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Composite Visualization Techniques
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[W. Javed and N. Elmqvist, 2012]

Technique Visualization A Visualization B Spatial Relation Data Relation

ComVis [24] (Figure 2) any any juxtapose none
Improvise [39] (Figure 3) any any juxtapose none
Jigsaw [36] any any juxtapose none
Snap-Together [30] any any juxtapose none
semantic substrates [34] (Figure 4) node-link node-link juxtapose item-item
VisLink [11] (Figure 5) radial graph node-link juxtapose item-item
Napoleon’s March on Moscow [37] time line view area visualization juxtapose item-item
Mapgets [38] (Figure 6) map text superimpose item-item
GeoSpace [22] (Figure 7) map bar graph superimpose item-item
3D GIS [8] map glyphs superimpose item-item
Scatter Plots in Parallel Coordinates [45] (Figure 8) parallel coordinate scatterplot overload item-dimension
Graph links on treemaps [14] (Figure 9) treemap node-link overload item-item
SparkClouds [21] tag cloud line graph overload item-item
ZAME [13] (Figure 10) matrix glyphs nested item-group
NodeTrix [17] (Figure 11) node-link matrix nested item-group
TimeMatrix [44] matrix glyphs nested item-group
GPUVis [25] Scatterplot glyphs nested item-group

Table 1: Classification of common composite visualization techniques using our design space.

(a) Juxtaposed views. (b) Integrated views. (c) Superimposed views. (d) Overloaded views. (e) Nested views.

Figure 12: Example of composing a scatterplot and bar graph using different methods.

datasets in the same space and using different visualizations, but
also highlights the relational linking between the two datasets.

Nested views provide an efficient approach to link each of the
data values, visualized through the host visualization, to its related
dataset, visualized through client visualizations. This is achieved
by nesting clients inside the visual marks in the host.

• Benefits: Very compact representation, easy correlation.
• Drawbacks: Limited space for the client visualizations, clut-

ter is high, and visual design dependencies are high.
• Applications: Again, situations that call for augmenting a

particular visual representation with additional mapping.

Figure 12(e) shows an example composition of scatterplot and
bar graph visualizations based on this design patter. In the figure,
the scatterplot visualization is acting as a host and bar graph visu-
alizations are nested inside its visual marks.

There is probably not a clear winner among different design pat-
terns while designing an information visualization tool. The correct
choice of design pattern to use for a particular implementation de-
pends on different conditions, such as the available view space, user
knowledge, and the complexity of the underlying dataset. Ideally
speaking, designers should be able to combine any existing visual-
izations to generate a composite visualization view.

8.2 Delimitations

While our above CVV design patterns are general in nature, they
are based solely on the spatial layout of component visualizations.
However, it is possible to envision other ways to combine two or
more visualizations, for example using interaction or animation.
One such example is the use of interactive hyperlinking [6, 43] (or
wormholing) to navigate between different visualization views.

8.3 Discussion

There are several direct benefits to structuring the design space of
composite visualization views in this manner. Classifying existing
techniques into patterns not only helps in understanding these tech-
niques, but also in evaluating their strengths and weaknesses.

However, the design patterns presented in this paper are all based
on evidence from the literature of how existing visualization tools
and techniques use composite views. Therefore, our framework
is inherently limited to current designs, and more descriptive than
generative in nature. Furthermore, this list of patterns is not neces-
sarily exhaustive, and we certainly foresee additional design pat-
terns for composite views to emerge with progress in informa-
tion visualization. It is also not always straightforward to sepa-
rate what is a composite visualization and what is an “atomic” (or
component) visualization, particularly when the compositions on
the visual structures—which is the case for overloaded and nested
views—as opposed to merely on the views. Our approach in the
above text has been to treat as components any technique has been
presented in the literature as a standalone technique.

9 CONCLUSION

We have proposed a novel framework for specifying, designing, and
evaluating compositions of multiple visualizations in the same vi-
sual space that we call composite visualization views. The benefit
of the framework is not only to provide a way to unify a large col-
lection of existing work where visual representations are combined
in various ways, but also to suggest new combinations of visual
representations that may significantly advance the state of the art.
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3.1 ComVis

ComVis [24] is a multidimensional visualization system support-
ing multiple coordinated views for exploring complex datasets (Fig-
ure 2). The dataset is shown in the form a table view at the bottom
of the main window. Beyond basic interactions, ComVis also sup-
port interactive brushing using both single and composite brushes.

Figure 2 shows a visual exploration of meteorology data using
ComVis. The user has created eight different views, each with a
different visualization. The analyst has then used a single brush to
select three bins in the histogram view, causing all the other views
to highlight the corresponding data items.

3.2 Improvise

Improvise [39, 40] is a visualization framework based on the jux-
taposed views design pattern. The framework allows users to build
and browse multiple visualizations while coordinating relational
linking among them. The system is highly extensible and modular-
ized, allowing it to be adapted for virtually any type of data and vi-
sual representation. To explore relational data in an interactive man-
ner, Improvise provides support for coordinated queries, a visual
abstraction language designed for relational databases. More re-
cent work on cross-filtered views [41] adds to the expressive power
of the framework for relation linking between different views.

Figure 3 shows a visual exploration of a simulated ion trajec-
tory in a cubic ion trap using Improvise. The tool allows user to
visualize different portions of the data set, selected using dynamic
queries [1]. All the visualizations are coordinated and data selection
in one view is projected in all others.

Figure 4: Semantic Substrates [34] (Integrated Views). Network

visualization of a dataset of court cases using semantic substrates.

4 INTEGRATION ! INTEGRATED VIEWS

The integrated views design pattern is also based on juxtaposing (or
tiling) the component visualizations (Figures 4, 5). For this reason,
the visual composition for integrated views is identical to that of
juxtaposed views. However, contrary to the implicit linking used in
juxtaposed views, integrated views use explicit linking, normally
in the form of graphical lines that relate data items in different
views another [11]. One prominent example of integrated views
is Charles Minard’s famous visualization of Napoleon’s march on
Moscow [37], where explicit linking shows the relations between
temperature and the number of surviving soldiers during the retreat.

Figure 5: VisLink [11] (Integrated Views). Radial and force-directed

graphs on separate visualization planes linked with visual edges.

The use of explicit linking in integrated views, compared to im-
plicit linking in juxtaposed views, allows for better relational cogni-
tion, but at the cost of added visual clutter. However, as the number
of data points increases in the visualizations, the visual clutter aris-
ing from the explicit links may become a major hindrance. Com-
monly used strategies to avoid this problem are to aggregate the
links, or to show relational links only for selected data values [11].

4.1 Semantic Substrates

Shneiderman and Aris [34] proposed a network visualization layout
based on a user-defined semantic substrate with node-links diagram
as an underlying visualization (Figure 4). Semantic substrates are
spatially non-overlapping regions that are built to hold nodes based
on some category present in the dataset. The individual regions
are sized proportionally to the number of data entries for the cate-
gory they visualize. This scheme allows users to get a quick idea
about the cardinality of different categories present in the under-
lying dataset. Their approach is in line with the integrated view
design pattern because the techniques add visual links to connect
the nodes in different substrates. To reduce clutter arising from the
links, the tool allows for toggling their visibility.

Figure 4 shows semantic substrates used for the exploration of
a subset of federal judicial cases on the legal issue of regulatory
takings from 1978 to 2005. The nodes in different views are placed
based on their chronological order along the horizontal axis and
links among the nodes highlight citation between different cases.

4.2 VisLink

VisLink [11] (Figure 5) creates multiple 2D planes, one for each
visualization, and shows relational linking between the different vi-
sualization planes. Visualization planes generated in VisLink are
interactive and users can re-position them in the view to explore
data relations. In contrast with semantic substrates, VisLink allows
the use of different visualizations while exploring the dataset.

