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Sorting & Slope Graphs: LineUp
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[Gratzl et al., 2013]

http://caleydo.github.io/projects/lineup/
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Animated Transitions
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[M. Bostock]

http://bl.ocks.org/mbostock/3943967
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Heer and Robertson Study
• User Preferences: Staged animation > animation > static transitions 

• Animation improves graphical perception 
• Staging is better (do axis rescaling before value changes) 
• Avoid axis rescaling when possible

�6

[Heer and Robertson, 2007]

The dependent measure was average error, measured as the 
average pixel distance from the location of subjects‟ mouse clicks to 
the respective target objects. Error was computed optimistically, 
such that if participants accidentally clicked the targets in reverse 
order their error rate would not be adversely affected. 

5.1.1 Results 
The results for animation conditions are shown in Figure 6, finding a 
strong advantage for animation. Repeated Measures ANOVA found 
significant differences at the .05 level for each transition type 
(F(2,286) >= 22.03, p < 0.001). Post-hoc comparisons between 
animation and staged animations using Fisher‟s LSD test were 
significant at the .05 level for the Zoom & Filter (p = 0.026) and 
Timestep Scatter Plot (p = 0.002) conditions. Sort Bars (p = 0.051) 
and Bar to Donut (p = 0.071) differences were significant at the .10 
level. Timestep Scatter Plot is the only transition in which staged 
animation has more error than direct animation. In this case, there 
were two transitions (a rescale and then movement) in a short time 
period, potentially compounding opportunity for error. 

Analysis across the size condition revealed that tracking error 
increased with size in all conditions except the Stacked to Grouped 
Bars transition. Repeated Measures ANOVA results for all transition 
types except Stacked to Grouped Bars, Zoom & Filter, and Timestep 
Scatter Plot were significant at the .05 level (F(2,143) >= 19.13, p < 
0.001). Increasing the number of elements noticeably increased error 
rates in the Bar to Donut transitions when labels were removed, but a 
similar interaction did not take place in the Sort Bars transition. 

5.2 Experiment 2: Estimating Changing Values 
Our second experiment focused on the semantic level of analysis. 
Subjects were asked to follow a single target across a transition and 
estimate the percentage change in value in the underlying data. The 
goal was to test the hypothesis that animation facilitates graphical 
perception of changing values over time. Experiment 2 used the 
same 3 x 2 within-subjects design as before. However, Experiment 2 
involved only four transitions: timesteps in Scatter Plot, Grouped 
Bars, Stacked Bars, and Donut Chart displays. Subjects performed 6 
replications of the 3*2*4=24 cells for a total of 144 trials. 

Staged animation for Scatter Plot and Grouped Bars conditions 
consisted of axis rescalings (if needed) followed by timestep 
animations. In the Stacked Bars and Donut Chart conditions we 
tested highly staged animations, such that objects never change 
position and value simultaneously. For Stacked Bars, this meant that 
each stack level would update separately, starting from the top stack 
sequentially down to the bottom stack. For Donut Charts, this 
involved the multi-stage animations of Figure 3. 

Figure 5 depicts a sample trial for Experiment 2. Subjects were 
shown an initial graphic for 3 seconds before transition onset, with 
only a single target highlighted. Animations were lengthened to 2 
seconds in this experiment to comfortably accommodate the multi-
staged animations. The display was masked after 3 seconds, at which 
point a panel of buttons appeared with which the user could enter 
their estimate of the target‟s percentage change in value. The buttons 
ranged from -90% to +90% by increments of 20% and indicated 
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Figure 6. Experiment 1 Results for Animation Conditions. Animation is significantly better than static across all conditions. Except for 
Timestep Scatter Plot, staged animation outperforms animation. Post-hoc analysis finds significant differences between animation and staged 
animation at the .05 level for Zoom & Filter and Timestep Scatter transitions and at the .10 level for Bar to Donut and Sort Bars transitions. 
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Figure 7. Experiment 2 Results for Animation Conditions. Left: For Scatter Plot and Grouped Bars conditions, animation significantly 
outperforms static transitions. Staged animation outperforms animation, but not significantly so. Stacked Bars show no significant difference, 
while animation is significantly better than static transitions and staged animation in the Donut Chart. Right: The total number of unknown (?) 
responses was higher for static transitions, though occurred for animation conditions when axis rescaling was performed. 
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Figure 8. Preference Survey Results. Overall, staged animation is preferred to animation, which is preferred to static transitions. Statistically 
significant differences are found for all transition types. Post-hoc analysis finds that preference for staged animation is significant at the .05 level 
for all transitions except the Timestep Stacked Bars and Timestep Donut conditions, in which an extreme form of staging was applied. 

http://vis.stanford.edu/papers/animated-transitions
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Selection
• Selection is often used to initiate other changes 
• User needs to select something to drive the next change 
• What can be a selection target? 
- Items, links, attributes, (views) 

• How? 
- mouse click, mouse hover, touch 
- keyboard modifiers, right/left mouse click, force 

• Selection modes: 
- Single, multiple 
- Contiguous?
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Highlighting
• Selection is the user action 
• Feedback is important! 
• How? Change selected item's visual encoding 
- Change color: want to achieve visual popout 
- Add outline mark: allows original color to be preserved 
- Change size (line width) 
- Add motion: marching ants
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Interaction Latency
• The Effects of Interactive Latency on Exploratory Visual Analysis,  

Z. Liu and J. Heer, 2014 
• Brush & link, select, pan, zoom 

• 500ms added latency causes significant cost 
- decreases user activity and dataset coverage 
- reduces rate of observations, generalizations, and hypotheses
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3.2 Latency Conditions

We considered multiple choices when designing our latency condi-
tions. One approach is to include multiple latencies in small incre-
ments, which is useful for identifying time scale thresholds for each
interactive operation. Assessing thresholds, however, is not the fo-
cus of our study, and often requires conducting studies with highly-
controlled, low-level tasks. We are more interested in understanding
the effects of latency on various dimensions of exploratory visual anal-
ysis. Thus a more ecologically valid setting, in which users perform
open-ended exploratory analysis, is appropriate. However, studying
ecologically valid behavior imposes practical constraints. Exploratory
visual analysis is a complex process, requiring careful analysis of both
quantitative interactive event log data and qualitative data concerning
insight discovery. We also anticipate that datasets with different se-
mantics can lead to different user behaviors, so it is necessary to in-
clude dataset and visualization configuration as a factor and repeat the
latency conditions in more than one analysis scenario. As a result, we
decided to use a 2 (datasets) x 2 (latency conditions) mixed design.

Table 2 summarizes the latency for the primary interactive opera-
tions supported in imMens (brushing and linking, selecting, panning
and zooming) in the two latency conditions. In the control condition,
the latency is simply the time taken by imMens to fetch data tiles,
perform aggregation (roll-up) queries and re-render the display. In the
delay condition, we injected an additional 500 milliseconds for each of
these operations. We experimented with different delays in pilot stud-
ies. Initially we chose to inject an additional delay of 1 second, based
on the representative latencies of related data-processing systems. Our
pilot subjects found the system unusable, especially for operations like
brushing and linking. We thus reduced the additional delay to 500ms.
Since there is little prior work on the time scales of different interactive
operations in visual analysis, we applied the same amount of delay for
all four operations to see if the operations have varying sensitivity to
the same delay.

To ensure the usability of the system in the delay condition, we im-
plemented throttling and debouncing in imMens. Throttling prevents
repeated firings of the same event. For example, mouse movements
within the same bar only trigger a single brushing event. Debouncing
maintains a queue of events being fired, delays processing by 500ms,
and drops unprocessed events when a new event of the same kind ar-
rives. The injected delay per operation thus does not result in a grow-
ing accumulation of unprocessed events, preventing cascading delays
and thus substantial usability problems.

Both log transform and color scale adjustment are client-side ren-
dering operations that do not incur data processing latency. We chose
not to inject delays into these two operations to maintain ecological
validity. It is also beneficial to include both low- and high-latency
operations so that we can examine if subjects preferentially use low-
latency operations in favor of higher-latency ones.

3.3 Datasets and Visualizations

We use two publicly available datasets from different domains. One
contains 4.5 million user check-ins on Brightkite [13], a location-
based check-in service similar to Foursquare, over a period of two
years. We visualize this dataset using five linked components (Figure
1(a)): a multi-scale geographic heatmap showing the locations of the
checkins, three histograms showing the number of check-ins aggre-
gated by month, day and hour, and a bar chart showing the number
of check-ins by the top 30 travelers whose check-ins span the greatest
geographic bounding box. The geographic heatmap has 8 zoom levels.

The other dataset consists of 140 million records about the on-time
performance of domestic flights in the US from 1987 to 2008 [9]. Sub-
jects explore this dataset using four linked visualizations (Figure 1(b)):
a binned scatterplot showing departure delay against arrival delay, two
bar charts showing the number of flights by carrier and year, and a his-
togram showing the distribution of flights across months. The binned
scatterplot has 5 zoom levels.

(a) Five coordinated visualizations showing geographical and temporal dis-
tribution of user checkins and top users.

(b) Four linked visualizations showing departure and arrival delays, carriers,
yearly and monthly distribution of flights.

Fig. 1. Visualizations for the datasets used in the study.

Operation Control Condition Delay Condition

brush & link 20 ms 520 ms
select 20 ms 520 ms
pan 100 ms 600 ms

zoom 1000 ms 1500 ms

Table 2. Average latencies for interactive operations, across conditions.

3.4 Study Procedure
We recruited 16 subjects from the San Francisco Bay Area. All par-
ticipants had experience analyzing data using systems such as Excel,
R and Tableau. We instructed the participants to perform two analysis
sessions, one dataset each. Every participant experienced both latency
conditions, but not all combinations of latency and dataset; the same
dataset cannot be reused for different latency conditions due to learn-
ing effects. For each subject, one dataset had the default latency and
the other dataset had the injected 500 millisecond delay. To control
for order and learning effects, half of the subjects experienced delay
in the first session and the other half experienced delay in the second
session. The order of the dataset analyzed was also counterbalanced.

We first gave each subject a 15-minute tutorial on imMens for each
of the two analysis scenarios, teaching them how to interact with the
visualizations under the respective latency condition. Subjects then
spent approximately one hour exploring both datasets. They could
spend a maximum of 30 minutes on a single dataset, but could stop
their analysis at any time if they felt nothing more could be found. At
the end of each study, we conducted an exit interview. We did not
inform the subjects about the injected delay in one of the two sessions.

We considered carefully the challenge of evaluating subjects’ per-
formance when designing the study procedure. Compared with solv-
ing a tightly-specified problem, visual analysis is open-ended and
lacks clear-cut performance metrics. To this end, we were inspired
by the insight-based evaluation methodology proposed by Saraiya et
al. [37, 38]. A fundamental premise of visualization research is that
“the purpose of visualization is insight, not pictures” [10]. Insight-
based evaluations collect qualitative data about the knowledge discov-
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operations so that we can examine if subjects preferentially use low-
latency operations in favor of higher-latency ones.

3.3 Datasets and Visualizations

We use two publicly available datasets from different domains. One
contains 4.5 million user check-ins on Brightkite [13], a location-
based check-in service similar to Foursquare, over a period of two
years. We visualize this dataset using five linked components (Figure
1(a)): a multi-scale geographic heatmap showing the locations of the
checkins, three histograms showing the number of check-ins aggre-
gated by month, day and hour, and a bar chart showing the number
of check-ins by the top 30 travelers whose check-ins span the greatest
geographic bounding box. The geographic heatmap has 8 zoom levels.

The other dataset consists of 140 million records about the on-time
performance of domestic flights in the US from 1987 to 2008 [9]. Sub-
jects explore this dataset using four linked visualizations (Figure 1(b)):
a binned scatterplot showing departure delay against arrival delay, two
bar charts showing the number of flights by carrier and year, and a his-
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Fig. 1. Visualizations for the datasets used in the study.
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Table 2. Average latencies for interactive operations, across conditions.

3.4 Study Procedure
We recruited 16 subjects from the San Francisco Bay Area. All par-
ticipants had experience analyzing data using systems such as Excel,
R and Tableau. We instructed the participants to perform two analysis
sessions, one dataset each. Every participant experienced both latency
conditions, but not all combinations of latency and dataset; the same
dataset cannot be reused for different latency conditions due to learn-
ing effects. For each subject, one dataset had the default latency and
the other dataset had the injected 500 millisecond delay. To control
for order and learning effects, half of the subjects experienced delay
in the first session and the other half experienced delay in the second
session. The order of the dataset analyzed was also counterbalanced.

We first gave each subject a 15-minute tutorial on imMens for each
of the two analysis scenarios, teaching them how to interact with the
visualizations under the respective latency condition. Subjects then
spent approximately one hour exploring both datasets. They could
spend a maximum of 30 minutes on a single dataset, but could stop
their analysis at any time if they felt nothing more could be found. At
the end of each study, we conducted an exit interview. We did not
inform the subjects about the injected delay in one of the two sessions.

