
Data Visualization (CSCI 490/680)

Design

Dr. David Koop

D. Koop, CS 490/680, Fall 2019

D. Koop, CS 490/680, Fall 2019

Set and Cluster Visualization
• Set and cluster visualization not

covered in depth in the textbook
• Nice summary of set visualization in

the following paper:
- Visualizing Sets and Set-typed

Data, B. Alsallakh et al., 2014
- Also: Web Resources

�2

https://kar.kent.ac.uk/39007/1/STAR_paper.pdf
https://kar.kent.ac.uk/39007/1/STAR_paper.pdf
https://www.cvast.tuwien.ac.at/SetViz

D. Koop, CS 490/680, Fall 2019

Set-typed Data - Characteristics
• Set Algebra
- Set operations, Cartesian product, power set, ...

• Set similarities
- Similarity measures (Jaccard, Tversky, etc.)

• Element degree
- exclusive set membership

• Dimensionality
- 2^n possible combinations
- 2^(2^n) possible queries

�3

[B. Alsallakh et al., 2014]

Element AttributesSets and Set RelationsElements

Element AttributesSets and Set RelationsElements

Element AttributesSets and Set RelationsElements

Element AttributesSets and Set RelationsElements

Element AttributesSets and Set RelationsElements

Elements

Elements

Find elements belonging to a specific set

Find sets containing a specific element

Find elements based on their set memberships

Find elements with a specific set membership degree

Filter out elements based on their set memberships

Filter out elements based on their set membership degrees

Create a new set that contains certain elements

Elements

Find elements belonging to a specific set

Find sets containing a specific element

Find elements based on their set memberships

Find elements with a specific set membership degree

Filter out elements based on their set memberships

Filter out elements based on their set membership degrees

Create a new set that contains certain elements

Elements

Find elements belonging to a specific set

Find sets containing a specific element

Find elements based on their set memberships

Find elements with a specific set membership degree

Filter out elements based on their set memberships

Filter out elements based on their set membership degrees

Create a new set that contains certain elements

Elements

Find elements belonging to a specific set

Find sets containing a specific element

Find elements based on their set memberships

Find elements with a specific set membership degree

Filter out elements based on their set memberships

Filter out elements based on their set membership degrees

Create a new set that contains certain elements

Elements

Find elements belonging to a specific set

Find sets containing a specific element

Find elements based on their set memberships

Find elements with a specific set membership degree

Filter out elements based on their set memberships

Filter out elements based on their set membership degrees

Create a new set that contains certain elements

Sets and Set Relations

Find set intersections
of a specific set

Find the set with largest
pairwise set intersections

Analyze set & set
intersection cardinalities

Analyze and compare
set similarities

Analyze and compare
set exclusiveness

Highlight specific sets,
subsets, or set relations

Create a new set using
set-theoretical operations

Analyze
inclusion relations

Analyze
inclusion hierarchies

Analyze
exclusion relations

Analyze
intersection relations

Find intersections
between k sets

Find sets involved in
certain intersection

Find the # of sets
in the set family

Sets and Set Relations

Find set intersections
of a specific set

Find the set with largest
pairwise set intersections

Analyze set & set
intersection cardinalities

Analyze and compare
set similarities

Analyze and compare
set exclusiveness

Highlight specific sets,
subsets, or set relations

Create a new set using
set-theoretical operations

Analyze
inclusion relations

Analyze
inclusion hierarchies

Analyze
exclusion relations

Analyze
intersection relations

Find intersections
between k sets

Find sets involved in
certain intersection

Find the # of sets
in the set family

Sets and Set Relations

Find set intersections
of a specific set

Find the set with largest
pairwise set intersections

Analyze set & set
intersection cardinalities

Analyze and compare
set similarities

Analyze and compare
set exclusiveness

Highlight specific sets,
subsets, or set relations

Create a new set using
set-theoretical operations

Analyze
inclusion relations

Analyze
inclusion hierarchies

Analyze
exclusion relations

Analyze
intersection relations

Find intersections
between k sets

Find sets involved in
certain intersection

Find the # of sets
in the set family

Sets and Set Relations

Find set intersections
of a specific set

Find the set with largest
pairwise set intersections

Analyze set & set
intersection cardinalities

Analyze and compare
set similarities

Analyze and compare
set exclusiveness

Highlight specific sets,
subsets, or set relations

Create a new set using
set-theoretical operations

Analyze
inclusion relations

Analyze
inclusion hierarchies

Analyze
exclusion relations

Analyze
intersection relations

Find intersections
between k sets

Find sets involved in
certain intersection

Find the # of sets
in the set family

Sets and Set Relations

Find set intersections
of a specific set

Find the set with largest
pairwise set intersections

Analyze set & set
intersection cardinalities

Analyze and compare
set similarities

Analyze and compare
set exclusiveness

Highlight specific sets,
subsets, or set relations

Create a new set using
set-theoretical operations

Analyze
inclusion relations

Analyze
inclusion hierarchies

Analyze
exclusion relations

Analyze
intersection relations

Find intersections
between k sets

Find sets involved in
certain intersection

Find the # of sets
in the set family

Sets and Set Relations

Find set intersections
of a specific set

Find the set with largest
pairwise set intersections

Analyze set & set
intersection cardinalities

Analyze and compare
set similarities

Analyze and compare
set exclusiveness

Highlight specific sets,
subsets, or set relations

Create a new set using
set-theoretical operations

Analyze
inclusion relations

Analyze
inclusion hierarchies

Analyze
exclusion relations

Analyze
intersection relations

Find intersections
between k sets

Find sets involved in
certain intersection

Find the # of sets
in the set family

Element Attributes

Find the attribute value of a certain element

Find the distribution of an attribute in a certain set or subset

Compare the attribute values of sets or set intersections

Create a new set out of elements having
certain attribute values

Analyze the set memberships for elements having
certain attribute values

Element Attributes

Find the attribute value of a certain element

Find the distribution of an attribute in a certain set or subset

Compare the attribute values of sets or set intersections

Create a new set out of elements having
certain attribute values

Analyze the set memberships for elements having
certain attribute values

Element Attributes

Find the attribute value of a certain element

Find the distribution of an attribute in a certain set or subset

Compare the attribute values of sets or set intersections

Create a new set out of elements having
certain attribute values

age

Analyze the set memberships for elements having
certain attribute values

Element Attributes

Find the attribute value of a certain element

Find the distribution of an attribute in a certain set or subset

Compare the attribute values of sets or set intersections

Create a new set out of elements having
certain attribute values

age

Analyze the set memberships for elements having
certain attribute values

Element Attributes

Find the attribute value of a certain element

Find the distribution of an attribute in a certain set or subset

Compare the attribute values of sets or set intersections

Create a new set out of elements having
certain attribute values

age

Analyze the set memberships for elements having
certain attribute values

D. Koop, CS 490/680, Fall 2019

Venn Diagram

�8

[http://askville.amazon.com/idea-Venn-diagram/AnswerViewer.do?requestId=8420613]

http://askville.amazon.com/idea-Venn-diagram/AnswerViewer.do?requestId=8420613

D. Koop, CS 490/680, Fall 2019

What about cardinality?

�9

[B. Alsallakh et al., 2014]

Area encoding Using glyphs

D. Koop, CS 490/680, Fall 2019

Euler Diagram Variants

�10

[B. Alsallakh et al., 2014]

use edges

use a concentric layout

split set into components

split set into components

D. Koop, CS 490/680, Fall 2019

KelpFusion

�11

[Meulemans et al., 2013]

2 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS

(d) KelpFusion (dense)(a) Bubble Sets

(b) Kelp Diagrams

(f) KelpFusion (sparse)

(e) KelpFusion (medium)

(c) LineSets

Figure 1. Visualizations using the various methods discussed in this paper. (a) Image generated using the implementation generously
provided by the authors of Bubble Sets [7]. (b) Image courtesy of Kasper Dinkla. (c) Image generated using the LineSets implementation
described in [1]. (d-f) Images generated by our KelpFusion implementation.

on a spanning graph, KelpFusion introduces the use of a
proximity graph, a so-called shortest-path graph. In the
context of Geographic Information Science, shortest-path
graphs have been used to delineate imprecise regions, re-
constructing a boundary of a region based on points that are
likely inside the intended region [2]. Shortest-path graphs
adapt to point sets of varying density and aim to capture the
shape and clusters of a point set. In other words, the use of
shortest-path graphs allows KelpFusion to fill faces when
points are spatially close. Furthermore, we show that the
shortest-path graph and its corresponding boundary can be
computed efficiently, enabling interactive manipulation of
the visualization. Figure 1 illustrates three existing methods,
Bubble Sets, LineSets, and Kelp Diagrams, in comparison
with our new hybrid technique, KelpFusion.

To understand the advantages and drawbacks of our
technique, we performed a controlled experiment with 13

participants, comparing KelpFusion to Bubble Sets [7] and
LineSets [1]. We discovered that KelpFusion improved on
Bubble Sets, outperforming the technique in accuracy and
completion time. We also found that KelpFusion was on
par with LineSets in terms of accuracy but yielded faster
response times. User preferences and comments also indi-
cated that KelpFusion provides a good sense of grouping
and is aesthetically more pleasing than the other methods.

