Data Visualization (CSCI 490/680)

Sets

Dr. Maoyuan Sun (slides prepared by Dr. Koop)

D. Koop, CS 490/680, Fall 2019

Announcements

D. Koop, CS 490/680, Fall 2019

Project Design

- Start working on turning your visualization ideas into designs
- Sketch
- Options:
 - Try vastly different options
 - Refine an initial idea

D. Koop, CS 490/680, Fall 2019

3

<u>Assignment 4</u>

- Create Choropleth Maps
 - Deal with projections and GeoJSON Data
 - Select appropriate colormaps
- [CS 680 Only] Part 3 is using other libraries, you only need to do one option
- Example image at the right is **not** a solution to Part 3, needs proper colormapping!

Set and Cluster Visualization

- Set and cluster visualization not covered in depth in the textbook
- Nice summary of set visualization in the following paper:
 - Visualizing Sets and Set-typed Data, B. Alsallakh et al., 2014
 - Also: <u>http://www.setviz.net</u>

D. Koop, CS 490/680, Fall 2019

Sets

- A set is a collection of **unique** objects
 - Generally unordered
 - Example: S = {"apple", "pear", "orange"})
- What questions can we ask about sets?
 - Containment: Is some item x in s?
 - Intersection: what items are in both s and T?
 - Union: what items are in either s or T?
 - Difference: what items are in s but not T?

D. Koop, CS 490/680, Fall 2019

6

Set-typed Data - Characteristics

- Set Algebra
 - Set operations, Cartesian product, power set, ...
- Set similarities
 - Similarity measures (Jaccard, Tversky, etc.)
- Element degree
 - exclusive set membership
- Dimensionality
 - 2ⁿ possible combinations
 - $2^{(2^n)}$ possible queries

D. Koop, CS 490/680, Fall 2019

Set-typed Data - Representations

Boolean Attributes

			University of	/fh/// st.potten	
0	1	0	0	0	0
	0	1	1	0	0
	1	0	0	1	0
R	0	0	0	0	1
	1	0	0	0	0
2	0	0	1	0	0

Multi-valued Attribute

D. Koop, CS 490/680, Fall 2019

Element-Set Tuples

Set-typed Data - Representations

Boolean Attributes

Adjacency Matrix

D. Koop, CS 490/680, Fall 2019

Multi-valued Attribute

Adjacency List

Element-Set Tuples

Edge List

What are tasks with set data?

D. Koop, CS 490/680, Fall 2019

[All of the following Slides from B. Alsallakh et al., 2014]

