
Data Visualization (CSCI 490/680)

Focus+Context & Data 

Dr. David Koop

D. Koop, CS 490/680, Fall 2019



D. Koop, CS 490/680, Fall 2019

20

15

10

5

0     

Weight Class (lbs)

Aggregation: Histograms
• Very similar to bar charts 
• Often shown without space between 

(continuity) 
• Choice of number of bins  
- Important! 
- Viewers may infer different trends based on 

the layout

�2

[Munzner (ill. Maguire), 2014]



D. Koop, CS 490/680, Fall 2019

Binning
• 2D Histogram is a histogram in 2D encoded using color instead of height 
• Hexbin advantages: 
- Bins are more circular so distance to the edge is not as variable 
- More efficient aggregation around the center of the bin

�3

Scatterplot Rectangular Bin Hexagonal Bin



D. Koop, CS 490/680, Fall 2019

Modifiable Areal Unit Problem

�4

[Penn State, GEOG 486]

30

spatial aggregation

modifiable areal unit problem 
in cartography, changing the boundaries of the 
regions used to analyze data can yield dramatically 
different results

30

spatial aggregation

modifiable areal unit problem 
in cartography, changing the boundaries of the 
regions used to analyze data can yield dramatically 
different results

30

spatial aggregation

modifiable areal unit problem 
in cartography, changing the boundaries of the 
regions used to analyze data can yield dramatically 
different results



D. Koop, CS 490/680, Fall 2019

Boxplots
• Show distribution 
• Single value (e.g. mean, max, min, quartiles) 

doesn't convey everything 
• Created by John Tukey who grew up in New 

Bedford! 
• Show spread and skew of data 
• Best for unimodal data 
• Variations like vase plot for multimodal data 
• Aggregation here involves many different 

marks

�5

[Flowing Data]

http://flowingdata.com/2008/02/15/how-to-read-and-use-a-box-and-whisker-plot/


D. Koop, CS 490/680, Fall 2019

Gene 1

 original data space

Gene 2

G
en

e 
3

 component space

PC 1

PC
 2

PCA 
PC 1 

PC 2 

Reducing Attributes: Principle Component Analysis (PCA)

�6

[M. Scholz, CC-BY-SA 2.0]

http://phdthesis-bioinformatics-maxplanckinstitute-molecularplantphys.matthias-scholz.de/


D. Koop, CS 490/680, Fall 2019

17 dimensions to 2

�7

[Principle Component Analysis Explained, Explained Visually, V. Powell & L. Lehe, 2015]

375

57

245

1472

105

54

193

147

1102

720

253

685

488

198

360

1374

156

135

47

267

1494

66

41

209

93

674

1033

143

586

355

187

334

1506

139

458

53

242

1462

103

62

184

122

957

566

171

750

418

220

337

1572

147

475

73

227

1582

103

64

235

160

1137

874

265

803

570

203

365

1256

175

England N Ireland Scotland Wales

Alcoholic drinks

Beverages

Carcase meat

Cereals

Cheese

Confectionery

Fats and oils

Fish

Fresh fruit

Fresh potatoes

Fresh Veg

Other meat

Other Veg

Processed potatoes

Processed Veg

Soft drinks

Sugars

Email address

Here's the plot of the data along the first principal component. Already we can see something is different about Northern Ireland.

-300 -200 -100 0 100 200 300 400 500
pc1

EnglandWales Scotland N Ireland

Now, see the first and second principal components, we see Northern Ireland a major outlier. Once we go back and look at the data
in the table, this makes sense: the Northern Irish eat way more grams of fresh potatoes and way fewer of fresh fruits, cheese, fish
and alcoholic drinks. It's a good sign that structure we've visualized reflects a big fact of real-world geography: Northern Ireland is
the only of the four countries not on the island of Great Britain. (If you're confused about the differences among England, the UK
and Great Britain, see: this video.)

-300 -200 -100 0 100 200 300 400 500
-400

-300

-200

-100

0

100

200

300

400

pc1

pc2

England

Wales

Scotland

N Ireland

For more explanations, visit the Explained Visually project homepage.

Or subscribe to our mailing list.

Subscribe

375

57

245

1472

105

54

193

147

1102

720

253

685

488

198

360

1374

156

135

47

267

1494

66

41

209

93

674

1033

143

586

355

187

334

1506

139

458

53

242

1462

103

62

184

122

957

566

171

750

418

220

337

1572

147

475

73

227

1582

103

64

235

160

1137

874

265

803

570

203

365

1256

175

England N Ireland Scotland Wales

Alcoholic drinks

Beverages

Carcase meat

Cereals

Cheese

Confectionery

Fats and oils

Fish

Fresh fruit

Fresh potatoes

Fresh Veg

Other meat

Other Veg

Processed potatoes

Processed Veg

Soft drinks

Sugars

Email address

Here's the plot of the data along the first principal component. Already we can see something is different about Northern Ireland.

-300 -200 -100 0 100 200 300 400 500
pc1

EnglandWales Scotland N Ireland

Now, see the first and second principal components, we see Northern Ireland a major outlier. Once we go back and look at the data
in the table, this makes sense: the Northern Irish eat way more grams of fresh potatoes and way fewer of fresh fruits, cheese, fish
and alcoholic drinks. It's a good sign that structure we've visualized reflects a big fact of real-world geography: Northern Ireland is
the only of the four countries not on the island of Great Britain. (If you're confused about the differences among England, the UK
and Great Britain, see: this video.)

