Data Visualization (CSCI 490/680)

Multiple Views & Filtering

Dr. David Koop

Interaction Overview

D. Koop, CS 490/680, Fall 2019

[Munzner (ill. Maguire), 2014]

Northern Illinois University

Sorting & Slope Graphs: LineUp

				_	Customized	I Combina	ation		
			23.30%	9.85%	16.00%	10.35%	10.94%	29.55%	
Ra	School Name Filter: <none></none>	Country Filter: 1 out of 71	Academic reputati	Facult	Arts & Hum	Internat	Internat	World University Ranki	20
1.	Harvard University	United States							Ŀ
2.	Yale University	United States							ŀ
3.	Massachusetts Institute of Technology (MIT)	United States							ŀ
4.	Princeton University	United States	100 (1)		90.7 (0.91) 73.08 (0.73) 85.5 ((0.86)	0.94	1
5.	University of Chicago	United States							F
6.	University of California, Berkeley (UCB)	United States							k
7.	California Institute of Technology (Caltech)	United States							ŀ
8.	Stanford University	United States							ŀ
9.	Columbia University	United States							ŀ
10.	University of Pennsylvania	United States							ŀ
11.	Cornell University	United States							ŀ
12.	University of Michigan	United States							ŀ
13.	Johns Hopkins University	United States							ŀ
14.	New York University (NYU)	United States							k
15.	Duke University	United States							ŀ
16.	University of Wisconsin-Madison	United States							ŀ
17.	University of California, Los Angeles (UCLA)	United States							ŀ
18.	Northwestern University	United States							ŀ
19.	University of Illinois at Urbana-Champaign	United States							ŀ
20.	Brown University	United States							k
21.	Purdue University	United States							ŀ
22.	University of Texas at Austin	United States							ŀ
23.	Boston University	United States							ŀ
24.	Georgia Institute of Technology	United States							ŀ
25.	University of North Carolina, Chapel Hill	United States							ľ
26.	Ohio State University	United States							
27.	University of Pittsburgh	United States							ŀ

D. Koop, CS 490/680, Fall 2019

[Gratzl et al., 2013]

Q♣	A♣
K♦	Q♣
A♥	J♣
A♦	Q♠
Q♠	J♦
Q♥	Q♦
A♣	J♥
K♠	J♠
K♥	K♦
A♠	K♣
J♥	Q♥
Q♦	K♥
K	A♠
J♦	K♠
J♣	A♥
J♠	A♦

- Q♠ K♠ A ↓ Q ↓ ↓ A ↓ J ↓
- K♠ Q♥
- A♣
- K♥ K♦

Q♣	A♣
K♦	Q♣
A♥	J♣
A♦	Q♠
Q♠	J♦
Q♥	Q♦
A♣	J♥
K♠	J♠
K♥	K♦
A♠	K♣
J♥	Q♥
Q♦	K♥
K	A♠
J♦	K♠
J♣	A♥
J♠	A♦

- Q♠ K♠ A ↓ Q ↓ ↓ A ↓ J ↓
- K♠ Q♥
- A♣
- K♥ K♦

Q♣	A♣
K♦	Q♣
A♥	J♣
A♦	Q♠
Q♠	J♦
Q♥	Q♦
A♣	J♥
K♠	J♠
K♥	K♦
A♠	K♣
J♥	Q♥
Q♦	K♥
K	A♠
J♦	K♠
J♣	A♥
J♠	A♦

- Q♠ K♠ A ↓ Q ↓ ↓ A ↓ J ↓
- K♠ Q♥
- A♣
- K♥ K♦

Q♣	A♣
K♦	Q♣
A♥	J♣
A♦	Q♠
Q♠	J♦
Q♥	Q♦
A♣	J♥
K♠	J♠
K♥	K♦
A♠	K♣
J♥	Q♥
Q♦	K♥
K	A♠
J♦	K♠
J♣	A♥
J♠	A♦

- Q♠ K♠ A ↓ Q ↓ ↓ A ↓ J ↓
- K♠ Q♥
- A♣
- K♥ K♦

Animated Transitions

Animated Transitions

• User Preferences: Staged animation > animation > static transitions

- Animation improves graphical perception
- Staging is better (do axis rescaling before value changes)
- Avoid axis rescaling when possible