Northern Illinois University

Find elements based on their set memberships

Find elements with a specific set membership degree

Filter out elements based on their set membership degrees

Create a new set that contains certain elements

Find elements belonging to a specific set

Find sets containing a specific element

Filter out elements based on their set memberships

Find elements belonging to a specific set

Find elements based on their set memberships

Find elements with a specific set membership degree

Filter out elements based on their set memberships

Filter out elements based on their set membership degrees

Create **a new set** that contains certain elements

Find elements based on their set memberships

Find elements with a specific set membership degree

Filter out elements based on their set membership degrees

Create **a new set** that contains certain elements

Find elements belonging to a specific set

Filter out elements based on their set memberships

Find elements belonging to a specific set

Find sets containing a specific element

Find elements based on their set memberships

Find elements with a specific set membership degree

Filter out elements based on their set memberships

Filter out elements based on their set membership degrees

Create a new set that contains certain elements

Find sets containing a specific element

Find elements based on their set memberships

Find elements with a specific set membership degree

Filter out elements based on their set memberships

Create a new set that contains certain elements

Find elements belonging to a specific set

Filter out elements based on their set membership degrees

Find elements based on their set memberships

Find elements with a specific set membership degree

Filter out elements based on their set membership degrees

Create a new set that contains certain elements

Find elements belonging to a specific set

Find sets containing a specific element

Filter out elements based on their set memberships

Find elements belonging to a specific set

Find elements based on their set memberships

Find elements with a specific set membership degree

Find elements belonging to a specific set

Find elements based on their set memberships

Find elements with a specific set membership degree

Find elements belonging to a specific set

Find elements belonging to

Find elements belonging to

Find sets containing a specific element

Find sets containing a specific element

Find s<mark>ets c</mark>ontaining

affiliations

a specific element

Find s<mark>ets c</mark>ontaining

affiliations

a specific element

Find s<mark>ets c</mark>ontaining

affiliations

a specific element

Find elements based on their

set memberships

Find elements based on their

set memberships

Find elements based on their

set memberships

Find elements with a specific set membership degree

Find elements with a specific set membership degree

2 affiliations

Find <mark>elements w</mark>ith

a specific set membership degree

2 affiliations

Find elements belonging to a specific set

Find elements based on their set memberships

Find elements with a specific set membership degree

-ind sets contain

Find elements based on their set memberships

Find elements with a specific set membership degree

Filter ou

Filter out elements based on their set memberships

Filter out elements based on their set membership degrees

Create a new set that contains certain elements

Find elements belonging to a specific set

Find sets containing a specific element

Element Attributes

Element Attributes

#

Find the **#** of sets in the set family

Analyze **Mo**

Analyze **exclusion relations**

Analyze https://www.intersection.relations

Find intersections between k sets

Find sets involved in certain intersection

Find the set with largest pairwise set intersections

Analyze set & set intersection cardinalities

Analyze and compare set similarities

Analyze and compare set exclusiveness

Highlight specific sets, subsets, or set relations

Find the set with largest pairwise set intersections

Analyze set & set intersection cardinalities

Analyze and compare set similarities

Analyze and compare set exclusiveness

Highlight specific sets, subsets, or set relations

set-theoretical operations

#

Find the **#** of sets in the set family

Analyze **Mo**

Analyze **exclusion relations**

Analyze https://www.intersection.relations

Find intersections between k sets

Find sets involved in certain intersection

Find the set with largest pairwise set intersections

Analyze set & set intersection cardinalities

Analyze and compare set similarities

Analyze and compare set exclusiveness

Highlight specific sets, subsets, or set relations

#

Find the **#** of sets in the set family

Analyze **Mo**

Analyze **exclusion relations**

Analyze https://www.intersection.relations

Find intersections between k sets

Find sets involved in certain intersection

Find the set with largest pairwise set intersections

Analyze set & set intersection cardinalities

Analyze and compare set similarities

Analyze and compare set exclusiveness

Highlight specific sets, subsets, or set relations

Analyze set & set intersection cardinalities

 \mathcal{M}

Analyze set & set intersection cardinalities

InfoVis Visual Analytics Time-oriented Data Diagrams

^⊙

Analyze set & set intersection cardinalities

^∕

^>

^>

^

^>

^∕

^∕

^∕

InfoVis Visual Analytics (VA) Time-oriented Data (TD) Diagrams 51 15 15 25 60

InfoVis Visual Analytics (VA) Time-oriented Data (TD) Diagrams ^∕~⊙

InfoVis Visual Analytics (VA) Time-oriented Data (TD) Diagrams

InfoVis Visual Analytics (VA) Time-oriented Data (TD) Diagrams 51 15 15 25 60

InfoVis Visual Analytics (VA) Time-oriented Data (TD) Diagrams 5 1 1 5 15 25 60

InfoVis Visual Analytics (VA) Time-oriented Data (TD) Diagrams 51 15 15 25 60

^∕

#

Find the **#** of sets in the set family

Analyze **Mo**

Analyze exclusion relations

Analyze https://www.intersection.relations

Find intersections between k sets

Find sets involved in certain intersection

Find the set with largest pairwise set intersections

Analyze set & set intersection cardinalities

Analyze and compare set similarities

Analyze and compare set exclusiveness

Highlight specific sets, subsets, or set relations

Create **a new set** using set-theoretical operations

Element Attributes

Element Attributes

Find the attribute value of a certain element

Find the distribution of an attribute in a certain set or subset

Compare the attribute values of sets or set intersections

Analyze the set memberships for elements having certain attribute values

Create a new set out of elements having certain attribute values

Element Attributes

Compare the attribute values of sets or set intersections

Analyze the set memberships for elements having certain attribute values

> Create a new set out of elements having certain attribute values

Element Attributes

)

Find the attribute value of a certain element

Compare the attribute values of sets or set intersections

Analyze the set memberships for elements having certain attribute values

> Create a new set out of elements having certain attribute values

Element Attributes

)

