 490/680, Fall 2019

s0

2

4
�00 �01 �02

�10 �11 �12

�20 �21 �22

3

5

2

4
v0

v1

v2

3

5

Fields in Visualization

�28

Scalar Fields Vector Fields Tensor Fields
(Order-1 Tensor Fields)(Order-0 Tensor Fields) (Order-2+)

Each point in space has an associated...

Scalar

Vector Fields

Vector Tensor

D. Koop, CS 490/680, Fall 2019

Grids
• Remember we have continuous data and want to sample it in order to

understand the entire domain
• Possible schemes?

• Geometry: the spatial positions of the data (points)

�29

D. Koop, CS 490/680, Fall 2019

Grids
• Remember we have continuous data and want to sample it in order to

understand the entire domain
• Possible schemes?

• Geometry: the spatial positions of the data (points)
• Topology: how the points are connected (cells)
• Type of grid determines how much data needs to be stored for both

geometry and topology
�29

Grids (Meshes)
• Meshes combine positional information (geometry) with

topological information (connectivity).

• Mesh type can differ substantial depending in the way mesh
cells are formed.

From Weiskopf, Machiraju, Möller© Weiskopf/Machiraju/Möller

Data Structures

• Grid types
– Grids differ substantially in the cells (basic

building blocks) they are constructed from and
in the way the topological information is given

scattered uniform rectilinear structured unstructured
[© Weiskopf/Machiraju/Möller]

D. Koop, CS 490/680, Fall 2019
8

Volume Visualization
• 2D visualization

 slice images
 (or multi-planar

 reformating MPR)

• Indirect
 3D visualization

 isosurfaces
 (or surface-shaded

 display SSD)

• Direct
 3D visualization
 (direct volume

 rendering DVR)

Visualizing Volume (3D) Data

�30

[© Weiskopf/Machiraju/Möller]

D. Koop, CS 490/680, Fall 2019

Data
• In this lecture, we will be considering scalar data: a single value at each point
• Our data is always discrete, what is the value of a point not exactly on our

grid?
• Need a method to determine what these values are: interpolation schemes

�31

D. Koop, CS 490/680, Fall 2019

-1

0

1

1 2 3 4 5 6

Interpolation

�32

Value at 2.2?

D. Koop, CS 490/680, Fall 2019

-1

0

1

1 2 3 4 5 6

Nearest Neighbor Interpolation

�33

Value at 2.2?

D. Koop, CS 490/680, Fall 2019

-1

0

1

1 2 3 4 5 6

Linear Interpolation

�34

Value at 2.2?

D. Koop, CS 490/680, Fall 2019

Interpolation
• Other schemes:
- polynomial interpolation
- splines
- more…

�35

D. Koop, CS 490/680, Fall 2019

Dimensions of Data
• 1-Dimension: data along a line
- Example: temperature along my drive from Tucson to Dartmouth

• 2-Dimensional: data on a plane
- Example: temperature on the surface of a pond

• 3-Dimensional: data in our normal world (data in a volume)
- Example: temperature at every point in the room

• Complexity increases as we add dimensions
• Visualization complexity also increases
• Often, want to be able to see phenomena as we see them in real life settings

�36

D. Koop, CS 490/680, Fall 2019

10

Voxel vs. Cell model

Represents the 3D division of space by a 3D array of grid points.

gridpoint

VOXEL CELL

gridpoint

• Voxel: grid point in center, constant value in voxel

• Cell: grid points at vertices, value within cell varies

3D: Voxels and Cells

�37

[from http://www.cs.rug.nl/~michael/FANTOM/FANTOM1a.pdf]

http://www.cs.rug.nl/~michael/FANTOM/FANTOM1a.pdf

D. Koop, CS 490/680, Fall 2019
8

Volume Visualization
• 2D visualization

 slice images
 (or multi-planar

 reformating MPR)

• Indirect
 3D visualization

 isosurfaces
 (or surface-shaded

 display SSD)

• Direct
 3D visualization
 (direct volume

 rendering DVR)

Visualizing Volume (3D) Data

�38

[© Weiskopf/Machiraju/Möller]

D. Koop, CS 490/680, Fall 2019

Visualizing Volume (3D) Data

�39

[J. Kniss, 2002]

D. Koop, CS 490/680, Fall 2019

Visualizing Volume (3D) Data

�40

[J. Kniss, 2002]

D. Koop, CS 490/680, Fall 2019

Visualizing Volume (3D) Data

�41

[J. Kniss, 2002]

D. Koop, CS 490/680, Fall 2019 �42

How have we encoded 3D data before?
 Hint: Think about maps

D. Koop, CS 490/680, Fall 2019

Isolines (2D)
• Isoline: a line that has the same scalar value at all locations
• Example: Topographical Map

�43

[USGS via Wikipedia]

http://commons.wikimedia.org/wiki/File:Topographic_map_example.png

D. Koop, CS 490/680, Fall 2019

Isosurfaces (3D)
• Isosurface: a surface that has the same scalar value at all locations
• Often use multiple isosurfaces to show different levels

�44

[J. Kniss, 2002]