We considered carefully the challenge of evaluating subjects’ per-
formance when designing the study procedure. Compared with solv-
ing a tightly-specified problem, visual analysis is open-ended and
lacks clear-cut performance metrics. To this end, we were inspired
by the insight-based evaluation methodology proposed by Saraiya et
al. [37, 38]. A fundamental premise of visualization research is that
“the purpose of visualization is insight, not pictures” [10]. Insight-
based evaluations collect qualitative data about the knowledge discov-
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Geometric vs. Semantic Zooming
• Geometric zoom: like a camera 
• Semantic zoom: visual appearance of objects can change at different scales
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[M. Bostock]

http://bl.ocks.org/3680999
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Project Design
• Work on turning your visualization ideas into designs 
• Turn in: 
- Three Designs Sketches 
- Progress on Implementation 

• Options: 
- Try vastly different options 
- Refine an initial idea 

• Due Monday, Nov. 11
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Assignment 5
• Farming data with multiple views & interaction 
• Add Crop Sales Information
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Design Space of Composite Visualization
• Composite visualization views (CVVs) 
- Includes Coordinated multiple views (CMV) 
- + More! 

• Design Patterns: 
- Juxtaposition: side-by-side 

- Superimposition: layers 

- Overloading: vis meshed with another 

- Nesting: vis inside a vis (recursive vis) 

- Integration: "merge" views + links

�14

[W. Javed and N. Elmqvist, 2012]

Exploring the Design Space of Composite Visualization

Waqas Javed⇤ Niklas Elmqvist†

Purdue University

Figure 1: Four different visual composition operators (from the left): juxtaposition, superimposition, overloading, and nesting.

ABSTRACT

We propose the notion of composite visualization views (CVVs)
as a theoretical model that unifies the existing coordinated mul-
tiple views (CMV) paradigm with other strategies for combining
visual representations in the same geometrical space. We identify
five such strategies—called CVV design patterns—based on an ex-
tensive review of the literature in composite visualization. We go
on to show how these design patterns can all be expressed in terms
of a design space describing the correlation between two visualiza-
tions in terms of spatial mapping as well as the data relationships
between items in the visualizations. We also discuss how to use this
design space to suggest potential directions for future research.

Index Terms: H.5.1 [Information Systems]: Multimedia Infor-
mation Systems—Animations; H.5.2 [Information Systems]: User
Interfaces; I.3 [Computer Methodologies]: Computer Graphics

1 INTRODUCTION

While the design space of visual representations is far from ex-
hausted, it is clear that it is becoming increasingly difficult to de-
velop entirely novel visual representations that significantly extend
the existing vocabulary of such representations in our field. It is
also clear that there is generally no visual representation that is
obviously superior for a given dataset; all visual representations
have strengths and weaknesses. In recent years, efforts have been
made towards combining different visualizations to balance these
strengths and weaknesses. This also addresses novelty: new visual
representations can be generated by combining existing ones.

However, there exists many ways to combine two or more vi-
sualizations in a single space. One common approach is coordi-
nated multiple views (CMV) [31], where the visualizations are of-
ten juxtaposed in the same space and coordinated using some form
of linking mechanism. However, there exist many examples where
multiple visualizations are combined in other ways than CMV-style
juxtaposition. For example, the NodeTrix [17] technique combines
adjacency matrices inside a node-link diagram, SparkClouds [21]
overlays a temporal visualization over tag clouds, and semantic sub-
strates [34] connect nodes in different views using links. These
examples show that juxtaposition, used for many CMV-based visu-
alization systems, is not an isolated approach to combining multiple
visualizations, but that there exists a spectrum of different patterns
for composing visualizations. However, although these examples
are discussed in the literature, there is no formal characterization
that organizes these in the same way as for CMV.

⇤e-mail: wjaved@purdue.edu
†e-mail: elm@purdue.edu

In this paper, we identify the design space of composite visual-
ization views (CVVs) that allows us to combine multiple visualiza-
tion in the same visual space. As a starting point, we survey the
literature of composite visualization and find five general design
patterns for how existing work merges two different visualizations
into one: juxtaposition, integration, overloading, superimposition,
and nesting. Some of these patterns are already known and formally
recognized; for example, juxtaposition gives rise to the CMV com-
position pattern, where views are simply placed next to each other.
Other design patterns have so far not been formally defined in the
literature, but we try to highlight each pattern with examples. We
then use these patterns to define a design space that captures the
salient aspects of composite visualization. We proceed to use this
design space to suggest avenues for future research.

2 COMPOSITE VISUALIZATION VIEWS

We define a composite visualization as the visual composition of
two or more visual structures in the same view. In this definition,
we use the following concepts from Card et al. [9]’s pipeline:

• visual composition: the combination (placement or arrange-
ment) of multiple visual objects;

• visual structure: the mapping from data to visual form (i.e.,
the result of a visualization technique);

• view: the physical display space (most often 2D) where a vi-
sual structure is rendered.

The nature of the composition governs the resulting type of com-
posite visualization. As we shall see in this paper, composite visual-
izations are relatively common. However, only one type of compos-
ite visualization—coordinated multiple views (CMV) [4, 32, 40],
where the visual composition is often a juxtaposition—is formally
recognized as a visualization design strategy in the literature.

Composite visualizations are used primarily for situations where
a single visualization is not sufficient because of high complexity,
large scale, or heterogeneous data [31]. In these situations, display-
ing data in several different ways may benefit user cognition. For
example, the same file system hierarchy could be visualized in both
a treemap [20] as well as a radial layout (such as Sunburst [35]),
each representation allowing the user to focus on different aspects
of the data. Furthermore, different types of data have varying repre-
sentation affinities. For example, locations are best represented in a
geospatial visualization, whereas multidimensional data fit best in
a parallel coordinate plot [18] or a scatterplot matrix [10].

2.1 Method

Our approach in this work is to derive a design space of compos-
ite visualization based on the literature of visualization techniques
where several visual structures are combined in the same view. We
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The nature of the composition governs the resulting type of com-
posite visualization. As we shall see in this paper, composite visual-
izations are relatively common. However, only one type of compos-
ite visualization—coordinated multiple views (CMV) [4, 32, 40],
where the visual composition is often a juxtaposition—is formally
recognized as a visualization design strategy in the literature.

Composite visualizations are used primarily for situations where
a single visualization is not sufficient because of high complexity,
large scale, or heterogeneous data [31]. In these situations, display-
ing data in several different ways may benefit user cognition. For
example, the same file system hierarchy could be visualized in both
a treemap [20] as well as a radial layout (such as Sunburst [35]),
each representation allowing the user to focus on different aspects
of the data. Furthermore, different types of data have varying repre-
sentation affinities. For example, locations are best represented in a
geospatial visualization, whereas multidimensional data fit best in
a parallel coordinate plot [18] or a scatterplot matrix [10].

2.1 Method

Our approach in this work is to derive a design space of compos-
ite visualization based on the literature of visualization techniques
where several visual structures are combined in the same view. We
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five such strategies—called CVV design patterns—based on an ex-
tensive review of the literature in composite visualization. We go
on to show how these design patterns can all be expressed in terms
of a design space describing the correlation between two visualiza-
tions in terms of spatial mapping as well as the data relationships
between items in the visualizations. We also discuss how to use this
design space to suggest potential directions for future research.
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While the design space of visual representations is far from ex-
hausted, it is clear that it is becoming increasingly difficult to de-
velop entirely novel visual representations that significantly extend
the existing vocabulary of such representations in our field. It is
also clear that there is generally no visual representation that is
obviously superior for a given dataset; all visual representations
have strengths and weaknesses. In recent years, efforts have been
made towards combining different visualizations to balance these
strengths and weaknesses. This also addresses novelty: new visual
representations can be generated by combining existing ones.

However, there exists many ways to combine two or more vi-
sualizations in a single space. One common approach is coordi-
nated multiple views (CMV) [31], where the visualizations are of-
ten juxtaposed in the same space and coordinated using some form
of linking mechanism. However, there exist many examples where
multiple visualizations are combined in other ways than CMV-style
juxtaposition. For example, the NodeTrix [17] technique combines
adjacency matrices inside a node-link diagram, SparkClouds [21]
overlays a temporal visualization over tag clouds, and semantic sub-
strates [34] connect nodes in different views using links. These
examples show that juxtaposition, used for many CMV-based visu-
alization systems, is not an isolated approach to combining multiple
visualizations, but that there exists a spectrum of different patterns
for composing visualizations. However, although these examples
are discussed in the literature, there is no formal characterization
that organizes these in the same way as for CMV.
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collect such composite visualizations using literature searches and
prior experience. We then let existing work inform our model by
organizing this prior art into rough categories that emerge from the
characteristics of the techniques. In later sections, we discuss each
category in more detail. Finally, we construct a design space that
captures all aspects of these composite visualization techniques.

2.2 Visual Composition

The method for visual composition is an emerging theme when sur-
veying composite visualizations in the literature. In other words,
the different ways of composing two visualizations A and B in the
same visual space seems to be a useful organizing principle in this
domain. Based on the literature, we derive the four visual compo-
sitions (Figure 1) that give rise to four rough categories—we call
them CVV design patterns—for composing visualizations:

• Juxtaposition ! Juxtaposed Views: Placing visualizations
side-by-side in one view (Coordinated Multiple Views [32]);

• Superimposition ! Superimposed Views: Overlaying two
visualizations in a single view;

• Overloading ! Overloaded Views: Utilizing the space of
one visualization for another; and

• Nesting ! Nested Views: Nesting the contents of one visu-
alization inside another visualization.

In addition, another emergent CVV design pattern is to juxtapose
visual structures, but to add graphical objects such as arrows, dotted
lines, or glyphs to visually link one view with another. We therefore
think this method deserves a design pattern of its own:

• Integration ! Integrated Views: Placing visualizations in
the same view with visual links.

2.3 Design Patterns

Identifying and characterizing composite visualization views
(CVVs) as a unified design approach not only allows us to explore
this space in a structured fashion, but also provides a method for
comparing the effectiveness of different designs. The reason we
use the term design pattern [15] here is that these are high-level ap-
proaches where the actual composition generally differs on a case-
by-case basis. This is consistent with the notion of a design pattern
as a general and reusable solution to a common problem.

We should also note that these design patterns are very differ-
ent from the software design patterns for visualization proposed by
Heer and Agrawala [16]. The latter deal with software engineering
design aspects, whereas our CVV patterns are defined on a visual
design level. While the pattern movement is popular in software
engineering, the reader should note that design patterns first were
proposed by Alexander et al. [2] for urban planning, and so our use
of the concept is in fact closer to its original spirit.

Below we describe the five rough categories of composite visu-
alization that we identified in the literature. In each section, we
first describe each pattern and then give a couple of in-depth ex-
amples of representative composite visualization techniques. These
examples are not intended to be exhaustive, but to be illustrative of
practical implementations of each pattern.

2.4 Existing Formalisms

Using multiple views for visualization is not a new concept, and
early examples date back to the beginnings of the field [27]. Bal-
donado et al. [4] gave general guidelines on the use of multi-
ple views in information visualization, and North and Shneider-
man [30, 28, 29] discussed relational models for achieving this.

Figure 2: ComVis [24] (Juxtaposed Views). Meteorology data.

Figure 3: Improvise [39] (Juxtaposed Views). Juxtaposed views are

used to explore the simulated ion trajectory in a cubic ion trap.

These discussions were later formalized into the concept of coor-
dinated multiple views (CMV) [31, 32], where multiple views of
different visualizations are combined in visual space and are im-
plicitly linked together, often using brushing [5].

In their work on multiple and explicitly linked visualizations,
Collins et al. [11] discuss the formalization of multi-relation visu-
alizations, in the process deriving three different techniques for this
practice. Their formalism is related to our work but of a preliminary
nature, lacks the discussion of some of the design patterns discussed
here, and also does not identify CVVs as a unified approach.

3 JUXTAPOSITION ! JUXTAPOSED VIEWS

Juxtaposed views (Figures 2 and 3) are the most prominent—and
probably the most flexible and easy to implement—design pattern
for composing visualizations in a single view [4, 28, 31, 33]. The
design pattern is based on juxtaposing multiple visualizations side
by side. Any linking between visualizations is implicit, i.e., it is not
a part of the visual representation. Examples include brushing [5],
synchronized scrolling [27], and synchronized drill-down [23].

The effectiveness of juxtaposed views has been an important re-
search topic. North and Shneiderman presented a taxonomy [29] of
such visualization. They showed that a well-designed juxtaposed
view increases user performance while exploring relations among
multiple data dimensions. However, designing effective juxtaposed
views can be a challenging task and requires efficient relational
linking and spatial layout. Weaver’s cross-filtered views [41] ad-
dresses this by abstracting the relations between the views to make
definining, implementing, and reusing them easier.

There currently exists a large number of visualization tools based
on juxtaposed views in the literature; e.g. [3, 7, 36]. Below we
review two such tools that are representative of these.

Juxtaposition
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category in more detail. Finally, we construct a design space that
captures all aspects of these composite visualization techniques.

2.2 Visual Composition

The method for visual composition is an emerging theme when sur-
veying composite visualizations in the literature. In other words,
the different ways of composing two visualizations A and B in the
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one visualization for another; and
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visual structures, but to add graphical objects such as arrows, dotted
lines, or glyphs to visually link one view with another. We therefore
think this method deserves a design pattern of its own:

• Integration ! Integrated Views: Placing visualizations in
the same view with visual links.

2.3 Design Patterns

Identifying and characterizing composite visualization views
(CVVs) as a unified design approach not only allows us to explore
this space in a structured fashion, but also provides a method for
comparing the effectiveness of different designs. The reason we
use the term design pattern [15] here is that these are high-level ap-
proaches where the actual composition generally differs on a case-
by-case basis. This is consistent with the notion of a design pattern
as a general and reusable solution to a common problem.