Find the attribute value of a certain element

Compare the attribute values of sets or set intersections

Analyze the set memberships for elements having certain attribute values

> Create a new set out of elements having certain attribute values

Element Attributes

Find the attribute value of a certain element

Compare the attribute values of sets or set intersections

Analyze the set memberships for elements having certain attribute values

> Create a new set out of elements having certain attribute values

Element Attributes

Find the attribute value of a certain element

Compare the attribute values of sets or set intersections

Analyze the set memberships for elements having certain attribute values

> Create a new set out of elements having certain attribute values

Element Attributes

Find the attribute value of a certain element

^∕∿⊙

^~⊙

Compare the attribute values of sets or set intersections

Element Attributes

Compare the attribute values of sets or set intersections

Analyze the set memberships for elements having certain attribute values

> Create a new set out of elements having certain attribute values

Element Attributes

Find the attribute value of a certain element

Element Attributes

attribute value = female

InfoVis Visual Analytics (VA) Time-oriented Data (TD) Diagrams

Element Attributes

- set memberships = research areas

attribute value = female

InfoVis Visual Analytics (VA) Time-oriented Data (TD) Diagrams

Element Attributes

- set memberships = research areas

attribute value = female

InfoVis Visual Analytics (VA) Time-oriented Data (TD) Diagrams

Element Attributes

- set memberships = research areas

attribute value = female

InfoVis Visual Analytics (VA) Time-oriented Data (TD) Diagrams

Element Attributes

- set memberships = research areas

attribute value = female

InfoVis Visual Analytics (VA) Time-oriented Data (TD) Diagrams

Element Attributes

- set memberships = research areas

Element Attributes

Element Attributes

Techniques

D. Koop, CS 490/680, Fall 2019

Venn Diagram

D. Koop, CS 490/680, Fall 2019

Venn Diagram?

Trust Partnership Innovation Performance

Scalability

- How to show the intersection of four sets? 8?
- Euler Diagrams: only show intersections/containments that exist
- Still run into scalability issues

Ir sets? 8? tions/containments that exist

What about cardinality?

Area encoding

D. Koop, CS 490/680, Fall 2019

Using glyphs

[B. Alsallakh et al., 2014]

Northern Illinois University

41

Venn Diagram Visualizations

show only required set relations

D. Koop, CS 490/680, Fall 2019

show unwanted set relations

[B. Alsallakh et al., 2014]

42 Northern Illinois University

What if we don't worry so much about nice circles/ ellipses?

Compact Euler Diagrams: Use edges

D. Koop, CS 490/680, Fall 2019

44

Compact Euler Diagrams: Use nesting

Euler Diagram Variants

use edges

D. Koop, CS 490/680, Fall 2019

use a concentric layout

46

Bubble Sets: Overlay set membership

Bubble Sets & Overlay Techniques

- Given spatial layout is determined by other attributes, want to show set containment without modifying spatial layout
- Idea of "spatial rights"
- Construct regions based on a potential field
- Draw using containment marks
- How do we compute these?

Bubble Sets & Overlay Techniques

- Given spatial layout is determined by other attributes, want to show set containment without modifying spatial layout
- Idea of "spatial rights"
- Construct regions based on a potential field
- Draw using containment marks
- How do we compute these?
 - Marching Squares!

KelpFusion

(a) Bubble Sets

(b) Kelp Diagrams

D. Koop, CS 490/680, Fall 2019

(c) LineSets

(e) KelpFusion (medium)

[Meulemans et al., 2013]

49

Overlays

Region-based

[Collins et al., 2009]

D. Koop, CS 490/680, Fall 2019

Line-based

[Dinkla et al., 2012]

Glyph-based

[Itoh et al., 2009]

More...

Node-Link Visualizations

Matrix-based techniques

Aggregation-based techniques

D. Koop, CS 490/680, Fall 2019

[via B. Alsallakh et al., 2014]

Northern Illinois University

More... Parallel Sets

D. Koop, CS 490/680, Fall 2019

[Kosara et al., 2006, Example: J. Davies]

Clusters

- What is a cluster?
 - A grouping of objects (sets of objects)
 - Why is this not more precise?
- How do we determine if two items should be in the same cluster?