2 RELATED WORK
Venn or Euler diagrams are popular ways to visually
represent set intersections. In these diagrams, closed curves
correspond to sets and overlaps between the curves indicate
intersections. Several papers have explored the problem of
automatically drawing Euler diagrams to convey abstract
set topology, for example, Simonetto and Auber [14] and
Stapleton et al. [16]. Other approaches investigated the

2 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS

(d) KelpFusion (dense)(a) Bubble Sets

(b) Kelp Diagrams

(f) KelpFusion (sparse)

(e) KelpFusion (medium)

(c) LineSets

Figure 1. Visualizations using the various methods discussed in this paper. (a) Image generated using the implementation generously
provided by the authors of Bubble Sets [7]. (b) Image courtesy of Kasper Dinkla. (c) Image generated using the LineSets implementation
described in [1]. (d-f) Images generated by our KelpFusion implementation.

on a spanning graph, KelpFusion introduces the use of a
proximity graph, a so-called shortest-path graph. In the
context of Geographic Information Science, shortest-path
graphs have been used to delineate imprecise regions, re-
constructing a boundary of a region based on points that are
likely inside the intended region [2]. Shortest-path graphs
adapt to point sets of varying density and aim to capture the
shape and clusters of a point set. In other words, the use of
shortest-path graphs allows KelpFusion to fill faces when
points are spatially close. Furthermore, we show that the
shortest-path graph and its corresponding boundary can be
computed efficiently, enabling interactive manipulation of
the visualization. Figure 1 illustrates three existing methods,
Bubble Sets, LineSets, and Kelp Diagrams, in comparison
with our new hybrid technique, KelpFusion.

To understand the advantages and drawbacks of our
technique, we performed a controlled experiment with 13

participants, comparing KelpFusion to Bubble Sets [7] and
LineSets [1]. We discovered that KelpFusion improved on
Bubble Sets, outperforming the technique in accuracy and
completion time. We also found that KelpFusion was on
par with LineSets in terms of accuracy but yielded faster
response times. User preferences and comments also indi-
cated that KelpFusion provides a good sense of grouping
and is aesthetically more pleasing than the other methods.

2 RELATED WORK
Venn or Euler diagrams are popular ways to visually
represent set intersections. In these diagrams, closed curves
correspond to sets and overlaps between the curves indicate
intersections. Several papers have explored the problem of
automatically drawing Euler diagrams to convey abstract
set topology, for example, Simonetto and Auber [14] and
Stapleton et al. [16]. Other approaches investigated the

2 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS

(d) KelpFusion (dense)(a) Bubble Sets

(b) Kelp Diagrams

(f) KelpFusion (sparse)

(e) KelpFusion (medium)

(c) LineSets

Figure 1. Visualizations using the various methods discussed in this paper. (a) Image generated using the implementation generously
provided by the authors of Bubble Sets [7]. (b) Image courtesy of Kasper Dinkla. (c) Image generated using the LineSets implementation
described in [1]. (d-f) Images generated by our KelpFusion implementation.

on a spanning graph, KelpFusion introduces the use of a
proximity graph, a so-called shortest-path graph. In the
context of Geographic Information Science, shortest-path
graphs have been used to delineate imprecise regions, re-
constructing a boundary of a region based on points that are
likely inside the intended region [2]. Shortest-path graphs
adapt to point sets of varying density and aim to capture the
shape and clusters of a point set. In other words, the use of
shortest-path graphs allows KelpFusion to fill faces when
points are spatially close. Furthermore, we show that the
shortest-path graph and its corresponding boundary can be
computed efficiently, enabling interactive manipulation of
the visualization. Figure 1 illustrates three existing methods,
Bubble Sets, LineSets, and Kelp Diagrams, in comparison
with our new hybrid technique, KelpFusion.

To understand the advantages and drawbacks of our
technique, we performed a controlled experiment with 13

participants, comparing KelpFusion to Bubble Sets [7] and
LineSets [1]. We discovered that KelpFusion improved on
Bubble Sets, outperforming the technique in accuracy and
completion time. We also found that KelpFusion was on
par with LineSets in terms of accuracy but yielded faster
response times. User preferences and comments also indi-
cated that KelpFusion provides a good sense of grouping
and is aesthetically more pleasing than the other methods.

2 RELATED WORK
Venn or Euler diagrams are popular ways to visually
represent set intersections. In these diagrams, closed curves
correspond to sets and overlaps between the curves indicate
intersections. Several papers have explored the problem of
automatically drawing Euler diagrams to convey abstract
set topology, for example, Simonetto and Auber [14] and
Stapleton et al. [16]. Other approaches investigated the

D. Koop, CS 490/680, Fall 2019

SUN ET AL.: BISET: SEMANTIC EDGE BUNDLING WITH BICLUSTERS FOR SENSEMAKING 311

BiSet: Semantic Edge Bundling with Biclusters for Sensemaking
Maoyuan Sun, Peng Mi, Chris North and Naren Ramakrishnan

Fig. 1. An overview of BiSet. Entities are represented in lists. In the space between each neighboring pair of lists, BiSet adds a
“in-between” layer, displaying edges. BiSet bundles edges based on biclusters and allows users to directly manipulate bundles. The
bundles can reveal task-oriented semantic insights about coordinated relationships. BiSet also applies accumulated highlighting to
entities, bundles and edges to indicate highly shared entities and relationships.

Abstract— Identifying coordinated relationships is an important task in data analytics. For example, an intelligence analyst might
want to discover three suspicious people who all visited the same four cities. Existing techniques that display individual relationships,
such as between lists of entities, require repetitious manual selection and significant mental aggregation in cluttered visualizations
to find coordinated relationships. In this paper, we present BiSet, a visual analytics technique to support interactive exploration of
coordinated relationships. In BiSet, we model coordinated relationships as biclusters and algorithmically mine them from a dataset.
Then, we visualize the biclusters in context as bundled edges between sets of related entities. Thus, bundles enable analysts to infer
task-oriented semantic insights about potentially coordinated activities. We make bundles as first class objects and add a new layer,
“in-between”, to contain these bundle objects. Based on this, bundles serve to organize entities represented in lists and visually reveal
their membership. Users can interact with edge bundles to organize related entities, and vice versa, for sensemaking purposes. With
a usage scenario, we demonstrate how BiSet supports the exploration of coordinated relationships in text analytics.

Index Terms—Bicluster, coordinated relationship, semantic edge bundling

1 INTRODUCTION

Analysts often face difficult challenges in exploring complex relations
and identifying meaningful ones for sensemaking [39]. Current vi-
sual analysis tools emphasize individual relationships and just display
simple ones. This makes it hard for analysts to see more complex re-
lationships (e.g., coordinated relationship). Coordinated relationships
are grouped relations between sets of entities of different types (e.g.,
three people who all visited the same four cities). Due to the complex-
ity, compared with simple relationship, coordinated relationship needs
more cognitive effort for exploration.

Existing techniques that display individual relationships, such as
between lists of entities, require repetitious manual selection and sig-
nificant mental aggregation in cluttered visualizations to find coordi-
nated relationships. For example, Jigsaw [19] provides a List View
to support exploring relationships between lists of entities (e.g., peo-
ple, location, date, organization, etc.). In the List View, Jigsaw applies
visual links between related entities to show their connections and con-
trols the shading of colors for entities to indicate their co-occurrence.
With these visual encodings, in Jigsaw, users can recognize relations

• Maoyuan Sun, Peng Mi, Chris North and Naren Ramakrishnan are all
with the Discovery Analytics Center, Department of Computer Science,
Virginia Tech. E-mail: {smaoyuan | mipeng | north | naren}@cs.vt.edu.

Manuscript received 31 Mar. 2015; accepted 1 Aug. 2015; date of
publication xx Aug. 2015; date of current version 25 Oct. 2015.
For information on obtaining reprints of this article, please send
e-mail to: tvcg@computer.org.

between entities without much effort, but these relations are limited
to simple individual ones (e.g., a person visited three cities). Users
have to repetitiously click entities, visually check and mentally com-
pare their linked entities to identify coordinated relationships. Since
Jigsaw’s List View does not provide clear visual clues on coordinated
relations, users have to manually test all possible entities before they
finally find a meaningful one. This potentially forces users to solve a
combinatorial problem of selection without much support. Thus, due
to deficient clues to direct user selections, tools like Jigsaw have lim-
ited capabilities to support exploring coordinated relationships.

Visual analytics can potentially better support this by computation-
ally finding complex relationships and revealing them in context. This
enables analysts to see complex relations with other data (e.g., enti-
ties in lists). Specifically, we can compute coordinated relationships
with biclustering algorithms and display them in context using edge
bundling. In this case, edge bundles can reveal semantic insights from
coordinated relationships, which is meaningful from a task-oriented
perspective. The reason is that edges are bundled using semantic edge
bundling that is based on results of biclustering algorithms, rather than
using spatial edge bundling which is based on spatial proximity to sim-
plify visual representations.

Biclustering algorithms compute coordinated relationships as bi-
clusters. A bicluster can be considered a grouped relationship between
two sets of entities, where each entity in one set is connected with all
in another. Figure 2 shows an example of a bicluster that indicates
a coordinated relation between three people and four locations. It is
clear that a bicluster can bundle edges that link pairs of related entities,
and group entities that belong to the same coordinated set. Biclusters
provide a conceptual format to present coordinated relationships in an

organized manner. To take advantage of this for sensemaking, a five-
level design framework for bicluster visualizations has been proposed
in [49]. However, existing techniques are inefficient to support explor-
ing coordinated relationships, and few attempt to adapt biclusters to
facilitate this by following the design framework. Thus, it is still chal-
lenging to design a technique that can take advantage of biclusters and
make them usable to support coordinated relationship explorations.