As with semantic substrates, the VisLink relational linking is
done using visual lines that connect visual marks in one plane with
the corresponding mark in the other plane. To reduce the inher-
ent occlusion due to the explicit relational links between visualiza-
tions, the tool supports two kinds of edges: straight edges are used
to show one-to-one linking, while bundled curved edges are used
to highlight one to many linking. To reduce visual clutter the tool
shows relational links only between adjacent planes, and the planes
must be reordered for the user to see relations between other planes.
Figure 5 shows VisLink being used for exploring a dataset of En-
glish words based on the IS-A relation over synonym sets.

What is this technique?

�3

[VisLink, Collins and Carpendale, 2007]
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6 OVERLOADING ! OVERLOADED VIEWS

This design pattern characterizes compositions where one visual-
ization, called the client visualization, is rendered inside another
visualization, called the host, using the same spatial mapping as the
host [26]. Overloaded views (Figures 8 and 9) are similar to super-
imposed views, but with some important differences. Like super-
imposition, the client visualization in this design pattern is overlaid
on the host. However, unlike Superimposed Views, there exists no
one-to-one spatial linking between the two visualizations [12].

While previous design patterns have all operated on specific
views of component visualizations, overloaded views (and also the
next pattern, Nested Views) operate on the visual structure them-
selves. In other words, it is no longer possible to merely use vi-
sual layout operations to organize the views together, but the vi-
sual structures themselves must be modified to combine the com-
ponents. We will see examples of this below.

Figure 10: ZAME [13] (Nested Views). Visual exploration of a

protein-protein interaction dataset in ZAME.

6.1 Scatter Plots in Parallel Coordinates (SPPC)

Yuan et al. [45] presented a system that allows overloading of 2D
scatterplots on a parallel coordinates visualization [18] (Figure 8).
The technique is based on converting the space between pairs of
selected coordinate dimensions in a parallel coordinate plot into
scatterplots through multidimensional scaling [42]. The technique
takes advantage of the fact that parallel coordinate plots do not re-
ally use the space between the parallel dimensional axes, which
means that this space is open for being overloaded.

SPPC is also an example of combining two techniques to com-
pensate for their individual shortcomings. Parallel coordinates are
efficient for visualizing multiple dimensions in a compact 2D vi-
sual representation. However, they make it hard to correlate trends
across multiple dimensions due to their inherent visual clutter. Scat-
terplots, on the other hand, provide an effective way of correlating
trends in any dimension of a dataset [10]. Combining both tech-
niques allows for sharing their advantages.

6.2 Graph Links on Treemaps

Fekete et al. [14] proposed a technique for rendering graphs using a
treemap [20] with overloaded graph links. The idea is based on the
fact that it is possible to decompose a graph into a tree structure and
a set of remaining graph edges that are not included in the tree. This
graph decomposition allows for using a treemap to visualize the tree
structure, and then overload links corresponding to the remaining
graph edges on the treemap visualization. Even though Fekete et al.

call this “overlaying”, the technique is an example of overloading
in our terminology because the graph links are not just a separate
layer on top of the treemap, but they are embedded into the visual
structure of the treemap and use the node positions as anchors.

Figure 9 shows the technique being used to visualize a website.
Here, the directory structure, inherent in any website, is visualized
through an underlying treemap and external links are visualized
through overlaid edges. The overlaid edges are not straight lines,
but are curved to highlight source and target locations. The edges
are curved more near the source, hence making it easy to visually
recognize the direction of the link. The tool also supports con-
trolling the visibility of various edges to reduce visual clutter, and
coloring edges based on their attributes.

Figure 11: NodeTrix [17] (Nested Views). This example shows a

visualization of the InfoVis co-authorship network.

7 NESTING ! NESTED VIEWS

Nested views, like overloaded views, are also based on the notion of
host and client visualizations. However, in this design pattern, one
or more client visualizations are nested inside the visual marks of
the host visualizations, based on the relational linking between the
points. Most often, the nesting is performed simply by replacing
the visual marks in the host visualization by nested instances of the
client visualization (Figures 10 and 11). An example of this would
be a scatterplot where the individual marks are barchart glyphs [25].

The nested views pattern provides an effective way of relating
data points in the host visualization to the data visualized through
the client visualizations. Again the users need not divide their atten-
tion between multiple views, and the host visualization is allowed
to use the full available space. However, since the design pattern
embeds one or more visualizations inside a visual mark, the client
visualizations are allocated only a small portion of the host visual-
ization’s visual space, and zooming and panning may be required to
see details. Furthermore, just like overloading, nested views com-
pose the actual visual structures of the components, which typically
requires a more careful design.

One issue to discuss here is the difference between overloading
and nesting. These are different design patterns because nesting
simply replaces the visual marks of the host with the visual structure
of the client, whereas overloading requires a much more integrated
composition of the visual structures of the host and the client.

7.1 ZAME

Nested views are becoming increasingly prominent for visualizing
large-scale datasets using glyph-based methods. ZAME [13], a vi-
sualization system designed to explore large-scale adjacency matrix
graph visualization, uses this approach. The base matrix represen-
tation used in ZAME is a hierarchical aggregation of the underly-
ing dataset. The tool allows the user to zoom in data space, which
amounts to drilling-down and rolling-up in the aggregation hierar-
chy to see more or less details. Abstract glyphs representing aggre-
gated data for each cell in the matrix are nested inside the visual
marks of the matrix to convey information about the aggregation.

What is this technique?

�4

[NodeTrix, N. Henry et al., 2007]
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Facet
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[Munzner (ill. Maguire), 2014]



D. Koop, CS 490/680, Fall 2019

Brushable Scatterplot Matrix
This scatterplot matrix allows brushing to select data points in one cell, and
highlight them across all other cells.
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[M. Bostock]

https://observablehq.com/@d3/brushable-scatterplot-matrix
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Fig. 2: The Cerebral display of the TLR4 graph (V=91, E=124) with associated LPS and LPS+LL-37 time series. The small multiples show an
overview of all 8 experimental conditions. The most noticeable differences between the LPS and the LPS+LL-37 condition occur at hour 4. By
selecting the hour 4 conditions, the main window shows the computed difference between the two conditions.

Furthermore, the biologists’ assessment of what constitutes a good
layout varies depending on the nature of the biomolecules involved. In
the undirected portion of the graph, which comprises protein-protein
interactions that propagate a signal from membrane to nucleus, they
wish to see the network structure so that they can follow the signaling
cascade. Thus for this section of the graph, it is important to minimize
edge crossings, even if it places interacting nodes somewhat far apart.
In contrast, for the directed portion of the graph, representing the genes
whose expression was altered in response to the signaling cascade, the
biologists want to see the nodes grouped tightly by function, even at
the expense of not being able to clearly see the interactions between
them. Translating these desires into automated graph layout requires
an algorithm that uses metadata associated with the nodes, in addition
to the direct graph structure, for node placement. Positioning nodes
according to biological meta-data defines a semantic substrate [34]
so that node position reveals biological function. We wrote a sim-
ple simulated annealing-based graph layout algorithm that uses node
metadata to guide node placement.

3.2 Small multiple views for multiple conditions

Cerebral uses small multiples [38] to simultaneously display multiple
experimental datasets. Each small multiple contains a complete copy
of the interaction graph with the same spatial layout, but with differ-
ent coloring according to the experimental data it is displaying. Our
design target was to handle from two to a few dozen gene expression
conditions, and from 50 to 3000 nodes in the interaction graph.