We should also note that these design patterns are very differ-
ent from the software design patterns for visualization proposed by
Heer and Agrawala [16]. The latter deal with software engineering
design aspects, whereas our CVV patterns are defined on a visual
design level. While the pattern movement is popular in software
engineering, the reader should note that design patterns first were
proposed by Alexander et al. [2] for urban planning, and so our use
of the concept is in fact closer to its original spirit.

Below we describe the five rough categories of composite visu-
alization that we identified in the literature. In each section, we
first describe each pattern and then give a couple of in-depth ex-
amples of representative composite visualization techniques. These
examples are not intended to be exhaustive, but to be illustrative of
practical implementations of each pattern.

2.4 Existing Formalisms

Using multiple views for visualization is not a new concept, and
early examples date back to the beginnings of the field [27]. Bal-
donado et al. [4] gave general guidelines on the use of multi-
ple views in information visualization, and North and Shneider-
man [30, 28, 29] discussed relational models for achieving this.

Figure 2: ComVis [24] (Juxtaposed Views). Meteorology data.

Figure 3: Improvise [39] (Juxtaposed Views). Juxtaposed views are

used to explore the simulated ion trajectory in a cubic ion trap.

These discussions were later formalized into the concept of coor-
dinated multiple views (CMV) [31, 32], where multiple views of
different visualizations are combined in visual space and are im-
plicitly linked together, often using brushing [5].

In their work on multiple and explicitly linked visualizations,
Collins et al. [11] discuss the formalization of multi-relation visu-
alizations, in the process deriving three different techniques for this
practice. Their formalism is related to our work but of a preliminary
nature, lacks the discussion of some of the design patterns discussed
here, and also does not identify CVVs as a unified approach.

3 JUXTAPOSITION ! JUXTAPOSED VIEWS

Juxtaposed views (Figures 2 and 3) are the most prominent—and
probably the most flexible and easy to implement—design pattern
for composing visualizations in a single view [4, 28, 31, 33]. The
design pattern is based on juxtaposing multiple visualizations side
by side. Any linking between visualizations is implicit, i.e., it is not
a part of the visual representation. Examples include brushing [5],
synchronized scrolling [27], and synchronized drill-down [23].

The effectiveness of juxtaposed views has been an important re-
search topic. North and Shneiderman presented a taxonomy [29] of
such visualization. They showed that a well-designed juxtaposed
view increases user performance while exploring relations among
multiple data dimensions. However, designing effective juxtaposed
views can be a challenging task and requires efficient relational
linking and spatial layout. Weaver’s cross-filtered views [41] ad-
dresses this by abstracting the relations between the views to make
definining, implementing, and reusing them easier.

There currently exists a large number of visualization tools based
on juxtaposed views in the literature; e.g. [3, 7, 36]. Below we
review two such tools that are representative of these.

Juxtaposition
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Juxtaposition Guidelines
• Benefits:  
- The component visualizations are independent and can be composed 

without interference 
- Easy to implement 

• Drawbacks:  
- Implicit visual linking is not always easy to see, particularly when multiple 

objects are selected 
- Space is divided between the views, yielding less space for each view 

• Applications: Use for heterogeneous datasets consisting of many different 
types of data, or for where different independent visualizations need to be 
combined.

�17

[W. Javed and N. Elmqvist, 2012]
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3.1 ComVis

ComVis [24] is a multidimensional visualization system support-
ing multiple coordinated views for exploring complex datasets (Fig-
ure 2). The dataset is shown in the form a table view at the bottom
of the main window. Beyond basic interactions, ComVis also sup-
port interactive brushing using both single and composite brushes.

Figure 2 shows a visual exploration of meteorology data using
ComVis. The user has created eight different views, each with a
different visualization. The analyst has then used a single brush to
select three bins in the histogram view, causing all the other views
to highlight the corresponding data items.

3.2 Improvise

Improvise [39, 40] is a visualization framework based on the jux-
taposed views design pattern. The framework allows users to build
and browse multiple visualizations while coordinating relational
linking among them. The system is highly extensible and modular-
ized, allowing it to be adapted for virtually any type of data and vi-
sual representation. To explore relational data in an interactive man-
ner, Improvise provides support for coordinated queries, a visual
abstraction language designed for relational databases. More re-
cent work on cross-filtered views [41] adds to the expressive power
of the framework for relation linking between different views.

Figure 3 shows a visual exploration of a simulated ion trajec-
tory in a cubic ion trap using Improvise. The tool allows user to
visualize different portions of the data set, selected using dynamic
queries [1]. All the visualizations are coordinated and data selection
in one view is projected in all others.

Figure 4: Semantic Substrates [34] (Integrated Views). Network

visualization of a dataset of court cases using semantic substrates.

4 INTEGRATION ! INTEGRATED VIEWS

The integrated views design pattern is also based on juxtaposing (or
tiling) the component visualizations (Figures 4, 5). For this reason,
the visual composition for integrated views is identical to that of
juxtaposed views. However, contrary to the implicit linking used in
juxtaposed views, integrated views use explicit linking, normally
in the form of graphical lines that relate data items in different
views another [11]. One prominent example of integrated views
is Charles Minard’s famous visualization of Napoleon’s march on
Moscow [37], where explicit linking shows the relations between
temperature and the number of surviving soldiers during the retreat.

Figure 5: VisLink [11] (Integrated Views). Radial and force-directed

graphs on separate visualization planes linked with visual edges.

The use of explicit linking in integrated views, compared to im-
plicit linking in juxtaposed views, allows for better relational cogni-
tion, but at the cost of added visual clutter. However, as the number
of data points increases in the visualizations, the visual clutter aris-
ing from the explicit links may become a major hindrance. Com-
monly used strategies to avoid this problem are to aggregate the
links, or to show relational links only for selected data values [11].

4.1 Semantic Substrates

Shneiderman and Aris [34] proposed a network visualization layout
based on a user-defined semantic substrate with node-links diagram
as an underlying visualization (Figure 4). Semantic substrates are
spatially non-overlapping regions that are built to hold nodes based
on some category present in the dataset. The individual regions
are sized proportionally to the number of data entries for the cate-
gory they visualize. This scheme allows users to get a quick idea
about the cardinality of different categories present in the under-
lying dataset. Their approach is in line with the integrated view
design pattern because the techniques add visual links to connect
the nodes in different substrates. To reduce clutter arising from the
links, the tool allows for toggling their visibility.

Figure 4 shows semantic substrates used for the exploration of
a subset of federal judicial cases on the legal issue of regulatory
takings from 1978 to 2005. The nodes in different views are placed
based on their chronological order along the horizontal axis and
links among the nodes highlight citation between different cases.

4.2 VisLink

VisLink [11] (Figure 5) creates multiple 2D planes, one for each
visualization, and shows relational linking between the different vi-
sualization planes. Visualization planes generated in VisLink are
interactive and users can re-position them in the view to explore
data relations. In contrast with semantic substrates, VisLink allows
the use of different visualizations while exploring the dataset.

As with semantic substrates, the VisLink relational linking is
done using visual lines that connect visual marks in one plane with
the corresponding mark in the other plane. To reduce the inher-
ent occlusion due to the explicit relational links between visualiza-
tions, the tool supports two kinds of edges: straight edges are used
to show one-to-one linking, while bundled curved edges are used
to highlight one to many linking. To reduce visual clutter the tool
shows relational links only between adjacent planes, and the planes
must be reordered for the user to see relations between other planes.
Figure 5 shows VisLink being used for exploring a dataset of En-
glish words based on the IS-A relation over synonym sets.

Integration
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3.1 ComVis

ComVis [24] is a multidimensional visualization system support-
ing multiple coordinated views for exploring complex datasets (Fig-
ure 2). The dataset is shown in the form a table view at the bottom
of the main window. Beyond basic interactions, ComVis also sup-
port interactive brushing using both single and composite brushes.

Figure 2 shows a visual exploration of meteorology data using
ComVis. The user has created eight different views, each with a
different visualization. The analyst has then used a single brush to
select three bins in the histogram view, causing all the other views
to highlight the corresponding data items.

3.2 Improvise

Improvise [39, 40] is a visualization framework based on the jux-
taposed views design pattern. The framework allows users to build
and browse multiple visualizations while coordinating relational
linking among them. The system is highly extensible and modular-
ized, allowing it to be adapted for virtually any type of data and vi-
sual representation. To explore relational data in an interactive man-
ner, Improvise provides support for coordinated queries, a visual
abstraction language designed for relational databases. More re-
cent work on cross-filtered views [41] adds to the expressive power
of the framework for relation linking between different views.

Figure 3 shows a visual exploration of a simulated ion trajec-
tory in a cubic ion trap using Improvise. The tool allows user to
visualize different portions of the data set, selected using dynamic
queries [1]. All the visualizations are coordinated and data selection
in one view is projected in all others.

Figure 4: Semantic Substrates [34] (Integrated Views). Network

visualization of a dataset of court cases using semantic substrates.

4 INTEGRATION ! INTEGRATED VIEWS

The integrated views design pattern is also based on juxtaposing (or
tiling) the component visualizations (Figures 4, 5). For this reason,
the visual composition for integrated views is identical to that of
juxtaposed views. However, contrary to the implicit linking used in
juxtaposed views, integrated views use explicit linking, normally
in the form of graphical lines that relate data items in different
views another [11]. One prominent example of integrated views
is Charles Minard’s famous visualization of Napoleon’s march on
Moscow [37], where explicit linking shows the relations between
temperature and the number of surviving soldiers during the retreat.

Figure 5: VisLink [11] (Integrated Views). Radial and force-directed

graphs on separate visualization planes linked with visual edges.

The use of explicit linking in integrated views, compared to im-
plicit linking in juxtaposed views, allows for better relational cogni-
tion, but at the cost of added visual clutter. However, as the number
of data points increases in the visualizations, the visual clutter aris-
ing from the explicit links may become a major hindrance. Com-
monly used strategies to avoid this problem are to aggregate the
links, or to show relational links only for selected data values [11].

4.1 Semantic Substrates

Shneiderman and Aris [34] proposed a network visualization layout
based on a user-defined semantic substrate with node-links diagram
as an underlying visualization (Figure 4). Semantic substrates are
spatially non-overlapping regions that are built to hold nodes based
on some category present in the dataset. The individual regions
are sized proportionally to the number of data entries for the cate-
gory they visualize. This scheme allows users to get a quick idea
about the cardinality of different categories present in the under-
lying dataset. Their approach is in line with the integrated view
design pattern because the techniques add visual links to connect
the nodes in different substrates. To reduce clutter arising from the
links, the tool allows for toggling their visibility.

Figure 4 shows semantic substrates used for the exploration of
a subset of federal judicial cases on the legal issue of regulatory
takings from 1978 to 2005. The nodes in different views are placed
based on their chronological order along the horizontal axis and
links among the nodes highlight citation between different cases.

4.2 VisLink

VisLink [11] (Figure 5) creates multiple 2D planes, one for each
visualization, and shows relational linking between the different vi-
sualization planes. Visualization planes generated in VisLink are
interactive and users can re-position them in the view to explore
data relations. In contrast with semantic substrates, VisLink allows
the use of different visualizations while exploring the dataset.

As with semantic substrates, the VisLink relational linking is
done using visual lines that connect visual marks in one plane with
the corresponding mark in the other plane. To reduce the inher-
ent occlusion due to the explicit relational links between visualiza-
tions, the tool supports two kinds of edges: straight edges are used
to show one-to-one linking, while bundled curved edges are used
to highlight one to many linking. To reduce visual clutter the tool
shows relational links only between adjacent planes, and the planes
must be reordered for the user to see relations between other planes.
Figure 5 shows VisLink being used for exploring a dataset of En-
glish words based on the IS-A relation over synonym sets.

Integration
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Integration
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Integration Guidelines
• Benefits:  
- Easy to perceive one-to-one and one-to-many relations between items in 

components 
- Visualizations are less independent compared to juxtaposed views, but still 

separate 
• Drawbacks:  
- Extra visual clutter added to the overall view 
- Display space is split between the views 
- Some dependencies exist between views to allow for the visual linking 

• Applications: Use for heterogeneous datasets where correlation and 
comparisons between views is particularly important.
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Figure 6: Mapgets [38] (Superimposed Views). Presentation stack,

with superimposed layers for rivers, borders, and labels, in Mapgets.

Figure 7: GeoSpace [22] (Superimposed Views). A crime data layer

superimposed on a geographical map of the Cambridge, MA area.

5 SUPERIMPOSITION ! SUPERIMPOSED VIEWS

Superimposed views overlay two or more visual spaces on top of
each other (Figures 6 and 7). The resulting visualization becomes
the visual combination of the component visualizations, often using
transparency to enable seeing all views. Superimposed views are
generally used to highlight spatial relations in the component visu-
alizations. In other words, the spatial linking present in these views
is one-to-one, i.e., all the overlay visualizations share the same un-
derlying visual space. Line graph visualizations with several data
series, where more than one graph is superimposed in a single chart
(e.g., [19]), is a very commonly used example of this design pattern.

The spatial linking in the superimposed views allows for easy
comparison across different datasets because the user does not have
to split their attention between different parts of the visual space.
Furthermore, the fact that visualizations are stacked means that they
can each use the full available space in the view. However, because
the composition simply adds the component visualizations together,
the visual clutter may become significant, and it is also likely to
cause conflicts arising from one visualization occluding another.