Clusters

- What is a cluster?
 - A grouping of objects (sets of objects)
 - Why is this not more precise?
- How do we determine if two items should be in the same cluster?
 - Distance
 - Relationships: Connectivity and Containment (Hierarchies)
 - Distributions

Clusters

- What is a cluster?
 - A grouping of objects (sets of objects)
 - Why is this not more precise?
- How do we determine if two items should be in the same cluster?
 - Distance
 - Relationships: Connectivity and Containment (Hierarchies)
 - Distributions
- Can an item be in more than one cluster?
 - Hard clustering: no
 - Soft (fuzzy) clustering: yes, for example, with likelihood of being in a cluster

Visualizing Clusters

- If a clustering algorithm assigns each data item to a cluster, we can treat this like set visualization
- If a spatial distance is used, this often means there is a no overlap (e.g. in 2D)
- What visual encodings could work?

Hierarchical Clustering

D. Koop, CS 490/680, Fall 2019

Hierarchical Clustering

- Each item may belong to multiple groups, but groups are nested
- Data items are organized in a tree
- Creating hierarchical clusters:
 - Agglomerative: start with individuals and group
 - Divisive: start with one group and divide
- Any tree visualization method will work, but...
- ... generally containment marks used for clusters

Network Clusters

Network Clusters

- Create groups based on connectivity
- Layout may be important (or could be used to create clusters)
- How to create network clusters:
 - Idea: Low connectivity between groups induces cuts
 - potential intersection)
 - Can also use attribute information

- Example: group of friends from home and group of friends at college (and

Biclustering

D. Koop, CS 490/680, Fall 2019

• Bicluster: network concept

• Given two groups, each node in one group is connected to every node in the other group (goes both directions)

Biset edge bundling (and grouping)

D. Koop, CS 490/680, Fall 2019

[M. Sun et al., 2016]

Biset Edge Bundling

Mark Davis		City Computer Services Corp.
Shiela Watson		Empire State Vending Services
Steven Clark	- HA	New York Stock Exchange
Vincent Cortez		Border Patrol
Amalicio Guatemez	ACC HHI	University of Texas
Reg Harriss		contenting or result
Den Hassine		PBI
Anmed Yassin		American Airlines
Yasein Mosed		AMTRAK
Mukhtar Galab		Sprint
Faysal Goba		Penn Station NYC
Hani al Hallak		INS .
Bagwant Dhaliwal		Office Supplies Co.
Abdul Ramazi		Clark & Co
Sahim Albakri		First Union Bank
Muhammed bin Harazi		Talban
Clark Webster		CIA
Ziad al Shibh		Budnet Storane Linits
Omar Bakri Ostaria		Ai Osada
Contacto		A Gallon
Canada		MIS
Richard Reid		British Special Branch
Tawfiq al Adel	NAME AND	Sealink Container Corp.
Saled Khalad		US Post Office
Jeite Nijboer		Bush Intercontinental Airport
al Ahdal		Continental Airlines
bin Attash		Reagan National Airport
Hans Pakes		The Powhatan Company
Jamai Kalifa		Pentagon
Masood Yaser		Home Depot
Abu al Masri		Apex Paper Products Company
Ralph Goode		Arvan Nations
Abul Hassan Salman		Army CID
Clark Adams		Ruter Tourk Rental
Walana Wilson		Popular Franka
Marade Misser		Detri taraer
Karm bensaid		Coast Guard
Carl Louis		Passport Agency
Abdelhak Kherbane		U-haul
Hamid Alwan		Virginia National Bank
Alwan		United Connector
Abdulla Ramzi		United
Omar Clark		University of Virginia
Joseph Nizar		Select Gourmet Foods
Riduan bin Attash		First Union National Bank
Saleh al Ahdal		Pyramid Bank of Cairo
Saeed Khalad		Central Bank of Dubai
Jamil Musawi	/	Marvel Corporation
Muhammad Shamzi		German Intelligence
Vincent Lozario		American Diniomatic Mission Mis
Khallan Maulet		Prime real segmentable respect 198
Abobil of Marte		
Acour ai mada		

D. Koop, CS 490/680, Fall 2019

Northern Illinois University

Bicluster Reordering Problem

D. Koop, CS 490/680, Fall 2019

(b)

Bicluster relationships as a graph