-300 -200 -100 0 100 200 300 400 500
-400

-300

-200

-100

0

100

200

300

400

pc1

pc2

England

Wales

Scotland

N Ireland

For more explanations, visit the Explained Visually project homepage.

Or subscribe to our mailing list.

Subscribe

http://setosa.io/ev/principal-component-analysis/


D. Koop, CS 490/680, Fall 2019

Fig. 2. A tooltip displays the sample’s absolute values, standard
deviations, and graphical representations for each dimension.

dots on the projection and drawing a convex hull around them.
Clusters can also be saved and named as selections.

All of these groupings are displayed as panels in the sidebar. Each
selection, cluster, or class is displayed with a thumbnail of its spatial
distribution, providing a quick visual way of locating the relevant
points in the projection. Some additional information, such as the
name or the number of samples, is displayed below the thumbnail.
Furthermore, hovering over a grouping’s thumbnail displays small
density plots in the list of dimensions, as well as a text-based preview
of the most deviating dimensions per group.

On the projection, these groupings are coded by colour, with the
user being able to switch between displaying classes, selections, or
clusters using the respective eye icon.

4.3 Comparing elements

Elements can be analysed by viewing their values and comparing them
to the dataset in general, or to other selections in particular. Even
a single sample is never analysed in isolation; its values only make
sense when compared to the rest of the dataset (see Figure 2).

Analysing a single sample is done by hovering the mouse pointer
over a dot on the projection. The values for the corresponding sample
are indicated in the list of dimensions. Additionally, a tooltip appears,
showing the values for the various dimensions, and their standard
deviations. They are displayed in text form for accuracy, as well as
in a graphical representation for quick comprehension. The deviations
from the mean are displayed as bar charts, with density plots of the
whole dataset in the background to provide additional context. The
colours of the bars reflect the deviation as well, either in red or blue,
and with increasing saturation for higher deviations. If there are too
many dimensions to display at once, only the dimensions are shown,
in which the sample deviates most. An individual sample can also
be compared to other samples by selecting it and hovering over other
samples. A tooltip will appear and visualise the differences.

Analysing groups works similarly. When selecting a group of
samples, density plots for them are shown in the list of dimensions,
comparing the selection to the dataset. A tooltip comparison is
displayed as well. Because there is no single value for the dimensions,
the means are used instead. The graphical representation also takes
this into account, showing a density plot instead of a bar. As shown
in Figure 3, groupings can also be compared to each other, displaying
density plots for each of them. The methods for comparing samples
and groups work together, making it possible to compare a sample to
multiple clusters to e.g. find out which of them it should belong to.

4.4 Analysing dimensions

It is important to be able to quickly reference original dimensions
when analysing a dimensionality-reduced projection. Two things
matter in this regard: the spatial distribution of values in the projection
to account for clustering of the data, and the distribution of values in
the dimension itself to see how elements compare to other elements

Fig. 3. After selecting one group of samples, hovering over another
group shows a tooltip that compares these groups (here selections).

within an individual dimension. For this purpose the interface features
dynamic heatmaps in the projection and density plots in the sidebar.

4.4.1 Heatmaps
Projections created with most dimensionality-reduction techniques,
such as MDS, have no meaningful axes, complicating spatial orien-
tation because dimensional values are distributed nonlinearly. Yet, in
order to assign meaning to clustering and find correlations between
dimensions, it is important to know how those values correspond with
the positioning of the dots. (For some techniques, such as PCA,
the contribution of each original dimension can be mapped to the
projected dimensions. It would then be possible to display this as a
biplot, creating meaningful axes.)

One solution is to use a glyph plot, with the dots themselves being
used to represent an additional dimension, for example by varying
their size according to the values. This technique is available in the
prototype and can be used to visualise a dimension spatially. Where
dot size can only show the value distribution for the actual samples,
the projection space can also be used to answer a more theoretical
question: what values would a fictive sample have to have to be
projected to a certain spot? Or, phrased differently: what are the
interpolated values for the projection space? We used a heatmap to
try to answer this question.

Fig. 4. Hovering over a dimension in the sidebar displays its distribution
as a heatmap in the projection on the left.

The heatmap is a grid of cells each representing the value for a
certain dimension at its position, with higher values being darker.
Brightness is used to avoid confusion with the group colours. This
allows to visually assess the value distribution for a given dimension,
with smooth transitions between zones. All heatmaps are also shown
as thumbnails in the list of dimensions, and on the projection itself

Probing Projections

�8

[J. Stahnke et al., 2015]



D. Koop, CS 490/680, Fall 2019Fig. 6. Halos represent the cumulative error for the respective samples.
White indicates that a majority of samples is more similar than indicated
by their distance to the given sample; grey indicates the opposite.

The paths travelled by the points are shown as lines, leading from
the points’ original positions in the projection to the new, corrected
positions (see Figure 8). This connects them to their original positions
in the projection, and displays the size of the distance error at the same
time. Resembling the brightness encoding of the halos, the brightness
of the lines indicates whether they’ve moved closer or farther away.

A problem with this solution is that it introduces new distortions in
the spatial relationship between all other points. Only the distances
directly between the selected point and the other points are reliable,
whereas all the other distances are distorted, and the new positioning
might lead to wrong assumptions about potential clusterings. To
mitigate this problem, the correction paths are shown.

Another solution would be to recompute the projection while
preserving the distances from and to the selected point and being
more generous with distance errors among the remaining points. This
would somewhat reduce the introduced distortions. However, in
a recomputed projection, the positions of the points might change
significantly, most likely leading to completely different positions for
all points, possibly confusing the observer even if an animation is used.