Fig. 2. An example of a bicluster, indicating a coordinated relationship
between three people and four locations. (A) presents all connections
between each pair of related entities from the two domains. (B) shows
the result of bundling edges in this bicluster. (C) demonstrates the result
of both bundling edges and grouping entities in this bicluster.

To address such challenges, we present BiSet, a visual analytics
technique to support interactively exploring coordinated relationships
with biclusters. Our key contributions in this paper are as follows:

1) We formalize coordinated relationships as biclusters and algo-
rithmically mine them from a dataset.

2) We visualize the biclusters in context as bundled edges between
sets of related entities. These bundles enable analysts to infer semantic
insights about potentially coordinated activities.

3) We make bundles as the first class objects and add a new layer
“in-between” lists to contain these bundle objects. We allow users to
direct manipulate bundles for organizing entities represented in lists.

4) We apply interactions to both edge bundles and entities for re-
vealing and organizing relevant information in a bidirectional way.
Users can interact with edge bundles to forage and organize relevant
entities and, vice versa, for sensemaking purposes.

5) We present a usage scenario to demonstrate how BiSet can sup-
port the coordinated relationship exploration in text analytics.

2 RELATED WORK

Four key aspects are involved in BiSet: biclustering, list layout, visual
link and edge bundling, which outlines the discussion of related work.

2.1 Biclusters and Bicluster-Chains
Biclustering attempts to find both subsets of entities and subsets of
dimensions with the restriction that for each identified subset of en-
tities, they identically behave within the corresponding subset of di-
mensions [36]. Biclusters are computational results from biclustering
algorithms that identify coordinated relations between two entity sets.
An entity set refers to a set of unique objects from a specific domain
(e.g., people) extracted from a dataset (e.g., documents).

Relationship between two entity sets. Given two entity sets E and
F, a (binary) relationship R (E, F) between E and F is a subset of
E ×F (the Cartesian product of E and F). We say that E is connected
to F. There are different ways to model relationship R in different sce-
narios. In text analytics, R can be determined by word co-occurrence
in documents or semantic meanings identified with natural language
processing. For example, person X is related to city Y , since they are
mentioned in the same document or based on semantic meanings of
some sentences that indicate person X visited city Y .

Bicluster. We define a bicluster (E ′, F ′) on R (E, F) as a set E ′ ⊆ E
and a set F ′ ⊆ F such that E ′ ×F ′ ⊆ R. That is, there is a relationship
between each element of E ′ with every element of F ′. We use |E ′|+
|F ′| to denote the size of a bicluster (E ′, F ′) where |E ′| and |F ′| are
the cardinality of E ′ and F ′. In addition, bicluster (E ′, F ′) is thin if
there is only one entity in either E ′ or F ′.

Closed bicluster. A bicluster (E ′,F ′) is closed if:

(i) For every entity e ∈ E − E ′, there is some entity f ∈ F ′ such that
(e, f) /∈ R, and

(ii) For every entity f ∈ F − F ′, there is some entity e ∈ E ′ such that
(e, f) /∈ R.

Algorithms for bicluster mining typically aim to find closed biclus-
ters. These algorithms (e.g., CHARM [56] and LCM [51]) function
level-wise with regard to one domain (e.g., E), wherein they attempt to
mine closed biclusters involving one entity of E, then closed biclusters
involving two entities of E, and so on. The key parameter influencing
such mining is the size of a bicluster in terms of the other domain (e.g.,
F), also referred to as the minimum support threshold . The setting of
this parameter is done heuristically by users; a low threshold will yield
a plethora of biclusters whereas a stringent (high) threshold will yield
few (or no) biclusters. Typically, users begin with a high threshold and
gradually lower it until it yields a sufficient number of biclusters [56].
In this paper, we use CHARM and LCM, although any biclustering
algorithm can be utilized in BiSet.

Biclusters logically aggregate multiple individual relations to form
coordinated sets, so they provide an opportunity to visually bundle
edges between entities. Bicluster-based edge bundles organize edges
in a semantic manner, potentially revealing semantic insights. For ex-
ample, four suspicious people may collude about a terrorist attack,
since they are all related to the same three terrorist organizations. This
is different from spatial edge bundling that bundle edges based on spa-
tial proximity to reduce visual clutter [58].

Fig. 3. An example of a bicluster-chain consisting of two biclusters.
(A) presents all edges between related entities. (B) shows that the two
biclusters connect together as a chain by their shared phone numbers.

Bicluster-chains. Based on shared entities, if there are any, multi-
ple biclusters (consisting of different pairs of domains) can connect to
form bicluster-chains. With compositional mining methods [29, 54],
bicluster-chains can be identified from a dataset. Figure 3 shows an
example of a bicluster-chain with two biclusters. One shows coordi-
nated relations between three people and four phone numbers, and the
other presents relations between three phone numbers and four loca-
tions. They share three phone numbers. One possible semantic insight
revealed from this chain is: three people may visit the same four cities,
since they called each other via four phone numbers, and phone calls
from three of these numbers were all reported at the four cities.

A five-level design framework for bicluster visualizations has
been proposed based on five hierarchical levels of relationships poten-
tially existing in a dataset [49]. Keywords corresponding to the five
levels are: entity, group, bicluster, chain and schema. Entity-level
relations refer to those between two individual entities, while group-
level relations are relations between one individual entity and a group
of entities. Bicluster-level and chain-level relations represent two lev-
els of coordinated relations: biclusters and bicluster-chains. The lat-
ter is more complex than the former, since a bicluster-chain consists
of multiple biclusters. Schema-level relations indicates database-like
patterns in a dataset, which reveals the overview of a dataset. Relations
in higher levels (e.g., bicluster-level and chain-level) are usually con-
structed based on those in lower levels (e.g., entity-level and group-
level), so relations in lower levels provide a critical support for the
exploration and interpretation of those in higher levels. These five lev-
els of relations systematically present the space of relationship, which
works as an important guideline for us to follow. Specifically, it guides
us to identify potential tasks that BiSet needs to support, by consider-
ing the implicit linkage of these five levels.

Biset edge bundling (and grouping)

�12

[M. Sun et al., 2016]

D. Koop, CS 490/680, Fall 2019

Project Design
• Start working on turning your visualization ideas into designs
• Feedback to Blackboard today
• Sketch (talk about today)
• Options:
- Try vastly different options
- Refine an initial idea

�13

D. Koop, CS 490/680, Fall 2019

Assignment 4
• Create Choropleth Maps
- Deal with projections and GeoJSON Data
- Select appropriate colormaps

• [CS 680 Only] Part 3 is using other libraries,
you only need to do one option

• Example image at the right is not a solution
to Part 3, needs proper colormapping!

�14

http://faculty.cs.niu.edu/~dakoop/cs680-2019fa/assignment4.html

D. Koop, CS 490/680, Fall 2019 �15

Guidelines for Visualization Design

D. Koop, CS 490/680, Fall 2019

WTF Visualizations (wtfviz.net)

�16

[WTF Visualizations, 2017]

http://wtfviz.net
http://viz.wtf/post/154254744863/weapon-illegibility

D. Koop, CS 490/680, Fall 2019

Tufte: "The da Vinci of Data" —NYTimes

�17

[https://www.edwardtufte.com/tufte/, 2017]

http://www.nytimes.com/1998/03/30/business/the-da-vinci-of-data.html
https://www.edwardtufte.com/tufte/

D. Koop, CS 490/680, Fall 2019

Bad: Data magnitude <≠> Mark magnitude

�18

[Flowing Data, 2012]

https://flowingdata.com/2012/08/06/fox-news-continues-charting-excellence/

D. Koop, CS 490/680, Fall 2019

Good: Data magnitude <=> Mark magnitude

�19

[Flowing Data, 2012]

https://flowingdata.com/2012/08/06/fox-news-continues-charting-excellence/

D. Koop, CS 490/680, Fall 2019

Start Scales at 0?

A. Kriebel, VizWiz

Starting Scales at Zero?

�20

[A. Kirebel, VizWiz]

D. Koop, CS 490/680, Fall 2019

Wavy baselines for non-zero starts

�21

[W. C. Brinton via RJ Andrews]

See also: "Tear Up Your Baseline" [RJ Andrews]

https://medium.com/data-visualization-society/tear-up-your-baseline-b6b68a2a60f1
https://medium.com/data-visualization-society/tear-up-your-baseline-b6b68a2a60f1

D. Koop, CS 490/680, Fall 2019

Cherry-picking data

�22

[Fox News via Media Matters, 2012]

https://mediamatters.org/research/2012/10/01/a-history-of-dishonest-fox-charts/190225

D. Koop, CS 490/680, Fall 2019

Show all the data

�23

[AAA via Media Matters, 2012]

https://mediamatters.org/research/2012/10/01/a-history-of-dishonest-fox-charts/190225

D. Koop, CS 490/680, Fall 2019

Tufte's Lie Factor

�24

[NYTimes via Tufte, 1991]

D. Koop, CS 490/680, Fall 2019

Tufte's Lie Factor
• Size of effect = (2nd value - 1st value) / (1st value)
• Lie factor = (size of effect in graphic) / (size of effect in data)
• In the graphic:

�25

[InfoVis Wiki]

http://www.infovis-wiki.net/index.php?title=Lie_Factor

D. Koop, CS 490/680, Fall 2019

(Some of) Tufte's Integrity Principles
• Show data variation, not design variation
• Clear, detailed, and thorough labeling and appropriate scales
• Size of the graphic effect should be directly proportional to the numerical

quantities ("lie factor")

�26

D. Koop, CS 490/680, Fall 2019

Avoid Chartjunk

ongoing, Tim Brey

Extraneous visual elements that distract from the
messageAvoid Chartjunk

�27

[T. Brey via A. Lex]

http://dataviscourse.net

D. Koop, CS 490/680, Fall 2019

Avoid Chartjunk

ongoing, Tim Brey

Avoid Chartjunk

�28

[T. Brey via A. Lex]

http://dataviscourse.net

D. Koop, CS 490/680, Fall 2019

Avoid Chartjunk

ongoing, Tim Brey

Avoid Chartjunk

�29

[T. Brey via A. Lex]

http://dataviscourse.net

D. Koop, CS 490/680, Fall 2019

HIGH
QUALITY
DESCRIPTION

LOW
QUALITY

DESCRIPTION

MEMORABLE

FORGETTABLE

Avoid Chartjunk?