Selection

- Selection is often used to initiate other changes
- User needs to select something to drive the next change
- What can be a selection target?
 - Items, links, attributes, (views)
- How?
 - mouse click, mouse hover, touch
 - keyboard modifiers, right/left mouse click, force
- Selection modes:
 - Single, multiple
 - Contiguous?

Highlighting

- Selection is the user action
- Feedback is important!
- How? Change selected item's visual encoding
 - Change color: want to achieve visual popout
 - Add outline mark: allows original color to be preserved

_ _ _ _

- Change size (line width)
- Add motion: marching ants

(1)	Contacts
- 60	Dashboard
Aa	Dictionary
- 83	Dropbox
8	DVD Player
3	Emacs
-0	FaceTime
Æ	FileZilla
2	Firefox

Highlighting

- Selection is the user action
- Feedback is important!
- How? Change selected item's visual encoding
 - Change color: want to achieve visual popout
 - Add outline mark: allows original color to be preserved

_ _ _ _

- Change size (line width)
- Add motion: marching ants

(1)	Contacts
- 60	Dashboard
Aa	Dictionary
- 83	Dropbox
8	DVD Player
3	Emacs
-0	FaceTime
Æ	FileZilla
2	Firefox

Interaction Latency

- The Effects of Interactive Latency on Exploratory Visual Analysis, Z. Liu and J. Heer, 2014
- Brush & link, select, pan, zoom

- 500ms added latency causes significant cost - decreases user activity and dataset coverage - reduces rate of observations, generalizations, and hypotheses

Navigation

→ Item Reduction

D. Koop, CS 490/680, Fall 2019

→ Attribute Reduction

→ Cut

→ Slice

→ Project

[Munzner (ill. Maguire), 2014]

Northern Illinois University

Geometric vs. Semantic Zooming

- Geometric zoom: like a camera

D. Koop, CS 490/680, Fall 2019

• Semantic zoom: visual appearance of objects can change at different scales

Project Design

- Work on turning your visualization ideas into designs
- Turn in:
 - Three Designs Sketches
 - Progress on Implementation
- Options:
 - Try vastly different options
 - Refine an initial idea
- Due Monday, Nov. 11

Assignment 5

- Farming data with multiple views & interaction
- Add Crop Sales Information

Design Space of Composite Visualization

- Composite visualization views (CVVs)
 - Includes Coordinated multiple views (CMV)
 - + More!
- Design Patterns:
 - Juxtaposition: side-by-side
 - Superimposition: layers
 - Overloading: vis meshed with another
 - Nesting: vis inside a vis (recursive vis)
 - Integration: "merge" views + links

D. Koop, CS 490/680, Fall 2019

 $|\otimes_{jux} \mathbf{B}| = |\mathbf{A} \mathbf{B}|$ $\bigotimes_{sup} \mathbf{B} = \mathbf{A} \mathbf{B}$ $\otimes_{\text{ovl}} \mathbf{B} = \mathbf{A} \mathbf{B}$ A $\bigotimes_{nst} B$ $\bigotimes_{int} B$

[W. Javed and N. Elmqvist, 2012]

Northern Illinois University

Juxtaposition

D. Koop, CS 490/680, Fall 2019

NIU

Northern Illinois University

Juxtaposition

D. Koop, CS 490/680, Fall 2019

Northern Illinois University

Juxtaposition Guidelines

- Benefits:
 - without interference
 - Easy to implement
- Drawbacks:
 - objects are selected
- combined.

