
Data Visualization (CSCI 490/680)

Sets 

Dr. Maoyuan Sun 
(slides prepared by Dr. Koop)

D. Koop, CS 490/680, Fall 2019



D. Koop, CS 490/680, Fall 2019 �2

Announcements



D. Koop, CS 490/680, Fall 2019

Project Design
• Start working on turning your visualization ideas into designs 
• Sketch 
• Options: 
- Try vastly different options 
- Refine an initial idea
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Assignment 4
• Create Choropleth Maps 
- Deal with projections and GeoJSON Data 
- Select appropriate colormaps 

• [CS 680 Only] Part 3 is using other libraries, 
you only need to do one option 

• Example image at the right is not a solution 
to Part 3, needs proper colormapping!
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http://faculty.cs.niu.edu/~dakoop/cs680-2019fa/assignment4.html
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Set and Cluster Visualization
• Set and cluster visualization not 

covered in depth in the textbook 
• Nice summary of set visualization in 

the following paper: 
- Visualizing Sets and Set-typed 

Data, B. Alsallakh et al., 2014 
- Also: http://www.setviz.net
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https://kar.kent.ac.uk/39007/1/STAR_paper.pdf
https://kar.kent.ac.uk/39007/1/STAR_paper.pdf
http://www.setviz.net
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Sets
• A set is a collection of unique objects 
- Generally unordered 
- Example: S = {"apple", "pear", "orange"}) 

• What questions can we ask about sets? 
- Containment: Is some item x in S? 
- Intersection: what items are in both S and T? 
- Union: what items are in either S or T? 
- Difference: what items are in S but not T? 
- …
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Set-typed Data - Characteristics
• Set Algebra 
- Set operations, Cartesian product, power set, ... 

• Set similarities 
- Similarity measures (Jaccard, Tversky, etc.) 

• Element degree 
- exclusive set membership 

• Dimensionality 
- 2^n possible combinations 
- 2^(2^n) possible queries
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[B. Alsallakh et al., 2014]
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Set-typed Data - Representations
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[B. Alsallakh et al., 2014]

Boolean Attributes Multi-valued Attribute Element-Set Tuples
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Set-typed Data - Representations
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[B. Alsallakh et al., 2014]

Adjacency Matrix Adjacency List Edge List

Boolean Attributes Multi-valued Attribute Element-Set Tuples
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What are tasks with set data?

[All of the following Slides from B. Alsallakh et al., 2014]
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Venn Diagram
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[http://askville.amazon.com/idea-Venn-diagram/AnswerViewer.do?requestId=8420613]

http://askville.amazon.com/idea-Venn-diagram/AnswerViewer.do?requestId=8420613
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Venn Diagram?
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[viz.wtf]

http://viz.wtf/post/95470812927/this-deserves-an-all-time-high-score
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Scalability
• How to show the intersection of four sets? 8? 
• Euler Diagrams: only show intersections/containments that exist 
• Still run into scalability issues

�40

[Wikipedia]

Ireland
(island)

Ireland
(state)

object to path (ellipses and text); stroke to path (text only)
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What about cardinality?
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[B. Alsallakh et al., 2014]

Area encoding Using glyphs
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Venn Diagram Visualizations

InfoVis

VA SciVis

InfoVis

VA SciVis

InfoVis

VA SciVis

show only required set relations show unwanted set relations

show set relation cardinalities
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[B. Alsallakh et al., 2014]
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What if we don't worry so much about nice circles/
ellipses?
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Untangling Euler Diagrams
Nathalie Henry Riche and Tim Dwyer

Fig. 1. Compact Rectangular Euler Diagram(left) and Euler Diagram with Duplications(right)

Abstract—In many common data analysis scenarios the data elements are logically grouped into sets. Venn and Euler style diagrams
are a common visual representation of such set membership where the data elements are represented by labels or glyphs and sets are
indicated by boundaries surrounding their members. Generating such diagrams automatically such that set regions do not intersect
unless the corresponding sets have a non-empty intersection is a difficult problem. Further, it may be impossible in some cases if
regions are required to be continuous and convex. Several approaches exist to draw such set regions using more complex shapes,
however, the resulting diagrams can be difficult to interpret. In this paper we present two novel approaches for simplifying a complex
collection of intersecting sets into a strict hierarchy that can be more easily automatically arranged and drawn (Figure 1). In the first
approach, we use compact rectangular shapes for drawing each set, attempting to improve the readability of the set intersections. In
the second approach, we avoid drawing intersecting set regions by duplicating elements belonging to multiple sets. We compared
both of our techniques to the traditional non-convex region technique using five readability tasks. Our results show that the compact
rectangular shapes technique was often preferred by experimental subjects even though the use of duplications dramatically improves
the accuracy and performance time for most of our tasks. In addition to general set representation our techniques are also applicable
to visualization of networks with intersecting clusters of nodes.

Index Terms—Information Visualization, Euler diagrams, Set Visualization, Graph Visualization

1 INTRODUCTION

Grouping data elements in sets (or clusters) is a common task in many
analysis scenarios. For example, when analyzing documents, lin-
guists often group words into semantic categories and topics. Simi-
larly, when analyzing social networks, sociologists group people into
communities and study their relationships. There is a wide range of
techniques to compute sets (or clusters) based on similarity data [22].
The topic of this paper is visual representations of data elements such
that their set membership is shown by region boundaries. When sets
intersect in complex ways, this type of representation becomes a chal-
lenging problem in information visualization.

The common visual representation of sets are Venn and Euler style
diagrams [14]. Venn diagrams represent all sets and their possible
intersections with overlapping elliptical shapes. Euler diagrams are a
relaxation of Venn diagrams in which the shapes corresponding to sets
are not required to overlap if their corresponding intersection is empty.
We identify two main challenges when drawing Euler diagrams:
1) Complexity of set regions. Gestalt theory [27] suggests that con-
vexity of regions plays a key role in perception [23] and in our ability
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to complete shapes when partially occluded [28]. In addition, a few
experimental results show that Euler Diagrams with convex shapes are
more effective [3]. However, it can be a difficult challenge to draw Eu-
ler diagrams using convex set regions such that there are no overlaps
between regions where the corresponding sets have an empty intersec-
tion [33].
2) Drawing data elements. Most work on drawing Euler diagrams
focuses on classifying the sets in a particular dataset as drawable un-
der constraints such as elliptical or convex regions [6]. Such work is
rarely concerned with the problem of ensuring that sufficient space is
provided inside the regions to show item labels or glyphs. Although
there are applications (for example in biology) where only the sets
themselves and their intersections need be shown [24], visually repre-
senting the data elements belonging to the sets is important in more
general information visualization applications. For example, when
analyzing communities in social networks or when studying articles
grouped by keywords, it is important to identify which elements are in
multiple sets.