One obvious alternative to multiple small views would be a sin-
gle changeable or animated view, where the color coding changes
over time rather than being distributed over space [33, 32]. Com-

paring something visible with memories of what was seen before is
more difficult than comparing things simultaneously visible side by
side [31]. Thus, the limitations of human memory make comparing
the few dozen conditions of our design goal through animation quite
difficult [40]. Although small multiples would not scale to hundreds
of conditions, they handle the current usage of 8-10 easily and will
certainly accommodate the projected usage of few dozen conditions.

A second alternative is to embed a glyph, such as a line graph or
heat map, near or within the node itself [24, 32, 41]. While embedded
glyphs provide good detail when zoomed in for a local view, they be-
come indistinguishable when zoomed out for a global view of graphs
larger than a few dozen nodes. The biologists often need to see such
a view, as it more readily allows for the identification of interacting
genes/proteins whose expression behaves similarly across several con-
ditions. Thus, glyphs would not be appropriate in this domain.

Saraiya et al. [32] evaluated four approaches to integrating graph
and time series data, comparing one versus two views and slider-
controlled animation versus embedded glyphs. While they used 10
time series data points, in a good match for our problem domain, their
graph contained only 50 nodes. They found many tradeoffs between
task type, speed, and accuracy. Our design can be considered an at-
tempt to combine the strengths of the four different interfaces they
studied into a single interface for a problem where the tasks are com-
plex, accuracy outweighs raw speed, and the graph is large.

3.3 Parallel coordinates and clustering for data-driven ex-

ploration

Cerebral’s main views focus on the interaction graph model of the
biological system or process of interest. We also provide a data-

Multiform & Small Multiples

�7

[Barsky et al., 2008]
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Partitioned Views
• Split dataset into groups and visualize each group 
• Extremes: one item per group, one group for all items 
• Can be a hierarchy 
- Order: which splits are more "related"? 
- Which attributes are used to split? usually categorical

�8



D. Koop, CS 490/680, Fall 2019

Partitioned Views: Trellis Matrix Alignment

�9

[Becker et al., 1996]

VISUAL DESIGN AND CONTROL OF TRELLIS DISPLAY 125

I page. In Figure 2 there are 6 panels, I column, 6 rows, and 1 page. Later, we will
show a Trellis display with more than one page. We refer to the rectangular array as the
trellis because it is reminiscent of a garden trelliswork .•

Each panel of a trellis display shows a subset of the values of panel variables;
these values are formed by conditioning on the valqes of conditioning variables. In Fig-
ure I the panel variables are variety and yield, and the conditioning variables are site and
year. On each panel, values of yield and variety are displayed for one combination of year
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Figure 2. A Dotplot of the Barley Data Showing Yield Against Site and Year Given Variety.
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A B

Fig. 6. The data are spatially reaggregated into 4km2 grid squares. Absolute geographical positioning is employed because node size is fixed
and the correct aspect ratio is used (borough boundaries shown for reference). A: Coloured by number of sales: sHier(/,$gd,$yr,$mn);
sLayout(/,SP,VT,HZ); sSize(/,FIX); sColor(/,Ø,Ø,$sal). B: Coloured by average price: oColor(/,3,$prc).
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Fig. 7. Space is at level 2 of the hierarchy. Coloured by coefficient of variation of price (grey is no sales). A: sHier(/,$ty,$br,$yr,$mn);
sLayout(/,OS,SP,VR,HZ); sSize(/,$sal); sColor(/,Ø,Ø,Ø,$vpr). B: Fix rectangle size: oSize(/,4,FIX); oSize(/,3,FIX);
oSize(/, 2,FIX); oSize(/,1,FIX). C: Choropleth maps: oCut(/,4); oCut(/,3); oLayout(/,2,PG); oSize(/,2,$abr).

1. Reconfigure conditioning hierarchies to explore the data space.
Use oCut, oInsert and oSwap to reconfigure the hierarchy to
explore variation in terms of different conditioning variables. For
example, placing $br above $ty in Fig. 7 allows geographical
variation by property type to be explored.

2. Use appropriate layouts to reveal structure in data. Experiment
with alternative layouts to explore the design space. HZ,VT
with fixed rectangle size (see 4) can produce mosaic plots, useful
where combinations of categorical variables are important. OS is
appropriate where there is a large number of values and VT/HZ
where there are fewer values and where the dimensions of the
available space allow good aspect ratios.

3. Preserve salient 1D or 2D ordering. Choose appropriate order-
ing for ordinal, temporal and spatial variables for each hierar-
chical level in response to research questions and order nominal
variable values consistently.

4. Fix rectangle size at appropriate hierarchical levels to produce
consistent layouts with small-multiple-like properties. The re-
sulting juxtaposed graphical elements with shared layout char-
acteristics can facilitate the side-by-side comparison of graphics,
minimising the work required of the eye and brain.

5. Scale colour to data-ranges to different parts of the hierarchy
to explore local and global patterns. Scaling to data-ranges in
localised parts of the hierarchy (e.g. by year in Fig. 4) addresses
research questions based on localised variation, whereas scaling
to the entire data-ranges draws attention to more global patterns.

6. Condition datasets by attributes of different granularities at ad-

jacent levels of the hierarchy. In the case of time, this allows
us to consider the effects of cyclical temporal patterns (e.g.
$yr,$mn). In the case of space this draws attention to the ef-
fects of spatial resolution and scale.

7. Condition by different aggregations of time and space. This helps
explore the effects of modifiable units on patterns in the data.

8. Reaggregate spatial data to equally-sized grid cells and fix rect-
angle size. This can produce consistent small-multiple-like ar-
rangements (see 4) that retain the properties of the original ge-
ographical coordinate space (e.g. Fig. 6) and can be used to ad-
dress research questions that relate to geographic variation in ab-
solute geographical space.

9. Use dynamic techniques to relate these various states. For exam-
ple, use highlighting to show items across hierarchy and brush-
ing for details-on-demand. Smooth transitions between layouts
can to help reduce cognitive load when relating these.

8 FURTHER AND ONGOING WORK

Although our examples and notation have focussed on space-filling
rectangular layouts, the concepts are applicable to other types of lay-
out as illustrated by our introductory example and our use of some
non-rectangular layouts. HiVE was developed so that we could be
systematic in describing configurations and reconfigurations in layouts
and so we could describe and build interfaces for collaborative visu-
alisation. We are extending this so that it can encode a broader set of
hierarchical layouts that use dimensional stacking by adding states and
operators to represent a wider range of visual variables. For example,

Recursive Subdivision: HiVE System

�10

[Slingsby et al., 2009]
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Reduce

Filter

Aggregate

Reducing Items and Attributes

Filter
Items

Attributes

Aggregate

Items

Attributes

Overview: Reducing Items & Attributes

�11

Reduce

Filter

Aggregate

Reducing Items and Attributes

Filter
Items

Attributes

Aggregate

Items

Attributes

[Munzner (ill. Maguire), 2014]
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Search All NYTimes.com
 

FACEBOOK TWITTER GOOGLE+ EMAIL SHARE

Restaurant locations are derived from the New York City Department of Health and Mental Hygiene database. Due to the limitations of the Health Department’s database, some restaurants could
not be placed.