Fig. 7. Dendrograms mapped onto the projection. Left: projection with
low projection error. Right: high projection error.

4.5.3 Dendrogram
In addition to the visualization of errors and corrections, a dendrogram
can visualize the samples with regard to their position in the clus-
tering hierarchy. Such a dendrogram (using the same agglomerative
algorithm as the clusters) overlaid onto the projection may also help

Fig. 8. Projection errors are corrected for the selected sample in orange;
grey traces indicate that samples are more different in high-dimensional
space, while white traces indicate a higher level of similarity.

to visualise high-dimensional distances on the projection space [25].
It graphically emphasises clusters by connecting close dots through
dense lines. Interestingly, the dendrogram is a surprisingly good
indicator of goodness of fit: if many thick, long lines intersect, it is
likely that the projection is of low quality.

5 EXAMPLE: OECD COUNTRIES

To illustrate the functionality of the interface we visualize the dataset
of OECD countries in the prototype (see Figure 9). The dataset
contains 8 dimensions for 36 countries2. First, the viewer is drawn
to the projection and notices Turkey that seems to be a clear outlier,
far away from all other countries. To explore why this is, the viewer
can examine this sample by hovering over it. A tooltip relating Turkey
to the rest of the dataset appears, showing that it deviates strongly from
the mean in nearly every dimension. This indicates the positioning as
outlier is probably correct.

To test this assumption and build up trust in the visualization,
the viewer selects ‘correct distances’, showing the high-dimensional
distances between Turkey and the other countries. This reveals that
Turkey should be even farther apart from several of the other countries.
Having confirmed that Turkey is an outlier in this dataset, the viewer
uses the built-in clustering to get a sense of how the countries are
grouped. Playing around with the number of clusters, they notice
that there seem to be seven clusters roughly corresponding to the
geographical and geopolitical placement of the countries.

Taking a closer look at the positioning of the clustered countries,
they realise that the arrangement seems to roughly correspond to
geographic directions: Northern and Southern countries are roughly
distributed along the vertical axes, East and West along the horizontal.
To find out if or how this correlates with the dimensions, the viewer
first compares the different clusters. Here the differences along the
dimensions are very much pronounced. Interestingly though, life
expectancy is lower in Latin America than Asia, while the self-
reported health is higher for the former than the latter.

After a few more comparisons between the clusters, the viewer
becomes interested in the dimension life satisfaction and turns towards
the heatmaps. They notice that the values for life satisfaction and self-
reported health seem to be higher in the Western countries, whereas the
value for employees working very long hours seems to be especially
high in the countries of the far East and the South.

2http://www.oecdbetterlifeindex.org/

Showing Projection Errors

�9

[J. Stahnke et al., 2015]

White: higher levels of similarity 
Gray: lower levels of similarity



D. Koop, CS 490/680, Fall 2019

Project Design
• Work on turning your visualization ideas into designs 
• Turn in: 
- Three Designs Sketches 
- Progress on Implementation 

• Options: 
- Try vastly different options 
- Refine an initial idea 

• Due Monday, Nov. 11

�10



D. Koop, CS 490/680, Fall 2019

Assignment 5
• Multiple Views and Interaction using Linked Highlighting 
• Due November 22

�11

http://faculty.cs.niu.edu/~dakoop/cs680-2019fa/assignment5.html


D. Koop, CS 490/680, Fall 2019

User Study & Results
• Types of Questions: 
- How would you try to characterize the type X? 
- In what way are X and Y different in their properties? 
- Are the projections of X and Y correct or do they deviate? How do you 

interpret this? 
- Can you discover which parts of the cluster combinations are A, B, and C? 

• Discussion: 
- Learnability: need more effective mechanisms for grasping the concepts 

behind dimensionality reduction 
- Manipulation: What happens with results? 
- Large data: What about text corpora?

�12

[J. Stahnke et al., 2015]



D. Koop, CS 490/680, Fall 2019

Focus+Context
• Show everything at once but compress regions that are not the current focus 
- User shouldn't lose sight of the overall picture 
- May involve some aggregation in non-focused regions 
- "Nonliteral navigation" like semantic zooming 

• Elision 
• Superimposition: more directly tied than with layers 
• Distortion

�13



D. Koop, CS 490/680, Fall 2019

Embed

Elide Data

Superimpose Layer

Distort Geometry

Reduce

Filter

Aggregate

Embed

Focus+Content Overview

�14

[Munzner (ill. Maguire), 2014]



D. Koop, CS 490/680, Fall 2019

Elision
• There are a number of examples of elision including in text , DOITrees, … 
• Includes both filtering and aggregation but goal is to give overall view of the 

data 
• In visualization, usually correlated with focus regions

�15



D. Koop, CS 490/680, Fall 2019

Degree of Interest Function
• DOI = I(x) - D(x,y) 
- I: interest function 
- D: distance (semantic or spatial) 
- x: location of item 
- y: current focus point (could be more than one) 

• Interactive: y changes

�16



• Example: 600,000 node tree 
- Multiple foci (from search results or via user selection) 
- Distance computed topologically (levels, not geometric)

D. Koop, CS 490/680, Fall 2019

Elision: DOITrees

�17

[Heer and Card, 2004]



D. Koop, CS 490/680, Fall 2019

Superimposition
• Different from layers because this is restricted to a particular region 
- For Focus+Context, superimposition is not global 
- More like overloading 