Recent work in Information Visualization has attempted to address
the challenge of drawing both sets and data elements. Simonetto et

al. [31] describe how to automatically generate drawings with sets
represented as non-convex regions as well as placing labelled ele-
ments inside these regions automatically. They demonstrate how their
technique can draw previously undrawable Euler Diagrams. A sec-
ond article from Collins et al. [7] presents a technique to generate
set boundaries given a fixed layout of their elements. This technique
can recompute boundaries around items involved in the same set effi-

Compact Euler Diagrams: Use edges
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Untangling Euler Diagrams
Nathalie Henry Riche and Tim Dwyer

Fig. 1. Compact Rectangular Euler Diagram(left) and Euler Diagram with Duplications(right)

Abstract—In many common data analysis scenarios the data elements are logically grouped into sets. Venn and Euler style diagrams
are a common visual representation of such set membership where the data elements are represented by labels or glyphs and sets are
indicated by boundaries surrounding their members. Generating such diagrams automatically such that set regions do not intersect
unless the corresponding sets have a non-empty intersection is a difficult problem. Further, it may be impossible in some cases if
regions are required to be continuous and convex. Several approaches exist to draw such set regions using more complex shapes,
however, the resulting diagrams can be difficult to interpret. In this paper we present two novel approaches for simplifying a complex
collection of intersecting sets into a strict hierarchy that can be more easily automatically arranged and drawn (Figure 1). In the first
approach, we use compact rectangular shapes for drawing each set, attempting to improve the readability of the set intersections. In
the second approach, we avoid drawing intersecting set regions by duplicating elements belonging to multiple sets. We compared
both of our techniques to the traditional non-convex region technique using five readability tasks. Our results show that the compact
rectangular shapes technique was often preferred by experimental subjects even though the use of duplications dramatically improves
the accuracy and performance time for most of our tasks. In addition to general set representation our techniques are also applicable
to visualization of networks with intersecting clusters of nodes.

Index Terms—Information Visualization, Euler diagrams, Set Visualization, Graph Visualization

1 INTRODUCTION

Grouping data elements in sets (or clusters) is a common task in many
analysis scenarios. For example, when analyzing documents, lin-
guists often group words into semantic categories and topics. Simi-
larly, when analyzing social networks, sociologists group people into
communities and study their relationships. There is a wide range of
techniques to compute sets (or clusters) based on similarity data [22].
The topic of this paper is visual representations of data elements such
that their set membership is shown by region boundaries. When sets
intersect in complex ways, this type of representation becomes a chal-
lenging problem in information visualization.

The common visual representation of sets are Venn and Euler style
diagrams [14]. Venn diagrams represent all sets and their possible
intersections with overlapping elliptical shapes. Euler diagrams are a
relaxation of Venn diagrams in which the shapes corresponding to sets
are not required to overlap if their corresponding intersection is empty.
We identify two main challenges when drawing Euler diagrams:
1) Complexity of set regions. Gestalt theory [27] suggests that con-
vexity of regions plays a key role in perception [23] and in our ability
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to complete shapes when partially occluded [28]. In addition, a few
experimental results show that Euler Diagrams with convex shapes are
more effective [3]. However, it can be a difficult challenge to draw Eu-
ler diagrams using convex set regions such that there are no overlaps
between regions where the corresponding sets have an empty intersec-
tion [33].
2) Drawing data elements. Most work on drawing Euler diagrams
focuses on classifying the sets in a particular dataset as drawable un-
der constraints such as elliptical or convex regions [6]. Such work is
rarely concerned with the problem of ensuring that sufficient space is
provided inside the regions to show item labels or glyphs. Although
there are applications (for example in biology) where only the sets
themselves and their intersections need be shown [24], visually repre-
senting the data elements belonging to the sets is important in more
general information visualization applications. For example, when
analyzing communities in social networks or when studying articles
grouped by keywords, it is important to identify which elements are in
multiple sets.

Recent work in Information Visualization has attempted to address
the challenge of drawing both sets and data elements. Simonetto et

al. [31] describe how to automatically generate drawings with sets
represented as non-convex regions as well as placing labelled ele-
ments inside these regions automatically. They demonstrate how their
technique can draw previously undrawable Euler Diagrams. A sec-
ond article from Collins et al. [7] presents a technique to generate
set boundaries given a fixed layout of their elements. This technique
can recompute boundaries around items involved in the same set effi-

Compact Euler Diagrams: Use nesting
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Euler Diagram Variants
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[B. Alsallakh et al., 2014]

use edges

use a concentric layout

split set into components

split set into components
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a b

Fig. 7: Grouping research articles on a timeline. (a) Manually-created sketch (courtesy Tat [20]). (b) Bubble Sets visualization.

Fig. 8: Items can be expanded to reveal a larger image or the article’s abstract.
The boundary moves to accommodate the larger item, and other items move
along the y-axis to remain visible and selectable.

Sets of hotels, subway entrances, and medical clinics (Figure 9) may
help them find a hotel that is central to several medical clinics and near
a subway entrance.

4.4 Sets over Scatterplots
Scatterplots have clearly defined spatiality due to the numerical posi-
tioning of items. We add Bubble Sets to a reimplementation of the well
known GapMinder Trendalyzer [19]. This scatterplot shows fertility
rate against life expectancy and is animated over time. Data points
represent countries, sized by population. Colour (and set member-
ship) is defined by the continent. The grouping of the sub-Saharan
Africa countries, highlighted in Figure 10, reveals that while most of
the countries in this set had high fertility rates and low life expectan-
cies in 1985, there are two outliers, Mauritius and Reunion, which are
islands in the Indian Ocean. As the data set includes data for many

years, and since Bubbles Sets are calculated at interactive rates, the
temporal changes can be convincingly shown through animation.

5 DISCUSSION AND FUTURE WORK

We have presented Bubble Sets, a method for automatically drawing
set membership groups over existing visualizations with different de-
grees of requirements for primary spatial rights. In contrast to other
overlaid containment set visualizations, Bubble Sets maximizes set
membership inclusion and minimizes inclusion of non-set members.
In fact, Bubble Sets can guarantee that all set members will be within
one container, as opposed to the more common multiple disjoint con-
tainers. While Bubble Sets cannot guarantee non-set member exclu-
sion, the routing algorithm minimizes these occurrences.

Within our isocontour approach we have implemented several
heuristics to reduce surface calculation and rendering time, such as
grouping pixels for potential calculations and restricting the regions in
which items influence the potential field. The current implementation
works without noticeable lag (items can be dragged and the surface
follows) for our examples (order of 100 nodes, 10–20 sets). For ex-
ample, it takes on average 105ms to calculate the virtual edge set, fill
the energy field, find the contour, and render the Sub-Saharan Africa
set in a window size 1920 � 1200 pixels. That set has 48 items and
the entire scatter plot has 196 points. The majority of this time is
spent creating the virtual edge set. An incremental approach, using
A⇥ search as in [23] may provide improvements in speed and stability.
As the number of items, the screen resolution, or the number of sets
increases, so will the rendering time. Additional techniques, such as
grouping close items into larger pseudo-nodes, and caching the energy
field values between frames may increase the capacity of the system.
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Bubble Sets & Overlay Techniques
• Given spatial layout is determined by other attributes, want to show set 

containment without modifying spatial layout
• Idea of "spatial rights"
• Construct regions based on a potential field
• Draw using containment marks
• How do we compute these? 
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Bubble Sets & Overlay Techniques
• Given spatial layout is determined by other attributes, want to show set 

containment without modifying spatial layout
• Idea of "spatial rights"
• Construct regions based on a potential field
• Draw using containment marks
• How do we compute these? 
- Marching Squares!
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KelpFusion

�49

[Meulemans et al., 2013]

2 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS

(d) KelpFusion (dense)(a) Bubble Sets

(b) Kelp Diagrams

(f) KelpFusion (sparse)

(e) KelpFusion (medium)

(c) LineSets

Figure 1. Visualizations using the various methods discussed in this paper. (a) Image generated using the implementation generously
provided by the authors of Bubble Sets [7]. (b) Image courtesy of Kasper Dinkla. (c) Image generated using the LineSets implementation
described in [1]. (d-f) Images generated by our KelpFusion implementation.

on a spanning graph, KelpFusion introduces the use of a
proximity graph, a so-called shortest-path graph. In the
context of Geographic Information Science, shortest-path
graphs have been used to delineate imprecise regions, re-
constructing a boundary of a region based on points that are
likely inside the intended region [2]. Shortest-path graphs
adapt to point sets of varying density and aim to capture the
shape and clusters of a point set. In other words, the use of
shortest-path graphs allows KelpFusion to fill faces when
points are spatially close. Furthermore, we show that the
shortest-path graph and its corresponding boundary can be
computed efficiently, enabling interactive manipulation of
the visualization. Figure 1 illustrates three existing methods,
Bubble Sets, LineSets, and Kelp Diagrams, in comparison
with our new hybrid technique, KelpFusion.