By JEREMY WHITE

Source: New York City Department of Health and Mental Hygiene

© 2013 The New York Times Company Site Map Privacy Your Ad Choices Advertise Terms of Sale Terms of Service Work With Us RSS Help Contact Us Site Feedback

New York Health Department Restaurant Ratings Map
The New York City Department of Health and Mental Hygiene performs unannounced sanitary inspections of every restaurant at least once per year.
Violation points result in a letter grade, which can be explored in the map below, along with violation descriptions. The information on this map will be
updated every two weeks. For menus and reviews by New York Times critics, visit our restaurants guide.  Related Article »

HOME PAGE TODAY'S PAPER VIDEO MOST POPULAR

Dining & Wine
WORLD U.S. N.Y. / REGION BUSINESS TECHNOLOGY SCIENCE HEALTH SPORTS OPINION ARTS STYLE TRAVEL JOBS REAL ESTATE AUTOS

FASHION & STYLE DINING & WINE HOME & GARDEN WEDDINGS/CELEBRATIONS T MAGAZINESafari Power Saver
Click to Start Flash Plug-in

Gracie's Cafe
Grade Grade pending
Violation points 27
Click for details

Gracie's Cafe
Grade Grade pending
Violation points 27
Click for details

Chicken Indian Pizza Improper chemicals14+ points

Name of restaurant All grades All violations All cuisines

FIND A RESTAURANT FIND A LOCATION FILTER

Log In  Register Now  HelpU.S. Edition

Example: NYC Health Dept. Restaurant Ratings
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[J. White, New York Times]

http://archive.nytimes.com/www.nytimes.com/interactive/dining/new-york-health-department-restaurant-ratings-map.html
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Project Design
• Work on turning your visualization ideas into designs 
• Turn in: 
- Three Designs Sketches 
- Progress on Implementation 

• Options: 
- Try vastly different options 
- Refine an initial idea 

• Due Monday, Nov. 11

�13



D. Koop, CS 490/680, Fall 2019

Assignment 5
• Multiple Views and Interaction using Linked Highlighting 
• Due November 22

�14

http://faculty.cs.niu.edu/~dakoop/cs680-2019fa/assignment5.html
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Linked Highlighting Example
• https://codepen.io/dakoop/pen/oQxxmx

�15

https://codepen.io/dakoop/pen/oQxxmx
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Aggregation
• Usually involves derived attributes 
• Examples: mean, median, mode, min, max, 

count, sum 
• Remember expressiveness principle: still 

want to avoid implying trends or similarities 
based on aggregation

�16

I II III IV

x y x y x y x y

10.0 8.04 10.0 9.14 10.0 7.46 8.0 6.58

8.0 6.95 8.0 8.14 8.0 6.77 8.0 5.76

13.0 7.58 13.0 8.74 13.0 12.74 8.0 7.71

9.0 8.81 9.0 8.77 9.0 7.11 8.0 8.84

11.0 8.33 11.0 9.26 11.0 7.81 8.0 8.47

14.0 9.96 14.0 8.10 14.0 8.84 8.0 7.04

6.0 7.24 6.0 6.13 6.0 6.08 8.0 5.25

4.0 4.26 4.0 3.10 4.0 5.39 19.0 12.50

12.0 10.84 12.0 9.13 12.0 8.15 8.0 5.56

7.0 4.82 7.0 7.26 7.0 6.42 8.0 7.91

5.0 5.68 5.0 4.74 5.0 5.73 8.0 6.89
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Aggregation
• Usually involves derived attributes 
• Examples: mean, median, mode, min, max, 

count, sum 
• Remember expressiveness principle: still 

want to avoid implying trends or similarities 
based on aggregation
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I II III IV

x y x y x y x y

10.0 8.04 10.0 9.14 10.0 7.46 8.0 6.58

8.0 6.95 8.0 8.14 8.0 6.77 8.0 5.76

13.0 7.58 13.0 8.74 13.0 12.74 8.0 7.71

9.0 8.81 9.0 8.77 9.0 7.11 8.0 8.84

11.0 8.33 11.0 9.26 11.0 7.81 8.0 8.47

14.0 9.96 14.0 8.10 14.0 8.84 8.0 7.04

6.0 7.24 6.0 6.13 6.0 6.08 8.0 5.25

4.0 4.26 4.0 3.10 4.0 5.39 19.0 12.50

12.0 10.84 12.0 9.13 12.0 8.15 8.0 5.56

7.0 4.82 7.0 7.26 7.0 6.42 8.0 7.91

5.0 5.68 5.0 4.74 5.0 5.73 8.0 6.89

Mean of x 9

Variance of x 11

Mean of y 7.50

Variance of y 4.122

Correlation 0.816
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[F. J. Anscombe]
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20
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5

0     

Weight Class (lbs)

Aggregation: Histograms
• Very similar to bar charts 
• Often shown without space between 

(continuity) 
• Choice of number of bins  
- Important! 
- Viewers may infer different trends based on 

the layout

�18

[Munzner (ill. Maguire), 2014]
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Aggregation: Histograms

�19

["The reddit Front Page is Not a Meritocracy", T. W. Schneider]

Observed ranks of posts by subreddit

http://toddwschneider.com/posts/the-reddit-front-page-is-not-a-meritocracy/
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Common Distributions

�20

[Cloudera]

https://blog.cloudera.com/blog/2015/12/common-probability-distributions-the-data-scientists-crib-sheet/
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Binning Scatterplots
• At some point, cannot see density 
• Blobs on top of blobs 
• 2D Histogram is a histogram in 2D encoded 

using color instead of height 
• Each region is aggregated

�21
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Binning
• Hexagonal bins are more circular 
• Distance to the edge is not as variable 
• More efficient aggregation around the center of the bin

�22
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Spatial Aggregation

�23

[Penn State, GEOG 486]

30

spatial aggregation

modifiable areal unit problem 
in cartography, changing the boundaries of the 
regions used to analyze data can yield dramatically 
different results

30

spatial aggregation

modifiable areal unit problem 
in cartography, changing the boundaries of the 
regions used to analyze data can yield dramatically 
different results

30

spatial aggregation

modifiable areal unit problem 
in cartography, changing the boundaries of the 
regions used to analyze data can yield dramatically 
different results
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Modifiable Areal Unit Problem
• How you draw boundaries impacts the type 

of aggregation you get 
• Similar to bins in histograms 
• Gerrymandering

�24

[Wonkblog, Washington Post, Adapted from S. Nass]

Pennsylvania-7

http://www.washingtonpost.com/blogs/wonkblog/wp/2015/03/01/this-is-the-best-explanation-of-gerrymandering-you-will-ever-see/
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Congressional districts drawn to be compact while trying to respect county
borders

How often we'd expect a party to win each of the nation’s 435 seats over the long term — not
specifically the 2018 midterms — based on historical patterns since 2006

CHANCE OF BEING REPRESENTED BY
EITHER PARTY

100% D 100% R

Drawing Different Maps: Compactness

�25

[A. Bycoffe et al., 538]

https://projects.fivethirtyeight.com/redistricting-maps/
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EXPECTED SEAT SPLIT

MAP USUALLY DEM. DISTRICTS HIGHLY COMPETITIVE USUALLY REPUBLICAN DEM. GOP

Democratic
gerrymander 250.6 184.4

Proportionally
partisan 214.0 221.0

Majority
minority 209.8 225.2

Highly
competitive 209.4 225.6

Compact
(borders) 203.9 231.1

Compact
(algorithmic) 202.8 232.2

Current 200.6 234.4

Republican
gerrymander 171.3 263.7

263 27 145

174 82 179

169 82 184

94 242 99

155 99 181

151 104 180

168 72 195

139 21 275

Drawing Different Maps

�26

[A. Bycoffe et al., 538]

https://projects.fivethirtyeight.com/redistricting-maps/
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Boxplots
• Show distribution 
• Single value (e.g. mean, max, min, quartiles) 

doesn't convey everything 
• Created by John Tukey who grew up in New 

Bedford! 
• Show spread and skew of data 
• Best for unimodal data 
• Variations like vase plot for multimodal data 
• Aggregation here involves many different 

marks

�27

[Flowing Data]

http://flowingdata.com/2008/02/15/how-to-read-and-use-a-box-and-whisker-plot/
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Aggregation: Boxplots

�28

[Washington Post, 2015]

https://www.washingtonpost.com/news/wonk/wp/2015/09/14/this-chart-shows-why-parents-push-their-kids-so-hard-to-get-into-ivy-league-schools/
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! 2 

The first sample comprises the normal scores for a sample of this size, scaled to range 
from 1.0 to 19.0. Sample 2 is a mixture of two identical symmetric clusters of data 
each of size 49 and centered at 7.4 and 12.6, respectively, together with isolated 
values at the ends of the range. Sample 3 is a mixture of 70 values spaced evenly over 
the range, 15 values at 9.5, and 15 values at 10.5. Sample 4 comprises a value at 1.0, 
24 values at 7.4, 50 approximately evenly spaced values ranging from 7.4 to 12.6, and 
25 approximately evenly spaced values ranging from 12.6 to 19.0.  