D. Koop, CS 490/680, Fall 2019

- The component visualizations are independent and can be composed

- Implicit visual linking is not always easy to see, particularly when multiple

- Space is divided between the views, yielding less space for each view

• Applications: Use for heterogeneous datasets consisting of many different types of data, or for where different independent visualizations need to be

[W. Javed and N. Elmqvist, 2012]

Integration

D. Koop, CS 490/680, Fall 2019

Integration

D. Koop, CS 490/680, Fall 2019

[VisLink, Collins and Carpendale, 2007]

Integration

D. Koop, CS 490/680, Fall 2019

Northern Illinois University

Integration Guidelines

- Benefits:
 - components
 - separate
- Drawbacks:
 - Extra visual clutter added to the overall view
 - Display space is split between the views
- Applications: Use for heterogeneous datasets where correlation and comparisons between views is particularly important.

D. Koop, CS 490/680, Fall 2019

- Easy to perceive one-to-one and one-to-many relations between items in

- Visualizations are less independent compared to juxtaposed views, but still

- Some dependencies exist between views to allow for the visual linking

Northern Illinois University

Superimposition

is composed of:

Ireland

Portugal

D. Koop, CS 490/680, Fall 2019

Northern Illinois University

Superimposition

D. Koop, CS 490/680, Fall 2019

[GeoSpace, I. Lokuge and S. Ishizaki, 1995]

Superimposition Guidelines

- Benefits:
 - Allows direct comparison in the same visual space.
- Drawbacks:
 - May cause occlusion and high visual clutter.
 - The client visualization must share the same spatial mapping as the host visualization.
- Applications: In settings where comparison is common, or where the component visualization views need to be as large as possible (potentially the entire available space).

[W. Javed and N. Elmqvist, 2012]

Overloading

Overloading

D. Koop, CS 490/680, Fall 2019

[Links on Treemaps, J.-D. Fekete et al., 2003]

Overloading Guidelines

- Benefits:
 - as the host visualization
 - This also yield more flexibility and control over visual clutter
- Drawbacks:
 - Visual clutter is increased
 - Visual design dependencies between components are significant
- yield a compact (and complex) result.

- The client visualization does not have to share the same coordinate space

Applications: Situations where one visualization can be folded into another to

[W. Javed and N. Elmqvist, 2012]

Nesting

	Desps_51245;	Fusnu_19703;	Glovi 375211	Haein_16272;	Haein 16273	HelpJ_15611:	Helpy_15645:	Helpy_15646	Lacia_15672;	Leixy 509548	Lisin_168005	Lisin_168015	Meslo_13470	Meslo_13473;	Meslo 13473:	Meslo_13474	Meslo_13474	Meslo_13475	Meslo_13475	Meslo_13474	Metac_20090	Metth_15678:	Oceih_23100	Oceih_23098	Oniye_39938!	Oniye_39938
Meslo_13470759 Meslo_13473259	216	582	137	05 	341	941	555	184	305	88	34	04	759	259	305	790	522	317	942	014	8	506	619 🗂	332	976	320
Meslo_13473305						1	l,	ł							-			L	e.					a l		
Meslo_13474522						1	Ŀ.	1		Ľ.							I.		L,					ľ		
Meslo_13475817		-		-		L	1	Ŀ.		-	-			÷	Ч	-	di.	4				J.	Ŀ.		1	-
Meslo_13474014	Γ.							1		1		1			Ľ.						H		1			Ľ,
Metac_20090100										4											J.	le.				
Metth_100/8006	h			-					t.			le.	1	1				Ч	1			H				
Oceih_23098332							1		5		Ē.	I.		5			Ī.							L.		
Oniye_39938976						1						-				L	1	Γ	4						H	h.
Pasmu 15601990					H		1		М			in the	-				4	×.		H			H		1	
Pasmu_15603594							4	ι.,		I.	Ē.	1			I			I.		1		L.		1		
Agrtu_15888162				Ŀ.														1						J		
Agrtu_16119640				1																						
Agrtu_15891435																										
Agrtu_15887957																									La l	
Agitu_15890417																								-		
Agrtu_15890732				L																						
Agrtu_15891761																										
Agrtu_15890737				Ľ.	i.																					
Agrtu_15891743																										
Agrtu_15891779							-																			
Agrtu_16119287	Ľ,																L.			L.						
Arcfu_11499199				a.			a,	-	h,		l,			J.						L		-	L.			-
Bacsu_16080435 Bacsu_16080423																				ja j			H		-	
Biflo_23465528						Ŀ										I,				Ì						
Borbr_33601144										1	Ļ					-	Ŀ		Ц	Ļ						
Borbr_33601620 Borbr_33601951															H					۲						
Borbr_33602284						L.				1		4											Ī.	Į,		
Borbr_33603522					Ļ	h	L.		J.	d	h	ш	L			L.	þ.		ļ					Ļ	L	.
Braja_27378209 Braja_27379091									1	H	5							Η		b						
Braja_27381509					5					Ľ,	L		Ľ,	Ĩ.			Ĩ								F	
Braja_27382025							de l	h,		L.	Ļ	4	h.						J	ļ				1		
Braja_27382710 Braja_27378421																		t								
Brume_17988945					L		1				1								ŀ					i.		
Camje_15792248											Ļ	-	5		-		de.		d.			4		1	Ļ	
THE THEY SHALL	4																									