To understand the advantages and drawbacks of our
technique, we performed a controlled experiment with 13

participants, comparing KelpFusion to Bubble Sets [7] and
LineSets [1]. We discovered that KelpFusion improved on
Bubble Sets, outperforming the technique in accuracy and
completion time. We also found that KelpFusion was on
par with LineSets in terms of accuracy but yielded faster
response times. User preferences and comments also indi-
cated that KelpFusion provides a good sense of grouping
and is aesthetically more pleasing than the other methods.

2 RELATED WORK
Venn or Euler diagrams are popular ways to visually
represent set intersections. In these diagrams, closed curves
correspond to sets and overlaps between the curves indicate
intersections. Several papers have explored the problem of
automatically drawing Euler diagrams to convey abstract
set topology, for example, Simonetto and Auber [14] and
Stapleton et al. [16]. Other approaches investigated the
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Overlays
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[via B. Alsallakh et al., 2014]

Region-based

[Collins et al., 2009]

Line-based

[Dinkla et al., 2012]

Glyph-based

[Itoh et al., 2009]
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More…
• Node-Link Visualizations 

• Matrix-based techniques 

• Aggregation-based techniques
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Data: Robert J. MacG. Dawson. Curves?

Survived
Survived Perished

Sex alpha » size »
Female Male

Age alpha » size »
Child Adult

Class alpha » size »
Second Class First Class Third Class Crew

Explanation

More… Parallel Sets

�52
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Clusters
• What is a cluster?
- A grouping of objects (sets of objects)
- Why is this not more precise?

• How do we determine if two items should be in the same cluster?

�53



D. Koop, CS 490/680, Fall 2019

Clusters
• What is a cluster?
- A grouping of objects (sets of objects)
- Why is this not more precise?

• How do we determine if two items should be in the same cluster?
- Distance
- Relationships: Connectivity and Containment (Hierarchies)
- Distributions
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Clusters
• What is a cluster?
- A grouping of objects (sets of objects)
- Why is this not more precise?

• How do we determine if two items should be in the same cluster?
- Distance
- Relationships: Connectivity and Containment (Hierarchies)
- Distributions

• Can an item be in more than one cluster?
- Hard clustering: no
- Soft (fuzzy) clustering: yes, for example, with likelihood of being in a cluster
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View Source

Tweet    Like 15 Share

7 Comments Byte Muse  Login!1

 Share⤤ Sort by Best

Join the discussion…

 • Reply •

Gurupad Hegde • 3 years ago

Awesome! Please post more such stuff! :)
 1

 • Reply •

Chris Polis   • 3 years agoMod > Gurupad Hegde

Thank you - I'm definitely going to keep posting more so stay tuned! I try to build a new
post every week or two and my focus lately has been on ML and visualization.
 2

 • Reply •

Karl • 2 years ago

Which visualization library did you use or is it custom!

 Recommend$

Share ›

Share ›

Share ›

Visualizing Clusters
• If a clustering algorithm assigns each data 

item to a cluster, we can treat this like set 
visualization 

• If a spatial distance is used, this often means 
there is a no overlap (e.g. in 2D) 

• What visual encodings could work?
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Hierarchical Clustering
• Each item may belong to multiple groups, but groups are nested 
• Data items are organized in a tree 
• Creating hierarchical clusters: 
- Agglomerative: start with individuals and group 
- Divisive: start with one group and divide 

• Any tree visualization method will work, but… 
• …generally containment marks used for clusters

�56



D. Koop, CS 490/680, Fall 2019

Network Clusters
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[touchgraph.com]
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Network Clusters
• Create groups based on connectivity 
• Layout may be important (or could be used to create clusters) 
• How to create network clusters: 
- Idea: Low connectivity between groups induces cuts 
- Example: group of friends from home and group of friends at college (and 

potential intersection) 
- Can also use attribute information
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SUN ET AL.:  BISET: SEMANTIC EDGE BUNDLING WITH BICLUSTERS FOR SENSEMAKING 311

BiSet: Semantic Edge Bundling with Biclusters for Sensemaking
Maoyuan Sun, Peng Mi, Chris North and Naren Ramakrishnan

Fig. 1. An overview of BiSet. Entities are represented in lists. In the space between each neighboring pair of lists, BiSet adds a
“in-between” layer, displaying edges. BiSet bundles edges based on biclusters and allows users to directly manipulate bundles. The
bundles can reveal task-oriented semantic insights about coordinated relationships. BiSet also applies accumulated highlighting to
entities, bundles and edges to indicate highly shared entities and relationships.

Abstract— Identifying coordinated relationships is an important task in data analytics. For example, an intelligence analyst might
want to discover three suspicious people who all visited the same four cities. Existing techniques that display individual relationships,
such as between lists of entities, require repetitious manual selection and significant mental aggregation in cluttered visualizations
to find coordinated relationships. In this paper, we present BiSet, a visual analytics technique to support interactive exploration of
coordinated relationships. In BiSet, we model coordinated relationships as biclusters and algorithmically mine them from a dataset.
Then, we visualize the biclusters in context as bundled edges between sets of related entities. Thus, bundles enable analysts to infer
task-oriented semantic insights about potentially coordinated activities. We make bundles as first class objects and add a new layer,
“in-between”, to contain these bundle objects. Based on this, bundles serve to organize entities represented in lists and visually reveal
their membership. Users can interact with edge bundles to organize related entities, and vice versa, for sensemaking purposes. With
a usage scenario, we demonstrate how BiSet supports the exploration of coordinated relationships in text analytics.

Index Terms—Bicluster, coordinated relationship, semantic edge bundling

1 INTRODUCTION

Analysts often face difficult challenges in exploring complex relations
and identifying meaningful ones for sensemaking [39]. Current vi-
sual analysis tools emphasize individual relationships and just display
simple ones. This makes it hard for analysts to see more complex re-
lationships (e.g., coordinated relationship). Coordinated relationships
are grouped relations between sets of entities of different types (e.g.,
three people who all visited the same four cities). Due to the complex-
ity, compared with simple relationship, coordinated relationship needs
more cognitive effort for exploration.