�30

[M. Borkin et al., InfoVis 2015]

D. Koop, CS 490/680, Fall 2019

Maximize Data-Ink Ratio

0-$24,999 $25,000+ 0-$24,999 $25,000+

Data-to-Ink Ratio (Also Unjustified 3D)

�31

[via A. Lex]

http://dataviscourse.net

D. Koop, CS 490/680, Fall 2019

Maximize Data-Ink Ratio

0

175

350

525

700

Males Females

0-$24,999 $25,000+ 0-$24,999 $25,000+

Maximize Data-to-Ink Ratio

�32

[via A. Lex]

http://dataviscourse.net

D. Koop, CS 490/680, Fall 2019

Don’t

matplotlib gallery

Excel Charts Blog

No Unjustified 3D

�33

[via A. Lex]

http://dataviscourse.net

D. Koop, CS 490/680, Fall 2019

Don’t

matplotlib gallery

Excel Charts Blog

No Unjustified 3D
• Occlusion hides information
• Perspective distortion dangers
• Tilted text isn't legible

• Can help with shape perception

�34

[via A. Lex]

http://dataviscourse.net

D. Koop, CS 490/680, Fall 2019

Eyes Beat Memory
• Reduce cognitive load (using up working memory)
• Animation versus side-by-side views
• Change blindness

�35

D. Koop, CS 490/680, Fall 2019 �36

“Computer-based visualization systems provide visual
representations of datasets designed to help people carry out
tasks more effectively.”

— T. Munzner

D. Koop, CS 490/680, Fall 2019

Design Iteration

�37

[K. Quealy, 2013]

http://kpq.github.io/chartsnthings/2013/09/19-sketches-of-quarterback-timelines.html

D. Koop, CS 490/680, Fall 2019

Design Iteration

�38

[K. Quealy, 2013]

http://kpq.github.io/chartsnthings/2013/09/19-sketches-of-quarterback-timelines.html

D. Koop, CS 490/680, Fall 2019

Design Iteration

�39

[K. Quealy, 2013]

http://kpq.github.io/chartsnthings/2013/09/19-sketches-of-quarterback-timelines.html

D. Koop, CS 490/680, Fall 2019

Design
• Unlike a math problem, there are many different approaches for the

visualization of some data
• Need to have some way to discuss how to determine whether a visualization

is doing what we want
• Validation: Understand why a design is effective
- What problems can be effective
- Do this at different levels

�40

D. Koop, CS 490/680, Fall 2019

Data/task abstraction

Visual encoding/interaction idiom

Algorithm

Domain situation

Four Nested Levels of Design

�41

[Munzner, 2014]

D. Koop, CS 490/680, Fall 2019

Domain situation
You misunderstood their needs

You’re showing them the wrong thing

Visual encoding/interaction idiom
The way you show it doesn’t work

Algorithm
Your code is too slow

Data/task abstraction

Potential problems at each level

�42

[Munzner, 2014]

D. Koop, CS 490/680, Fall 2019

Threat Wrong problem

Threat Wrong task/data abstraction

Threat Ineffective encoding/interaction idiom

Threat Slow algorithm

Validate Observe and interview target users

Validate Analyze computational complexity

Validate Measure system time/memory

Validate Observe adoption rates

Validate Test on target users, collect anecdotal evidence of utility
Validate Field study, document human usage of deployed system

Validate Qualitative/quantitative result image analysis

Validate Lab study, measure human time/errors for task

Validate Justify encoding/interaction design

Implement system

 Test on any users, informal usability study

Validation at each level

�43

[Munzner, 2014]

D. Koop, CS 490/680, Fall 2019

Data
Collection

Visualizing
Context

Exploration
& ideation

Concept
Development

Prototyping Solution

User Observation
Interviews
Workshops

Sketching
Storyboarding

Quick sketching
User scenarios
Improvisation

Refined Sketching
Rendering
Animated sequences
Videos, model making

Data Collection: Synthesis: Explore & Ideate: Prototype:

Document solutions
Goals Requirements

Validate Understand
existing solutions

Explore lots of
 solutions

Communicate
Demonstrate

G
O

AL
S

TE
CH

NI
Q

UE
S

DE
SI

G
N

G
EN

EX

COLLECT RELATE DONATECREATE

Sheet 1 Sheets 2,3,4 Sheet 5

Fd
S

Fig. 2: Schematic that shows where the FdS design fits in with the
Genex model of Shneiderman [43] (collect, relate, donate and create)
and the design process of Sanders and Stappers’ [40].

These ideas would certainly adapt and be improved at later stages of
the design process. Nonetheless, the goal of the ‘early’ process is
exploratory. In fact, for the FdS we are not concerned with data col-
lection, but users do need to think about the data, and to consider,
synthesize and consolidate ideas in sheet 1. Users need to think over
the data and to consider the different parts of the data at this stage.
They explore different possible solutions (sheets 2,3 and 4) and finally
plan a prototype.

2.2 Sketching as a planning method for visualization
Many creative industries use sketching as a way to investigate, ex-
plore and plan different possible solutions. E.g., product, fashion and
graphic designers, architects and film-makers all sketch many differ-
ent possible solutions. Heller and Landers provide insights into about
fifty designers’ sketching practices based on excerpts of their sketch-
books [21]. The use of lo-fidelity sketching frees the user from worry-
ing about technical limitations or assumptions and encourages them
to explore different solutions. In fact architectural design was one
of the main inspirations for our work. Tovey writes “[designers use
sketches to] generate concepts, to externalize and visualize problems,
to facilitate problem solving and creative effort, revising and refining
ideas” [46]. In visualization, this has been less formally used. Users
often sketch and plan, but usually don’t follow a method, rather they
do it in an ad hoc way. Recent work by Keefe [26] and Jackson et al.
[23] demonstrate the power of sketching; they explore one designer
generating several solutions, and make comparison to other lo-fidelity
prototyping methods. Sketching is also used by Walny et al. [52],
where users directly sketch the data.

Another inspirational idea from architecture design was the idea of
the parti pris [17] (the big idea). The word comes from the French
prendre parti, a bias or a mind-made-up. In architectural-criticism the
parti is an assumption that informs the design; it is therefore the cen-
tral, most overarching concept that the design is portraying. In other
words, it is pivotal to making the design work. Let’s consider the ex-
ample of a parallel coordinate plot. In this case the parti is the fact
that axis are parallel and the data is plotted as polylines across the
axis. Each sheet of the FdS (apart from the first) have a focus/parti
segment.

Rettig [33] writes, “Lo-fi prototyping works because it effectively
educates developers to have a concern for usability and formative
evaluation, and because it maximizes the number of times you get to
refine your design before you must commit to code”. He encourages it-
eration and refinement at the prototype stage, saying that quality of the
final product comes through iterative refinement: “get the big things
right during lo-fi, and the little things will follow in future iterations”.
Rettig gave users a pragmatic set of instructions for programmers to
develop lo-fi prototypes on paper: assemble a kit (pens, paper, ruler,
scissors, etc.), set a deadline, draw models not illustrations. He also
suggests that one sheet of paper should be used per interface. Then
these paper interfaces could be tested with users. So, prepare the test,

Ideas

Filter

Categorize

Combine & Refine

Question

Sheet 1

(a)

Layout Information

Discussion
Focus / Parti

Operations

Sheet 2,3,4

(b)

Detail

Layout Information

Focus / Parti

Operations

Sheet 5

(c)

Fig. 3: The FdS sheets. (a) Sheet 1: Generate Ideas, filter, categorize,
combine & refine then question. (b) Sheets 2,3,4 with the five sections
in the 2-row 3-row format; (c) Sheet 5, the realization sheet where
Detail is included instead of Discussion.

Fig. 4: Five stages to the FdS: (S1) meet with client and consider
task; or contemplate task on own. (S2) Ideate and sketch small ideas.
(S3) Sketch and plan three alternative designs. (S4) Consider solutions
with client; or deliberate on own. (S5) Generate realization sheet, and
implement prototype. Discuss with client and re-iterate if necessary.

select users, prepare test scenarios, practice these scenarios, and allo-
cate roles (greeter, facilitator, computer, observers).