5.1 Mapgets

Mapgets [38] is a geographic visualization system that allows users
to interactively perform map editing and querying of geographical
datasets. The maps generated using Mapgets are built on an under-
lying presentation stack that superimposes multiple dataset layers
on top of each other. The users can dynamically select the dataset

to use for each layer and the total number of layers to compose.
Different layers in the presentation stack allow users to indepen-
dently interact with each of the associated visualization and control
the layer attributes. The technique also allows the users to reorder
layers in the presentation stack to achieve the desirable map result.

Figure 6 shows an example of a European map generated in
Mapgets. The presentation stack associated with this map consists
of three layers: the bottom layer visualizes rivers, the center layer
is used to depict the country borders, and the topmost layer is used
to display the country labels.

5.2 GeoSpace

GeoSpace [22] allows users to interactively explore complex visual
spaces using superimposed views. It permits progressively overlay-
ing different datasets, based on the user queries, in a single view.
Beyond allowing users to explore datasets through dynamic queries,
GeoSpace also supports pan and zoom operations for navigation.

Figure 7 shows GeoSpace system being used for exploring crime
around the Cambridge, MA area. The figure shows a 2D view of
the visualization, where red dots that are spatially coupled to the
underlying layer show the reported crime cases in the region.

Figure 8: SPPC [45] (Overloaded Views). This tool overloads points

into the region bounded by two axes in the parallel coordinate plot.

Figure 9: Links on treemaps [14] (Overloaded Views). The tool

identifies a tree structure in a graph and visualizes it using a treemap.

Superimposition
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Figure 6: Mapgets [38] (Superimposed Views). Presentation stack,

with superimposed layers for rivers, borders, and labels, in Mapgets.

Figure 7: GeoSpace [22] (Superimposed Views). A crime data layer

superimposed on a geographical map of the Cambridge, MA area.

5 SUPERIMPOSITION ! SUPERIMPOSED VIEWS

Superimposed views overlay two or more visual spaces on top of
each other (Figures 6 and 7). The resulting visualization becomes
the visual combination of the component visualizations, often using
transparency to enable seeing all views. Superimposed views are
generally used to highlight spatial relations in the component visu-
alizations. In other words, the spatial linking present in these views
is one-to-one, i.e., all the overlay visualizations share the same un-
derlying visual space. Line graph visualizations with several data
series, where more than one graph is superimposed in a single chart
(e.g., [19]), is a very commonly used example of this design pattern.

The spatial linking in the superimposed views allows for easy
comparison across different datasets because the user does not have
to split their attention between different parts of the visual space.
Furthermore, the fact that visualizations are stacked means that they
can each use the full available space in the view. However, because
the composition simply adds the component visualizations together,
the visual clutter may become significant, and it is also likely to
cause conflicts arising from one visualization occluding another.

5.1 Mapgets

Mapgets [38] is a geographic visualization system that allows users
to interactively perform map editing and querying of geographical
datasets. The maps generated using Mapgets are built on an under-
lying presentation stack that superimposes multiple dataset layers
on top of each other. The users can dynamically select the dataset

to use for each layer and the total number of layers to compose.
Different layers in the presentation stack allow users to indepen-
dently interact with each of the associated visualization and control
the layer attributes. The technique also allows the users to reorder
layers in the presentation stack to achieve the desirable map result.

Figure 6 shows an example of a European map generated in
Mapgets. The presentation stack associated with this map consists
of three layers: the bottom layer visualizes rivers, the center layer
is used to depict the country borders, and the topmost layer is used
to display the country labels.

5.2 GeoSpace

GeoSpace [22] allows users to interactively explore complex visual
spaces using superimposed views. It permits progressively overlay-
ing different datasets, based on the user queries, in a single view.
Beyond allowing users to explore datasets through dynamic queries,
GeoSpace also supports pan and zoom operations for navigation.

Figure 7 shows GeoSpace system being used for exploring crime
around the Cambridge, MA area. The figure shows a 2D view of
the visualization, where red dots that are spatially coupled to the
underlying layer show the reported crime cases in the region.

Figure 8: SPPC [45] (Overloaded Views). This tool overloads points

into the region bounded by two axes in the parallel coordinate plot.

Figure 9: Links on treemaps [14] (Overloaded Views). The tool

identifies a tree structure in a graph and visualizes it using a treemap.

Superimposition
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Superimposition Guidelines
• Benefits:  
- Allows direct comparison in the same visual space.  

• Drawbacks: 
- May cause occlusion and high visual clutter. 
- The client visualization must share the same spatial mapping as the host 

visualization.  
• Applications: In settings where comparison is common, or where the 

component visualization views need to be as large as possible (potentially the 
entire available space).

�24
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Figure 6: Mapgets [38] (Superimposed Views). Presentation stack,

with superimposed layers for rivers, borders, and labels, in Mapgets.

Figure 7: GeoSpace [22] (Superimposed Views). A crime data layer

superimposed on a geographical map of the Cambridge, MA area.

5 SUPERIMPOSITION ! SUPERIMPOSED VIEWS

Superimposed views overlay two or more visual spaces on top of
each other (Figures 6 and 7). The resulting visualization becomes
the visual combination of the component visualizations, often using
transparency to enable seeing all views. Superimposed views are
generally used to highlight spatial relations in the component visu-
alizations. In other words, the spatial linking present in these views
is one-to-one, i.e., all the overlay visualizations share the same un-
derlying visual space. Line graph visualizations with several data
series, where more than one graph is superimposed in a single chart
(e.g., [19]), is a very commonly used example of this design pattern.

The spatial linking in the superimposed views allows for easy
comparison across different datasets because the user does not have
to split their attention between different parts of the visual space.
Furthermore, the fact that visualizations are stacked means that they
can each use the full available space in the view. However, because
the composition simply adds the component visualizations together,
the visual clutter may become significant, and it is also likely to
cause conflicts arising from one visualization occluding another.

5.1 Mapgets

Mapgets [38] is a geographic visualization system that allows users
to interactively perform map editing and querying of geographical
datasets. The maps generated using Mapgets are built on an under-
lying presentation stack that superimposes multiple dataset layers
on top of each other. The users can dynamically select the dataset

to use for each layer and the total number of layers to compose.
Different layers in the presentation stack allow users to indepen-
dently interact with each of the associated visualization and control
the layer attributes. The technique also allows the users to reorder
layers in the presentation stack to achieve the desirable map result.

Figure 6 shows an example of a European map generated in
Mapgets. The presentation stack associated with this map consists
of three layers: the bottom layer visualizes rivers, the center layer
is used to depict the country borders, and the topmost layer is used
to display the country labels.

5.2 GeoSpace

GeoSpace [22] allows users to interactively explore complex visual
spaces using superimposed views. It permits progressively overlay-
ing different datasets, based on the user queries, in a single view.
Beyond allowing users to explore datasets through dynamic queries,
GeoSpace also supports pan and zoom operations for navigation.

Figure 7 shows GeoSpace system being used for exploring crime
around the Cambridge, MA area. The figure shows a 2D view of
the visualization, where red dots that are spatially coupled to the
underlying layer show the reported crime cases in the region.

Figure 8: SPPC [45] (Overloaded Views). This tool overloads points

into the region bounded by two axes in the parallel coordinate plot.

Figure 9: Links on treemaps [14] (Overloaded Views). The tool

identifies a tree structure in a graph and visualizes it using a treemap.

Overloading
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Figure 6: Mapgets [38] (Superimposed Views). Presentation stack,

with superimposed layers for rivers, borders, and labels, in Mapgets.

Figure 7: GeoSpace [22] (Superimposed Views). A crime data layer

superimposed on a geographical map of the Cambridge, MA area.

5 SUPERIMPOSITION ! SUPERIMPOSED VIEWS

Superimposed views overlay two or more visual spaces on top of
each other (Figures 6 and 7). The resulting visualization becomes
the visual combination of the component visualizations, often using
transparency to enable seeing all views. Superimposed views are
generally used to highlight spatial relations in the component visu-
alizations. In other words, the spatial linking present in these views
is one-to-one, i.e., all the overlay visualizations share the same un-
derlying visual space. Line graph visualizations with several data
series, where more than one graph is superimposed in a single chart
(e.g., [19]), is a very commonly used example of this design pattern.

The spatial linking in the superimposed views allows for easy
comparison across different datasets because the user does not have
to split their attention between different parts of the visual space.
Furthermore, the fact that visualizations are stacked means that they
can each use the full available space in the view. However, because
the composition simply adds the component visualizations together,
the visual clutter may become significant, and it is also likely to
cause conflicts arising from one visualization occluding another.

5.1 Mapgets

Mapgets [38] is a geographic visualization system that allows users
to interactively perform map editing and querying of geographical
datasets. The maps generated using Mapgets are built on an under-
lying presentation stack that superimposes multiple dataset layers
on top of each other. The users can dynamically select the dataset

to use for each layer and the total number of layers to compose.
Different layers in the presentation stack allow users to indepen-
dently interact with each of the associated visualization and control
the layer attributes. The technique also allows the users to reorder
layers in the presentation stack to achieve the desirable map result.

Figure 6 shows an example of a European map generated in
Mapgets. The presentation stack associated with this map consists
of three layers: the bottom layer visualizes rivers, the center layer
is used to depict the country borders, and the topmost layer is used
to display the country labels.

5.2 GeoSpace

GeoSpace [22] allows users to interactively explore complex visual
spaces using superimposed views. It permits progressively overlay-
ing different datasets, based on the user queries, in a single view.
Beyond allowing users to explore datasets through dynamic queries,
GeoSpace also supports pan and zoom operations for navigation.

Figure 7 shows GeoSpace system being used for exploring crime
around the Cambridge, MA area. The figure shows a 2D view of
the visualization, where red dots that are spatially coupled to the
underlying layer show the reported crime cases in the region.

Figure 8: SPPC [45] (Overloaded Views). This tool overloads points

into the region bounded by two axes in the parallel coordinate plot.

Figure 9: Links on treemaps [14] (Overloaded Views). The tool

identifies a tree structure in a graph and visualizes it using a treemap.

Overloading
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Overloading Guidelines
• Benefits:  
- The client visualization does not have to share the same coordinate space 

as the host visualization 
- This also yield more flexibility and control over visual clutter 

• Drawbacks: 
- Visual clutter is increased 
- Visual design dependencies between components are significant 

• Applications: Situations where one visualization can be folded into another to 
yield a compact (and complex) result.
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6 OVERLOADING ! OVERLOADED VIEWS

This design pattern characterizes compositions where one visual-
ization, called the client visualization, is rendered inside another
visualization, called the host, using the same spatial mapping as the
host [26]. Overloaded views (Figures 8 and 9) are similar to super-
imposed views, but with some important differences. Like super-
imposition, the client visualization in this design pattern is overlaid
on the host. However, unlike Superimposed Views, there exists no
one-to-one spatial linking between the two visualizations [12].

While previous design patterns have all operated on specific
views of component visualizations, overloaded views (and also the
next pattern, Nested Views) operate on the visual structure them-
selves. In other words, it is no longer possible to merely use vi-
sual layout operations to organize the views together, but the vi-
sual structures themselves must be modified to combine the com-
ponents. We will see examples of this below.

Figure 10: ZAME [13] (Nested Views). Visual exploration of a

protein-protein interaction dataset in ZAME.

6.1 Scatter Plots in Parallel Coordinates (SPPC)

Yuan et al. [45] presented a system that allows overloading of 2D
scatterplots on a parallel coordinates visualization [18] (Figure 8).
The technique is based on converting the space between pairs of
selected coordinate dimensions in a parallel coordinate plot into
scatterplots through multidimensional scaling [42]. The technique
takes advantage of the fact that parallel coordinate plots do not re-
ally use the space between the parallel dimensional axes, which
means that this space is open for being overloaded.

SPPC is also an example of combining two techniques to com-
pensate for their individual shortcomings. Parallel coordinates are
efficient for visualizing multiple dimensions in a compact 2D vi-
sual representation. However, they make it hard to correlate trends
across multiple dimensions due to their inherent visual clutter. Scat-
terplots, on the other hand, provide an effective way of correlating
trends in any dimension of a dataset [10]. Combining both tech-
niques allows for sharing their advantages.

6.2 Graph Links on Treemaps

Fekete et al. [14] proposed a technique for rendering graphs using a
treemap [20] with overloaded graph links. The idea is based on the
fact that it is possible to decompose a graph into a tree structure and
a set of remaining graph edges that are not included in the tree. This
graph decomposition allows for using a treemap to visualize the tree
structure, and then overload links corresponding to the remaining
graph edges on the treemap visualization. Even though Fekete et al.

call this “overlaying”, the technique is an example of overloading
in our terminology because the graph links are not just a separate
layer on top of the treemap, but they are embedded into the visual
structure of the treemap and use the node positions as anchors.

Figure 9 shows the technique being used to visualize a website.
Here, the directory structure, inherent in any website, is visualized
through an underlying treemap and external links are visualized
through overlaid edges. The overlaid edges are not straight lines,
but are curved to highlight source and target locations. The edges
are curved more near the source, hence making it easy to visually
recognize the direction of the link. The tool also supports con-
trolling the visibility of various edges to reduce visual clutter, and
coloring edges based on their attributes.

Figure 11: NodeTrix [17] (Nested Views). This example shows a

visualization of the InfoVis co-authorship network.