• Lens may occlude the layer below

�18



D. Koop, CS 490/680, Fall 2019

C. Tominski et al. / A Survey on Interactive Lenses in Visualization

(a) Alteration (b) Suppression (c) Enrichment

Figure 5: Basic lens functions. (a) ChronoLenses [ZCPB11] alter existing content; (b) the Sampling Lens [ED06b] suppresses
content; (c) the extended excentric labeling lens [BRL09] enriches with new content.

needs to be inversely projected from the screen space (V ) to
the model space (VA), in which the geometry and graphical
properties of the visualization are defined. Further inverse
projection to the data space (DT or DS) enables selection at
the level of data entities or data values. For example, with
the ChronoLenses [ZCPB11] from Figure 5(a), the user ba-
sically selects an interval on a time scale. The Local Edge
Lens [TAvHS06] from Figure 7(a) (see two pages ahead) se-
lects a subset of graph edges that pass through the lens and
actually do connect to a graph node within the lens.

So, by appropriate inverse projection of the lens, the selec-
tion s can be made at any stage of the visualization pipeline,
be it a region of pixels at V , a group of 2D or 3D geometric
primitives at VA, a set of data entities at DT , or a range of
values at DS. However, what sounds simple in theory is not
as straight-forward in real visualization applications. Inverse
projection can lead to ambiguities that need to be resolved
to properly identify the selected entities. Assigning unique
identifiers to data items and maintaining them throughout
the visualization process as well as employing the concept
of half-spaces can help in this regard [TFS08].

The Lens Function The lens function creates the intended
lens effect. Just as any function, so is the lens function char-
acterized by the input it operates on and the output it gener-
ates. Clearly, the selection s is input to the lens function. The
lens function further depends on parameters that control the
lens effect. Possible parameters are as diverse as there are
lens functions. A magnification lens, for example, may ex-
pose the magnification factor as a parameter. A filtering lens
may be parameterized by thresholds to control the amount
of data to be filtered out. Parameters such as these are essen-
tial to the effect generated with a lens. Additional parame-
ters may be available to further fine-tune the lens function.
For example, the alpha value used for dimming filtered data
could be such an additional parameter.

Given selection and parameters, the processing of the lens
function typically involves only a subset of the stages of the

visualization transformation. For example, when the selec-
tion is defined on pixels, the lens function usually manip-
ulates these pixels exclusively at the view stage V . On the
other hand, selecting values directly from the data source
DS opens up the possibility to process the selected values
differently throughout all stages of the pipeline.

The output generated by the lens function will typically be
an alternative visual representation. From a conceptual point
of view, a lens function can alter existing content, suppress
irrelevant content, or enrich with new content, or perform
combinations thereof. Figure 5 illustrates the different op-
tions. For example, ChronoLenses [ZCPB11] transform time
series data on-the-fly, that is, they alter existing content. The
Sampling Lens [ED06b] suppresses data items to de-clutter
the visualization underneath the lens. The extended excen-
tric labeling [BRL09] is an example for a lens that enriches
a visualization, in this case with textual labels.

The Join ./ Finally, the result obtained via the lens func-
tion has to be joined with the base visualization to create the
necessary visual feedback. A primary goal is to realize the
join so that it is easy for the user to understand how the view
seen through the lens relates to the base visualization. In a
narrow sense of a lens, the result generated by the lens func-
tion will replace the content in the lens interior as shown for
ChronoLenses [ZCPB11] and the SamplingLens [ED06b] in
Figures 5(a) and 5(b). For many other lenses the visual effect
manifests exclusively in the lens interior.

When the join is realized at earlier stages of the visu-
alization pipeline, the visual effect is often less confined.
For example, the Layout Lens [TAS09] adjusts the position
of a subset of graph nodes to create a local neighborhood
overview as shown in Figure 6(a). Yet, relocating nodes im-
plies that their incident edges take different routes, which in
turn introduces some (limited) visual change into the base
visualization as well. In a most relaxed sense of a lens, the
result of the lens function can even be shown separately. The
time lens [TSAA12] depicted in Figure 6(b) is an example

c� The Eurographics Association 2014.

Superimposition with Interactive Lenses

�19

[ChronoLenses and Sampling Lens in Tominski et al., 2014]



D. Koop, CS 490/680, Fall 2019

C. Tominski et al. / A Survey on Interactive Lenses in Visualization

(a) Alteration (b) Suppression (c) Enrichment

Figure 5: Basic lens functions. (a) ChronoLenses [ZCPB11] alter existing content; (b) the Sampling Lens [ED06b] suppresses
content; (c) the extended excentric labeling lens [BRL09] enriches with new content.

needs to be inversely projected from the screen space (V ) to
the model space (VA), in which the geometry and graphical
properties of the visualization are defined. Further inverse
projection to the data space (DT or DS) enables selection at
the level of data entities or data values. For example, with
the ChronoLenses [ZCPB11] from Figure 5(a), the user ba-
sically selects an interval on a time scale. The Local Edge
Lens [TAvHS06] from Figure 7(a) (see two pages ahead) se-
lects a subset of graph edges that pass through the lens and
actually do connect to a graph node within the lens.

So, by appropriate inverse projection of the lens, the selec-
tion s can be made at any stage of the visualization pipeline,
be it a region of pixels at V , a group of 2D or 3D geometric
primitives at VA, a set of data entities at DT , or a range of
values at DS. However, what sounds simple in theory is not
as straight-forward in real visualization applications. Inverse
projection can lead to ambiguities that need to be resolved
to properly identify the selected entities. Assigning unique
identifiers to data items and maintaining them throughout
the visualization process as well as employing the concept
of half-spaces can help in this regard [TFS08].