Our focus on sketching fits well with other work in the visualization
domain. For instance, Craft and Cairns [11] and Curtis and Vertel-
ney [13] encourage storyboarding and sketching prototypes for rapid
visualization interface development. Roam [34] presents a series of
visual sketching methods as a way to solve problems in business and
help developers crystallize ideas. Buxton et al. [7] encourage sketch-
ing for interface design.

Through sketching the design is recorded, and tells the story of the
fluid, ephemeral evolution of the idea [3]. Users often sketch multiple
designs on the same sheet of paper [18]. Even when the designer uses
a computer to create different 3D models, they often render the output
in a sketchy appearance. Similarly prototype visualization tools can
be rendered in a sketchy appearance (e.g., [28, 55]) while sketching
can also be an input device [42].

3 THE FDS METHODOLOGY

The FdS is a five-stage methodology (Fig. 4) comprising of five sheets
(Fig. 3), each sheet containing five parts. Explicitly, the first sheet is
the brainstorm (ideas) sheet (Fig. 3a); three design sheets (Fig. 3b)
and a realization sheet (Fig. 3c). The latter four sheets are similar in
construction. The methodology is summarized as follows:

1. Five stages. The whole process consists of five stages, (see Fig.
4). (1) the user considers the task (the user meets the client). (2)
The user thinks divergently and considers many alternative ideas.

Five Design-Sheet Methodology

�44

[J. Roberts et al., 2016]

D. Koop, CS 490/680, Fall 2019

Five Stages
1. Meet with client and consider task; or contemplate task on own.
2. Ideate and sketch small ideas.
3. Sketch and plan three alternative designs.
4. Consider solutions with client; or deliberate on own.
5. Generate realization sheet, and implement prototype. Discuss with client

and re-iterate if necessary.

�45

[J. Roberts et al., 2016]

D. Koop, CS 490/680, Fall 2019

Data
Collection

Visualizing
Context

Exploration
& ideation

Concept
Development

Prototyping Solution

User Observation
Interviews
Workshops

Sketching
Storyboarding

Quick sketching
User scenarios
Improvisation

Refined Sketching
Rendering
Animated sequences
Videos, model making

Data Collection: Synthesis: Explore & Ideate: Prototype:

Document solutions
Goals Requirements

Validate Understand
existing solutions

Explore lots of
 solutions

Communicate
Demonstrate

G
O

AL
S

TE
CH

NI
Q

UE
S

DE
SI

G
N

G
EN

EX

COLLECT RELATE DONATECREATE

Sheet 1 Sheets 2,3,4 Sheet 5

Fd
S

Fig. 2: Schematic that shows where the FdS design fits in with the
Genex model of Shneiderman [43] (collect, relate, donate and create)
and the design process of Sanders and Stappers’ [40].

These ideas would certainly adapt and be improved at later stages of
the design process. Nonetheless, the goal of the ‘early’ process is
exploratory. In fact, for the FdS we are not concerned with data col-
lection, but users do need to think about the data, and to consider,
synthesize and consolidate ideas in sheet 1. Users need to think over
the data and to consider the different parts of the data at this stage.
They explore different possible solutions (sheets 2,3 and 4) and finally
plan a prototype.

2.2 Sketching as a planning method for visualization
Many creative industries use sketching as a way to investigate, ex-
plore and plan different possible solutions. E.g., product, fashion and
graphic designers, architects and film-makers all sketch many differ-
ent possible solutions. Heller and Landers provide insights into about
fifty designers’ sketching practices based on excerpts of their sketch-
books [21]. The use of lo-fidelity sketching frees the user from worry-
ing about technical limitations or assumptions and encourages them
to explore different solutions. In fact architectural design was one
of the main inspirations for our work. Tovey writes “[designers use
sketches to] generate concepts, to externalize and visualize problems,
to facilitate problem solving and creative effort, revising and refining
ideas” [46]. In visualization, this has been less formally used. Users
often sketch and plan, but usually don’t follow a method, rather they
do it in an ad hoc way. Recent work by Keefe [26] and Jackson et al.
[23] demonstrate the power of sketching; they explore one designer
generating several solutions, and make comparison to other lo-fidelity
prototyping methods. Sketching is also used by Walny et al. [52],
where users directly sketch the data.

Another inspirational idea from architecture design was the idea of
the parti pris [17] (the big idea). The word comes from the French
prendre parti, a bias or a mind-made-up. In architectural-criticism the
parti is an assumption that informs the design; it is therefore the cen-
tral, most overarching concept that the design is portraying. In other
words, it is pivotal to making the design work. Let’s consider the ex-
ample of a parallel coordinate plot. In this case the parti is the fact
that axis are parallel and the data is plotted as polylines across the
axis. Each sheet of the FdS (apart from the first) have a focus/parti
segment.

Rettig [33] writes, “Lo-fi prototyping works because it effectively
educates developers to have a concern for usability and formative
evaluation, and because it maximizes the number of times you get to
refine your design before you must commit to code”. He encourages it-
eration and refinement at the prototype stage, saying that quality of the
final product comes through iterative refinement: “get the big things
right during lo-fi, and the little things will follow in future iterations”.
Rettig gave users a pragmatic set of instructions for programmers to
develop lo-fi prototypes on paper: assemble a kit (pens, paper, ruler,
scissors, etc.), set a deadline, draw models not illustrations. He also
suggests that one sheet of paper should be used per interface. Then
these paper interfaces could be tested with users. So, prepare the test,

Ideas

Filter

Categorize

Combine & Refine

Question

Sheet 1

(a)

Layout Information

Discussion
Focus / Parti

Operations

Sheet 2,3,4

(b)

Detail

Layout Information

Focus / Parti

Operations

Sheet 5

(c)

Fig. 3: The FdS sheets. (a) Sheet 1: Generate Ideas, filter, categorize,
combine & refine then question. (b) Sheets 2,3,4 with the five sections
in the 2-row 3-row format; (c) Sheet 5, the realization sheet where
Detail is included instead of Discussion.

Fig. 4: Five stages to the FdS: (S1) meet with client and consider
task; or contemplate task on own. (S2) Ideate and sketch small ideas.
(S3) Sketch and plan three alternative designs. (S4) Consider solutions
with client; or deliberate on own. (S5) Generate realization sheet, and
implement prototype. Discuss with client and re-iterate if necessary.

select users, prepare test scenarios, practice these scenarios, and allo-
cate roles (greeter, facilitator, computer, observers).

Our focus on sketching fits well with other work in the visualization
domain. For instance, Craft and Cairns [11] and Curtis and Vertel-
ney [13] encourage storyboarding and sketching prototypes for rapid
visualization interface development. Roam [34] presents a series of
visual sketching methods as a way to solve problems in business and
help developers crystallize ideas. Buxton et al. [7] encourage sketch-
ing for interface design.

Through sketching the design is recorded, and tells the story of the
fluid, ephemeral evolution of the idea [3]. Users often sketch multiple
designs on the same sheet of paper [18]. Even when the designer uses
a computer to create different 3D models, they often render the output
in a sketchy appearance. Similarly prototype visualization tools can
be rendered in a sketchy appearance (e.g., [28, 55]) while sketching
can also be an input device [42].

3 THE FDS METHODOLOGY

The FdS is a five-stage methodology (Fig. 4) comprising of five sheets
(Fig. 3), each sheet containing five parts. Explicitly, the first sheet is
the brainstorm (ideas) sheet (Fig. 3a); three design sheets (Fig. 3b)
and a realization sheet (Fig. 3c). The latter four sheets are similar in
construction. The methodology is summarized as follows:

1. Five stages. The whole process consists of five stages, (see Fig.
4). (1) the user considers the task (the user meets the client). (2)
The user thinks divergently and considers many alternative ideas.

Five Stages

�46

[J. Roberts et al., 2016]

D. Koop, CS 490/680, Fall 2019

Data
Collection

Visualizing
Context

Exploration
& ideation

Concept
Development

Prototyping Solution

User Observation
Interviews
Workshops

Sketching
Storyboarding

Quick sketching
User scenarios
Improvisation

Refined Sketching
Rendering
Animated sequences
Videos, model making

Data Collection: Synthesis: Explore & Ideate: Prototype:

Document solutions
Goals Requirements

Validate Understand
existing solutions

Explore lots of
 solutions

Communicate
Demonstrate

G
O

AL
S

TE
CH

NI
Q

UE
S

DE
SI

G
N

G
EN

EX

COLLECT RELATE DONATECREATE

Sheet 1 Sheets 2,3,4 Sheet 5

Fd
S

Fig. 2: Schematic that shows where the FdS design fits in with the
Genex model of Shneiderman [43] (collect, relate, donate and create)
and the design process of Sanders and Stappers’ [40].

These ideas would certainly adapt and be improved at later stages of
the design process. Nonetheless, the goal of the ‘early’ process is
exploratory. In fact, for the FdS we are not concerned with data col-
lection, but users do need to think about the data, and to consider,
synthesize and consolidate ideas in sheet 1. Users need to think over
the data and to consider the different parts of the data at this stage.
They explore different possible solutions (sheets 2,3 and 4) and finally
plan a prototype.