7 NESTING ! NESTED VIEWS

Nested views, like overloaded views, are also based on the notion of
host and client visualizations. However, in this design pattern, one
or more client visualizations are nested inside the visual marks of
the host visualizations, based on the relational linking between the
points. Most often, the nesting is performed simply by replacing
the visual marks in the host visualization by nested instances of the
client visualization (Figures 10 and 11). An example of this would
be a scatterplot where the individual marks are barchart glyphs [25].

The nested views pattern provides an effective way of relating
data points in the host visualization to the data visualized through
the client visualizations. Again the users need not divide their atten-
tion between multiple views, and the host visualization is allowed
to use the full available space. However, since the design pattern
embeds one or more visualizations inside a visual mark, the client
visualizations are allocated only a small portion of the host visual-
ization’s visual space, and zooming and panning may be required to
see details. Furthermore, just like overloading, nested views com-
pose the actual visual structures of the components, which typically
requires a more careful design.

One issue to discuss here is the difference between overloading
and nesting. These are different design patterns because nesting
simply replaces the visual marks of the host with the visual structure
of the client, whereas overloading requires a much more integrated
composition of the visual structures of the host and the client.

7.1 ZAME

Nested views are becoming increasingly prominent for visualizing
large-scale datasets using glyph-based methods. ZAME [13], a vi-
sualization system designed to explore large-scale adjacency matrix
graph visualization, uses this approach. The base matrix represen-
tation used in ZAME is a hierarchical aggregation of the underly-
ing dataset. The tool allows the user to zoom in data space, which
amounts to drilling-down and rolling-up in the aggregation hierar-
chy to see more or less details. Abstract glyphs representing aggre-
gated data for each cell in the matrix are nested inside the visual
marks of the matrix to convey information about the aggregation.

Nesting
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6 OVERLOADING ! OVERLOADED VIEWS

This design pattern characterizes compositions where one visual-
ization, called the client visualization, is rendered inside another
visualization, called the host, using the same spatial mapping as the
host [26]. Overloaded views (Figures 8 and 9) are similar to super-
imposed views, but with some important differences. Like super-
imposition, the client visualization in this design pattern is overlaid
on the host. However, unlike Superimposed Views, there exists no
one-to-one spatial linking between the two visualizations [12].

While previous design patterns have all operated on specific
views of component visualizations, overloaded views (and also the
next pattern, Nested Views) operate on the visual structure them-
selves. In other words, it is no longer possible to merely use vi-
sual layout operations to organize the views together, but the vi-
sual structures themselves must be modified to combine the com-
ponents. We will see examples of this below.

Figure 10: ZAME [13] (Nested Views). Visual exploration of a

protein-protein interaction dataset in ZAME.

6.1 Scatter Plots in Parallel Coordinates (SPPC)

Yuan et al. [45] presented a system that allows overloading of 2D
scatterplots on a parallel coordinates visualization [18] (Figure 8).
The technique is based on converting the space between pairs of
selected coordinate dimensions in a parallel coordinate plot into
scatterplots through multidimensional scaling [42]. The technique
takes advantage of the fact that parallel coordinate plots do not re-
ally use the space between the parallel dimensional axes, which
means that this space is open for being overloaded.

SPPC is also an example of combining two techniques to com-
pensate for their individual shortcomings. Parallel coordinates are
efficient for visualizing multiple dimensions in a compact 2D vi-
sual representation. However, they make it hard to correlate trends
across multiple dimensions due to their inherent visual clutter. Scat-
terplots, on the other hand, provide an effective way of correlating
trends in any dimension of a dataset [10]. Combining both tech-
niques allows for sharing their advantages.

6.2 Graph Links on Treemaps

Fekete et al. [14] proposed a technique for rendering graphs using a
treemap [20] with overloaded graph links. The idea is based on the
fact that it is possible to decompose a graph into a tree structure and
a set of remaining graph edges that are not included in the tree. This
graph decomposition allows for using a treemap to visualize the tree
structure, and then overload links corresponding to the remaining
graph edges on the treemap visualization. Even though Fekete et al.

call this “overlaying”, the technique is an example of overloading
in our terminology because the graph links are not just a separate
layer on top of the treemap, but they are embedded into the visual
structure of the treemap and use the node positions as anchors.

Figure 9 shows the technique being used to visualize a website.
Here, the directory structure, inherent in any website, is visualized
through an underlying treemap and external links are visualized
through overlaid edges. The overlaid edges are not straight lines,
but are curved to highlight source and target locations. The edges
are curved more near the source, hence making it easy to visually
recognize the direction of the link. The tool also supports con-
trolling the visibility of various edges to reduce visual clutter, and
coloring edges based on their attributes.

Figure 11: NodeTrix [17] (Nested Views). This example shows a

visualization of the InfoVis co-authorship network.

7 NESTING ! NESTED VIEWS

Nested views, like overloaded views, are also based on the notion of
host and client visualizations. However, in this design pattern, one
or more client visualizations are nested inside the visual marks of
the host visualizations, based on the relational linking between the
points. Most often, the nesting is performed simply by replacing
the visual marks in the host visualization by nested instances of the
client visualization (Figures 10 and 11). An example of this would
be a scatterplot where the individual marks are barchart glyphs [25].

The nested views pattern provides an effective way of relating
data points in the host visualization to the data visualized through
the client visualizations. Again the users need not divide their atten-
tion between multiple views, and the host visualization is allowed
to use the full available space. However, since the design pattern
embeds one or more visualizations inside a visual mark, the client
visualizations are allocated only a small portion of the host visual-
ization’s visual space, and zooming and panning may be required to
see details. Furthermore, just like overloading, nested views com-
pose the actual visual structures of the components, which typically
requires a more careful design.

One issue to discuss here is the difference between overloading
and nesting. These are different design patterns because nesting
simply replaces the visual marks of the host with the visual structure
of the client, whereas overloading requires a much more integrated
composition of the visual structures of the host and the client.

7.1 ZAME

Nested views are becoming increasingly prominent for visualizing
large-scale datasets using glyph-based methods. ZAME [13], a vi-
sualization system designed to explore large-scale adjacency matrix
graph visualization, uses this approach. The base matrix represen-
tation used in ZAME is a hierarchical aggregation of the underly-
ing dataset. The tool allows the user to zoom in data space, which
amounts to drilling-down and rolling-up in the aggregation hierar-
chy to see more or less details. Abstract glyphs representing aggre-
gated data for each cell in the matrix are nested inside the visual
marks of the matrix to convey information about the aggregation.

Nesting
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Nesting Guidlines
• Benefits: 
- Very compact representation 
- Easy correlation 

• Drawbacks:  
- Limited space for the client visualizations 
- Clutter is high 
- Visual design dependencies are high 

• Applications: Situations that call for augmenting a particular visual 
representation with additional mapping
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Design Space
• Visualizations: the techniques or idioms used 
• Spatial relation: relationship between visual structures in display space 
• Data relation: visual relationship between items in different views 
- None: No relation 
- Item-item: One-to-one 
- Item-group: One-to-many 
- Item-dimension: Item in one view is a scale in another

�31

[W. Javed and N. Elmqvist, 2012]



D. Koop, CS 490/680, Fall 2019

Technique Visualization A Visualization B Spatial Relation Data Relation

ComVis [24] (Figure 2) any any juxtapose none
Improvise [39] (Figure 3) any any juxtapose none
Jigsaw [36] any any juxtapose none
Snap-Together [30] any any juxtapose none
semantic substrates [34] (Figure 4) node-link node-link juxtapose item-item
VisLink [11] (Figure 5) radial graph node-link juxtapose item-item
Napoleon’s March on Moscow [37] time line view area visualization juxtapose item-item
Mapgets [38] (Figure 6) map text superimpose item-item
GeoSpace [22] (Figure 7) map bar graph superimpose item-item
3D GIS [8] map glyphs superimpose item-item
Scatter Plots in Parallel Coordinates [45] (Figure 8) parallel coordinate scatterplot overload item-dimension
Graph links on treemaps [14] (Figure 9) treemap node-link overload item-item
SparkClouds [21] tag cloud line graph overload item-item
ZAME [13] (Figure 10) matrix glyphs nested item-group
NodeTrix [17] (Figure 11) node-link matrix nested item-group
TimeMatrix [44] matrix glyphs nested item-group
GPUVis [25] Scatterplot glyphs nested item-group

Table 1: Classification of common composite visualization techniques using our design space.

(a) Juxtaposed views. (b) Integrated views. (c) Superimposed views. (d) Overloaded views. (e) Nested views.

Figure 12: Example of composing a scatterplot and bar graph using different methods.

datasets in the same space and using different visualizations, but
also highlights the relational linking between the two datasets.

Nested views provide an efficient approach to link each of the
data values, visualized through the host visualization, to its related
dataset, visualized through client visualizations. This is achieved
by nesting clients inside the visual marks in the host.

• Benefits: Very compact representation, easy correlation.
• Drawbacks: Limited space for the client visualizations, clut-

ter is high, and visual design dependencies are high.
• Applications: Again, situations that call for augmenting a

particular visual representation with additional mapping.

Figure 12(e) shows an example composition of scatterplot and
bar graph visualizations based on this design patter. In the figure,
the scatterplot visualization is acting as a host and bar graph visu-
alizations are nested inside its visual marks.

There is probably not a clear winner among different design pat-
terns while designing an information visualization tool. The correct
choice of design pattern to use for a particular implementation de-
pends on different conditions, such as the available view space, user
knowledge, and the complexity of the underlying dataset. Ideally
speaking, designers should be able to combine any existing visual-
izations to generate a composite visualization view.

8.2 Delimitations

While our above CVV design patterns are general in nature, they
are based solely on the spatial layout of component visualizations.
However, it is possible to envision other ways to combine two or
more visualizations, for example using interaction or animation.
One such example is the use of interactive hyperlinking [6, 43] (or
wormholing) to navigate between different visualization views.

8.3 Discussion

There are several direct benefits to structuring the design space of
composite visualization views in this manner. Classifying existing
techniques into patterns not only helps in understanding these tech-
niques, but also in evaluating their strengths and weaknesses.

However, the design patterns presented in this paper are all based
on evidence from the literature of how existing visualization tools
and techniques use composite views. Therefore, our framework
is inherently limited to current designs, and more descriptive than
generative in nature. Furthermore, this list of patterns is not neces-
sarily exhaustive, and we certainly foresee additional design pat-
terns for composite views to emerge with progress in informa-
tion visualization. It is also not always straightforward to sepa-
rate what is a composite visualization and what is an “atomic” (or
component) visualization, particularly when the compositions on
the visual structures—which is the case for overloaded and nested
views—as opposed to merely on the views. Our approach in the
above text has been to treat as components any technique has been
presented in the literature as a standalone technique.

9 CONCLUSION

We have proposed a novel framework for specifying, designing, and
evaluating compositions of multiple visualizations in the same vi-
sual space that we call composite visualization views. The benefit
of the framework is not only to provide a way to unify a large col-
lection of existing work where visual representations are combined
in various ways, but also to suggest new combinations of visual
representations that may significantly advance the state of the art.
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coupling of dynamic query filters with starfield displays. In Proceed-
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Summary (Scatterplot + Bar Chart)
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Technique Visualization A Visualization B Spatial Relation Data Relation
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datasets in the same space and using different visualizations, but
also highlights the relational linking between the two datasets.

Nested views provide an efficient approach to link each of the
data values, visualized through the host visualization, to its related
dataset, visualized through client visualizations. This is achieved
by nesting clients inside the visual marks in the host.

• Benefits: Very compact representation, easy correlation.
• Drawbacks: Limited space for the client visualizations, clut-

ter is high, and visual design dependencies are high.
• Applications: Again, situations that call for augmenting a

particular visual representation with additional mapping.

Figure 12(e) shows an example composition of scatterplot and
bar graph visualizations based on this design patter. In the figure,
the scatterplot visualization is acting as a host and bar graph visu-
alizations are nested inside its visual marks.

There is probably not a clear winner among different design pat-
terns while designing an information visualization tool. The correct
choice of design pattern to use for a particular implementation de-
pends on different conditions, such as the available view space, user
knowledge, and the complexity of the underlying dataset. Ideally
speaking, designers should be able to combine any existing visual-
izations to generate a composite visualization view.

8.2 Delimitations

While our above CVV design patterns are general in nature, they
are based solely on the spatial layout of component visualizations.
However, it is possible to envision other ways to combine two or
more visualizations, for example using interaction or animation.
One such example is the use of interactive hyperlinking [6, 43] (or
wormholing) to navigate between different visualization views.

8.3 Discussion

There are several direct benefits to structuring the design space of
composite visualization views in this manner. Classifying existing
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niques, but also in evaluating their strengths and weaknesses.
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REFERENCES

[1] C. Ahlberg and B. Shneiderman. Visual information seeking: Tight
coupling of dynamic query filters with starfield displays. In Proceed-

Technique Visualization A Visualization B Spatial Relation Data Relation

ComVis [24] (Figure 2) any any juxtapose none
Improvise [39] (Figure 3) any any juxtapose none
Jigsaw [36] any any juxtapose none
Snap-Together [30] any any juxtapose none
semantic substrates [34] (Figure 4) node-link node-link juxtapose item-item
VisLink [11] (Figure 5) radial graph node-link juxtapose item-item
Napoleon’s March on Moscow [37] time line view area visualization juxtapose item-item
Mapgets [38] (Figure 6) map text superimpose item-item
GeoSpace [22] (Figure 7) map bar graph superimpose item-item
3D GIS [8] map glyphs superimpose item-item
Scatter Plots in Parallel Coordinates [45] (Figure 8) parallel coordinate scatterplot overload item-dimension
Graph links on treemaps [14] (Figure 9) treemap node-link overload item-item
SparkClouds [21] tag cloud line graph overload item-item
ZAME [13] (Figure 10) matrix glyphs nested item-group
NodeTrix [17] (Figure 11) node-link matrix nested item-group
TimeMatrix [44] matrix glyphs nested item-group
GPUVis [25] Scatterplot glyphs nested item-group

Table 1: Classification of common composite visualization techniques using our design space.