Existing techniques that display individual relationships, such as
between lists of entities, require repetitious manual selection and sig-
nificant mental aggregation in cluttered visualizations to find coordi-
nated relationships. For example, Jigsaw [19] provides a List View
to support exploring relationships between lists of entities (e.g., peo-
ple, location, date, organization, etc.). In the List View, Jigsaw applies
visual links between related entities to show their connections and con-
trols the shading of colors for entities to indicate their co-occurrence.
With these visual encodings, in Jigsaw, users can recognize relations

• Maoyuan Sun, Peng Mi, Chris North and Naren Ramakrishnan are all
with the Discovery Analytics Center, Department of Computer Science,
Virginia Tech. E-mail: {smaoyuan | mipeng | north | naren}@cs.vt.edu.

Manuscript received 31 Mar. 2015; accepted 1 Aug. 2015; date of
publication xx Aug. 2015; date of current version 25 Oct. 2015.
For information on obtaining reprints of this article, please send
e-mail to: tvcg@computer.org.

between entities without much effort, but these relations are limited
to simple individual ones (e.g., a person visited three cities). Users
have to repetitiously click entities, visually check and mentally com-
pare their linked entities to identify coordinated relationships. Since
Jigsaw’s List View does not provide clear visual clues on coordinated
relations, users have to manually test all possible entities before they
finally find a meaningful one. This potentially forces users to solve a
combinatorial problem of selection without much support. Thus, due
to deficient clues to direct user selections, tools like Jigsaw have lim-
ited capabilities to support exploring coordinated relationships.

Visual analytics can potentially better support this by computation-
ally finding complex relationships and revealing them in context. This
enables analysts to see complex relations with other data (e.g., enti-
ties in lists). Specifically, we can compute coordinated relationships
with biclustering algorithms and display them in context using edge
bundling. In this case, edge bundles can reveal semantic insights from
coordinated relationships, which is meaningful from a task-oriented
perspective. The reason is that edges are bundled using semantic edge
bundling that is based on results of biclustering algorithms, rather than
using spatial edge bundling which is based on spatial proximity to sim-
plify visual representations.

Biclustering algorithms compute coordinated relationships as bi-
clusters. A bicluster can be considered a grouped relationship between
two sets of entities, where each entity in one set is connected with all
in another. Figure 2 shows an example of a bicluster that indicates
a coordinated relation between three people and four locations. It is
clear that a bicluster can bundle edges that link pairs of related entities,
and group entities that belong to the same coordinated set. Biclusters
provide a conceptual format to present coordinated relationships in an

organized manner. To take advantage of this for sensemaking, a five-
level design framework for bicluster visualizations has been proposed
in [49]. However, existing techniques are inefficient to support explor-
ing coordinated relationships, and few attempt to adapt biclusters to
facilitate this by following the design framework. Thus, it is still chal-
lenging to design a technique that can take advantage of biclusters and
make them usable to support coordinated relationship explorations.

Fig. 2. An example of a bicluster, indicating a coordinated relationship
between three people and four locations. (A) presents all connections
between each pair of related entities from the two domains. (B) shows
the result of bundling edges in this bicluster. (C) demonstrates the result
of both bundling edges and grouping entities in this bicluster.

To address such challenges, we present BiSet, a visual analytics
technique to support interactively exploring coordinated relationships
with biclusters. Our key contributions in this paper are as follows:

1) We formalize coordinated relationships as biclusters and algo-
rithmically mine them from a dataset.

2) We visualize the biclusters in context as bundled edges between
sets of related entities. These bundles enable analysts to infer semantic
insights about potentially coordinated activities.

3) We make bundles as the first class objects and add a new layer
“in-between” lists to contain these bundle objects. We allow users to
direct manipulate bundles for organizing entities represented in lists.

4) We apply interactions to both edge bundles and entities for re-
vealing and organizing relevant information in a bidirectional way.
Users can interact with edge bundles to forage and organize relevant
entities and, vice versa, for sensemaking purposes.

5) We present a usage scenario to demonstrate how BiSet can sup-
port the coordinated relationship exploration in text analytics.

2 RELATED WORK

Four key aspects are involved in BiSet: biclustering, list layout, visual
link and edge bundling, which outlines the discussion of related work.

2.1 Biclusters and Bicluster-Chains
Biclustering attempts to find both subsets of entities and subsets of
dimensions with the restriction that for each identified subset of en-
tities, they identically behave within the corresponding subset of di-
mensions [36]. Biclusters are computational results from biclustering
algorithms that identify coordinated relations between two entity sets.
An entity set refers to a set of unique objects from a specific domain
(e.g., people) extracted from a dataset (e.g., documents).

Relationship between two entity sets. Given two entity sets E and
F, a (binary) relationship R (E, F) between E and F is a subset of
E ×F (the Cartesian product of E and F ). We say that E is connected
to F. There are different ways to model relationship R in different sce-
narios. In text analytics, R can be determined by word co-occurrence
in documents or semantic meanings identified with natural language
processing. For example, person X is related to city Y , since they are
mentioned in the same document or based on semantic meanings of
some sentences that indicate person X visited city Y .

Bicluster. We define a bicluster (E ′, F ′) on R (E, F) as a set E ′ ⊆ E
and a set F ′ ⊆ F such that E ′ ×F ′ ⊆ R. That is, there is a relationship
between each element of E ′ with every element of F ′. We use |E ′|+
|F ′| to denote the size of a bicluster (E ′, F ′) where |E ′| and |F ′| are
the cardinality of E ′ and F ′. In addition, bicluster (E ′, F ′) is thin if
there is only one entity in either E ′ or F ′.

Closed bicluster. A bicluster (E ′,F ′) is closed if:

(i) For every entity e ∈ E − E ′, there is some entity f ∈ F ′ such that
(e, f ) /∈ R, and

(ii) For every entity f ∈ F − F ′, there is some entity e ∈ E ′ such that
(e, f ) /∈ R.

Algorithms for bicluster mining typically aim to find closed biclus-
ters. These algorithms (e.g., CHARM [56] and LCM [51]) function
level-wise with regard to one domain (e.g., E), wherein they attempt to
mine closed biclusters involving one entity of E, then closed biclusters
involving two entities of E, and so on. The key parameter influencing
such mining is the size of a bicluster in terms of the other domain (e.g.,
F), also referred to as the minimum support threshold . The setting of
this parameter is done heuristically by users; a low threshold will yield
a plethora of biclusters whereas a stringent (high) threshold will yield
few (or no) biclusters. Typically, users begin with a high threshold and
gradually lower it until it yields a sufficient number of biclusters [56].
In this paper, we use CHARM and LCM, although any biclustering
algorithm can be utilized in BiSet.

Biclusters logically aggregate multiple individual relations to form
coordinated sets, so they provide an opportunity to visually bundle
edges between entities. Bicluster-based edge bundles organize edges
in a semantic manner, potentially revealing semantic insights. For ex-
ample, four suspicious people may collude about a terrorist attack,
since they are all related to the same three terrorist organizations. This
is different from spatial edge bundling that bundle edges based on spa-
tial proximity to reduce visual clutter [58].

Fig. 3. An example of a bicluster-chain consisting of two biclusters.
(A) presents all edges between related entities. (B) shows that the two
biclusters connect together as a chain by their shared phone numbers.

Bicluster-chains. Based on shared entities, if there are any, multi-
ple biclusters (consisting of different pairs of domains) can connect to
form bicluster-chains. With compositional mining methods [29, 54],
bicluster-chains can be identified from a dataset. Figure 3 shows an
example of a bicluster-chain with two biclusters. One shows coordi-
nated relations between three people and four phone numbers, and the
other presents relations between three phone numbers and four loca-
tions. They share three phone numbers. One possible semantic insight
revealed from this chain is: three people may visit the same four cities,
since they called each other via four phone numbers, and phone calls
from three of these numbers were all reported at the four cities.