The Lens Function The lens function creates the intended
lens effect. Just as any function, so is the lens function char-
acterized by the input it operates on and the output it gener-
ates. Clearly, the selection s is input to the lens function. The
lens function further depends on parameters that control the
lens effect. Possible parameters are as diverse as there are
lens functions. A magnification lens, for example, may ex-
pose the magnification factor as a parameter. A filtering lens
may be parameterized by thresholds to control the amount
of data to be filtered out. Parameters such as these are essen-
tial to the effect generated with a lens. Additional parame-
ters may be available to further fine-tune the lens function.
For example, the alpha value used for dimming filtered data
could be such an additional parameter.

Given selection and parameters, the processing of the lens
function typically involves only a subset of the stages of the

visualization transformation. For example, when the selec-
tion is defined on pixels, the lens function usually manip-
ulates these pixels exclusively at the view stage V . On the
other hand, selecting values directly from the data source
DS opens up the possibility to process the selected values
differently throughout all stages of the pipeline.

The output generated by the lens function will typically be
an alternative visual representation. From a conceptual point
of view, a lens function can alter existing content, suppress
irrelevant content, or enrich with new content, or perform
combinations thereof. Figure 5 illustrates the different op-
tions. For example, ChronoLenses [ZCPB11] transform time
series data on-the-fly, that is, they alter existing content. The
Sampling Lens [ED06b] suppresses data items to de-clutter
the visualization underneath the lens. The extended excen-
tric labeling [BRL09] is an example for a lens that enriches
a visualization, in this case with textual labels.

The Join ./ Finally, the result obtained via the lens func-
tion has to be joined with the base visualization to create the
necessary visual feedback. A primary goal is to realize the
join so that it is easy for the user to understand how the view
seen through the lens relates to the base visualization. In a
narrow sense of a lens, the result generated by the lens func-
tion will replace the content in the lens interior as shown for
ChronoLenses [ZCPB11] and the SamplingLens [ED06b] in
Figures 5(a) and 5(b). For many other lenses the visual effect
manifests exclusively in the lens interior.

When the join is realized at earlier stages of the visu-
alization pipeline, the visual effect is often less confined.
For example, the Layout Lens [TAS09] adjusts the position
of a subset of graph nodes to create a local neighborhood
overview as shown in Figure 6(a). Yet, relocating nodes im-
plies that their incident edges take different routes, which in
turn introduces some (limited) visual change into the base
visualization as well. In a most relaxed sense of a lens, the
result of the lens function can even be shown separately. The
time lens [TSAA12] depicted in Figure 6(b) is an example

c� The Eurographics Association 2014.

Superimposition with Interactive 

�20

[Extended Lens in Tominski et al., 2014]



D. Koop, CS 490/680, Fall 2019

June 21, 2012 / Mike Bostock

Fisheye Distortion

It can be difficult to observe micro and macro features simultaneously with complex graphs. If you
zoom in for detail, the graph is too big to view in its entirety. If you zoom out to see the overall
structure, small details are lost. Focus + context techniques allow interactive exploration of an area

Mouseover to distort the nodes.

Distortion

�21

[M. Bostock]

http://bost.ocks.org/mike/fisheye/


D. Koop, CS 490/680, Fall 2019

Distortion Choices
• How many focus regions? One or Multiple 
• Shape of the focus? 
- Radial 
- Rectangular 
- Other 

• Extent of the focus 
- Constrained similar to magic lenses 
- Entire view changes 

• Type of interaction: Geometric, moveable lenses, rubber sheet

�22



D. Koop, CS 490/680, Fall 2019

Overplotting

�23

[M. Bostock]

http://bost.ocks.org/mike/fisheye/


D. Koop, CS 490/680, Fall 2019

Cartesian Distortion

�24

[M. Bostock]

http://bost.ocks.org/mike/fisheye/


D. Koop, CS 490/680, Fall 2019

Cartesian Distortion

�24

[M. Bostock]

http://bost.ocks.org/mike/fisheye/


D. Koop, CS 490/680, Fall 2019

(a) (b)

Figure 3. LiveRAC shows a full day of system management time-series data using a reorderable matrix of area-aware

charts. Over 4000 devices are shown in rows, with 11 columns representing groups of monitored parameters. (a): The

user has sorted by the maximum value in the CPU column. The first several dozen rows have been stretched to show

sparklines for the devices, with the top 13 enlarged enough to display text labels. The time period of business hours

has been selected, showing the increase in the In pkts parameter for many devices. (b): The top three rows have been

further enlarged to show fully detailed charts in the CPU column and partially detailed ones in Swap and two other

columns. The time marker (vertical black line on each chart) indicates the start of anomalous activity in several of

spire’s parameters. Below the labeled rows, we see many blocks at the lowest semantic zoom level, and further below

we see a compressed region of highly saturated blocks that aggregate information from many charts.

as the minimum, maximum, or average of the time-series.
Rows can be sorted by device names or metadata such as lo-
cation, customer, or other groupings. Columns can also be
reordered by the user.