D. Koop, CS 490/680, Fall 2019

Northern Illinois University

Nesting

Nesting Guidlines

- Benefits:
 - Very compact representation
 - Easy correlation
- Drawbacks:
 - Limited space for the client visualizations
 - Clutter is high
 - Visual design dependencies are high
- Applications: Situations that call for augmenting a particular visual representation with additional mapping

D. Koop, CS 490/680, Fall 2019

[W. Javed and N. Elmqvist, 2012]

Northern Illinois University

Design Space

- Visualizations: the techniques or idioms used
- Spatial relation: relationship between visual structures in display space
- Data relation: visual relationship between items in different views
 - None: No relation
 - Item-item: One-to-one
 - Item-group: One-to-many
 - Item-dimension: Item in one view is a scale in another

D. Koop, CS 490/680, Fall 2019

[W. Javed and N. Elmqvist, 2012]

Summary

Technique	Visualization A	Visualization B	Spatial Relation	Data Relation
ComVis [24] (Figure 2)	any	any	juxtapose	none
Improvise [39] (Figure 3)	any	any	juxtapose	none
Jigsaw [36]	any	any	juxtapose	none
Snap-Together [30]	any	any	juxtapose	none
semantic substrates [34] (Figure 4)	node-link	node-link	juxtapose	item-item
VisLink [11] (Figure 5)	radial graph	node-link	juxtapose	item-item
Napoleon's March on Moscow [37]	time line view	area visualization	juxtapose	item-item
Mapgets [38] (Figure 6)	map	text	superimpose	item-item
GeoSpace [22] (Figure 7)	map	bar graph	superimpose	item-item
3D GIS [8]	map	glyphs	superimpose	item-item
Scatter Plots in Parallel Coordinates [45] (Figure 8)	parallel coordinate	scatterplot	overload	item-dimensior
Graph links on treemaps [14] (Figure 9)	treemap	node-link	overload	item-item
SparkClouds [21]	tag cloud	line graph	overload	item-item
ZAME [13] (Figure 10)	matrix	glyphs	nested	item-group
NodeTrix [17] (Figure 11)	node-link	matrix	nested	item-group
TimeMatrix [44]	matrix	glyphs	nested	item-group
GPUVis [25]	Scatterplot	glyphs	nested	item-group

D. Koop, CS 490/680, Fall 2019

[W. Javed and N. Elmqvist, 2012]

Summary (Scatterplot + Bar Chart)

(a) Juxtaposed views.

(d) Overloaded views.

(b) Integrated views.

(c) Superimposed views.