A five-level design framework for bicluster visualizations has
been proposed based on five hierarchical levels of relationships poten-
tially existing in a dataset [49]. Keywords corresponding to the five
levels are: entity, group, bicluster, chain and schema. Entity-level
relations refer to those between two individual entities, while group-
level relations are relations between one individual entity and a group
of entities. Bicluster-level and chain-level relations represent two lev-
els of coordinated relations: biclusters and bicluster-chains. The lat-
ter is more complex than the former, since a bicluster-chain consists
of multiple biclusters. Schema-level relations indicates database-like
patterns in a dataset, which reveals the overview of a dataset. Relations
in higher levels (e.g., bicluster-level and chain-level ) are usually con-
structed based on those in lower levels (e.g., entity-level and group-
level ), so relations in lower levels provide a critical support for the
exploration and interpretation of those in higher levels. These five lev-
els of relations systematically present the space of relationship, which
works as an important guideline for us to follow. Specifically, it guides
us to identify potential tasks that BiSet needs to support, by consider-
ing the implicit linkage of these five levels.

Biclustering
• Bicluster: network concept 
• Given two groups, each node in one group is 

connected to every node in the other group 
(goes both directions)
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BiSet: Semantic Edge Bundling with Biclusters for Sensemaking
Maoyuan Sun, Peng Mi, Chris North and Naren Ramakrishnan

Fig. 1. An overview of BiSet. Entities are represented in lists. In the space between each neighboring pair of lists, BiSet adds a
“in-between” layer, displaying edges. BiSet bundles edges based on biclusters and allows users to directly manipulate bundles. The
bundles can reveal task-oriented semantic insights about coordinated relationships. BiSet also applies accumulated highlighting to
entities, bundles and edges to indicate highly shared entities and relationships.

Abstract— Identifying coordinated relationships is an important task in data analytics. For example, an intelligence analyst might
want to discover three suspicious people who all visited the same four cities. Existing techniques that display individual relationships,
such as between lists of entities, require repetitious manual selection and significant mental aggregation in cluttered visualizations
to find coordinated relationships. In this paper, we present BiSet, a visual analytics technique to support interactive exploration of
coordinated relationships. In BiSet, we model coordinated relationships as biclusters and algorithmically mine them from a dataset.
Then, we visualize the biclusters in context as bundled edges between sets of related entities. Thus, bundles enable analysts to infer
task-oriented semantic insights about potentially coordinated activities. We make bundles as first class objects and add a new layer,
“in-between”, to contain these bundle objects. Based on this, bundles serve to organize entities represented in lists and visually reveal
their membership. Users can interact with edge bundles to organize related entities, and vice versa, for sensemaking purposes. With
a usage scenario, we demonstrate how BiSet supports the exploration of coordinated relationships in text analytics.

Index Terms—Bicluster, coordinated relationship, semantic edge bundling

1 INTRODUCTION

Analysts often face difficult challenges in exploring complex relations
and identifying meaningful ones for sensemaking [39]. Current vi-
sual analysis tools emphasize individual relationships and just display
simple ones. This makes it hard for analysts to see more complex re-
lationships (e.g., coordinated relationship). Coordinated relationships
are grouped relations between sets of entities of different types (e.g.,
three people who all visited the same four cities). Due to the complex-
ity, compared with simple relationship, coordinated relationship needs
more cognitive effort for exploration.

Existing techniques that display individual relationships, such as
between lists of entities, require repetitious manual selection and sig-
nificant mental aggregation in cluttered visualizations to find coordi-
nated relationships. For example, Jigsaw [19] provides a List View
to support exploring relationships between lists of entities (e.g., peo-
ple, location, date, organization, etc.). In the List View, Jigsaw applies
visual links between related entities to show their connections and con-
trols the shading of colors for entities to indicate their co-occurrence.
With these visual encodings, in Jigsaw, users can recognize relations
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between entities without much effort, but these relations are limited
to simple individual ones (e.g., a person visited three cities). Users
have to repetitiously click entities, visually check and mentally com-
pare their linked entities to identify coordinated relationships. Since
Jigsaw’s List View does not provide clear visual clues on coordinated
relations, users have to manually test all possible entities before they
finally find a meaningful one. This potentially forces users to solve a
combinatorial problem of selection without much support. Thus, due
to deficient clues to direct user selections, tools like Jigsaw have lim-
ited capabilities to support exploring coordinated relationships.

Visual analytics can potentially better support this by computation-
ally finding complex relationships and revealing them in context. This
enables analysts to see complex relations with other data (e.g., enti-
ties in lists). Specifically, we can compute coordinated relationships
with biclustering algorithms and display them in context using edge
bundling. In this case, edge bundles can reveal semantic insights from
coordinated relationships, which is meaningful from a task-oriented
perspective. The reason is that edges are bundled using semantic edge
bundling that is based on results of biclustering algorithms, rather than
using spatial edge bundling which is based on spatial proximity to sim-
plify visual representations.

Biclustering algorithms compute coordinated relationships as bi-
clusters. A bicluster can be considered a grouped relationship between
two sets of entities, where each entity in one set is connected with all
in another. Figure 2 shows an example of a bicluster that indicates
a coordinated relation between three people and four locations. It is
clear that a bicluster can bundle edges that link pairs of related entities,
and group entities that belong to the same coordinated set. Biclusters
provide a conceptual format to present coordinated relationships in an

organized manner. To take advantage of this for sensemaking, a five-
level design framework for bicluster visualizations has been proposed
in [49]. However, existing techniques are inefficient to support explor-
ing coordinated relationships, and few attempt to adapt biclusters to
facilitate this by following the design framework. Thus, it is still chal-
lenging to design a technique that can take advantage of biclusters and
make them usable to support coordinated relationship explorations.

Fig. 2. An example of a bicluster, indicating a coordinated relationship
between three people and four locations. (A) presents all connections
between each pair of related entities from the two domains. (B) shows
the result of bundling edges in this bicluster. (C) demonstrates the result
of both bundling edges and grouping entities in this bicluster.

To address such challenges, we present BiSet, a visual analytics
technique to support interactively exploring coordinated relationships
with biclusters. Our key contributions in this paper are as follows:

1) We formalize coordinated relationships as biclusters and algo-
rithmically mine them from a dataset.

2) We visualize the biclusters in context as bundled edges between
sets of related entities. These bundles enable analysts to infer semantic
insights about potentially coordinated activities.

3) We make bundles as the first class objects and add a new layer
“in-between” lists to contain these bundle objects. We allow users to
direct manipulate bundles for organizing entities represented in lists.

4) We apply interactions to both edge bundles and entities for re-
vealing and organizing relevant information in a bidirectional way.
Users can interact with edge bundles to forage and organize relevant
entities and, vice versa, for sensemaking purposes.

5) We present a usage scenario to demonstrate how BiSet can sup-
port the coordinated relationship exploration in text analytics.

2 RELATED WORK

Four key aspects are involved in BiSet: biclustering, list layout, visual
link and edge bundling, which outlines the discussion of related work.