 
Figure 1: Histograms and box plot: four samples each of size 100 

In an attempt to improve the box plot to show shape information, Benjamini (1988) 
suggested a “histplot”, obtained by varying the width of the box according to the 
density of the data at the median and quartiles, where these densities are estimated 
from a histogram with a small number of bins. Benjamini (1988) also suggested a 
variation called a “vase plot”, in which the linear segments in the histplot are replaced 
by smooth curves based on a kernel density estimate. Hintze and Nelson (1998) 
suggested a further modification called a “violin plot”, which is essentially the same 
as the vase plot, except that it extends to cover the whole range of the data. 

While these methods provide informative and useful displays, in essence they just 
replace the box plot by a kind of histogram, rather than modifying it. The problem 
remains to choose the extent of smoothing, which in turn should depend on the 
sample size.!The box plot has become popular largely because of its simplicity. This 
raises the question: Is there a simple modification of the box plot that provides better 
information about the shape of the distribution, especially bimodality? 

!

Four Distributions, Same Boxplot…

�29

[C. Choonpradub and D. McNeil, 2005]



D. Koop, CS 490/680, Fall 2019Figure 4: This image sequence shows a Fatal Accident data set of 230,000 data elements at different level of details. The first image shows a
cut across the root node. The last image shows the cut chaining all the leaf nodes. The rest of the images show intermediate cuts at varying
levels-of-detail. (See Color Plates).

Figure 6: Left image shows Iris data set without proximity-based coloring. Right image shows Iris data set with proximity-based coloring
revealing three distinct clusters depicted by concentrations of blue, green and pink lines. (See Color Plates).

Hierarchical Parallel Coordinates

�30

[Fua et al., 1999]
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Tweet    Like 15 Share

7 Comments Byte Muse  Login!1

 Share⤤ Sort by Best

Join the discussion…

 • Reply •

Gurupad Hegde • 3 years ago

Awesome! Please post more such stuff! :)
 1

 • Reply •

Chris Polis   • 3 years agoMod > Gurupad Hegde

Thank you - I'm definitely going to keep posting more so stay tuned! I try to build a new
post every week or two and my focus lately has been on ML and visualization.

 2

 • Reply •

Karl • 2 years ago

Which visualization library did you use or is it custom!

 Recommend$

Share ›

Share ›

Share ›

K-Means
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[C. Polis, 2014]

Run

http://www.bytemuse.com/post/k-means-clustering-visualization/
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K-Means Issues

�32

[D. Robinson, 2015]
Shape Number of Clusters
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Dimensionality Reduction
• Attribute Aggregation: Use fewer attributes (dimensions) to represent items 
• Combine attributes in a way that is more instructive than examining each 

individual attribute 
• Example: Understanding the language in a collection of books 
- Count the occurrence of each non-common word in each book 
- Huge set of features (attributes), want to represent each with an aggregate 

feature (e.g. high use of "cowboy", lower use of "city") that allows clustering 
(e.g. "western") 

- Don't want to have to manually determine such rules 
• Techniques: Principle Component Analysis, Multidimensional Scaling family of 

techniques

�33
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Gene 1

 original data space

Gene 2

G
en

e 
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 component space

PC 1

PC
 2

PCA 
PC 1 

PC 2 

Principle Component Analysis (PCA)
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[M. Scholz, CC-BY-SA 2.0]

http://phdthesis-bioinformatics-maxplanckinstitute-molecularplantphys.matthias-scholz.de/
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Back

Principal Component
Analysis
Explained Visually

Tweet  Like 1.3K Share

By Victor Powell

with text by Lewis Lehe

Principal component analysis (PCA) is a technique used to emphasize variation and bring out strong patterns in a dataset. It's often
used to make data easy to explore and visualize.

2D example2D example

First, consider a dataset in only two dimensions, like (height, weight). This dataset can be plotted as points in a plane. But if we want
to tease out variation, PCA finds a new coordinate system in which every point has a new (x,y) value. The axes don't actually mean
anything physical; they're combinations of height and weight called "principal components" that are chosen to give one axes lots of
variation.

Drag the points around in the following visualization to see PC coordinate system adjusts.

original data setoriginal data set

0 2 4 6 8 10
x
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8

10

y

output from PCAoutput from PCA
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17 dimensions to 2
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Here's the plot of the data along the first principal component. Already we can see something is different about Northern Ireland.
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Now, see the first and second principal components, we see Northern Ireland a major outlier. Once we go back and look at the data
in the table, this makes sense: the Northern Irish eat way more grams of fresh potatoes and way fewer of fresh fruits, cheese, fish
and alcoholic drinks. It's a good sign that structure we've visualized reflects a big fact of real-world geography: Northern Ireland is
the only of the four countries not on the island of Great Britain. (If you're confused about the differences among England, the UK
and Great Britain, see: this video.)
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original data space X component space Z

Φgen : Z → X

Φextr : X → Z

Non-linear Dimensionality Reduction
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results very close to zero, and the regularity should be
visually apparent in the layout. For shuttle, where the
true dimensionality is conjectured to be slightly greater than
the embedding dimension, both the global structure and the
local proximity of the data may be important, but neither
can be reconstructed without some distortion. However,
some cluster structure can be distinguished. For docs,
because the true dimensionality is believed to be at least an
order of magnitude greater than the embedding dimension,
the global relationships between points are less important
and potentially misleading. Again, the local cluster relation-
ships and their distinguishability from each other should be
emphasized.

5.2.2 Layout Quality

Fig. 8 shows the visual quality, normalized stress, and
timing of Glimmer, Hybrid, and PivotMDS layouts on four
data sets with known structure. In the case of grid, the
correct shape is known. In the other three cases, the correct
partitions of the points into clusters are available with these
benchmark data sets, so the extent to which the color coding
matches the spatial grouping created by an algorithm is a
measure of its accuracy.

Qualitatively, with cancer, the Glimmer and PivotMDS
algorithms indicate these two color-coded groups clearly

with spatial position. Quantitatively, the stress of Glimmer
is an order of magnitude lower than that of PivotMDS.
Hybrid does separate the two groups but produces
misleading subclusters in the orange group.

With shuttle_big, Hybrid produces a readable layout
separating the red cluster from the other two but is slower
by several hundred percent. Glimmer and PivotMDS both
produce useful and qualitatively comparable layouts
separating the clusters. The PivotMDS layout is twice as
fast but has noticeable occlusion and much higher stress
than the Glimmer layout.

The 10,000-point grid is accurately embedded by
Glimmer and PivotMDS in comparable times. Hybrid is
again slower but nevertheless terminated too soon, suffer-
ing from very noticeable qualitative distortion and with a
much higher quantitative stress metric compared to that of
the other layouts.

