Data Visualization (CIS 490/680)

Networks

Dr. David Koop

Colormap

- A colormap specifies a mapping from data values to color
- Colormap should follow the expressiveness principle

Binary

• Types of colormaps:

D. Koop, CIS 680, Fall 2019

Rainbow Colormap

D. Koop, CIS 680, Fall 2019

Two-Hue Colormap

Artifacts from Rainbow Colormaps

Artifacts from Rainbow Colormaps

Turbo: Lightness Profiles

Jet

D. Koop, CIS 680, Fall 2019

Viridis

Value-Suppressing Uncertainty Palette (VSUP)

Same Channels, just binned differently

Geospatial Data: Need Map Projection

Projection Classification

Interrupted Projections

Adding Data to Maps

- Discrete: a value is associated with a specific position
 - Size
 - Color Hue
 - Charts
- Continuous: each spatial position has a value (fields)
 - Heatmap
 - Isolines

Discrete Categorical Attribute: Shape

Discrete Categorical Attribute: Shape

D. Koop, CIS 680, Fall 2019

NIU

Continuous Quantitative Attribute: Color

Maps: What trends do you see?

D. Koop, CIS 680, Fall 2019

[Desaturated by D. Koop, M. Ericson, New York Times]

Don't Just Create Population Maps!

D. Koop, CIS 680, Fall 2019

PET PEEVE #208: GEOGRAPHIC PROFILE MAPS WHICH ARE BASICALLY JUST POPULATION MAPS

Announcements

- Colloquium Today
 - Dr. Tim Weninger
 - Principled Structure Discovery from Graph Data
 - 2pm, PM 253
- CSAC Panel Discussion: "Real Jobs in the Real World"
 - Alumni of NIU
 - October 15, 3:30-5pm
 - Barsema Alumni Center Ballroom

Project Proposal

- Find an interesting subject or dataset
 - see List of lists of datasets [B. Keegan]
- Understand the data available (format, types, semantics)
- Figure out some interesting questions and tasks
- Start brainstorming about visualizations and interactions
- Inspiration:
 - Information Is Beautiful Awards
 - MBTA Viz
- Due Tomorrow

<u>Midterm</u>

- Thursday, October 17
- Covers material through this week
- Format:
 - Multiple Choice
 - Free Response (often multi-part)
 - CS 680 students will have extra que discussed

- CS 680 students will have extra questions related to the research papers

Choropleth Map

Choropleth Map

- Data: geographic geometry data & one quantitative attribute per region
- Tasks: trends, patterns, comparisons
- How: area marks from given geometry, color hue/saturation/luminance
- Scalability: thousands of regions
- Design choices:
 - Colormap
 - Region boundaries (level of summarization)

[Interactive Version, NYTimes]

D. Koop, CIS 680, Fall 2019

[R. Rohla and Washington Post, 2018]

D. Koop, CIS 680, Fall 2019

Size Encoding

D. Koop, CIS 680, Fall 2019

Dasymetric Dot Density

Glyphs: xkcd's Map

Cartograms

Cartograms

- Data: geographic geometry data & two quantitative attributes (one part-of-whole)
 - Derived data: new geometry derived from the part-of-whole attribute
- Tasks: trends, comparisons, part-of-whole
- How: area marks from derived geometry,
 - color hue/saturation/luminance
- Scalability: thousands of regions
- Design choices:
 - Colormap
 - Geometric deformation

Hexagonal Cartogram

Solid D	Likely D	Lean D	Toss-up	Lean R	Like
≥95% D	≥75% D	≥60% D	<60%	≥60% R	≥7

D. Koop, CIS 680, Fall 2019

Non-Contiguous Cartogram

World Cartograms

World Population

World Energy Consumption

D. Koop, CIS 680, Fall 2019

House Races: Map?

House Race Ratings by the Cook Political Report

D. Koop, CIS 680, Fall 2019

[New York Times, 2018]

House Races: Cartogram?

Solid D	Likely D	Lean D	Toss-up	Lean R	Like
≥95% D	≥75% D	≥60% D	<60%	≥60% R	≥7

D. Koop, CIS 680, Fall 2019

Maps Aren't Always Best: Close House Races

12 Lean Democratic

- AZ-02 Open (McSally)
- CA-49 Open (Issa)
- CO-06 Coffman
- IA-01 Blum
- KS-03 Yoder
- MI-11 Open (Trott)
- MN-02 Lewis
- MN-03 Paulsen
- NV-03 Open (Rosen)
- NJ-11 Open (Frelinghuysen)
- PA-07 Vacant (formerly Dent)
- VA-10 Comstock

31 Tossups

- CA-10 Denham
- CA-25 Knight
- CA-45 Walters
- FL-26
- FL-27
- IL-06
- IL-12
- IA-03
- KY-06 Barr

D. Koop, CIS 680, Fall 2019

- CA-39 Open (Royce)
- CA-48 Rohrabacher
 - Curbelo
 - Open (Ros-Lehtinen)
 - Roskam
 - Bost
 - Young
- KS-02 Open (Jenkins)

25 Lean Republicar

- AR-02 Hill
- CA-50 Hunter
- FL-15 Open (Ross)
- FL-16 Buchanan
- GA-06 Handel
- GA-07 Woodall
- IL-13 Davis
- IL-14 Hultgren
- MO-02 Wagner
- MT-AL Gianforte
- NE-02 Bacon
- NY-24
 - Katko [New York Times, 2018]

Maps Aren't Always Best: Obama Targets

D3 Map Example

Networks

- Why not graphs?
 - Bar graph
 - Graphing functions in mathematics
- Network: nodes and edges connecting the nodes
- Formally, G = (V,E) is a set of nodes V and a set of edges E where each edge connects two nodes.
- Nodes == items, edges connect items
- Both nodes and edges may have attributes

Arrange Networks and Trees

D. Koop, CIS 680, Fall 2019

Molecule Graph

Molecule Graph

Molecule Graph

Web Sites as Graphs (amazon.com)

D. Koop, CIS 680, Fall 2019

Social Networks

Networks as Data

Nodes

ID	Atom	Electrons	Protons
0	Ν	7	7
1	С	6	6
2	S	16	16
3	С	6	6
4	Ν	7	7

Edges

ID1	ID2	Bonds
0	1	1
1	2	1
1	3	2
3	4	1

Node-Link Diagrams

- Data: nodes and edges
- Task: understand connectivity, paths, structure (topology)
- Encoding: nodes as point marks, connections as line marks
- Scalability: hundreds
- ...but high density of links can be problematic!
- Problem with the above encoding?

Arc Diagram

Network Layout

- Need to use spatial position when designing network visualizations
- Otherwise, nodes can **occlude** each other, links hard to distinguish
- How?
 - With bar charts, we could order using an attribute...
 - the data usually)
- Possible metrics:
 - Edge crossings
 - Node overlaps
 - Total area

- With networks, we want to be able to see connectivity and topology (not in

Force-Directed Layout

- Nodes push away from each other but edges are springs that pull them together • Weakness: nondeterminism, algorithm may produce difference results each time it runs

D. Koop, CIS 680, Fall 2019

47

sfdp

JGD_Homology@cis-n4c6-b14. 7220 nodes, 13800 edges.

"Hairball"

JGD_Homology@cis-n4c6-b4. 26028 nodes, 100290 edges.

D. Koop, CIS 680, Fall 2019

y 49

Hierarchical Edge Bundling

Hierarchical Edge Bundling