Principle: multiple views are most effective when coor-

dinated through explicit linking. The principle of linked
views [15] is that explicit coordination between views en-
hances their value. In LiveRAC, as the user moves the cur-
sor within a chart, the same point in time is marked in all
charts with a vertical line. Similarly, selecting a time seg-
ment in one chart shows a mark in all of them. This tech-
nique allows direct comparison between parameter values
at the same time on different charts. In addition, people can
easily correlate times between large charts with detailed axis
labels, and smaller, more concise charts.

Assertion: showing several levels of detail simultane-

ously provides useful high information density in con-

text. Several technique choices are based on this assertion.
First, LiveRAC uses stretch and squish navigation, where
expanding one or many regions compresses the rest of the
view [11, 17]. The accompanying video shows the look and
feel of this navigation technique. The stretching and squish-
ing operates on rectangular regions, so expanding a single
chart also magnifies the entire row for the device it repre-
sents, and the entire column for the parameters that it shows.
The edges of the display are fixed so that all cells remain
within the visible area, as opposed to conventional zoom-
ing where some regions are pushed off-screen. There are
rapid navigation shortcuts to zoom a single cell, a column,

an aggregated group of devices, the results of a search, or to
zoom out to an overview. Users can also directly drag grid
lines or resize freely drawn on-screen rectangles. Naviga-
tion shortcuts can also be created for any arbitrary grouping,
whose cells do not need to be contiguous. This interaction
mechanism affords multiple focus regions, supporting mul-
tiple levels of detail.

Second, charts in LiveRAC dynamically adapt to show vi-
sual representations adapted in each cell to the available
screen space. This technique, called semantic zooming [13],
allows a hierarchy of representations for a group of device-
parameter time-series. In Figure 3, the largest charts have
multiple overlaid curves and detailed axis and legend labels.
Smaller charts show fewer curves and less labeling, and at
smaller sizes only one curve is shown as a sparkline [24].
On each curve, the maximum value over the displayed time
period is indicated with a red dot, the minimum with a blue
dot, and the current value with a green one. All representa-
tion levels color code the background rectangle according to
dynamically changeable thresholds of the minimum, maxi-
mum, or average values of the parameters within the current
time window. The smallest view is a simple block, where
this color coding is the only information shown.

Third, aggregation techniques achieve visual scalability by
ensuring dense regions show meaningful visual representa-
tions. Given our target scale of dozens of parameters and
thousands of devices, the size of the matrix could easily sur-
pass 100,000 cells. Stretch and squish navigation allows
users to quickly create a mosaic with cells of many differ-

Stretch and Squish Navigation

�25

[McLachlan et al., 2008]



D. Koop, CS 490/680, Fall 2019

Fisheye Interfaces — Research Problems and Practical Challenges 81

3 Fisheye Interfaces in Programming

The concerns we discuss in this paper emerged in the design and evaluation of
fisheye interfaces that aim to support programming [21,23]. With the specific goal
of helping programmers navigate and understand source code, we have integrated
a fisheye view in the Java editor in Eclipse, an open source development platform.
Basically, the fisheye view works by assigning a degree of interest (DOI) to each
program line based on its a priori importance and its relation to the user’s
current focus in the file. Then, lines with a DOI below a certain threshold are
diminished or hidden, resulting in a view that contains both details and context.

Below, we discuss the fisheye interface design used in an initial controlled
experiment [21], and the design used in a later field study [23], arguing for the
changes made to the initial design.

Fig. 2. The fisheye interface initially studied [21] contains an overview of the entire
document shown to the right of the detail view of source code. The detail view is
divided into a focus area and a context area (with pale yellow background color) that
uses a fixed amount of space above and below the focus area. In the context area,
program lines that are less relevant given the focus point are diminished or hidden.

Fisheye Distortion in Programming

�26

[Jakobsen and Hornbaek, 2011]



D. Koop, CS 490/680, Fall 2019

Fisheye Interfaces — Research Problems and Practical Challenges 83

Fig. 3. The fisheye interface evolved for use in a field study [23]. Less interesting lines
are hidden in the context area by using a magnification factor of 0. However, all lines
with a degree of interest above a given threshold are included in the context area. In the
example shown here, the bottom context area contains more lines than can be shown
simultaneously. The context can be scrolled to view lines that are not initially shown.

scrolled. The motivation for this change is that all the lines may be important to
the user. This design thus aims to guarantee users that the context area contains
all the lines they expect to find (e.g., all the occurrences of a variable the user
has selected).

3.3 Findings from User Studies

Overall, the results from our studies attest to the usefulness of fisheye interfaces
to programmers. Participants in a controlled experiment preferred the fisheye in-
terface to a linear source code interface [21]. Participants in a field study adopted
and used the fisheye interface regularly and across different activities in their own
work for several weeks [23]. The fisheye interface does not seem useful in all tasks
and activities, however. Participants in the experiment completed tasks signifi-
cantly faster using the fisheye interface, a difference of 10% in average completion
time, but differences were only found for some task types. Although the results
indicate usability issues, they also suggest that some tasks were less well sup-
ported by the fisheye interface. In addition, data from the field study showed
periods where programmers did not use the fisheye interface, and debugging and
writing new code were mentioned as activities for which the fisheye interface was
not useful.

Distortion vs. Hide

�27

[Jakobsen and Hornbaek, 2011]



D. Koop, CS 490/680, Fall 2019

Research Questions
• Is a priori importance useful (and for what)? 
• What does the user focus on? 
- predictability of view changes when focus changes 
- how direct user control is 
- task & context 

• What interesting information should be displayed 
- degree of interest function may produce varied result sizes 

• Do fisheye views integrate or disintegrate? 
- interference with other interactions; allow on-demand use? 