- Facet (noun and verb)
 - particular aspect or feature of something
 - to split
- Partition visualization into views/layers
 - Either juxtapose (side-by-side), superimpose (layer), nest, etc.
 - Depends on data and encoding
 - Generally, superimposing does not scale as well
 - Multiple views eats display space (either large screens or small visualizations)

→ Share Encoding: Same/Different

→ Linked Highlighting

→ Share Data: All/Subset/None

Share Navigation

D. Koop, CS 490/680, Fall 2019

Northern Illinois University

D. Koop, CS 490/680, Fall 2019

[Munzner (ill. Maguire), 2014]

Multiform

* 🗗 🗵	Counties			· الا "۵	Cities	· 특 집 🗵
	Name	Area Po	pul Ce	Ce	Name	County Pop
	Montmorency MI Muskegon MI	0.167	10315 23.90 70200 12.90	02.08	Allen Park Bellefonte	MI Wayne County 29376 A PA Centre County 6395
	Newaygo MI Oakland MI	0.248	47874 12.80	02.75	Belleville Birch Run	MI Wayne County 3997 MI Saginaw County 1653
	Oceana MI	0.157	26873 14.00	02.66	Centre Hall Chesaning	PA Centre County 1079 MI Saginaw County 2548
	Ogemaw MI Ontonagon MI	0.168	7818 21.60	02.49 01.57	Dearborn	MI Wayne County 97775
	Osceola MI Osceola MI	0.167	23197 14.20 9418 20.20	02.53	Detroit	MI Wayne County 951270
	Otsego MI	0.155	23301 13.70	02.59	Ecorse Flat Rock	MI Wayne County 11229 MI Wayne County 8488
C. M.K. h.L	Presque Isle MI	0.164 2	14411 22.30	04.53	Frankenmuth Garden Oty	MI Saginaw County 4838
The 2 Con mil	Roscommon MI Saginaw MI	0.170	25469 23.80 10039 13.50	02.64	Gibraltar	MI Wayne County 4264
4 Show	Saint Clair MI	0.207 1	64235 12.20	03.88	Grosse Pointe Grosse Pointe Farms	MI Wayne County 5670 MI Wayne County 9764
$+ \Box \downarrow \uparrow \downarrow$	Sanilac MI	0.146	44547 15.40	02.61	Grosse Pointe Park Grosse Pointe Shores	MI Wayne County 12443
The for the the	Schoolcraft MI Shiawassee MI	0.370	8903 18.60 71687 12.00	01.66	Grosse Pointe Woods	MI Wayne County 17080
A A	Tuscola MI	0.234	58266 12.80	02.91	Hamtramck Harper Woods	MI Wayne County 22976 MI Wayne County 14254
and sugars	Washtenaw MI	0.204 3	22895 08.10	04.62	Highland Park Howard	MI Wayne County 16746 PA Centre County 699
Jan Martin	Wayne MI Wexford MI	0.174 20	61162 12.10 30484 14.00	07.61 02.71	Inkster	MI Wayne County 30115
STANDA H	OH	0.990	30484 00.00	00.00	Lincoln Park Livonia	MI Wayne County 40008 MI Wayne County 100545
	Adams OH Allen OH	0.158	08473 14.20	02.62	Melvindale	MI Wayne County 10735