The Glimmer layout of the docs data set is qualitatively
better than the other three. It shows several spatially
distinguishable clusters, color coded by blue, red, orange,
and green. The green cluster is split into three parts. It took
approximately 2 seconds with normalized stress of 0.157.
Hybrid suffers from cluster occlusion. The stress is nearly
twice as high as that of Glimmer, and the spatial embedding
does not clearly separate any of the given clusters.
PivotMDS is very fast but almost completely fails to show

INGRAM ET AL.: GLIMMER: MULTILEVEL MDS ON THE GPU 257

Fig. 8. MDS layouts showing visual quality, time, and stress for the Glimmer, Hybrid, and PivotMDS algorithms. The data set name, the number of
nodes (N), and the number of dimensions (D) appear above each column. Time in seconds appears at the bottom left of each entry, with normalized
stress on the bottom right.

Dimensionality Reduction in Visualization
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Probing Projections: Interaction Techniques for Interpreting
Arrangements and Errors of Dimensionality Reductions

Julian Stahnke, Marian Dörk, Boris Müller, and Andreas Thom

Abstract—We introduce a set of integrated interaction techniques to interpret and interrogate dimensionality-reduced data. Projection
techniques generally aim to make a high-dimensional information space visible in form of a planar layout. However, the meaning of
the resulting data projections can be hard to grasp. It is seldom clear why elements are placed far apart or close together and
the inevitable approximation errors of any projection technique are not exposed to the viewer. Previous research on dimensionality
reduction focuses on the efficient generation of data projections, interactive customisation of the model, and comparison of different
projection techniques. There has been only little research on how the visualization resulting from data projection is interacted with.
We contribute the concept of probing as an integrated approach to interpreting the meaning and quality of visualizations and propose
a set of interactive methods to examine dimensionality-reduced data as well as the projection itself. The methods let viewers
see approximation errors, question the positioning of elements, compare them to each other, and visualize the influence of data
dimensions on the projection space. We created a web-based system implementing these methods, and report on findings from an
evaluation with data analysts using the prototype to examine multidimensional datasets.

Index Terms—Information visualization, interactivity, dimensionality reduction, multidimensional scaling.

1 INTRODUCTION

A primary goal of information visualization is to find patterns and
relationships in multivariate datasets. Many visualization techniques
have been developed towards this goal such as multiple coordinated
views [2], parallel coordinates [14], scatterplot matrices [28], and
dimensionality reductions such as multidimensional scaling (MDS)
and principal component analysis (PCA) [5]. Dimensionality re-
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ductions are a particular class of techniques that synthesise high-
dimensional data spaces onto projection spaces with much fewer
dimensions, typically the two dimensions of the plane. While most
visualization techniques juxtapose the different data dimensions as
matrices or columns, dimensionality reductions integrate them into a
planar canvas. The projection results in a so-called spatialisation (i.e.,
embedding) of data elements that approximately represents similarity
as proximity and in turn dissimilarity as distance. Considering that
the human perceptional system comprises a well-developed capacity
for spatial reasoning, the assumption is that spatialisation would
be a more natural way [31] to analyse high-dimensional datasets
since groupings, separations, and other patterns among data elements
become immediately discernible.

However, there are two major caveats linked with dimensionality
reduction: first, it can be challenging to interpret the positions of
projected elements, and second, the errors that occur with any pro-

Probing Projections
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Probing Projection Goals
• Examining the Projection 
• Exploring the Data 
• Design Goals: 
- Show and correct approximation errors 
- Allow for multi-level comparisons 
- Spatial orientation 
- Consistent design 

• Allow grouping of samples 
- Selections 
- Classes 
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D. Koop, CS 490/680, Fall 2019Fig. 2. A tooltip displays the sample’s absolute values, standard
deviations, and graphical representations for each dimension.

dots on the projection and drawing a convex hull around them.
Clusters can also be saved and named as selections.

All of these groupings are displayed as panels in the sidebar. Each
selection, cluster, or class is displayed with a thumbnail of its spatial
distribution, providing a quick visual way of locating the relevant
points in the projection. Some additional information, such as the
name or the number of samples, is displayed below the thumbnail.
Furthermore, hovering over a grouping’s thumbnail displays small
density plots in the list of dimensions, as well as a text-based preview
of the most deviating dimensions per group.

On the projection, these groupings are coded by colour, with the
user being able to switch between displaying classes, selections, or
clusters using the respective eye icon.

4.3 Comparing elements

Elements can be analysed by viewing their values and comparing them
to the dataset in general, or to other selections in particular. Even
a single sample is never analysed in isolation; its values only make
sense when compared to the rest of the dataset (see Figure 2).

Analysing a single sample is done by hovering the mouse pointer
over a dot on the projection. The values for the corresponding sample
are indicated in the list of dimensions. Additionally, a tooltip appears,
showing the values for the various dimensions, and their standard
deviations. They are displayed in text form for accuracy, as well as
in a graphical representation for quick comprehension. The deviations
from the mean are displayed as bar charts, with density plots of the
whole dataset in the background to provide additional context. The
colours of the bars reflect the deviation as well, either in red or blue,
and with increasing saturation for higher deviations. If there are too
many dimensions to display at once, only the dimensions are shown,
in which the sample deviates most. An individual sample can also
be compared to other samples by selecting it and hovering over other
samples. A tooltip will appear and visualise the differences.

Analysing groups works similarly. When selecting a group of
samples, density plots for them are shown in the list of dimensions,
comparing the selection to the dataset. A tooltip comparison is
displayed as well. Because there is no single value for the dimensions,
the means are used instead. The graphical representation also takes
this into account, showing a density plot instead of a bar. As shown
in Figure 3, groupings can also be compared to each other, displaying
density plots for each of them. The methods for comparing samples
and groups work together, making it possible to compare a sample to
multiple clusters to e.g. find out which of them it should belong to.

4.4 Analysing dimensions

It is important to be able to quickly reference original dimensions
when analysing a dimensionality-reduced projection. Two things
matter in this regard: the spatial distribution of values in the projection
to account for clustering of the data, and the distribution of values in
the dimension itself to see how elements compare to other elements

Fig. 3. After selecting one group of samples, hovering over another
group shows a tooltip that compares these groups (here selections).

within an individual dimension. For this purpose the interface features
dynamic heatmaps in the projection and density plots in the sidebar.

4.4.1 Heatmaps
Projections created with most dimensionality-reduction techniques,
such as MDS, have no meaningful axes, complicating spatial orien-
tation because dimensional values are distributed nonlinearly. Yet, in
order to assign meaning to clustering and find correlations between
dimensions, it is important to know how those values correspond with
the positioning of the dots. (For some techniques, such as PCA,
the contribution of each original dimension can be mapped to the
projected dimensions. It would then be possible to display this as a
biplot, creating meaningful axes.)

One solution is to use a glyph plot, with the dots themselves being
used to represent an additional dimension, for example by varying
their size according to the values. This technique is available in the
prototype and can be used to visualise a dimension spatially. Where
dot size can only show the value distribution for the actual samples,
the projection space can also be used to answer a more theoretical
question: what values would a fictive sample have to have to be
projected to a certain spot? Or, phrased differently: what are the
interpolated values for the projection space? We used a heatmap to
try to answer this question.

Fig. 4. Hovering over a dimension in the sidebar displays its distribution
as a heatmap in the projection on the left.

The heatmap is a grid of cells each representing the value for a
certain dimension at its position, with higher values being darker.
Brightness is used to avoid confusion with the group colours. This
allows to visually assess the value distribution for a given dimension,
with smooth transitions between zones. All heatmaps are also shown
as thumbnails in the list of dimensions, and on the projection itself

Tooltips with statistics
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deviations, and graphical representations for each dimension.

dots on the projection and drawing a convex hull around them.
Clusters can also be saved and named as selections.