• Are fisheye views suitable for large displays?

�28

[Jakobsen and Hornbaek, 2011]



D. Koop, CS 490/680, Fall 2019

Distortion Concerns
• Distance and length judgments are harder 
- Example: Mac OS X Dock with Magnification 
- Spatial position of items changes as the focus changes 

• Node-link diagrams not an issue… why? 
• Users have to be made aware of distortion 
- Back to scatterplot with distortion example 
- Lenses or shading give clues to users 

• Object constancy: understanding when two views show the same object 
- What happens under distortion? 
- 3D Perspective is distortion… but we are well-trained for that 

• Think about what is being shown (filtering) and method (fisheye)
�29



D. Koop, CS 490/680, Fall 2019

H3 Layout

�30

[T. Munzner, 1998]

https://www.youtube.com/watch?v=fhbQy_NCwWI


D. Koop, CS 490/680, Fall 2019

H3 Layout

�30

[T. Munzner, 1998]

https://www.youtube.com/watch?v=fhbQy_NCwWI


D. Koop, CS 490/680, Fall 2019

(a) Moderately large graph drawn with straight line edges. The graph nodes
correspond to the USA major cities; edges show migration flows. The graph
contains 1715 nodes and 9778 edges. Nodes are laid out according to ge-
ographical positions of cities, producing a drawing with poor readability,
where edges mix in a totally unordered way and where some nodes are close
to unnoticeable.

(b) The same graph as in Fig. 1(a) now drawn using edge bundling with edges
rendered as Bézier curves

Figure 1: Illustration of edge bundling.

(a) The fish-eye distorts a small region of the graph
for local inspection.

(b) The magnifying lens shows a zoom on a local
region.

Figure 2: Fisheye and magnifying lens

a zoom and pan effect under the wheel mouse makes this
operation relatively easy.

Magnifying Lens and Fish-eye – The magnifying lens
[3] and geometrical fish-eye [7] were also added to the sys-
tem as basic interactors. They allow to get local details
on an area of the graph without having to zoom in (see
Fig. 2(a) and Fig. 2(b)). These techniques allow to get
a rough estimation on the degree of nodes or number of
edges that have been bundled together, and an idea on the
spatial organization of neighborhoods.

Neighborhood highlighting – After edges have been
bundled, the graph gains in overall readability at the loss
of more local information. For instance, connections be-
tween any two particular nodes cannot be easily recovered
and isolated out of a bundle. When designing the system
and deciding on the interactions to implement and com-
bine, we focused on the recovery of these local informa-

tion. By hovering the mouse over any node in the graph
drawing, the user can highlight its neighborhood. This
is accomplished by showing a translucent circle over the
immediate where a node sits while clearly displaying the
neighborhood of the node (top of Fig. 3(a)). The circle
fades off nodes not belonging to the selected neighbor-
hood, temporarily providing a clear view of it. The size
of the translucent circle is fitted as to enclose all immedi-
ate neighbors of the node in the graph. Using the mouse
wheel, the user can select neighbors sitting at a bounded
distance from the node. The size of the translucent circle
adjusts accordingly (bottom of Fig. 3(b)).

Bring & Go – Now, neighbor nodes in the graph do not
always sit close. As a consequence, the translucent circle
highlighting neighbors of a node can potentially be quite
large. That is, the distance between nodes in the graph does
not always match their Euclidean distance in the drawing –

Focus+Context in Network Exploration

�31

[Lambert et al., 2010]



D. Koop, CS 490/680, Fall 2019(a) Neighborhood highlighting – selecting a node
brings up its neighbors, fading away all other graph
elements.

(b) Using the mouse wheel, the neighborhood is ex-
tended to nodes sitting further away.

Figure 3: Illustration of the Neighborhood highlighting interaction

this indeed is the challenge posed to all layout algorithms.
The Bring & Go technique introduced by Tominski et al.
[18] solves this paradox. The Bring operation pulls neigh-
bors of a node to near proximity, temporarily resolving a
situation where the layout algorithm had failed. Fig. 4(a)
and Fig. 4(b) illustrates this situation – the passage from
step 1 to step 2 being smoothly animated. Once the neigh-
bors have been repositioned close to the node, the Go op-
eration lets the user decide of a new direction to move to
by selecting a neighbor. After clicking a neighbor node,
the visualization is panned until re-centered around the tar-
get neighbor. The transition is performed by smoothly an-
imating the pan (see Fig. 3). A recent user-study of this
interaction technique has been made by Moscovich et al

[15]. When bringing neighbors close to the selected node,
the edges abandon their curve shapes and are morphed to
straight lines. This is done by modifying the control points
coordinates of each curve so that they are all aligned.

Our system thus comprises a comprehensive palette of
interactions focusing on adjacency or accessibility tasks
(we borrow this terminology from Lee et al.’s [14] task
taxonomy, itself referring to the work of Amar et al. [1]).
That is, tasks such as exploring neighbor nodes, or count-
ing them, finding how many nodes can be accessed from
any given one, etc., can be easily done through direct ma-
nipulation of the graph using zoom, pan, neighborhood
highlight or Bring & Go, for instance. All these interac-
tions techniques have been implemented as interactor plu-
gins for the Tulip graph visualization software [2] and are
available through its plugin server.