and the second second second	Ashland OH Ashtabula OH	0.118	52523 13.90 02728 14.70	03.34	Milesburg	PA Centre County 1187
	Athens OH	0.138	62223 09.30	03.33	Northville	PA Centre County 749 MI Wayne County 6459
	Belmont OH	0.111	46611 14.40 70226 18.20	03.28		
	Brown OH Butler OH	0.133	42285 11.60 32807 10.70	03.05	Airports & Se	eaplane Bases 🖉 🗹 📉
	Carroll OH	0.110	28836 14.20	02.92	Name	En., County
	Clark OH	0.110 1	44742 14.70	03.09	D Detroit Metropolita	n Wa 1698 MI Wayne Co 🔺
	Clermont OH Clinton OH	0.124 1	77977 09.40 40543 12.20	04.45	M MBS International DET Detroit City	294483 MI Saginaw
	Columbiana OH	0.148 1	12075 15.00	03.81	U University Park	126945 PA Centre Co 3046 MI Wayne Co.
	Crawford OH	0.136	46966 15.20	03.29		Solo mi Mayne co
	Cuyahoga OH Darke OH	0.129 13	93978 15.60 53309 15.30	07.43		
	Dofiance OH	0.116	20500 42.00	02.12		
🗗 🖉 🔣 🔲 🗖 Color Schem	10		City-	City Dista	nces	- <u>5</u> X
Sequential Seq	uential Non-Gray	•			M M M M M M M M M M M M M M M M M M M	anno Anno Anno Anno Anno Anno Anno Anno
					a de	me C
		E.			way Way	Way Way Way Way
					8 99 98 98 98 98 98 98 98 98 98 98 98 98	36 88 88 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
					179 179 179 125 125 125	001 190 190 01 190 01 190 01 384 190 384 190
					Pop. VVa Pop.	Pop. Pop. Pop. Pop. Pop. Pop. Pop. Pop.
			MI	Allen Pa	rk 1.41 0.07 0 12 0 2	0 0.18 5.50 0.12 0.06 5.55 0.05
			Wayne Cour PA	Bellefon	76 te o co o co o co	
			Centre Cour	ty Pop. 63	6.66 5.53 5.60 5.8	0 5.77 0.10 5.54 5.65 0.15 5.57
			MI Wayne Cour	Bellevi Ity Pop. 399	le 1.34 0.34 0.25 0.1	5 0.13 5.76 0.31 0.22 5.80 0.29
Show 2000			MI	Birch R	n 0.26 1.22 1.24 1.0	1 1.05 6.37 1.27 1.14 6.42 1.20
			PA	Centre H		
Counties	Countie	es	Centre Cour	Pop. 10	79 6.77 5.63 5.70 5.9	0 5.88 0.20 5.64 5.75 0.18 5.67
Cities	Cities		Saginaw Co	Chesanii ounty Pop. 25	19 0.35 1.37 1.36 1.12	2 1.16 6.64 1.40 1.27 6.70 1.34
Roads	Roads		MI Waxaa Ca	Dearbo	m 1.37 0.11 0.19 0.2	2 0.21 5.49 0.18 0.12 5.53 0.11
		da	MI (Dearborn Heigh	ts 1 31 0 17 0 20 0 1	3 0 13 5 58 0 22 0 10 5 62 0 15
Railroads	Railroa	ds	Wayne Cour	ty Pop. 5820	34 1.31 0.17 0.20 0.1	0.10 0.00 0.22 0.10 0.03 0.15
Airports	Airport	S	Wayne Cour	nty Pop. 9512	1.44 0.16 0.27 0.3	5 0.34 5.36 0.23 0.24 5.41 0.19
.00 🔽 🔽 Urban Area	as 🗌 🗌 States		MI Wayne Cour	Econ ty Pop. 112	se 1.46 0.03 0.14 0.2	7 0.24 5.44 0.11 0.12 5.48 0.06