All of these groupings are displayed as panels in the sidebar. Each
selection, cluster, or class is displayed with a thumbnail of its spatial
distribution, providing a quick visual way of locating the relevant
points in the projection. Some additional information, such as the
name or the number of samples, is displayed below the thumbnail.
Furthermore, hovering over a grouping’s thumbnail displays small
density plots in the list of dimensions, as well as a text-based preview
of the most deviating dimensions per group.

On the projection, these groupings are coded by colour, with the
user being able to switch between displaying classes, selections, or
clusters using the respective eye icon.

4.3 Comparing elements

Elements can be analysed by viewing their values and comparing them
to the dataset in general, or to other selections in particular. Even
a single sample is never analysed in isolation; its values only make
sense when compared to the rest of the dataset (see Figure 2).

Analysing a single sample is done by hovering the mouse pointer
over a dot on the projection. The values for the corresponding sample
are indicated in the list of dimensions. Additionally, a tooltip appears,
showing the values for the various dimensions, and their standard
deviations. They are displayed in text form for accuracy, as well as
in a graphical representation for quick comprehension. The deviations
from the mean are displayed as bar charts, with density plots of the
whole dataset in the background to provide additional context. The
colours of the bars reflect the deviation as well, either in red or blue,
and with increasing saturation for higher deviations. If there are too
many dimensions to display at once, only the dimensions are shown,
in which the sample deviates most. An individual sample can also
be compared to other samples by selecting it and hovering over other
samples. A tooltip will appear and visualise the differences.

Analysing groups works similarly. When selecting a group of
samples, density plots for them are shown in the list of dimensions,
comparing the selection to the dataset. A tooltip comparison is
displayed as well. Because there is no single value for the dimensions,
the means are used instead. The graphical representation also takes
this into account, showing a density plot instead of a bar. As shown
in Figure 3, groupings can also be compared to each other, displaying
density plots for each of them. The methods for comparing samples
and groups work together, making it possible to compare a sample to
multiple clusters to e.g. find out which of them it should belong to.

4.4 Analysing dimensions

It is important to be able to quickly reference original dimensions
when analysing a dimensionality-reduced projection. Two things
matter in this regard: the spatial distribution of values in the projection
to account for clustering of the data, and the distribution of values in
the dimension itself to see how elements compare to other elements

Fig. 3. After selecting one group of samples, hovering over another
group shows a tooltip that compares these groups (here selections).

within an individual dimension. For this purpose the interface features
dynamic heatmaps in the projection and density plots in the sidebar.

4.4.1 Heatmaps
Projections created with most dimensionality-reduction techniques,
such as MDS, have no meaningful axes, complicating spatial orien-
tation because dimensional values are distributed nonlinearly. Yet, in
order to assign meaning to clustering and find correlations between
dimensions, it is important to know how those values correspond with
the positioning of the dots. (For some techniques, such as PCA,
the contribution of each original dimension can be mapped to the
projected dimensions. It would then be possible to display this as a
biplot, creating meaningful axes.)

One solution is to use a glyph plot, with the dots themselves being
used to represent an additional dimension, for example by varying
their size according to the values. This technique is available in the
prototype and can be used to visualise a dimension spatially. Where
dot size can only show the value distribution for the actual samples,
the projection space can also be used to answer a more theoretical
question: what values would a fictive sample have to have to be
projected to a certain spot? Or, phrased differently: what are the
interpolated values for the projection space? We used a heatmap to
try to answer this question.

Fig. 4. Hovering over a dimension in the sidebar displays its distribution
as a heatmap in the projection on the left.

The heatmap is a grid of cells each representing the value for a
certain dimension at its position, with higher values being darker.
Brightness is used to avoid confusion with the group colours. This
allows to visually assess the value distribution for a given dimension,
with smooth transitions between zones. All heatmaps are also shown
as thumbnails in the list of dimensions, and on the projection itself

Comparing Two Groups
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Fig. 2. A tooltip displays the sample’s absolute values, standard
deviations, and graphical representations for each dimension.

dots on the projection and drawing a convex hull around them.
Clusters can also be saved and named as selections.

All of these groupings are displayed as panels in the sidebar. Each
selection, cluster, or class is displayed with a thumbnail of its spatial
distribution, providing a quick visual way of locating the relevant
points in the projection. Some additional information, such as the
name or the number of samples, is displayed below the thumbnail.
Furthermore, hovering over a grouping’s thumbnail displays small
density plots in the list of dimensions, as well as a text-based preview
of the most deviating dimensions per group.

On the projection, these groupings are coded by colour, with the
user being able to switch between displaying classes, selections, or
clusters using the respective eye icon.

4.3 Comparing elements

Elements can be analysed by viewing their values and comparing them
to the dataset in general, or to other selections in particular. Even
a single sample is never analysed in isolation; its values only make
sense when compared to the rest of the dataset (see Figure 2).

Analysing a single sample is done by hovering the mouse pointer
over a dot on the projection. The values for the corresponding sample
are indicated in the list of dimensions. Additionally, a tooltip appears,
showing the values for the various dimensions, and their standard
deviations. They are displayed in text form for accuracy, as well as
in a graphical representation for quick comprehension. The deviations
from the mean are displayed as bar charts, with density plots of the
whole dataset in the background to provide additional context. The
colours of the bars reflect the deviation as well, either in red or blue,
and with increasing saturation for higher deviations. If there are too
many dimensions to display at once, only the dimensions are shown,
in which the sample deviates most. An individual sample can also
be compared to other samples by selecting it and hovering over other
samples. A tooltip will appear and visualise the differences.

Analysing groups works similarly. When selecting a group of
samples, density plots for them are shown in the list of dimensions,
comparing the selection to the dataset. A tooltip comparison is
displayed as well. Because there is no single value for the dimensions,
the means are used instead. The graphical representation also takes
this into account, showing a density plot instead of a bar. As shown
in Figure 3, groupings can also be compared to each other, displaying
density plots for each of them. The methods for comparing samples
and groups work together, making it possible to compare a sample to
multiple clusters to e.g. find out which of them it should belong to.

4.4 Analysing dimensions

It is important to be able to quickly reference original dimensions
when analysing a dimensionality-reduced projection. Two things
matter in this regard: the spatial distribution of values in the projection
to account for clustering of the data, and the distribution of values in
the dimension itself to see how elements compare to other elements

Fig. 3. After selecting one group of samples, hovering over another
group shows a tooltip that compares these groups (here selections).

within an individual dimension. For this purpose the interface features
dynamic heatmaps in the projection and density plots in the sidebar.

4.4.1 Heatmaps
Projections created with most dimensionality-reduction techniques,
such as MDS, have no meaningful axes, complicating spatial orien-
tation because dimensional values are distributed nonlinearly. Yet, in
order to assign meaning to clustering and find correlations between
dimensions, it is important to know how those values correspond with
the positioning of the dots. (For some techniques, such as PCA,
the contribution of each original dimension can be mapped to the
projected dimensions. It would then be possible to display this as a
biplot, creating meaningful axes.)

One solution is to use a glyph plot, with the dots themselves being
used to represent an additional dimension, for example by varying
their size according to the values. This technique is available in the
prototype and can be used to visualise a dimension spatially. Where
dot size can only show the value distribution for the actual samples,
the projection space can also be used to answer a more theoretical
question: what values would a fictive sample have to have to be
projected to a certain spot? Or, phrased differently: what are the
interpolated values for the projection space? We used a heatmap to
try to answer this question.