2.1 Biclusters and Bicluster-Chains
Biclustering attempts to find both subsets of entities and subsets of
dimensions with the restriction that for each identified subset of en-
tities, they identically behave within the corresponding subset of di-
mensions [36]. Biclusters are computational results from biclustering
algorithms that identify coordinated relations between two entity sets.
An entity set refers to a set of unique objects from a specific domain
(e.g., people) extracted from a dataset (e.g., documents).

Relationship between two entity sets. Given two entity sets E and
F, a (binary) relationship R (E, F) between E and F is a subset of
E ×F (the Cartesian product of E and F ). We say that E is connected
to F. There are different ways to model relationship R in different sce-
narios. In text analytics, R can be determined by word co-occurrence
in documents or semantic meanings identified with natural language
processing. For example, person X is related to city Y , since they are
mentioned in the same document or based on semantic meanings of
some sentences that indicate person X visited city Y .

Bicluster. We define a bicluster (E ′, F ′) on R (E, F) as a set E ′ ⊆ E
and a set F ′ ⊆ F such that E ′ ×F ′ ⊆ R. That is, there is a relationship
between each element of E ′ with every element of F ′. We use |E ′|+
|F ′| to denote the size of a bicluster (E ′, F ′) where |E ′| and |F ′| are
the cardinality of E ′ and F ′. In addition, bicluster (E ′, F ′) is thin if
there is only one entity in either E ′ or F ′.

Closed bicluster. A bicluster (E ′,F ′) is closed if:

(i) For every entity e ∈ E − E ′, there is some entity f ∈ F ′ such that
(e, f ) /∈ R, and

(ii) For every entity f ∈ F − F ′, there is some entity e ∈ E ′ such that
(e, f ) /∈ R.

Algorithms for bicluster mining typically aim to find closed biclus-
ters. These algorithms (e.g., CHARM [56] and LCM [51]) function
level-wise with regard to one domain (e.g., E), wherein they attempt to
mine closed biclusters involving one entity of E, then closed biclusters
involving two entities of E, and so on. The key parameter influencing
such mining is the size of a bicluster in terms of the other domain (e.g.,
F), also referred to as the minimum support threshold . The setting of
this parameter is done heuristically by users; a low threshold will yield
a plethora of biclusters whereas a stringent (high) threshold will yield
few (or no) biclusters. Typically, users begin with a high threshold and
gradually lower it until it yields a sufficient number of biclusters [56].
In this paper, we use CHARM and LCM, although any biclustering
algorithm can be utilized in BiSet.

Biclusters logically aggregate multiple individual relations to form
coordinated sets, so they provide an opportunity to visually bundle
edges between entities. Bicluster-based edge bundles organize edges
in a semantic manner, potentially revealing semantic insights. For ex-
ample, four suspicious people may collude about a terrorist attack,
since they are all related to the same three terrorist organizations. This
is different from spatial edge bundling that bundle edges based on spa-
tial proximity to reduce visual clutter [58].

Fig. 3. An example of a bicluster-chain consisting of two biclusters.
(A) presents all edges between related entities. (B) shows that the two
biclusters connect together as a chain by their shared phone numbers.

Bicluster-chains. Based on shared entities, if there are any, multi-
ple biclusters (consisting of different pairs of domains) can connect to
form bicluster-chains. With compositional mining methods [29, 54],
bicluster-chains can be identified from a dataset. Figure 3 shows an
example of a bicluster-chain with two biclusters. One shows coordi-
nated relations between three people and four phone numbers, and the
other presents relations between three phone numbers and four loca-
tions. They share three phone numbers. One possible semantic insight
revealed from this chain is: three people may visit the same four cities,
since they called each other via four phone numbers, and phone calls
from three of these numbers were all reported at the four cities.

A five-level design framework for bicluster visualizations has
been proposed based on five hierarchical levels of relationships poten-
tially existing in a dataset [49]. Keywords corresponding to the five
levels are: entity, group, bicluster, chain and schema. Entity-level
relations refer to those between two individual entities, while group-
level relations are relations between one individual entity and a group
of entities. Bicluster-level and chain-level relations represent two lev-
els of coordinated relations: biclusters and bicluster-chains. The lat-
ter is more complex than the former, since a bicluster-chain consists
of multiple biclusters. Schema-level relations indicates database-like
patterns in a dataset, which reveals the overview of a dataset. Relations
in higher levels (e.g., bicluster-level and chain-level ) are usually con-
structed based on those in lower levels (e.g., entity-level and group-
level ), so relations in lower levels provide a critical support for the
exploration and interpretation of those in higher levels. These five lev-
els of relations systematically present the space of relationship, which
works as an important guideline for us to follow. Specifically, it guides
us to identify potential tasks that BiSet needs to support, by consider-
ing the implicit linkage of these five levels.

Biset edge bundling (and grouping)
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case, users may have to compare these biclusters by drilling down to
detailed level of information (e.g., entities) for competing them.

There are two ways to perform the four types of exploration: from
one to many and from many to many. For instance, users may want to
find related entities based on one or multiple biclusters. Based on this,
we identify eight user tasks involved in such explorations, which are
summarized in Table 1. For each type of exploration, users can start
from either an entity (or a bicluster) or multiple entities (or biclusters)
and then try to find relevant entities or biclusters. A user’s analytical
process may consist of a series of these tasks that iteratively forage rel-
evant information and identify some meaningful pieces [30]. Detailed
examples of these tasks are addressed and labeled in Section 5.

R3: Organizing entities and relationships. Entities and relation-
ships should be visually represented in an organized way. This can
help users to easily find useful information. In addition, users may
want to make changes to the automatically generated layouts so that
they can organize entities or relationships in personalized, meaningful
ways (e.g., using spatialization) for sensemaking [2].

R4: Retrieving original data for reference. To evaluate algorith-
mically discovered coordinated relationships, users may refer to the
content from the original dataset (e.g., documents) because they need
contextual information to help them to interpret and further evaluate
these relations [19]. BiSet should attempt to efficiently direct users to
useful information, rather than keep them from reading documents.

4 BISET TECHNIQUE

Three key aspects are involved in BiSet: coordinated relationship dis-
covery in data level; bundles as objects and a “in-between” layer in
visual level; and interactions to support four types of exploration and
two ways of organizing information. In this section, we discuss them
in detail and explain how identified design requirements are satisfied.

4.1 Data Level: Bicluster Discovery
Coordinated relationship discovery is the fundamental step in BiSet
since it determines how edges are bundled. In BiSet, we formalize co-
ordinated relationships as biclusters. Suppose that entities have been
extracted from a dataset (e.g., documents) with named entity recogniz-
ers such as LingPipe [5] or similar tools. We use closed itemset algo-
rithms (e.g., LCM [51] and CHARM [56]) to discover biclusters based
on extracted entities. Each unique pair of entity types (e.g., people and
location, people and date, location and date, etc.) is considered a type
of coordinated relationship and is computed separately to generate re-
sults that include all unique pairs of entity types. Results are stored in
a database and associated with the dataset under investigation.

The mined biclusters indicate different coordinated relationships
and some of them may share entities and relations in entity-level or
group-level. This suggests that some entities and edges (individual re-
lationships) are members of biclusters. Thus, membership in BiSet, in
the data level, can be considered from two aspects: entity and edge.

4.2 Visual Level: Bundles as Objects and “In-between”
In BiSet, we propose two important concepts to balance the key design
trade-off: making bundles as first class objects and adding a new layer
“in-between” lists to contain bundle objects. The former enables users
to directly manipulate relationships (relationship-centric) and the lat-
ter helps to visually reveal membership of entities in two neighboring
lists without duplicating entities (entity-centric).