2.2 Sketching as a planning method for visualization
Many creative industries use sketching as a way to investigate, ex-
plore and plan different possible solutions. E.g., product, fashion and
graphic designers, architects and film-makers all sketch many differ-
ent possible solutions. Heller and Landers provide insights into about
fifty designers’ sketching practices based on excerpts of their sketch-
books [21]. The use of lo-fidelity sketching frees the user from worry-
ing about technical limitations or assumptions and encourages them
to explore different solutions. In fact architectural design was one
of the main inspirations for our work. Tovey writes “[designers use
sketches to] generate concepts, to externalize and visualize problems,
to facilitate problem solving and creative effort, revising and refining
ideas” [46]. In visualization, this has been less formally used. Users
often sketch and plan, but usually don’t follow a method, rather they
do it in an ad hoc way. Recent work by Keefe [26] and Jackson et al.
[23] demonstrate the power of sketching; they explore one designer
generating several solutions, and make comparison to other lo-fidelity
prototyping methods. Sketching is also used by Walny et al. [52],
where users directly sketch the data.

Another inspirational idea from architecture design was the idea of
the parti pris [17] (the big idea). The word comes from the French
prendre parti, a bias or a mind-made-up. In architectural-criticism the
parti is an assumption that informs the design; it is therefore the cen-
tral, most overarching concept that the design is portraying. In other
words, it is pivotal to making the design work. Let’s consider the ex-
ample of a parallel coordinate plot. In this case the parti is the fact
that axis are parallel and the data is plotted as polylines across the
axis. Each sheet of the FdS (apart from the first) have a focus/parti
segment.

Rettig [33] writes, “Lo-fi prototyping works because it effectively
educates developers to have a concern for usability and formative
evaluation, and because it maximizes the number of times you get to
refine your design before you must commit to code”. He encourages it-
eration and refinement at the prototype stage, saying that quality of the
final product comes through iterative refinement: “get the big things
right during lo-fi, and the little things will follow in future iterations”.
Rettig gave users a pragmatic set of instructions for programmers to
develop lo-fi prototypes on paper: assemble a kit (pens, paper, ruler,
scissors, etc.), set a deadline, draw models not illustrations. He also
suggests that one sheet of paper should be used per interface. Then
these paper interfaces could be tested with users. So, prepare the test,

Ideas

Filter

Categorize

Combine & Refine

Question

Sheet 1

(a)

Layout Information

Discussion
Focus / Parti

Operations

Sheet 2,3,4

(b)

Detail

Layout Information

Focus / Parti

Operations

Sheet 5

(c)

Fig. 3: The FdS sheets. (a) Sheet 1: Generate Ideas, filter, categorize,
combine & refine then question. (b) Sheets 2,3,4 with the five sections
in the 2-row 3-row format; (c) Sheet 5, the realization sheet where
Detail is included instead of Discussion.

Fig. 4: Five stages to the FdS: (S1) meet with client and consider
task; or contemplate task on own. (S2) Ideate and sketch small ideas.
(S3) Sketch and plan three alternative designs. (S4) Consider solutions
with client; or deliberate on own. (S5) Generate realization sheet, and
implement prototype. Discuss with client and re-iterate if necessary.

select users, prepare test scenarios, practice these scenarios, and allo-
cate roles (greeter, facilitator, computer, observers).

Our focus on sketching fits well with other work in the visualization
domain. For instance, Craft and Cairns [11] and Curtis and Vertel-
ney [13] encourage storyboarding and sketching prototypes for rapid
visualization interface development. Roam [34] presents a series of
visual sketching methods as a way to solve problems in business and
help developers crystallize ideas. Buxton et al. [7] encourage sketch-
ing for interface design.

Through sketching the design is recorded, and tells the story of the
fluid, ephemeral evolution of the idea [3]. Users often sketch multiple
designs on the same sheet of paper [18]. Even when the designer uses
a computer to create different 3D models, they often render the output
in a sketchy appearance. Similarly prototype visualization tools can
be rendered in a sketchy appearance (e.g., [28, 55]) while sketching
can also be an input device [42].

3 THE FDS METHODOLOGY

The FdS is a five-stage methodology (Fig. 4) comprising of five sheets
(Fig. 3), each sheet containing five parts. Explicitly, the first sheet is
the brainstorm (ideas) sheet (Fig. 3a); three design sheets (Fig. 3b)
and a realization sheet (Fig. 3c). The latter four sheets are similar in
construction. The methodology is summarized as follows:

1. Five stages. The whole process consists of five stages, (see Fig.
4). (1) the user considers the task (the user meets the client). (2)
The user thinks divergently and considers many alternative ideas.

The Five Sheets

�47

[J. Roberts et al., 2016]
Ideation Alternative Designs Realization

D. Koop, CS 490/680, Fall 2019 Fig. 6: An example of the FdS are shown on the left, with a picture of the final prototype on the right. Created for the Information Visualization
module as part of the MSc course. The student chose to investigate data regarding University access for disabled students.

(a) Variables. List the data variables. What are the parame-
ters? Give them names. What are dependent and indepen-
dent variables?

(b) Types of data. What data-types are in the data? How are
they stored? What is the access to the data (API, JSON
file etc.)? What data-structure holds the data (e.g., is it
hierarchical)?

(c) Categories. Are the variables categorical (nominal or or-
dinal or ranks), are they quantitative (discrete or continu-
ous)?

(d) Temporal. Is the data streaming data? How was it stored
(all at one time or over several years)?

(e) Range & distribution. What is the distribution of the data?
Few values, small size, evenly spread, sparse or dense?

4. Resources. Finally the user needs to gather resources together
to create the FdS, e.g., colored pens or pencils, ruler and paper.

3.3 FdS Sheet 1: Ideation
Ideation is the process of creating new ideas. But where do ideas come
from? How do users actually think up ten, twenty or a hundred ideas?
How do new concepts get ‘born’? The five parts of sheet 1 leads the
user to think divergently, to first generate ideas, then filter and cate-
gorize them, followed by combining and refining them, before finally
questioning their suitability to the task, see Fig. 3

Ideas emerge by thinking, talking with other people, reading rele-
vant literature, gaining inspiration from other domains, resting and not
rushing, reflecting and collaborating. This theory is summarized in
the following literature: Relax: Good ideas come through long, slow
and careful thought, says Johnson [25] (he talks about a ‘slow hunch’).
Re-work: Webb [57] says we should gather-material, think, relax and
re-work. This reflection stage is extremely important in many domains
(we often encourage our students to write their work and then leave it
overnight before reading it again). Provoke: e.g., ask difficult ques-
tions, think of impossible solutions. Persist: Shneiderman [43] agrees
and says it’s “1% inspiration and 99% perspiration”. Iterate & Re-

fine: evaluate, revisit assumptions and re-design [10]. Different per-

sonalities: De Bono encourages us to take on different personalities in
his six thinking hats [15]. Collaborate: Work with different people,
with different skills and knowledge [48]. Dissimilar ideas: Glue dis-
similar ideas together. E.g., Johnson [25] suggests finding dissimilar
ideas and joining them together and through this joining up of differ-
ent thoughts new ideas can be formed. de Bono’s ‘green-hat’ suggests
using random pages of a book to inspire [14]. Transference: Look
to other subjects for inspiration, e.g., biomimicry [38]. Research:

Discover every idea and every solution so far. Look at other ideas
and learn from others’ work [43]. Metaphors: Generate abstractions
and use analogies. Metaphors help users to instantly understand the
corresponding idea [38]. Ziemkiewicz and Kosara [58] suggest that
metaphors work both ways: they both inspire and are needed for in-
terpretation. Make mistakes: Good ideas can come from serendipity.
Either try to fix these mistakes or use the result to your favor. There are
well written examples where scientists make errors or have accidents
and it is these that are actually good ideas: e.g., sticky-note glue or the
discovery of penicillin [54]. Reverse/Invert: Reverse, flip or invert an

idea to generate others.
As the user goes through this exercise they need to think-through

different possibilities, but also keep their mind on the task. Usually the
user does each action in turn, and decides whether they have completed
it to a satisfactory level before moving onto the next task. But the very
nature of considering the next task may put them back to an earlier
stage. E.g., by categorizing the ideas the user may realize that there is
a missing category and thus move back to drawing more ideas. That
themselves can be categorized. Indeed the point of each stage is not
only divergent and convergent thinking, but also to provoke new ideas
and increase the potential set of ideas.

1. Ideate. Users need to sketch as many ideas as possible. These
are ‘mini-ideas’. They are lots of little drawings. While they
could be full solutions, they are more likely to be ‘insufficiently
thought out’ or ‘half-baked’ ideas, short concepts, or even wacky
concepts. At the start, the point is to articulate different potential
ideas. The thoughts should be driven by the task and the user
should have ‘half an eye’ on the goal (to develop a tool that will
visualize data), and should hold off criticizing the ideas because
this will be done later. When a substantial1 amount of ideas have
been made the user moves on to filter.

2. Filter. Users should start to remove any duplicated ideas, or con-
cepts that are irrelevant or absolutely impossible. Users can use
these negative thoughts positively, such that if they are impossi-
ble then they should consider how they could they be fixed. In
practice the sketches are being annotated rather than fully deleted
(a single line crossed through a design will suffice). When con-
sidering these aspects, users need to think what is suitable to the
task, and how new ideas can be generated from these deletions
or duplications.

3. Categorize. Users need to consider what is similar and what is
different. Annotation can be used to group similar ideas together.
Categories change and develop, therefore users should not worry
about the fine details of categorization: it is merely a tool to
facilitate the exploration of ideas. While this operation converges
(reduces) the designs, users should consider ‘what is missing’.
E.g., is there another category of designs that should be present?
What is this category? Is it relevant?