4 Maintaining fluid interaction

The challenge we were faced with is that curves gen-
eration have a relatively high computational cost when it

comes to interacting with bundles. Indeed, although the
curves can be drawn in reasonable time for static drawings
using standard rendering techniques, the problem becomes
tedious when one wants to interact on bundles using any
of the techniques described in the previous section. The
curves’ shapes must be continually transformed as the user
moves the mouse and pilots interaction (geometrical fish-
eye or Bring & Go for instance).

Moreover, we did not want fluidity to impact on the
quality of the curves and impose an upper bound on the
number of control points used to compute the edge routes.
Instead, we aimed at producing a system capable of deal-
ing with an arbitrary number of control points. As a con-
sequence, the computation of the points interpolating the
curve itself puts a real burden on the system and calls for
an extremely efficient approach. The solution we designed
avoids performing computations on the CPU as far as pos-
sible, relying on the GPU for almost all curve related com-
putations. The only computations that are potentially per-
formed on the CPU are the original graph layout and the
bundling part.

4.1 Introduction to spline rendering

Now, there are two major issues when rendering a para-
metric spline. Control points define the curve analytically
described as a polynomial (see Eq. (1 for Bézier curves).
Second, once the polynomial has been determined, it must
be evaluated as many times as required in order to inter-
polate the curve itself. As a consequence, when interact-
ing with the graph asking for local deformation of edges,
bringing neighbors closer or following an edge, the curves
must be re-computed on the fly.

A classical approach when rendering a curve is to com-
pute the interpolation points on the CPU, then call appro-
priate graphics primitives and let the GPU render the curve

Focus+Context in Network Exploration

�32

[Lambert et al., 2010]



D. Koop, CS 490/680, Fall 2019

(a) Bring (step 1) – Selecting a node fades out
all graph elements but the node neighborhood.

(b) Bring (step 2) – Neighbor nodes are pulled
close to the selected node.

(c) Go – After selecting a neighbor (the green
node in Fig. 4(b)), a short animation brings the
focus towards a new neighborhood.

Figure 4: Illustration of the Bring & Go interaction.

on the screen. For instance, a Bézier curve corresponds to
a polynomial whose degree is one less than the number of
control points determining it (other families of polynomi-
als can also be used, such as Hermite’s polynomials). Let
(P0, . . . ,Pn) be control points. The polynomial defined from
these control points is:

Qn(t) =
n

∑
i=0

Bi,n(t)Pi, (1)

where the sum is performed component wise and

Bi,n(t) =

(

n

i

)

(1− t)n−it i, 0≤ t ≤ 1 (2)

are Bernstein polynomials and
(

n
i

)

= n!
i!(n−i)! denotes the

usual binomial coefficient.
In order to be able to easily interact with the edge bun-

dled graphs, even for basic interactions like panning and
zooming, we have to optimize the curves rendering by re-
ducing the computational load on the CPU as much as
possible. One solution could be to pre-compute all curve
points and store them in memory; this obviously is not effi-
cient in terms of memory usage, considering that we want
to draw a large amount of fine-grained rendered curves.
For example, drawing 105 curves (edges) with 100 points
per curves – one point being stored as 3 floats (4 bytes
each), the total amount of memory use would be ∼ 108

bytes (more than 110 Mbytes).
Another solution will be to use the built-in components

of high level graphics API for rendering curves. For in-
stance, in OpenGL, that task can be achieved by using a
standard feature called evaluators. Evaluators can be used
to construct curves and surfaces based on the Bernstein ba-
sis polynomials. This includes Bézier curves and patches,
and B-splines. An evaluator is set up from an array of con-
trol points and allows to compute curve points on the GPU

by sending the parameter t to the rendering pipeline. How-
ever, most of the OpenGL implementations have restrained
the maximum authorized number of control points to eight.
So to draw a Bézier curve or a cubic B-spline with more
than eight control points using evaluators, it has to be done
piecewise by subdividing the curve to render into curves
with fewer control points. Consequently, the performance
to draw high order curves with this technique decreases as
the number of control points grows. So even if evaluators
work well to render curves with a small number of control
points, they are not suitable to resolve our issue of drawing
curves with several dozens of control points efficiently.

4.2 GPU-intensive spline rendering

Our solution delegates the computation of curve points
to the GPU which is perfectly well designed to perform
vectorial computation and floating points operations. By
using the OpenGL Graphics API, we can encapsulate those
tasks in a shader program. This type of program, written
in a C-like language called GLSL (OpenGL Shading Lan-

guage), allows to modify the default behavior of some pro-
cessing units in the rendering pipeline – the vertex process-
ing unit can be customized this way. The purpose of vertex
processing stage is to transform each vertex’s 3D position
in virtual space to the 2D coordinates at which it appears
on the screen. By designing a vertex shader we can ma-
nipulate properties such as node position or color, with all
computations executed on the GPU. Shaders offer tangible
benefits since they are well suited for parallel processing
as most modern GPUs have multiple shader pipelines.

The vertex shader we designed is activated each time
we render a curve on screen. Before sending vertex co-
ordinates to the GPU, the curve’s control points are trans-
ferred to the shader and stored in an array. The maximum
size of that array is hardware dependent and determined at
runtime. On recent GPU, more than one thousand control

Focus+Context in Network Exploration

�33

[Lambert et al., 2010]



D. Koop, CS 490/680, Fall 2019

JavaScript Data Wrangling Resources
• https://observablehq.com/@dakoop/learn-js-data 
• Based on http://learnjsdata.com/ 
• Good coverage of data wrangling using JavaScript

�34

https://observablehq.com/@dakoop/learn-js-data
http://learnjsdata.com/