Making Bundles as Objects In BiSet, we make bundles the first
class objects so users can directly manipulate them for sensemaking
purposes (e.g., organizing information). BiSet bundles edges based
on computed biclusters that reflect algorithmically discovered coordi-
nated relationships. Different from spatial edge bundling techniques
that emphasize bundling based on spatial proximity, BiSet bundles
edges based on coordinated relationships that reveal task-oriented se-
mantic insights. This assures that edge bundles remain stable, regard-
less of the positions of associated entities. Thus, bundles potentially
enables users to use space (e.g., vertical position) to organize informa-
tion (e.g., entities) (for R3 ), and safely retrieve related information by
interacting with edge bundles (for R2, iii and iv).

Adding an “in-between” Layer To make bundles usable, we add
a new layer, called “in-between”, visually locating in the space be-
tween two neighboring entity-lists. It contains bundles and edges (e.g.,
those that do not belong to any coordinated relationship). In this layer,
BiSet allows users to manipulate bundles for sensemaking (e.g., orga-
nizing entities and checking their membership), so bundles can support
users interactively exploring coordinated relationships.

4.2.1 Semantic Edge Bundling in BiSet
BiSet has two types of edges: independent and associated, which are
mutually exclusive. The former refers to edges that do not belong to
any coordinated relationship and the latter are those that can form one
or more coordinated relationships. For instance, in Figure 6, the edge
on top in (A) is an independent edge and other edges are associated
ones. Independent edges can reflect entity-level and group-level rela-
tionships, but they are not associated with others to form coordinated
relationship. Based on membership, associated edges that belong to
the same bicluster can be aggregated and represented as an edge bun-
dle. BiSet takes the following three steps to bundle edges (for R1(b) ).

Fig. 6. Three modes in the “in-between” layer for displaying edges. (A)
is the edge only mode that shows all edges between related entities. (B)
is the hybrid mode, which presents bundles with individual edges. (C) is
the bundle only mode that just displays bundles.

1) Grouping edges based on membership. We separate associated
edges into different groups based on their associated biclusters. For

those in multiple biclusters, we duplicate and assign them respectively
to multiple groups, so each group has a complete number of edges.

2) Bundling edges based on groups. For each group obtained from
the previous step, we bundle all its edges together and visually replace
these edges with a rectangle to indicate an edge bundle.

3) Connecting bundles with entities. We link bundles and entities
based on membership. This assures that entities and their associated
bundles are fully connected (for R1(c) ).

This bicluster-based edge bundling can potentially reduce visual
clutter and clearly present a coordinated relationship (for R1(b) ). As
is shown in Figure 6, compared with (A), (B) clearly illustrates the
coordinated relationship between four people and five phone numbers.

In fact, BiSet supports three modes to show edges: edge only mode
(EM ), hybrid mode (HM ) and bundle only mode (BM ), shown as (A),
(B) and (C) respectively in Figure 6. In EM, BiSet shows edges with-
out bundling. In HM, BiSet shows independent edges and bundles. In
BM, BiSet just displays bundles. The three modes attempt to meet dif-
ferent user needs. For example, EM potentially reveals the overview
of relationships between two entity sets (e.g., (A) in Figure 6). BM
enables users to focus on analysis just with coordinated relationships.
HM can help to visually organize groups of individual relations into
multiple levels (e.g., coordinated bundles with individual entity-level
relationships). In BiSet, users can switch modes during their analysis.
An example of using semantic edge bundling in BiSet is shown in Fig-
ure 7, which reduces 164 edges to 9 bundles. In this example, we use
LCM to calculate biclusters and set the minimum support parameter
to three, which assures that each calculated bicluster has at least three
entities in one of the two related domains (here is the people’s name).

Fig. 7. A semantic edge bundling example in BiSet. (A) shows the orig-
inal 164 edges. (B) After semantic edge bundling, there are 9 bundles.

In addition to improving readability, bundles in BiSet preserve the
coordinated attribute of entities and edges. This enables users to infer
semantic meanings about potentially coordinated activities. For exam-
ple, why are the four people all related with the five phone numbers
in Figure 6? Perhaps they colluded about a terrorist assault. Such se-
mantic insights cannot be easily revealed from separated entity-level
or group-level of relations. Thus, edge bundles in BiSet serve two im-
portant roles: improving readability and revealing semantic insights.

4.2.2 Visual Encoding in BiSet
BiSet uses four major visual channels [37] to encode bundles, entities
and edges: shape, size, color and position. Figure 8 shows a detailed
example of visual encodings in BiSet.

Shape and Size In BiSet, entities and bundles are represented
as rectangles (e.g., (1) and (2) in Figure 8). Edges are visualized as
Bézier curves. We choose Bézier curves since they can generate more
smooth edges, compared with polylines [32].

Length, width and font size are three specific types of size channel
used in BiSet. Rectangles indicating entities are equal in length, while
those representing bundles are not. BiSet applies a linear mapping
function to determine the length of a bundle based on the total number
of its related entities. In a bundle, BiSet uses two colored regions (light
green and light gray) to indicate the proportion between its related
entities in the left list and those in the right list. In an entity rectangle,
a small rectangle is presented on the left to indicate its frequency in
a dataset. The length of these small rectangles is determined by the
frequency of the associated entities. Based on these with different
color encoding and position, users can easily discriminate entities from
bundles (for R1(a) ). In addition, the width of edges can reflect results
of user selections. For instance, in Figure 8, compared with the width
of those in (3), the width of edges in (8) is larger, since two relevant
entities are selected. Moreover, when hovering an selected entity or
bundle, related entities will be displayed in larger fonts. This helps
users to review relevant information of previous selections (for R1(c) ).

Fig. 8. Visual encodings in BiSet. (1), (2) and (3) present the normal
state of an entity, a bundle and edges, respectively. (4) and (4’) show the
selected state of an entity and a bundle with accumulated highlighting.
(5) and (5’) present the mouseover state of an entity and a bundle. (6)
shows accumulated highlighting of an entity. (7) presents the highlight-
ing state of edges. (8) shows the accumulated highlighting of edges.

Color Coding BiSet applies color coding to entities, bundles and
edges to indicate their states. In BiSet, entities and bundles have three
different states (normal, mouseover and selected), and edges has two
different states (normal and highlighting). In Figure 8, (1), (2) and (3)
respectively present the normal state of an entity, a bundle and edges;
(4) and (4’) show the selected state of an entity and a bundle; (5) and
(5’) illustrate the mouseover state of an entity and a bundle; and (7)
and (8) demonstrate the highlighting state of edges. In addition, two
different colored borders (blue and black) are used to help users further
discriminate the mouseover state from the selected state (for R1(d) ).
When hovering an entity or a bundle, a blue border will be added to the
rectangle. This border will change to black after user selection, which
indicates that the state has changed from mouseover to selected.

Accumulated highlighting is important in BiSet, which is triggered
by mouseover and selection. Different from simple highlighting, ac-
cumulated highlighting provides useful visual clues (e.g., darker in
orange) for shared entities (for R1(c) ) and bundles. BiSet applies ac-
cumulated highlighting to entities, bundles and edges by increasing
the shading of their colors. For example, in Figure 8, the entity in
(6) is in darker orange, compared with those in (4) and (5), since its
highlighting is accumulated based on selections of the entity in (4) and
AMTRAK, and the mouseover on (5).