4. Combine & refine. Users need to organize the mini-ideas into
bigger solutions. For instance, look to develop Multiple Coor-
dinate Views [35]. Think what visualizations complement each
other. E.g., spatial (map) with temporal (timeline), or overview
with detail. Indeed the Space-time cube is an example of com-
bining ideas [1]. Refine the ideas, making sure they use suitable
colors [19] or other best practice [53]. Draw new combinations,
look to refining or changing any designs; start to consider which
three ideas will be planned in more detail on Sheets 2,3,4. Draw
or annotate circles around three possible choices.

5. Question. Users should reflect on what has been created. Do so-
lutions meet the task? Are they effective designs? Do they mis-

1It is difficult to quantify the number of mini-ideas required; but the more
ideas that are sketched, the easier the next stages of filter, categorize etc. will
be. Three is too few; 10 may be ok; 20 would be better.

Example: University Access for Disabled Students

�48

[J. Roberts et al., 2016]

D. Koop, CS 490/680, Fall 2019Fig. 6: An example of the FdS are shown on the left, with a picture of the final prototype on the right. Created for the Information Visualization
module as part of the MSc course. The student chose to investigate data regarding University access for disabled students.

(a) Variables. List the data variables. What are the parame-
ters? Give them names. What are dependent and indepen-
dent variables?

(b) Types of data. What data-types are in the data? How are
they stored? What is the access to the data (API, JSON
file etc.)? What data-structure holds the data (e.g., is it
hierarchical)?

(c) Categories. Are the variables categorical (nominal or or-
dinal or ranks), are they quantitative (discrete or continu-
ous)?

(d) Temporal. Is the data streaming data? How was it stored
(all at one time or over several years)?

(e) Range & distribution. What is the distribution of the data?
Few values, small size, evenly spread, sparse or dense?

4. Resources. Finally the user needs to gather resources together
to create the FdS, e.g., colored pens or pencils, ruler and paper.

3.3 FdS Sheet 1: Ideation
Ideation is the process of creating new ideas. But where do ideas come
from? How do users actually think up ten, twenty or a hundred ideas?
How do new concepts get ‘born’? The five parts of sheet 1 leads the
user to think divergently, to first generate ideas, then filter and cate-
gorize them, followed by combining and refining them, before finally
questioning their suitability to the task, see Fig. 3

Ideas emerge by thinking, talking with other people, reading rele-
vant literature, gaining inspiration from other domains, resting and not
rushing, reflecting and collaborating. This theory is summarized in
the following literature: Relax: Good ideas come through long, slow
and careful thought, says Johnson [25] (he talks about a ‘slow hunch’).
Re-work: Webb [57] says we should gather-material, think, relax and
re-work. This reflection stage is extremely important in many domains
(we often encourage our students to write their work and then leave it
overnight before reading it again). Provoke: e.g., ask difficult ques-
tions, think of impossible solutions. Persist: Shneiderman [43] agrees
and says it’s “1% inspiration and 99% perspiration”. Iterate & Re-

fine: evaluate, revisit assumptions and re-design [10]. Different per-

sonalities: De Bono encourages us to take on different personalities in
his six thinking hats [15]. Collaborate: Work with different people,
with different skills and knowledge [48]. Dissimilar ideas: Glue dis-
similar ideas together. E.g., Johnson [25] suggests finding dissimilar
ideas and joining them together and through this joining up of differ-
ent thoughts new ideas can be formed. de Bono’s ‘green-hat’ suggests
using random pages of a book to inspire [14]. Transference: Look
to other subjects for inspiration, e.g., biomimicry [38]. Research:

Discover every idea and every solution so far. Look at other ideas
and learn from others’ work [43]. Metaphors: Generate abstractions
and use analogies. Metaphors help users to instantly understand the
corresponding idea [38]. Ziemkiewicz and Kosara [58] suggest that
metaphors work both ways: they both inspire and are needed for in-
terpretation. Make mistakes: Good ideas can come from serendipity.
Either try to fix these mistakes or use the result to your favor. There are
well written examples where scientists make errors or have accidents
and it is these that are actually good ideas: e.g., sticky-note glue or the
discovery of penicillin [54]. Reverse/Invert: Reverse, flip or invert an

idea to generate others.
As the user goes through this exercise they need to think-through

different possibilities, but also keep their mind on the task. Usually the
user does each action in turn, and decides whether they have completed
it to a satisfactory level before moving onto the next task. But the very
nature of considering the next task may put them back to an earlier
stage. E.g., by categorizing the ideas the user may realize that there is
a missing category and thus move back to drawing more ideas. That
themselves can be categorized. Indeed the point of each stage is not
only divergent and convergent thinking, but also to provoke new ideas
and increase the potential set of ideas.

1. Ideate. Users need to sketch as many ideas as possible. These
are ‘mini-ideas’. They are lots of little drawings. While they
could be full solutions, they are more likely to be ‘insufficiently
thought out’ or ‘half-baked’ ideas, short concepts, or even wacky
concepts. At the start, the point is to articulate different potential
ideas. The thoughts should be driven by the task and the user
should have ‘half an eye’ on the goal (to develop a tool that will
visualize data), and should hold off criticizing the ideas because
this will be done later. When a substantial1 amount of ideas have
been made the user moves on to filter.

2. Filter. Users should start to remove any duplicated ideas, or con-
cepts that are irrelevant or absolutely impossible. Users can use
these negative thoughts positively, such that if they are impossi-
ble then they should consider how they could they be fixed. In
practice the sketches are being annotated rather than fully deleted
(a single line crossed through a design will suffice). When con-
sidering these aspects, users need to think what is suitable to the
task, and how new ideas can be generated from these deletions
or duplications.

3. Categorize. Users need to consider what is similar and what is
different. Annotation can be used to group similar ideas together.
Categories change and develop, therefore users should not worry
about the fine details of categorization: it is merely a tool to
facilitate the exploration of ideas. While this operation converges
(reduces) the designs, users should consider ‘what is missing’.
E.g., is there another category of designs that should be present?
What is this category? Is it relevant?

4. Combine & refine. Users need to organize the mini-ideas into
bigger solutions. For instance, look to develop Multiple Coor-
dinate Views [35]. Think what visualizations complement each
other. E.g., spatial (map) with temporal (timeline), or overview
with detail. Indeed the Space-time cube is an example of com-
bining ideas [1]. Refine the ideas, making sure they use suitable
colors [19] or other best practice [53]. Draw new combinations,
look to refining or changing any designs; start to consider which
three ideas will be planned in more detail on Sheets 2,3,4. Draw
or annotate circles around three possible choices.

5. Question. Users should reflect on what has been created. Do so-
lutions meet the task? Are they effective designs? Do they mis-

1It is difficult to quantify the number of mini-ideas required; but the more
ideas that are sketched, the easier the next stages of filter, categorize etc. will
be. Three is too few; 10 may be ok; 20 would be better.

Sheets 2-4

�49

[J. Roberts et al., 2016]

D. Koop, CS 490/680, Fall 2019Fig. 6: An example of the FdS are shown on the left, with a picture of the final prototype on the right. Created for the Information Visualization
module as part of the MSc course. The student chose to investigate data regarding University access for disabled students.

(a) Variables. List the data variables. What are the parame-
ters? Give them names. What are dependent and indepen-
dent variables?

(b) Types of data. What data-types are in the data? How are
they stored? What is the access to the data (API, JSON
file etc.)? What data-structure holds the data (e.g., is it
hierarchical)?

(c) Categories. Are the variables categorical (nominal or or-
dinal or ranks), are they quantitative (discrete or continu-
ous)?

(d) Temporal. Is the data streaming data? How was it stored
(all at one time or over several years)?

(e) Range & distribution. What is the distribution of the data?
Few values, small size, evenly spread, sparse or dense?

4. Resources. Finally the user needs to gather resources together
to create the FdS, e.g., colored pens or pencils, ruler and paper.

3.3 FdS Sheet 1: Ideation
Ideation is the process of creating new ideas. But where do ideas come
from? How do users actually think up ten, twenty or a hundred ideas?
How do new concepts get ‘born’? The five parts of sheet 1 leads the
user to think divergently, to first generate ideas, then filter and cate-
gorize them, followed by combining and refining them, before finally
questioning their suitability to the task, see Fig. 3

Ideas emerge by thinking, talking with other people, reading rele-
vant literature, gaining inspiration from other domains, resting and not
rushing, reflecting and collaborating. This theory is summarized in
the following literature: Relax: Good ideas come through long, slow
and careful thought, says Johnson [25] (he talks about a ‘slow hunch’).
Re-work: Webb [57] says we should gather-material, think, relax and
re-work. This reflection stage is extremely important in many domains
(we often encourage our students to write their work and then leave it
overnight before reading it again). Provoke: e.g., ask difficult ques-
tions, think of impossible solutions. Persist: Shneiderman [43] agrees
and says it’s “1% inspiration and 99% perspiration”. Iterate & Re-

fine: evaluate, revisit assumptions and re-design [10]. Different per-

sonalities: De Bono encourages us to take on different personalities in
his six thinking hats [15]. Collaborate: Work with different people,
with different skills and knowledge [48]. Dissimilar ideas: Glue dis-
similar ideas together. E.g., Johnson [25] suggests finding dissimilar
ideas and joining them together and through this joining up of differ-
ent thoughts new ideas can be formed. de Bono’s ‘green-hat’ suggests
using random pages of a book to inspire [14]. Transference: Look
to other subjects for inspiration, e.g., biomimicry [38]. Research:

Discover every idea and every solution so far. Look at other ideas
and learn from others’ work [43]. Metaphors: Generate abstractions
and use analogies. Metaphors help users to instantly understand the
corresponding idea [38]. Ziemkiewicz and Kosara [58] suggest that
metaphors work both ways: they both inspire and are needed for in-
terpretation. Make mistakes: Good ideas can come from serendipity.
Either try to fix these mistakes or use the result to your favor. There are
well written examples where scientists make errors or have accidents
and it is these that are actually good ideas: e.g., sticky-note glue or the
discovery of penicillin [54]. Reverse/Invert: Reverse, flip or invert an

idea to generate others.
As the user goes through this exercise they need to think-through

different possibilities, but also keep their mind on the task. Usually the
user does each action in turn, and decides whether they have completed
it to a satisfactory level before moving onto the next task. But the very
nature of considering the next task may put them back to an earlier
stage. E.g., by categorizing the ideas the user may realize that there is
a missing category and thus move back to drawing more ideas. That
themselves can be categorized. Indeed the point of each stage is not
only divergent and convergent thinking, but also to provoke new ideas
and increase the potential set of ideas.