Fig. 4. Hovering over a dimension in the sidebar displays its distribution
as a heatmap in the projection on the left.

The heatmap is a grid of cells each representing the value for a
certain dimension at its position, with higher values being darker.
Brightness is used to avoid confusion with the group colours. This
allows to visually assess the value distribution for a given dimension,
with smooth transitions between zones. All heatmaps are also shown
as thumbnails in the list of dimensions, and on the projection itself

Heatmap from Dimension Hover
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Fig. 5. Comparing an individual sample with a class from the well-known Iris flower data set. In addition to the distribution of dimensions of the
class and the value of the sample, the visualization also indicates sample-centric distortions using grey and white halos.

when hovering a dimension in the list (see Figure 4). This allows both
for an overview to spot dimensions with interesting patterns, and for a
more detailed view together with the dots.

The grid is constructed by dividing up the projection space into a
number of cells, with their size based on the mean of distances for
the closest three points from each point. A minimum value is used to
prevent the grid from getting too small to be useful, and calculations
taking too long.

The values for each grid cell are calculated by averaging the values
of the points in the cell, or, if there are none, the three closest points
for the cell, weighting them according to their distances from the cell.
This ensures smooth transitions over large gaps in the projection space,
while being responsive to abrupt changes at the same time.

4.4.2 Density plots

While the heatmaps show how the values are spatially distributed in
the projection space, kernel density plots in the list of dimensions
show their value distributions. In the prototype, currently the plots
are generated roughly equivalent to R’s bw.nrd0 function which uses
Silverman’s ‘rule of thumb’ [24, p. 48]. Percentiles are indicated on
the density plots to support the visual assessment. Used together with
brushing and linking, it is possible to assess how a sample, or a group
of samples, relates to the whole dataset.

Markers or sub-plots for selected elements are shown on the density
plots in the list of dimensions, providing dynamic highlights of sam-
ples being examined (see Figure 5, lower right). Additional markers
display the dimensional values mouse position in the projection space,
based on the calculations done for the heatmap, making it possible to
gradually track value progressions for multiple dimensions.

4.5 Examining projection errors

Besides exploring the distribution of samples and dimensions, the
visualization environment allows for the integrated examination of
projection errors by providing per-sample halos, distance corrections,
and a dendrogram.

4.5.1 Error halos
The cumulative distance error for each point is displayed as a halo
around the dot, with the radius corresponding to the relative amount of
error and the value indicating the direction of the error (see Figure 6).
This is intended to help the user visually understand the quality of
the projection and find potentially unreliable spots. Hovering over a
dot shows the errors in relation to the hovered point, to check if the
distances between certain points are correct or just projection artefacts,
and learn which points should be closer together or further apart.

Halos were chosen because their visual properties are a good match
for the properties of the error they represent. The error does not belong
to the sample, but to the projection, and as such should be displayed
by the projection. A halo is clearly connected to the dot, but also part
of the projection. Size was chosen as a very intuitive metric to display
the amount of error, with points with a large error standing out easily.

The brightness of the halo displays the direction of the error. If
the other points are farther away in the projection than in the high-
dimensional space, the halo is white; if they are too close in the
projection, the halo is dark. White was chosen for points that should
be nearer because it stands out more, and while using the prototype
ourselves, we often ended up looking for ‘similar’ samples.

Size and brightness were chosen over colour or shape, as using
colour would have clashed with the colouring of the dots, and different
shapes were not as glanceable as changes in brightness.

4.5.2 Distance correction
After examining the approximation errors, the viewer might decide
that the errors of a certain point warrant more attention. They can then
visualize them by selecting to view the high-dimensional distances
between the selected point and all others. This removes all projection
errors when it comes to distance, but for the selected sample only.

The new, corrected positions for each point are calculated by taking
the vector between the selected and the other point and multiplying it
by the distance error ratio between the two. The angle between them is
kept as is. As a result, the other point moves directly towards or away
from the specified point, correcting the distance.

Showing Error via Sample-centric Halos
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D. Koop, CS 490/680, Fall 2019Fig. 6. Halos represent the cumulative error for the respective samples.
White indicates that a majority of samples is more similar than indicated
by their distance to the given sample; grey indicates the opposite.

The paths travelled by the points are shown as lines, leading from
the points’ original positions in the projection to the new, corrected
positions (see Figure 8). This connects them to their original positions
in the projection, and displays the size of the distance error at the same
time. Resembling the brightness encoding of the halos, the brightness
of the lines indicates whether they’ve moved closer or farther away.

A problem with this solution is that it introduces new distortions in
the spatial relationship between all other points. Only the distances
directly between the selected point and the other points are reliable,
whereas all the other distances are distorted, and the new positioning
might lead to wrong assumptions about potential clusterings. To
mitigate this problem, the correction paths are shown.

Another solution would be to recompute the projection while
preserving the distances from and to the selected point and being
more generous with distance errors among the remaining points. This
would somewhat reduce the introduced distortions. However, in
a recomputed projection, the positions of the points might change
significantly, most likely leading to completely different positions for
all points, possibly confusing the observer even if an animation is used.

Fig. 7. Dendrograms mapped onto the projection. Left: projection with
low projection error. Right: high projection error.

4.5.3 Dendrogram
In addition to the visualization of errors and corrections, a dendrogram
can visualize the samples with regard to their position in the clus-
tering hierarchy. Such a dendrogram (using the same agglomerative
algorithm as the clusters) overlaid onto the projection may also help

Fig. 8. Projection errors are corrected for the selected sample in orange;
grey traces indicate that samples are more different in high-dimensional
space, while white traces indicate a higher level of similarity.

to visualise high-dimensional distances on the projection space [25].
It graphically emphasises clusters by connecting close dots through
dense lines. Interestingly, the dendrogram is a surprisingly good
indicator of goodness of fit: if many thick, long lines intersect, it is
likely that the projection is of low quality.

5 EXAMPLE: OECD COUNTRIES

To illustrate the functionality of the interface we visualize the dataset
of OECD countries in the prototype (see Figure 9). The dataset
contains 8 dimensions for 36 countries2. First, the viewer is drawn
to the projection and notices Turkey that seems to be a clear outlier,
far away from all other countries. To explore why this is, the viewer
can examine this sample by hovering over it. A tooltip relating Turkey
to the rest of the dataset appears, showing that it deviates strongly from
the mean in nearly every dimension. This indicates the positioning as
outlier is probably correct.

To test this assumption and build up trust in the visualization,
the viewer selects ‘correct distances’, showing the high-dimensional
distances between Turkey and the other countries. This reveals that
Turkey should be even farther apart from several of the other countries.
Having confirmed that Turkey is an outlier in this dataset, the viewer
uses the built-in clustering to get a sense of how the countries are
grouped. Playing around with the number of clusters, they notice
that there seem to be seven clusters roughly corresponding to the
geographical and geopolitical placement of the countries.

Taking a closer look at the positioning of the clustered countries,
they realise that the arrangement seems to roughly correspond to
geographic directions: Northern and Southern countries are roughly
distributed along the vertical axes, East and West along the horizontal.
To find out if or how this correlates with the dimensions, the viewer
first compares the different clusters. Here the differences along the
dimensions are very much pronounced. Interestingly though, life
expectancy is lower in Latin America than Asia, while the self-
reported health is higher for the former than the latter.

After a few more comparisons between the clusters, the viewer
becomes interested in the dimension life satisfaction and turns towards
the heatmaps. They notice that the values for life satisfaction and self-
reported health seem to be higher in the Western countries, whereas the
value for employees working very long hours seems to be especially
high in the countries of the far East and the South.

2http://www.oecdbetterlifeindex.org/
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