(a) Juxtaposed views. (b) Integrated views. (c) Superimposed views.
1 2 3 4 5 6 7 8a b c d e f g h

(d) Overloaded views. (e) Nested views.

Figure 12: Example of composing a scatterplot and bar graph using different methods.

datasets in the same space and using different visualizations, but
also highlights the relational linking between the two datasets.
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data values, visualized through the host visualization, to its related
dataset, visualized through client visualizations. This is achieved
by nesting clients inside the visual marks in the host.

• Benefits: Very compact representation, easy correlation.
• Drawbacks: Limited space for the client visualizations, clut-

ter is high, and visual design dependencies are high.
• Applications: Again, situations that call for augmenting a

particular visual representation with additional mapping.
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the scatterplot visualization is acting as a host and bar graph visu-
alizations are nested inside its visual marks.
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pends on different conditions, such as the available view space, user
knowledge, and the complexity of the underlying dataset. Ideally
speaking, designers should be able to combine any existing visual-
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While our above CVV design patterns are general in nature, they
are based solely on the spatial layout of component visualizations.
However, it is possible to envision other ways to combine two or
more visualizations, for example using interaction or animation.
One such example is the use of interactive hyperlinking [6, 43] (or
wormholing) to navigate between different visualization views.
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There are several direct benefits to structuring the design space of
composite visualization views in this manner. Classifying existing
techniques into patterns not only helps in understanding these tech-
niques, but also in evaluating their strengths and weaknesses.

However, the design patterns presented in this paper are all based
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tion visualization. It is also not always straightforward to sepa-
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the visual structures—which is the case for overloaded and nested
views—as opposed to merely on the views. Our approach in the
above text has been to treat as components any technique has been
presented in the literature as a standalone technique.

9 CONCLUSION

We have proposed a novel framework for specifying, designing, and
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Multiple Views
• Facet (noun and verb) 
- particular aspect or feature of something 
- to split 

• Partition visualization into views/layers 
- Either juxtapose (side-by-side), superimpose (layer), nest, etc. 
- Depends on data and encoding 
- Generally, superimposing does not scale as well 
- Multiple views eats display space (either large screens or small 

visualizations)
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Facet

Partition into Side-by-Side Views

Superimpose Layers

Juxtapose and Coordinate Multiple Side-by-Side Views

Share Data: All/Subset/None

Share Navigation

All Subset

Same

Multiform

Multiform, 
Overview/

Detail

None

Redundant

No Linkage

Small Multiples

Overview/
Detail

Linked Highlighting

Multiple Views
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Facet

Partition into Side-by-Side Views

Superimpose Layers

Juxtapose and Coordinate Multiple Side-by-Side Views

Share Data: All/Subset/None

Share Navigation

All Subset

Same

Multiform

Multiform, 
Overview/

Detail

None

Redundant

No Linkage

Small Multiples

Overview/
Detail

Linked Highlighting

Multiple Views
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Multiform
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Multiform Views
• The same data visualized in different ways 
• Does not need to be a totally different encoding (all choices need not be 

disjoint), e.g. horizontal positions could be the same 
• One view becomes cluttered with too many attributes 
• Consumes more screen space 
• Allows greater separability between channels
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Small Multiples
• Same encoding, but different data in each view (e.g. SPLOM)
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Interaction with Multiform & Small Multiples
• Key interaction with multiform and small multiples: brushing 
- also called linked highlighting 

• Want to understand correspondences between representation in the different 
views

�40
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Schneiderman's Mantra
• Visual lnformation-Seeking Mantra [B. Schneiderman, 1996]: 
- Overview first 
- Zoom and filter (Chapter 13) 
- Details on demand 

• Goal of the overview is to summarize all of the data 
• Want specific details about some aspect(s) of the data, need another view/

layer 
- May be permanent: side-by-side 
- May be a popup layer: often opaque or separated 

• (see textbook Ch. 6.7)
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Overview-Detail View
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[Wikipedia]
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Overview-Detail (with Zoom-Filter)
• Detail involves some subset of the full dataset 
• Involves user selection or filtering of some type 

• How question: includes facet 
• Examples: 
- Maps: partition into two views with same encoding, overview-detail 
- UC Trends: partition into multiple views, coordinated with linked highlighting, 

overview+detail of expenditures
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Fig. 2: The Cerebral display of the TLR4 graph (V=91, E=124) with associated LPS and LPS+LL-37 time series. The small multiples show an
overview of all 8 experimental conditions. The most noticeable differences between the LPS and the LPS+LL-37 condition occur at hour 4. By
selecting the hour 4 conditions, the main window shows the computed difference between the two conditions.

Furthermore, the biologists’ assessment of what constitutes a good
layout varies depending on the nature of the biomolecules involved. In
the undirected portion of the graph, which comprises protein-protein
interactions that propagate a signal from membrane to nucleus, they
wish to see the network structure so that they can follow the signaling
cascade. Thus for this section of the graph, it is important to minimize
edge crossings, even if it places interacting nodes somewhat far apart.
In contrast, for the directed portion of the graph, representing the genes
whose expression was altered in response to the signaling cascade, the
biologists want to see the nodes grouped tightly by function, even at
the expense of not being able to clearly see the interactions between
them. Translating these desires into automated graph layout requires
an algorithm that uses metadata associated with the nodes, in addition
to the direct graph structure, for node placement. Positioning nodes
according to biological meta-data defines a semantic substrate [34]
so that node position reveals biological function. We wrote a sim-
ple simulated annealing-based graph layout algorithm that uses node
metadata to guide node placement.

3.2 Small multiple views for multiple conditions

Cerebral uses small multiples [38] to simultaneously display multiple
experimental datasets. Each small multiple contains a complete copy
of the interaction graph with the same spatial layout, but with differ-
ent coloring according to the experimental data it is displaying. Our
design target was to handle from two to a few dozen gene expression
conditions, and from 50 to 3000 nodes in the interaction graph.

One obvious alternative to multiple small views would be a sin-
gle changeable or animated view, where the color coding changes
over time rather than being distributed over space [33, 32]. Com-

paring something visible with memories of what was seen before is
more difficult than comparing things simultaneously visible side by
side [31]. Thus, the limitations of human memory make comparing
the few dozen conditions of our design goal through animation quite
difficult [40]. Although small multiples would not scale to hundreds
of conditions, they handle the current usage of 8-10 easily and will
certainly accommodate the projected usage of few dozen conditions.

A second alternative is to embed a glyph, such as a line graph or
heat map, near or within the node itself [24, 32, 41]. While embedded
glyphs provide good detail when zoomed in for a local view, they be-
come indistinguishable when zoomed out for a global view of graphs
larger than a few dozen nodes. The biologists often need to see such
a view, as it more readily allows for the identification of interacting
genes/proteins whose expression behaves similarly across several con-
ditions. Thus, glyphs would not be appropriate in this domain.

Saraiya et al. [32] evaluated four approaches to integrating graph
and time series data, comparing one versus two views and slider-
controlled animation versus embedded glyphs. While they used 10
time series data points, in a good match for our problem domain, their
graph contained only 50 nodes. They found many tradeoffs between
task type, speed, and accuracy. Our design can be considered an at-
tempt to combine the strengths of the four different interfaces they
studied into a single interface for a problem where the tasks are com-
plex, accuracy outweighs raw speed, and the graph is large.

3.3 Parallel coordinates and clustering for data-driven ex-

ploration

Cerebral’s main views focus on the interaction graph model of the
biological system or process of interest. We also provide a data-

Multiform & Small Multiples (Cerebral)
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Navigation across multiple views
• Often navigation in one view updates navigation in another 
• Example: Maps: overview shifts as you move around in detail view 
• Selections in one view may trigger selections in another
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Facet

Partition into Side-by-Side Views

Superimpose Layers

Juxtapose and Coordinate Multiple Side-by-Side Views

Share Data: All/Subset/None

Share Navigation

All Subset

Same

Multiform

Multiform, 
Overview/

Detail

None

Redundant

No Linkage

Small Multiples

Overview/
Detail

Linked Highlighting

Multiple Views
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Partitioned Views
• Split dataset into groups and visualize each group 
• Extremes: one item per group, one group for all items 
• Can be a hierarchy 
- Order: which splits are more "related"? 
- Which attributes are used to split? usually categorical
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Glyphs, Views, and Regions
• Glyphs are composed of multiple marks 
• Views are a contiguous region of space 
• A region is usually associated with a group of data 
• Blurry lines of distinction between them
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Group 1

Q108 Q208 Q308 Q408 Q109 Q209 Q309 Q409

Group 2

Group 3

Group 4

 Multiples  StackedExample: Small Multiples Bar Chart
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Matrix Alignment & Recursive Subdivision
• Matrix Alignment: 
- regions are placed in a matrix alignment 
- splits go to rows and columns 
- main-effects ordering: use summary statistic to determine order of 

categorical attribute 
• Recursive subdivision: 
- Designed for exploration 
- Involves hierarchy 
- User drives the ways data is broken down in recursive manner
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Example: Trellis Matrix Alignment
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[Becker et al., 1996]

VISUAL DESIGN AND CONTROL OF TRELLIS DISPLAY 125

I page. In Figure 2 there are 6 panels, I column, 6 rows, and 1 page. Later, we will
show a Trellis display with more than one page. We refer to the rectangular array as the
trellis because it is reminiscent of a garden trelliswork .•

Each panel of a trellis display shows a subset of the values of panel variables;
these values are formed by conditioning on the valqes of conditioning variables. In Fig-
ure I the panel variables are variety and yield, and the conditioning variables are site and
year. On each panel, values of yield and variety are displayed for one combination of year
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Fig. 2. A: Sized-based ordering, coloured by average price: sHier(/,$br,$ty,$yr,$mn); sLayout(/,SQ); sSize(/,$sal);
sColor(/,Ø,Ø,Ø,$prc). B: Reconfigure to a spatial and temporal layout: oLayout(/,1,SP); oLayout(/,2,OS); oLayout(/,3,VT);
oLayout(/,4,HZ). C: Fix the size: oSize(/,1,FIX); oSize(/,2,FIX); oSize(/,3,FIX); oSize(/,4,FIX). D: Remove time, and
colour by deviation from expected sales: oCut(/,4); oCut(/,3); oColor(/,2,$xsl).

the hierarchy can produce layouts similar to mosaic plots (and ma-
trix diagrams if sizes are fixed). They are particularly suitable where
variables have hierarchical dependencies, such as our calendar views
(sHier($yr,$mn)).

6.3 Layouts for time-based data and questions
Temporal data can be considered as ordinal. In Fig. 1A, years are
not arranged temporally; as such, temporal trends are difficult to de-
tect. Rearranging the years into a time-based order using an ordered
space-filling layout [36] (Fig. 1B) makes the increase in annual house
price easier to detect. In Fig. 1C, we have added month to the hi-
erarchy producing calendar views coloured by the number of sales.
Seasonal variations in the numbers of sales are apparent for flats and
terraced housing, however colour rescaling (using oColorMap) or
using colour schemes that are local to individual parts of the hierarchy
are required to detect these patterns where property types have low
sales. Alternatively, colour can be used to show values as a proportion
or deviation from a baseline. Appropriate baselines include those that
reflect the values expected from hypotheses that we might then accept
or reject on the basis of the display. For example, in Fig. 4A (calendar
views), our null hypothesis is that the number of sales does not vary
monthly (expected or baseline values are a twelfth of the sales for each
year). The geographically-consistent seasonal trends that are apparent
might cause us to reject our null hypothesis. Identifying the elements
with statistically-significant levels of variation might help us make that

choice. Fig. 4B shows the deviation of price from the yearly average
(accounting for inflation). Whilst prices rises steadily every year, this
is not the case for 2008 where prices have dropped markedly in the
final quarter, a trend not observed in Westminster.

Nesting the two temporal resolutions of year and month to pro-
duce calendar views is appropriate where we are expecting yearly and
monthly patterns. However, this may obscure other temporal patterns.
In Fig. 3B, we use an ordered squarified layout of all 108 months in
the period ordered from the left top to bottom right (compare with the
calendar views in Fig. 3A). Although both graphics show exactly the
same data, the use of $my and the associated OS layout in Fig. 3B
make the upward trend in prices and subsequent slump more apparent
as it is a continuous trend over the entire period. The result is a more
appropriate layout for research questions that relate to ongoing rather
than periodic change. The additional hierarchical level used in Fig.
3A and alternative layouts are more appropriate for comparing annual
patterns which are overshadowed by the longer term trend in the case
of this attribute. Again, interactive colour rescaling or colouring on
the basis of relative values is required to detect relative rises and falls
in different boroughs.