Position Position is used to organize entities and bundles in BiSet.
A set of entities of a certain domain (e.g., people) is organized as an
entity-list. In between two neighboring entity-lists (the “in-between”
layer), there is one relationship-list that contains coordinated relation-
ships as biclusters (visually as edge bundles).

In entity-lists, the positions of entities can be determined in three
ways (for R3 ): in an alphabetical order, based on frequency, or
based on the order of (one-side) associated bundles. Alphabetical and
frequency-based ordering can help to organize entities. However, they
may lead to a severe problem of membership separation, since entities
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may belong to one bicluster, to more than one bicluster,
or to no bicluster at all. The same holds for samples.
In general, clustering algorithms can additionally be

differentiated by the kind of memberships they produce.
In hard clustering, rows and columns are assigned to
clusters in a binary way, i.e., they either belong to clus-
ters or not. In soft clustering, the result consists of non-
binary membership values that describe to what degree
rows and columns belong to the clusters. As the assign-
ment of rows and columns to clusters is fuzzy, this is
also known as fuzzy clustering [7,8].

Bicluster visualization
Let us consider the visualization of hard clustering results
first. In order to understand and interpret hard clustering
results, it is necessary to visualize the clusters together
with the underlying data. Clustered heatmaps are the
standard technique for visualizing both one-way and
two-way clustering results. In clustered heatmaps, the
rows or columns are reordered, such that clusters can be
recognized as contiguous blocks consisting of adjacent
cells. Showing clusters as contiguous blocks is highly
desired, as it simplifies the detection and interpretation
of patterns. However, for biclustering results, where clus-
ters can overlap, rearranging the matrix this way is often
impossible. Let us consider the example from Figure 1
that shows a 5x5 matrix with three clusters. In Figure 1
(a), the columns are sorted such that the red and yellow
clusters are represented as contiguous blocks, as indi-
cated by a thick border. However, this sorting splits the
blue cluster into two unconnected blocks. In Figure 1(b),
columns B and E are swapped, which makes it possible to
show the blue cluster as a contiguous block, but splits the
red cluster. Consequently, even in small matrices there is

often no optimal order of rows and columns where all
clusters form contiguous blocks. The sorting problem
can be solved by duplicating rows and/or columns, as
demonstrated in Figure 1(c). However, the duplication
approach does not scale, as it potentially produces large
output matrices for comparably small input matrices.
Interpreting biclustering results is often time-consum-

ing and tedious, as it is usually done statically by visually
inspecting many separate plots. Adding fuzzy clustering
to this equation makes the situation even more difficult.
Fuzzy biclustering is a visualization research problem

that cannot be addressed by any of the existing tools. We
will first elaborate on how biclustering results can be
represented and then introduce the FABIA fuzzy bicluster-
ing algorithm [9]. We use FABIA to demonstrate the pro-
posed technique; however, note that any other biclustering
algorithm that produces overlapping clusters can be used
in the same way. We continue by introducing general
requirements for bicluster visualization, which we use to
review existing work in this field. We then present Furby,
an interactive visualization technique for analyzing fuzzy
biclustering results. After a brief description of the imple-
mentation, we present how the tool can be used effectively
to analyze a real-world dataset. Before concluding the
paper, we discuss the scalability of our tool to large
datasets.

Representation of biclustering results
Biclustering data can generally be represented by three
matrices: X, L, and Z. The X matrix represents the input
data to be clustered. The biclustering results are repre-
sented by L and Z. The L matrix contains the relationship
information between rows and biclusters, and the Z matrix
contains the same information for columns. While for

Figure 1 Biclustering example with three overlapping clusters illustrating the reordering problem. (a) shows the original matrix where
the red and the yellow bicluster form contiguous blocks (thick borders), but the blue bicluster is split into two unconnected blocks. (b) By
reordering the columns, the blue bicluster becomes contiguous, however, the red bicluster now gets split up. (c) shows how the duplication of
a column solves the ordering problem.

Streit et al. BMC Bioinformatics 2014, 15(Suppl 6):S4
http://www.biomedcentral.com/1471-2105/15/S6/S4

Page 2 of 13

Bicluster Reordering Problem

�62

[Streit et al., 2014]



D. Koop, CS 490/680, Fall 2019

In the case of fuzzy clustering, the analyst globally
adjusts the threshold that transforms the fuzzy clus-
ters into hard clusters. The result of the threshold
tuning should be reflected immediately in the visua-
lization. This step is optional.
• 3 Inspect individual clusters in detail
The analyst then explores clusters that she has identi-
fied as potentially interesting in the overview visualiza-
tion. In order to interpret the meaning and biological
relevance of a single cluster, the analyst examines its
elements in detail - including additional metadata.
• 4 Locally adjust the thresholds of bicluster
membership values
In contrast to a global threshold adjustment, the
analyst refines the local thresholds for single biclus-
ters (without changing the global thresholds that are
applied to all other clusters). This step is optional.

To realize this workflow, Furby follows an overview
+detail approach. In this section, we first introduce the
cluster network overview, where each bicluster is repre-
sented as one node in a graph. Figure 2 illustrates this
concept using the same sample matrix as in Figure 1.
The edges in the graph represent the rows and columns
overlapping between the clusters. In the second part of
this section, we focus on the detail view, which enables
analysts to explore single biclusters and their elements.

Cluster network overview
The overview visualization presents the biclustering result
as a graph in which individual clusters are the nodes and
the rows and columns overlapping between the clusters

are the edges. Figure 3 shows an example biclustering
result with 20 clusters. We layout the graph using a force-
directed algorithm [32] in which overlapping clusters
attract each other. The more rows and columns two
bicluster share, the bigger is the attracting force. By
default, all biclusters repulse each other, resulting in a lay-
out in which clusters with a large overlap form groups.
Bicluster nodes in the graph represent the data as a

heatmap, addressing requirement R I. By default, we
apply a red-grey-blue color scheme. However, analysts
can change and refine the color mapping on the fly dur-
ing the analysis. The overlaps between biclusters are
encoded using bands connecting the biclusters, which
satisfies requirement R II. In previous work [33,34], we
have already made use of bands to visualize the relation-
ships between clusters represented as heatmaps in the
context of one-way clustering. In Furby, the same
approach is applied in both dimensions, rows and col-
umns. The thickness of the bands is proportional to the
number of rows and columns shared by the clusters.
The bands are attached to the bicluster heatmaps at the
position of the shared rows and columns within the
heatmap.
Selection and highlighting
Furby supports linking & brushing. Hence, when the
user selects one or more rows and columns, all corre-
sponding instances within all clusters and bands are
automatically highlighted. This helps analysts to identify
how often individual rows and columns are contained in
the clusters (see requirement R III).
Keeping the visual clutter to a minimum and letting

the analyst focus on the currently selected cluster are

Figure 2 Bicluster visualization concept showing the same sample matrix as in Figure 1. The clustering result is shown as a graph, in
which nodes correspond to biclusters and edges between the nodes encode rows and columns shared by the clusters.

Streit et al. BMC Bioinformatics 2014, 15(Suppl 6):S4
http://www.biomedcentral.com/1471-2105/15/S6/S4

Page 5 of 13

Bicluster relationships as a graph

�63

[Streit et al., 2014]