1. Ideate. Users need to sketch as many ideas as possible. These
are ‘mini-ideas’. They are lots of little drawings. While they
could be full solutions, they are more likely to be ‘insufficiently
thought out’ or ‘half-baked’ ideas, short concepts, or even wacky
concepts. At the start, the point is to articulate different potential
ideas. The thoughts should be driven by the task and the user
should have ‘half an eye’ on the goal (to develop a tool that will
visualize data), and should hold off criticizing the ideas because
this will be done later. When a substantial1 amount of ideas have
been made the user moves on to filter.

2. Filter. Users should start to remove any duplicated ideas, or con-
cepts that are irrelevant or absolutely impossible. Users can use
these negative thoughts positively, such that if they are impossi-
ble then they should consider how they could they be fixed. In
practice the sketches are being annotated rather than fully deleted
(a single line crossed through a design will suffice). When con-
sidering these aspects, users need to think what is suitable to the
task, and how new ideas can be generated from these deletions
or duplications.

3. Categorize. Users need to consider what is similar and what is
different. Annotation can be used to group similar ideas together.
Categories change and develop, therefore users should not worry
about the fine details of categorization: it is merely a tool to
facilitate the exploration of ideas. While this operation converges
(reduces) the designs, users should consider ‘what is missing’.
E.g., is there another category of designs that should be present?
What is this category? Is it relevant?

4. Combine & refine. Users need to organize the mini-ideas into
bigger solutions. For instance, look to develop Multiple Coor-
dinate Views [35]. Think what visualizations complement each
other. E.g., spatial (map) with temporal (timeline), or overview
with detail. Indeed the Space-time cube is an example of com-
bining ideas [1]. Refine the ideas, making sure they use suitable
colors [19] or other best practice [53]. Draw new combinations,
look to refining or changing any designs; start to consider which
three ideas will be planned in more detail on Sheets 2,3,4. Draw
or annotate circles around three possible choices.

5. Question. Users should reflect on what has been created. Do so-
lutions meet the task? Are they effective designs? Do they mis-

1It is difficult to quantify the number of mini-ideas required; but the more
ideas that are sketched, the easier the next stages of filter, categorize etc. will
be. Three is too few; 10 may be ok; 20 would be better.

Sheet 5

�50

[J. Roberts et al., 2016]

D. Koop, CS 490/680, Fall 2019Fig. 6: An example of the FdS are shown on the left, with a picture of the final prototype on the right. Created for the Information Visualization
module as part of the MSc course. The student chose to investigate data regarding University access for disabled students.

(a) Variables. List the data variables. What are the parame-
ters? Give them names. What are dependent and indepen-
dent variables?

(b) Types of data. What data-types are in the data? How are
they stored? What is the access to the data (API, JSON
file etc.)? What data-structure holds the data (e.g., is it
hierarchical)?

(c) Categories. Are the variables categorical (nominal or or-
dinal or ranks), are they quantitative (discrete or continu-
ous)?

(d) Temporal. Is the data streaming data? How was it stored
(all at one time or over several years)?

(e) Range & distribution. What is the distribution of the data?
Few values, small size, evenly spread, sparse or dense?

4. Resources. Finally the user needs to gather resources together
to create the FdS, e.g., colored pens or pencils, ruler and paper.

3.3 FdS Sheet 1: Ideation
Ideation is the process of creating new ideas. But where do ideas come
from? How do users actually think up ten, twenty or a hundred ideas?
How do new concepts get ‘born’? The five parts of sheet 1 leads the
user to think divergently, to first generate ideas, then filter and cate-
gorize them, followed by combining and refining them, before finally
questioning their suitability to the task, see Fig. 3

Ideas emerge by thinking, talking with other people, reading rele-
vant literature, gaining inspiration from other domains, resting and not
rushing, reflecting and collaborating. This theory is summarized in
the following literature: Relax: Good ideas come through long, slow
and careful thought, says Johnson [25] (he talks about a ‘slow hunch’).
Re-work: Webb [57] says we should gather-material, think, relax and
re-work. This reflection stage is extremely important in many domains
(we often encourage our students to write their work and then leave it
overnight before reading it again). Provoke: e.g., ask difficult ques-
tions, think of impossible solutions. Persist: Shneiderman [43] agrees
and says it’s “1% inspiration and 99% perspiration”. Iterate & Re-

fine: evaluate, revisit assumptions and re-design [10]. Different per-

sonalities: De Bono encourages us to take on different personalities in
his six thinking hats [15]. Collaborate: Work with different people,
with different skills and knowledge [48]. Dissimilar ideas: Glue dis-
similar ideas together. E.g., Johnson [25] suggests finding dissimilar
ideas and joining them together and through this joining up of differ-
ent thoughts new ideas can be formed. de Bono’s ‘green-hat’ suggests
using random pages of a book to inspire [14]. Transference: Look
to other subjects for inspiration, e.g., biomimicry [38]. Research:

Discover every idea and every solution so far. Look at other ideas
and learn from others’ work [43]. Metaphors: Generate abstractions
and use analogies. Metaphors help users to instantly understand the
corresponding idea [38]. Ziemkiewicz and Kosara [58] suggest that
metaphors work both ways: they both inspire and are needed for in-
terpretation. Make mistakes: Good ideas can come from serendipity.
Either try to fix these mistakes or use the result to your favor. There are
well written examples where scientists make errors or have accidents
and it is these that are actually good ideas: e.g., sticky-note glue or the
discovery of penicillin [54]. Reverse/Invert: Reverse, flip or invert an

idea to generate others.
As the user goes through this exercise they need to think-through

different possibilities, but also keep their mind on the task. Usually the
user does each action in turn, and decides whether they have completed
it to a satisfactory level before moving onto the next task. But the very
nature of considering the next task may put them back to an earlier
stage. E.g., by categorizing the ideas the user may realize that there is
a missing category and thus move back to drawing more ideas. That
themselves can be categorized. Indeed the point of each stage is not
only divergent and convergent thinking, but also to provoke new ideas
and increase the potential set of ideas.

1. Ideate. Users need to sketch as many ideas as possible. These
are ‘mini-ideas’. They are lots of little drawings. While they
could be full solutions, they are more likely to be ‘insufficiently
thought out’ or ‘half-baked’ ideas, short concepts, or even wacky
concepts. At the start, the point is to articulate different potential
ideas. The thoughts should be driven by the task and the user
should have ‘half an eye’ on the goal (to develop a tool that will
visualize data), and should hold off criticizing the ideas because
this will be done later. When a substantial1 amount of ideas have
been made the user moves on to filter.

2. Filter. Users should start to remove any duplicated ideas, or con-
cepts that are irrelevant or absolutely impossible. Users can use
these negative thoughts positively, such that if they are impossi-
ble then they should consider how they could they be fixed. In
practice the sketches are being annotated rather than fully deleted
(a single line crossed through a design will suffice). When con-
sidering these aspects, users need to think what is suitable to the
task, and how new ideas can be generated from these deletions
or duplications.

3. Categorize. Users need to consider what is similar and what is
different. Annotation can be used to group similar ideas together.
Categories change and develop, therefore users should not worry
about the fine details of categorization: it is merely a tool to
facilitate the exploration of ideas. While this operation converges
(reduces) the designs, users should consider ‘what is missing’.
E.g., is there another category of designs that should be present?
What is this category? Is it relevant?

4. Combine & refine. Users need to organize the mini-ideas into
bigger solutions. For instance, look to develop Multiple Coor-
dinate Views [35]. Think what visualizations complement each
other. E.g., spatial (map) with temporal (timeline), or overview
with detail. Indeed the Space-time cube is an example of com-
bining ideas [1]. Refine the ideas, making sure they use suitable
colors [19] or other best practice [53]. Draw new combinations,
look to refining or changing any designs; start to consider which
three ideas will be planned in more detail on Sheets 2,3,4. Draw
or annotate circles around three possible choices.

5. Question. Users should reflect on what has been created. Do so-
lutions meet the task? Are they effective designs? Do they mis-

1It is difficult to quantify the number of mini-ideas required; but the more
ideas that are sketched, the easier the next stages of filter, categorize etc. will
be. Three is too few; 10 may be ok; 20 would be better.

Prototype

�51

[J. Roberts et al., 2016]