Multiform Views

- The same data visualized in different ways
- Does not need to be a totally different encoding (all choices need not be disjoint), e.g. horizontal positions could be the same
- One view becomes cluttered with too many attributes
- Consumes more screen space
- Allows greater separability between channels

Small Multiples

• Same encoding, but different data in each view (e.g. SPLOM)

Interaction with Multiform & Small Multiples

- Key interaction with multiform and small multiples: brushing - also called linked highlighting
- views

• Want to understand correspondences between representation in the different

Brushing

Schneiderman's Mantra

- Visual Information-Seeking Mantra [B. Schneiderman, 1996]:
 - Overview first
 - Zoom and filter (Chapter 13)
 - Details on demand
- Goal of the overview is to summarize all of the data
- layer
 - May be permanent: side-by-side
 - May be a popup layer: often opaque or separated
- (see textbook Ch. 6.7)

D. Koop, CS 490/680, Fall 2019

Want specific details about some aspect(s) of the data, need another view/

42

Overview-Detail View

D. Koop, CS 490/680, Fall 2019

y 43

Overview-Detail (Different Encoding)

EXPENDITURES BY FUNCTION (BAR & DONUT)

D. Koop, CS 490/680, Fall 2019

FIVE-YEAR TREND

Overview-Detail (with Zoom-Filter)

- Detail involves some subset of the full dataset Involves user selection or filtering of some type
- How question: includes facet
- Examples:
 - Maps: partition into two views with same encoding, overview-detail
 - overview+detail of expenditures

- UC Trends: partition into multiple views, coordinated with linked highlighting,

Multiform & Small Multiples (Cerebral)

Navigation across multiple views

- Often navigation in one view updates navigation in another • Example: Maps: overview shifts as you move around in detail view Selections in one view may trigger selections in another

47

Partition into Side-by-Side Views

Superimpose Layers

D. Koop, CS 490/680, Fall 2019

Northern Illinois University 48

Partitioned Views

- Split dataset into groups and visualize each group
- Extremes: one item per group, one group for all items
- Can be a hierarchy
 - Order: which splits are more "related"?
 - Which attributes are used to split? usually categorical

ize each group group for all items

Glyphs, Views, and Regions

- Glyphs are composed of multiple marks
- Views are a contiguous region of space
- A region is usually associated with a group of data
- Blurry lines of distinction between them

Example: Grouped Bar Chart

D. Koop, CS 490/680, Fall 2019

65 Years and Over 45 to 64 Years 25 to 44 Years 18 to 24 Years 14 to 17 Years 5 to 13 Years Under 5 Years

Example: Small Multiples Bar Chart

Matrix Alignment & Recursive Subdivision

- Matrix Alignment:
 - regions are placed in a matrix alignment
 - splits go to rows and columns
 - main-effects ordering: use summary statistic to determine order of categorical attribute
- Recursive subdivision:
 - Designed for exploration
 - Involves hierarchy
 - User drives the ways data is broken down in recursive manner

Example: Trellis Matrix Alignment

D. Koop, CS 490/680, Fall 2019

Barley Yield (bushels/acre)

Example: HiVE System

Example: HiVE System

Reducing Complexity

Reducing Complexity

- Too many items or attributes lead to visual clutter
- Interaction and Multiple Views can help, but often lose the ability to start understanding an entire dataset at first glance
- Reduction techniques show less data to reduce complexity
- Can reduce items or attributes (both are elements)
- Filtering: eliminate elements from the current view
 - "out of sight, out of mind"
- Aggregation: replace elements with a new element that represents the replaced elements
 - summarization is often challenging to design
- Another method is focus+context: show details in the context of an overview

Overview: Reducing Items & Attributes

→ Attributes

D. Koop, CS 490/680, Fall 2019

→ Aggregate

→ Items

→ Attributes

[Munzner (ill. Maguire), 2014]

Northern Illinois University

Filtering

- Just don't show certain elements
- Item filtering: most common, eliminate marks for filtered items
- Attribute filtering:
 - attributes often mapped to different channels
 - if mapped to same channel, allows many attributes (e.g. parallel coordinates, star plots), can filter
- How to specify which elements?
 - Pre-defined rules
 - User selection

Filter vs. Query

- Queries start with an empty set of items and **add** items
- Filters start with all items and **remove** items

Example: NYC Health Dept. Restaurant Ratings

D. Koop, CS 490/680, Fall 2019

Northern Illinois University

Dynamic Filters

- Interaction need not be with the visualization itself
- Users interact with widgets that control which items are shown
 Sliders, Combo boxes, Text Fields
- Often tied to attribute values
- Examples:
 - All restaurants with an "A" Grade
 - All pizza places
 - All pizza places with an "A" Grade