6.4 Geographical layouts
Spatially-ordered layouts (SP) have rectangles that are arranged ac-
cording their geographical locations. The effect of this layout can be
seen by comparing the non-spatial layout in Fig. 2A with the spatial

Example: HiVE System
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A B

Fig. 6. The data are spatially reaggregated into 4km2 grid squares. Absolute geographical positioning is employed because node size is fixed
and the correct aspect ratio is used (borough boundaries shown for reference). A: Coloured by number of sales: sHier(/,$gd,$yr,$mn);
sLayout(/,SP,VT,HZ); sSize(/,FIX); sColor(/,Ø,Ø,$sal). B: Coloured by average price: oColor(/,3,$prc).
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Fig. 7. Space is at level 2 of the hierarchy. Coloured by coefficient of variation of price (grey is no sales). A: sHier(/,$ty,$br,$yr,$mn);
sLayout(/,OS,SP,VR,HZ); sSize(/,$sal); sColor(/,Ø,Ø,Ø,$vpr). B: Fix rectangle size: oSize(/,4,FIX); oSize(/,3,FIX);
oSize(/, 2,FIX); oSize(/,1,FIX). C: Choropleth maps: oCut(/,4); oCut(/,3); oLayout(/,2,PG); oSize(/,2,$abr).

1. Reconfigure conditioning hierarchies to explore the data space.
Use oCut, oInsert and oSwap to reconfigure the hierarchy to
explore variation in terms of different conditioning variables. For
example, placing $br above $ty in Fig. 7 allows geographical
variation by property type to be explored.

2. Use appropriate layouts to reveal structure in data. Experiment
with alternative layouts to explore the design space. HZ,VT
with fixed rectangle size (see 4) can produce mosaic plots, useful
where combinations of categorical variables are important. OS is
appropriate where there is a large number of values and VT/HZ
where there are fewer values and where the dimensions of the
available space allow good aspect ratios.

3. Preserve salient 1D or 2D ordering. Choose appropriate order-
ing for ordinal, temporal and spatial variables for each hierar-
chical level in response to research questions and order nominal
variable values consistently.

4. Fix rectangle size at appropriate hierarchical levels to produce
consistent layouts with small-multiple-like properties. The re-
sulting juxtaposed graphical elements with shared layout char-
acteristics can facilitate the side-by-side comparison of graphics,
minimising the work required of the eye and brain.

5. Scale colour to data-ranges to different parts of the hierarchy
to explore local and global patterns. Scaling to data-ranges in
localised parts of the hierarchy (e.g. by year in Fig. 4) addresses
research questions based on localised variation, whereas scaling
to the entire data-ranges draws attention to more global patterns.

6. Condition datasets by attributes of different granularities at ad-

jacent levels of the hierarchy. In the case of time, this allows
us to consider the effects of cyclical temporal patterns (e.g.
$yr,$mn). In the case of space this draws attention to the ef-
fects of spatial resolution and scale.

7. Condition by different aggregations of time and space. This helps
explore the effects of modifiable units on patterns in the data.

8. Reaggregate spatial data to equally-sized grid cells and fix rect-
angle size. This can produce consistent small-multiple-like ar-
rangements (see 4) that retain the properties of the original ge-
ographical coordinate space (e.g. Fig. 6) and can be used to ad-
dress research questions that relate to geographic variation in ab-
solute geographical space.

9. Use dynamic techniques to relate these various states. For exam-
ple, use highlighting to show items across hierarchy and brush-
ing for details-on-demand. Smooth transitions between layouts
can to help reduce cognitive load when relating these.

8 FURTHER AND ONGOING WORK

Although our examples and notation have focussed on space-filling
rectangular layouts, the concepts are applicable to other types of lay-
out as illustrated by our introductory example and our use of some
non-rectangular layouts. HiVE was developed so that we could be
systematic in describing configurations and reconfigurations in layouts
and so we could describe and build interfaces for collaborative visu-
alisation. We are extending this so that it can encode a broader set of
hierarchical layouts that use dimensional stacking by adding states and
operators to represent a wider range of visual variables. For example,

Example: HiVE System
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Reducing Complexity
• Too many items or attributes lead to visual clutter 
• Interaction and Multiple Views can help, but often lose the ability to start 

understanding an entire dataset at first glance 
• Reduction techniques show less data to reduce complexity 
• Can reduce items or attributes (both are elements) 
• Filtering: eliminate elements from the current view 
- "out of sight, out of mind" 

• Aggregation: replace elements with a new element that represents the 
replaced elements 

- summarization is often challenging to design 
• Another method is focus+context: show details in the context of an overview

�58



D. Koop, CS 490/680, Fall 2019

Reduce

Filter

Aggregate

Reducing Items and Attributes

Filter
Items

Attributes

Aggregate

Items

Attributes

Overview: Reducing Items & Attributes
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[Munzner (ill. Maguire), 2014]
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Filtering
• Just don't show certain elements 
• Item filtering: most common, eliminate marks for filtered items 
• Attribute filtering: 
- attributes often mapped to different channels 
- if mapped to same channel, allows many attributes (e.g. parallel coordinates, 

star plots), can filter 
• How to specify which elements? 
- Pre-defined rules 
- User selection
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Filter vs. Query
• Queries start with an empty set of items and add items 
• Filters start with all items and remove items
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Dynamic Filters
• Interaction need not be with the visualization itself  
• Users interact with widgets that control which items are shown 
- Sliders, Combo boxes, Text Fields 

• Often tied to attribute values 
• Examples: 
- All restaurants with an "A" Grade 
- All pizza places 
- All pizza places with an "A" Grade
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unique discoveries using scented widgets, and would express a 
preference for scented widgets over traditional widgets. The study 
included twenty-eight participants (12 female, 16 male), all of whom 
were either graduate or undergraduate students, and were recruited 
through campus mailing lists. Participant ages ranged from 19 to 32 
(M = 25.3, SD = 3.8). 

6.1 Experiment Design 
We asked subjects to find evidence either for or against specific 
hypotheses in a collaborative visualization of the United States labor 
force. We gave them an introductory tutorial to the system, and then 
asked them to complete three tasks. For each task, we presented 
subjects with one of the three following task hypotheses:  

T1: Technology is costing jobs by making occupations obsolete. 
T2: In the last half-century, women have joined the work force, but 
stereotypically male jobs remain almost entirely male. 
T3: The number and variety of jobs directly related to the nation's 
food supply has diminished greatly since the 1800s. 

For each task, we gave subjects 15 minutes to explore the data set 
and collect evidence relevant to the task hypothesis. The task 
hypotheses were intended to be of similar depth and diversity. We 
instructed subjects to make at least seven observations that provided 
evidence either for or against the current task hypothesis. At least 
two of the observations had to be unique findings on views not yet 
commented upon. Subjects were asked to note their observations by 
leaving new comments on the corresponding views. 

For each task, we presented subjects with one of three scenting 
conditions. The conditions consisted of no scent, in which we used 
standard dynamic query widgets, comment scent, in which bar charts 
indicated the number of comments made on a view, and visit scent, 
in which bar charts indicated the number of prior visits to a view. To 
populate the interface with scent, we collected anonymized activity 
metrics from a study of the sense.us system [12] and supplemented 
them with a small amount of manual seeding to balance the metrics 
across conditions. Subjects in the previous sense.us study used a 

similar visualization to freely explore the data. Our seed data 
consisted of a total of 1096 visits and 172 comments distributed 
across 154 views. Both visits (R2 = 0.96) and comments (R2 = 0.90) 
exhibited a power law distribution, and so we scaled them 
logarithmically for display in the scented widgets. 

The study employed a 3 (Task) x 3 (Scent) between-subjects 
design. Task and scent pairings and presentation order were counter-
balanced using a Latin Square. All tests were carried out in a 
laboratory environment using standard desktop PCs connected to a 
web server hosting the visualization and usage data. After 
completing the tasks, subjects filled out a survey that asked them to 
rate the scenting conditions on perceived utility and user experience. 

6.2 Results: Revisitation 
Our first hypothesis was that social navigation cues would increase 
the likelihood that users would visit views that others had visited 
previously. To test this hypothesis, we created three vectors, each 
representing the number of visits to each view in each scenting 
condition. We removed the starting overview from consideration, 
because users saw this view regardless of scenting condition. We 
then compared these visitation vectors to the visitation vector for the 
underlying activity measure used to seed the scented widgets. Using 
Pearson’s product-moment statistic, we found correlations of r(493) 
= 0.200 for visit scent, r(493) = 0.217 for comment scent, and r(493) 
= 0.181 for no scent (p < 0.01 in all cases). These results suggest that 
users in the visit and comment scent conditions were more likely to 
visit the same views that were visited in the seed data than users in 
the no scent condition. However, we note that the correlations are not 
very strong. We believe that the semantics of the tasks also affect 
visitation patterns and likely had an effect on these correlations. 

6.3 Results: Unique Discoveries 
Next, we analyzed the data to check if scented widgets help users 
make unique discoveries. Our hypotheses were that scented 
conditions would have a higher occurrence of unique discoveries and 
that performance would improve over subsequent trials, regardless of 

  
 

Figure 7. Social data analysis application with social navigation scent cues. A stacked time-series visualization shows the U.S. labor force, 
broken down by gender, from 1850-2000. The current view shows the percentage of the labor force that worked as Bartenders, with a sharp drop 
during Prohibition. Scented Widgets are used in the dynamic query widgets to show visitation rates in all views reachable from the current view.  
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Scented Widgets
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other data-driven variants [10] facilitate navigation to data regions of 
interest by summarizing the data distribution queried by the slider. 
On web pages, hyperlink text usually offers navigation cues about 
the content of the link target. This is the reason that human web 
surfers and modern web search indices rely on link text. Olston and 
Chi’s ScentTrails system [16] facilitates search and browsing of web 
sites by scoring documents in response to a text query and then 
enlarging hyperlink text to indicate paths to highly ranked 
documents. ScentTrails outperforms both searching and browsing 
alone in information-seeking tasks.  

Another strategy is to provide information scent cues based on 
metadata. For example, social navigation is often based on 
displaying aggregated activity patterns. Blogs and discussion forums 
regularly include the number of posted comments in the link text of 
hyperlinks to discussions, while the del.icio.us social bookmarking 
service encodes the number of users who share a web bookmark in 
gradated red backgrounds for link text. Hill et al [14] explore the use 
of social navigation cues in a document editor, placing usage 
histograms within the scroll bar to indicate the prevalence of reading 
and editing activity throughout the document. Similarly, Björk and 
Redström [5] use color marks to indicate edits and search results 
along all edges of document frames.  In the domain of collaborative 
visualization, Wattenberg and Kriss [20] gray-out visited regions of a 
visualization to provide ―anti-social navigation‖ cues to promote 
analysis of unexplored regions. 

Our work generalizes techniques such as histogram sliders and 
Hill’s read and edit wear, providing design considerations and a 
toolkit-level framework for embedding navigation cues in a variety 
of interface widgets. We contribute a general framework providing 
both data- and metadata-driven visual cues for navigating semantic 
dimensions in an information space. 

Though not focused on navigation cues, a few additional projects 
share commonalities with scented widgets. Baudisch et al’s 
Phosphor [3] design provides real-time collaboration cues by using 
afterglow effects to highlight widget usage. Hill and Gutwin’s Multi-
User Awareness UI [13] provides toolkit-level widget support for 
synchronous collaboration, such that users can see in real-time which 
interface widgets collaborators are using. Our scented widgets 
framework also provides a toolkit-level augmented widget suite, but 
one targeted at visual navigation cues rather than synchronous 
activity awareness 

3 DESIGN CONSIDERATIONS 
In designing a framework for encoding scent within widgets we 
consider; (1) the types of information metrics that can serve as 
navigation cues in scented widgets, (2) the matching of these 
encodings with the navigation models of the set of standard widgets, 
(3) the kinds of visual encodings used to convey this data, and (4) the 
modification of the standard widgets to accommodate scenting. 

3.1 Information Scent Metrics 
The first step in providing navigation cues is selecting the data 
source from which the cues will be derived. While the appropriate 

data source usually depends on the specifics of the application, 
several kinds of data and metadata can be useful aids for navigation. 
One approach is to derive metrics directly from the information 
content. For example, a simple metric for interactive visualization is 
the number of visible data elements in each application state. This 
metric provides a sense of the density of data across the information 
space. More complicated metrics can be computed from the data 
itself, and may involve input from the user. Users might type in 
queries, as in ScentTrails [16], and be given scenting cues that 
indicate relevance scores. Alternatively, advanced users might use an 
expression language to enter in their own calculations over a 
visualized data set. 

Social activity metrics are another potential data source, providing 
cues for social navigation. Interactive visualization applications such 
as sense.us [12] capture a number of social activity metrics that are 
typically invisible to users, but which could serve as valuable 
navigation cues. For example, displaying the number of visits to a 
view, comments on a view, or edits of a view, could guide users 
towards the relevant or most interesting views. Similarly, indicating 
the author of a comment or an edit could help users navigate to 
useful views. Temporal data regarding changes in any of these 
measures (e.g. recency or frequency information) are also candidates 
for display, as is location-based metadata. Our approach is premised 
on the notion that surfacing these sorts of activity metrics facilitates 
navigation. 

3.2 Navigation and the Display of Visual Scent 
Scent cues are specifically designed to aid navigation. Therefore 
scent cues should only be applied to interface elements that provide a 
way to navigate (i.e. change views) within the application. Moreover, 
widgets that represent a single navigation choice, such as buttons, 
should display only one scent value, while widgets such as combo 
boxes and sliders that offer multiple navigation choices should 
include scent cues corresponding to each potential choice.   

3.3 Visual Encodings 
Scented widgets embed a visualization of information scent metrics 
within a standard interface widget such as a slider, button, or combo 
box. Standard widgets are usually designed to fit within a small 
screen-space and a goal of our scented widgets designs is to add 
information to these widgets without adversely impacting user 
interface design.  

We begin by considering a basic language of visual encodings for 
data. These include visual variables such as position, size, angle, 
color, and shape [4, 6, 15]. As noted by Cleveland [7] and Mackinlay 
[15], some encodings are more suitable than others for displaying 
different types of information. For example, position encodings are 
more accurate than length encodings for quantitative data, which in 
turn are more accurate than area encodings. For nominal data, color 
encodings are better than position.  

 
Figure 2. Examples of several scent encodings. From left to right: 1. A slider with visit totals encoded as a bar chart with recency encoded as 
opacity. 2. Checkboxes with star rankings encoded using icons and rank values displayed as text. 3. A list box with dataset sizes encoded using 
opacity and a visited/not visited value encoded using an icon. 4. A tree with author categories encoded using hue and edit totals encoded as text. 
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enlarging hyperlink text to indicate paths to highly ranked 
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displaying aggregated activity patterns. Blogs and discussion forums 
regularly include the number of posted comments in the link text of 
hyperlinks to discussions, while the del.icio.us social bookmarking 
service encodes the number of users who share a web bookmark in 
gradated red backgrounds for link text. Hill et al [14] explore the use 
of social navigation cues in a document editor, placing usage 
histograms within the scroll bar to indicate the prevalence of reading 
and editing activity throughout the document. Similarly, Björk and 
Redström [5] use color marks to indicate edits and search results 
along all edges of document frames.  In the domain of collaborative 
visualization, Wattenberg and Kriss [20] gray-out visited regions of a 
visualization to provide ―anti-social navigation‖ cues to promote 
analysis of unexplored regions. 

Our work generalizes techniques such as histogram sliders and 
Hill’s read and edit wear, providing design considerations and a 
toolkit-level framework for embedding navigation cues in a variety 
of interface widgets. We contribute a general framework providing 
both data- and metadata-driven visual cues for navigating semantic 
dimensions in an information space. 

Though not focused on navigation cues, a few additional projects 
share commonalities with scented widgets. Baudisch et al’s 
Phosphor [3] design provides real-time collaboration cues by using 
afterglow effects to highlight widget usage. Hill and Gutwin’s Multi-
User Awareness UI [13] provides toolkit-level widget support for 
synchronous collaboration, such that users can see in real-time which 
interface widgets collaborators are using. Our scented widgets 
framework also provides a toolkit-level augmented widget suite, but 
one targeted at visual navigation cues rather than synchronous 
activity awareness 

3 DESIGN CONSIDERATIONS 
In designing a framework for encoding scent within widgets we 
consider; (1) the types of information metrics that can serve as 
navigation cues in scented widgets, (2) the matching of these 
encodings with the navigation models of the set of standard widgets, 
(3) the kinds of visual encodings used to convey this data, and (4) the 
modification of the standard widgets to accommodate scenting. 

3.1 Information Scent Metrics 
The first step in providing navigation cues is selecting the data 
source from which the cues will be derived. While the appropriate 

data source usually depends on the specifics of the application, 
several kinds of data and metadata can be useful aids for navigation. 
One approach is to derive metrics directly from the information 
content. For example, a simple metric for interactive visualization is 
the number of visible data elements in each application state. This 
metric provides a sense of the density of data across the information 
space. More complicated metrics can be computed from the data 
itself, and may involve input from the user. Users might type in 
queries, as in ScentTrails [16], and be given scenting cues that 
indicate relevance scores. Alternatively, advanced users might use an 
expression language to enter in their own calculations over a 
visualized data set. 

Social activity metrics are another potential data source, providing 
cues for social navigation. Interactive visualization applications such 
as sense.us [12] capture a number of social activity metrics that are 
typically invisible to users, but which could serve as valuable 
navigation cues. For example, displaying the number of visits to a 
view, comments on a view, or edits of a view, could guide users 
towards the relevant or most interesting views. Similarly, indicating 
the author of a comment or an edit could help users navigate to 
useful views. Temporal data regarding changes in any of these 
measures (e.g. recency or frequency information) are also candidates 
for display, as is location-based metadata. Our approach is premised 
on the notion that surfacing these sorts of activity metrics facilitates 
navigation. 

3.2 Navigation and the Display of Visual Scent 
Scent cues are specifically designed to aid navigation. Therefore 
scent cues should only be applied to interface elements that provide a 
way to navigate (i.e. change views) within the application. Moreover, 
widgets that represent a single navigation choice, such as buttons, 
should display only one scent value, while widgets such as combo 
boxes and sliders that offer multiple navigation choices should 
include scent cues corresponding to each potential choice.   

3.3 Visual Encodings 
Scented widgets embed a visualization of information scent metrics 
within a standard interface widget such as a slider, button, or combo 
box. Standard widgets are usually designed to fit within a small 
screen-space and a goal of our scented widgets designs is to add 
information to these widgets without adversely impacting user 
interface design.  

We begin by considering a basic language of visual encodings for 
data. These include visual variables such as position, size, angle, 
color, and shape [4, 6, 15]. As noted by Cleveland [7] and Mackinlay 
[15], some encodings are more suitable than others for displaying 
different types of information. For example, position encodings are 
more accurate than length encodings for quantitative data, which in 
turn are more accurate than area encodings. For nominal data, color 
encodings are better than position.  

 
Figure 2. Examples of several scent encodings. From left to right: 1. A slider with visit totals encoded as a bar chart with recency encoded as 
opacity. 2. Checkboxes with star rankings encoded using icons and rank values displayed as text. 3. A list box with dataset sizes encoded using 
opacity and a visited/not visited value encoded using an icon. 4. A tree with author categories encoded using hue and edit totals encoded as text. 

 
 
 

 

We can leverage these encodings in two distinct ways to convey 
information on or within a widget. One approach is to directly alter 
the attributes of the widgets that correspond to a given encoding. For 
example, a button’s color could be based on the number of times the 
application state it leads to has been manipulated by users. Because 
widget sizes, shapes, and layouts are typically fixed, only a few of 
the visual variables (hue, saturation, lightness, and texture) can be 
applied directly to the widgets without disrupting the layout and 
impeding usability. However, visual variables such as position and 
length are typically more effective for displaying quantitative data. 
Therefore, as a second option, small visualizations that support these 
encodings can be embedded into the widgets. Examples include bar 
charts over a slider (e.g., Figure 1, [8]) and small, word-sized line 
charts (similar to Tufte’s sparklines [19]) integrated with widget text. 

3.4 Modifying Widgets 
Based on these observations, we have selected seven different scent 
encodings to support within our framework.  Direct encodings 
include the hue, saturation, and lightness properties of the widget. 
We also include four types of embedded visualizations: inset text, 
shape/icon, bar chart, and line chart. The examples in Figure 2 show 
several of these encodings applied to standard Swing widgets, while 
Table 1 describes each supported encoding type. We avoid encoding 
scent onto a widget’s existing text labels, as label formatting is often 
modified by the application to convey highlighting, selection, 
keyboard shortcut combinations and other information. 

3.5 Design Guidelines and Feature Requirements 
Through inspection of the design space of widgets and study of 
related work [15, 18], we have developed a set of guidelines for the 
design of scented widgets.  

Scent Encoding Guidelines 
Modes of scenting should be chosen that maximize comparability 
and consistency across the interface.  More specifically: 

All widgets visualizing the same scent data should use matching 
visual encodings. Rationale: Encoding the same data differently 
across widgets complicates visual comparison. 

Modes of encoding should reinforce semantic relationships between 
the widget scent and encodings in the application. Rationale: 
Conflict between the scent and the other parts of the application will 
lessen the effectiveness of both. For example, avoid encoding scent 
using color if the application already uses color to display unrelated 
information. 

Visualizations showing the same scent data should be scaled 
identically (e.g. linearly, logarithmically, etc.) across all widgets. 
Rationale: Scaling the same type of data differently across widgets 
undermines accurate visual comparison. 

Modes of encoding should respect existing interface conventions. 
Rationale: User interface conventions tend to be well established and 
accepted by users, so scenting cues should not conflict with them.  
For example, a scent encoding should not repurpose text or icons 
commonly used elsewhere in the interface to encode unrelated data. 

Encodings which make some elements markedly more salient than 
others, such as opacity, should be used with discretion. Rationale: If 
a widget is more salient than those around it, it is more likely to be 
used for navigation than its neighbors. Depending on the application, 
such enhancement may or may not be a desirable result. 

Layout Guidelines 
Interfaces should be laid out so that scented widgets are sufficiently 
proximal to allow comparisons between them. Rationale: Proximity 
aids judgments of position-based encodings and visual scent is most 
easily compared when graphic marks are adjacent. 

Scented widgets should be grouped, sized, aligned, and oriented 
similarly in order to provide common axes on which to compare 
scent. Rationale: Without common axes it is difficult to accurately 
compare marks across scented widgets, even if they show the same 
type of data. 

Composition Guidelines 
The overall number and type of scented widgets in a given interface 
should be small enough to allow easy comparison and visual 
tracking of changes. Rationale: The inclusion of too many scented 
widgets (and thus too many scent indicators) is likely to pollute the 
view, increasing cognitive load and making use more difficult. 

Widgets should include identifiers (icons, tooltips, text, or a legend) 
that indicate what the scent cues correspond to. Rationale: It may be 
difficult for new users to discern what the cues indicate. 

Many of these guidelines are addressed by our implementation. We 
deal with concerns about cross-widget consistency by grouping 
similarly-scented widgets and encoding them according to a shared 
configuration. While the distribution and layout of widgets in a user 
interface is clearly within the purview of developers, sizing, 
alignment and scaling can be fixed consistently across these groups.  

4 IMPLEMENTATION 
Using the preceding design analysis as a guide, our scented widgets 
framework provides toolkit-level support with which developers can 
quickly add visual scent cues to existing applications without writing 
a substantial amount of new code. The framework is implemented 
using Java Swing and takes advantage of the platform’s Pluggable 
Look and Feel functionality, which allows the appearance of a wide 
range of standard interface widgets to be changed at runtime. In this 
section we discuss the design decisions made in our implementation, 
with the goal of providing guidance for developers building their 
own scented widget systems.  

4.1 Rendering and Interaction 
When implementing scented widgets, rendering and interacting with 
individual widgets is a primary concern. Ideally, the components for 
rendering visual scent cues should be implemented in a modular 

Table 1. Scent encodings supported by scented widgets 

Name Description  Example 

Hue Varies the hue of the widget (or of a 
visualization embedded in it)  

 

Saturation Varies the saturation of the widget 
(or of a visualization embedded in it) 

 
 

Opacity Varies the saturation of the widget 
(or of a visualization embedded in it) 

 

Text Inserts one or more small text 
figures into the widget  

 

Icon Inserts one or more small icons into 
the widget. 

 

Bar Chart Inserts one or more small bar chart 
visualizations into the widget 

 

Line Chart Inserts one or more small line chart 
visualizations into the widget 
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Star Plots (aka Radar Charts)
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Star Plot / Radar Chart
• Use: 
- Compare variables 
- Similarities/differences of items 
- Locate outliers 

• Considerations: 
- Order of axes 
- Too many axes cause problems
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Attribute Filtering on Star Plots
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[Yang et al., 2003]
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Attribute Filtering
• How to choose which attributes should be filtered? 
- User selection? 
- Statistics: similarity measures, attributes with low variance are not as 

interesting when comparing items 

• Can be combined with item filtering

�69
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Aggregation
• Usually involves derived attributes 
• Examples: mean, median, mode, min, max, 

count, sum 
• Remember expressiveness principle: still 

want to avoid implying trends or similarities 
based on aggregation

�70

I II III IV

x y x y x y x y

10.0 8.04 10.0 9.14 10.0 7.46 8.0 6.58

8.0 6.95 8.0 8.14 8.0 6.77 8.0 5.76

13.0 7.58 13.0 8.74 13.0 12.74 8.0 7.71

9.0 8.81 9.0 8.77 9.0 7.11 8.0 8.84

11.0 8.33 11.0 9.26 11.0 7.81 8.0 8.47

14.0 9.96 14.0 8.10 14.0 8.84 8.0 7.04

6.0 7.24 6.0 6.13 6.0 6.08 8.0 5.25

4.0 4.26 4.0 3.10 4.0 5.39 19.0 12.50

12.0 10.84 12.0 9.13 12.0 8.15 8.0 5.56

7.0 4.82 7.0 7.26 7.0 6.42 8.0 7.91

5.0 5.68 5.0 4.74 5.0 5.73 8.0 6.89
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Aggregation
• Usually involves derived attributes 
• Examples: mean, median, mode, min, max, 

count, sum 
• Remember expressiveness principle: still 

want to avoid implying trends or similarities 
based on aggregation
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I II III IV

x y x y x y x y

10.0 8.04 10.0 9.14 10.0 7.46 8.0 6.58

8.0 6.95 8.0 8.14 8.0 6.77 8.0 5.76

13.0 7.58 13.0 8.74 13.0 12.74 8.0 7.71

9.0 8.81 9.0 8.77 9.0 7.11 8.0 8.84
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Mean of x 9

Variance of x 11

Mean of y 7.50

Variance of y 4.122

Correlation 0.816
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