D. Koop, CS 490/680, Fall 2019

ualization itself Introl which items are shown

Scented Widgets

Scented Widgets

D. Koop, CS 490/680, Fall 2019

on A	Name	Description	Example
on <u>B</u> on <u>C</u>	Hue	Varies the hue of the widget (or of a visualization embedded in it)	Option A
on <u>D</u> I rank	Saturation	Varies the saturation of the widget (or of a visualization embedded in it)	Option <u>A</u> Option <u>B</u>
	Opacity	Varies the saturation of the widget (or of a visualization embedded in it)	Option <u>A</u> Option <u>B</u>
	Text	Inserts one or more small text figures into the widget	(2) Option <u>A</u> (10) Option <u>B</u>
	lcon	Inserts one or more small icons into the widget.	 Option<u>A</u> Option<u>B</u>
or	Bar Chart	Inserts one or more small bar chart visualizations into the widget	Option <u>A</u> Option <u>B</u>
I	Line Chart	Inserts one or more small line chart visualizations into the widget	Option <u>A</u> Option <u>B</u>

[Willett et al., 2007]

Star Plots (aka Radar Charts)

Aberlour

Auchentoshan

Auchroisk

Star Plot / Radar Chart

- Compare variables
- Similarities/differences of items
- Locate outliers
- Considerations:
 - Order of axes
 - Too many axes cause problems

Attribute Filtering on Star Plots

(C)

D. Koop, CS 490/680, Fall 2019

(d)

Attribute Filtering

- How to choose which attributes should be filtered?
 - User selection?
 - Statistics: similarity measures, attributes with low variance are not as interesting when comparing items
- Can be combined with item filtering

Aggregation

- Usually involves **derived** attributes
- Examples: mean, median, mode, min, max, count, sum
- Remember expressiveness principle: still want to avoid implying trends or similarities based on aggregation

						IV	
Х	У	Х	У	Х	У	Х	У
10.0	8.04	10.0	9.14	10.0	7.46	8.0	6.58
8.0	6.95	8.0	8.14	8.0	6.77	8.0	5.70
13.0	7.58	13.0	8.74	13.0	12.74	8.0	7.7
9.0	8.81	9.0	8.77	9.0	7.11	8.0	8.8
11.0	8.33	11.0	9.26	11.0	7.81	8.0	8.4
14.0	9.96	14.0	8.10	14.0	8.84	8.0	7.04
6.0	7.24	6.0	6.13	6.0	6.08	8.0	5.2
4.0	4.26	4.0	3.10	4.0	5.39	19.0	12.5
12.0	10.84	12.0	9.13	12.0	8.15	8.0	5.5
7.0	4.82	7.0	7.26	7.0	6.42	8.0	7.9
5.0	5.68	5.0	4.74	5.0	5.73	8.0	6.8

Aggregation

- Usually involves **derived** attributes
- Examples: mean, median, mode, min, max, count, sum
- Remember expressiveness principle: still want to avoid implying trends or similarities based on aggregation

D. Koop, CS 490/680, Fall 2019

9	
11	
7.50	
4.122	
0.816	
4.122 0.816	

		II				IV	
Х	У	Х	У	Х	У	Х	У
10.0	8.04	10.0	9.14	10.0	7.46	8.0	6.58
8.0	6.95	8.0	8.14	8.0	6.77	8.0	5.76
13.0	7.58	13.0	8.74	13.0	12.74	8.0	7.71
9.0	8.81	9.0	8.77	9.0	7.11	8.0	8.84
11.0	8.33	11.0	9.26	11.0	7.81	8.0	8.47
14.0	9.96	14.0	8.10	14.0	8.84	8.0	7.04
6.0	7.24	6.0	6.13	6.0	6.08	8.0	5.25
4.0	4.26	4.0	3.10	4.0	5.39	19.0	12.5
12.0	10.84	12.0	9.13	12.0	8.15	8.0	5.56
7.0	4.82	7.0	7.26	7.0	6.42	8.0	7.91
5.0	5.68	5.0	4.74	5.0	5.73	8.0	6.89

Anscombe's Quartet

D. Koop, CS 490/680, Fall 2019

Northern Illinois University

