Data Visualization (CIS 490/680)

Color

Dr. David Koop

Proper Use of Line and Bar Charts

D. Koop, CIS 680, Fall 2019

• Does this make sense?

[Adapted from Zacks and Tversky, 1999, Munzner (ill. Maguire), 2014]

Effect of Aspect Ratio in Line Charts

Aspect Ratio = 3.96

Bertin's Matrix Encodings

Cluster Heatmap (with color)

D. Koop, CIS 680, Fall 2019

[File System Similarity, R. Musăloiu-E., 2009]

Northern Illinois University

Scatterplot Matrices and Parallel Coordinates

D. Koop, CIS 680, Fall 2019

Northern Illinois University 6

Scatterplot Matrices and Parallel Coordinates

Scatterplot Matrix

D. Koop, CIS 680, Fall 2019

Parallel Coordinates

Pie Charts: Arcs, Angles, or Areas?

D. Koop, CIS 680, Fall 2019

7

User Studies: Absolute Error Relative to Pie Chart

Project Proposal

- Find an interesting subject or dataset
 - see List of lists of datasets [B. Keegan]
- Understand the data available (format, types, semantics)
- Figure out some interesting questions and tasks
- Start brainstorming about visualizations and interactions
- Inspiration:
 - Information Is Beautiful Awards
 - MBTA Viz
- Due Friday, October 11, 2019

Midterm

- Two weeks
- Thursday, October 17

Color

Light Reflection & Absorption

D. Koop, CIS 680, Fall 2019

600

700

Wavelength (nm)

12

Human Color Perception

D. Koop, CIS 680, Fall 2019

[via M. Meyer]

13

Metamerism

D. Koop, CIS 680, Fall 2019

• Same responses == same color

- Humans are not spectrometers
- Do not get the whole function
- Three responses

Opponent Process Theory

D. Koop, CIS 680, Fall 2019

y 15

Color Blindness

D. Koop, CIS 680, Fall 2019

Northern Illinois University

Color Blindness

- Sex-linked: 8% of males and 0.4% of females of N. European ancestry • Abnormal distribution of cones (e.g. missing the S, M, or L types)
- Either dichromatic (only two types of cones) or anomalous trichromatic (one type of cones has a defect)
 - Protanopia (L missing), Protanomaly (L defect)
 - Deuteranopia (M missing), Deuteranomaly (M defect) [Most Common]
 - Tritanopia (S missing), Tritanomaly (S defect) [Rare]
- Dichromacy is rarer than anomalous trichromacy
- Opponent process model explains why colors cannot be differentiated

Color Blindness

D. Koop, CIS 680, Fall 2019

18

Simulating Color Blindness Empty

D. Koop, CIS 680, Fall 2019

Photop. Subst. Scale Ratio

Simulating Color Blindness

Simulating Color Blindness

D. Koop, CIS 680, Fall 2019

[Machado et. al, 2009]

Simulating Deuteranopia (Colormaps)

D. Koop, CIS 680, Fall 2019

Simulation of green deficient colour blindness (deuteranopia) at 0%

Simulating Deuteranopia (Colormaps)

D. Koop, CIS 680, Fall 2019

Simulation of green deficient colour blindness (deuteranopia) at 0%

Primary Colors?

- Red, Green, and Blue
- Red, Yellow, and Blue
- Orange, Green, and Violet
- Cyan, Magenta, and Yellow

Primary Colors?

- Red, Green, and Blue
- Red, Yellow, and Blue
- Orange, Green, and Violet
- Cyan, Magenta, and Yellow
- All of the above!

Color Addition and Subtraction

Color Spaces and Gamuts

- Color space: the organization of all colors in space
 - Often human-specific, what we can see (e.g. CIELAB)
- Color gamut: a subset of colors
 - Defined by corners of color space
 - What can be produced on a monitor (e.g. using RGB)
 - What can be produced on a printer (e.g. using CMYK)
 - The gamut of your monitor != the gamut of someone else's or a printer

Color Models

- A **color model** is a representation of color using some basis RGB uses three numbers (red, blue, green) to represent color Color space ~ color model, but there can be many color models used in the
- same color space (e.g. OGV)
- Hue-Saturation-Lightness (HSL) is more intuitive and useful
 - Hue captures pure colors
 - Saturation captures the amount of white mixed with the color - Lightness captures the amount of black mixed with a color

 - HSL color pickers are often circular
- Hue-Saturation-Value (HSV) is similar (swap black with gray for the final value), linearly related

Luminance

- HSL does not truly reflect the way we perceive color
- differently
- Our perception (L*) is nonlinear

Corners of the RGB color cube

L from HSL All the same

Luminance

| *

D. Koop, CIS 680, Fall 2019

• Even though colors have the same lightness, we perceive their luminance

Perceptually Uniform Color Spaces

D. Koop, CIS 680, Fall 2019

L*a*b* allows perceptually accurate comparison and calculations of colors

[J. Rus, CC-BY-SA (changed to horizontal layout)]

Luminance Perception (Spatial Adaption)

Edward H. Adelson

D. Koop, CIS 680, Fall 2019

Northern Illinois University

Luminance Perception (Spatial Adaption)

Edward H. Adelson

D. Koop, CIS 680, Fall 2019

Northern Illinois University

Simultaneous Contrast

Simultaneous Contrast

Simultaneous Contrast

Simultaneous Contrast

What colors?

~~~~~~~~~ ........... \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* 











### What colors?

........... 

### D. Koop, CIS 680, Fall 2019



### Red, yellow, blue

### Purple, orange do not exist!









## What does this mean for visualization?







## What does this mean for visualization?

- We need to be aware of colorblindness when encoding via color • Our brains may misinterpret color (surrounding colors matter!) even if we
- aren't colorblind
- Be careful! Don't assume that adding color always works the way you intended
- Use known colormaps when possible







# Violations of CIELAB Assumptions

- CIELAB:
  - Approximately perceptually linear
  - 1 unit of Euclidean distance = 1 Just
    Noticeable Difference (JND)
  - JND: people detect change at least 50% of the time
- Assumptions CIELAB makes:
  - Simple world
  - Isolation
  - Geometric



## Simple World Assumption













# Problems with Simple World Assumption









### Isolation Assumption















## Problems with Isolation Assumption



### D. Koop, CIS 680, Fall 2019



Northern Illinois University 40

### Geometric Assumption







## Size Problem with Geometric Assumption











## Shape Problem with Geometric Assumption



### D. Koop, CIS 680, Fall 2019







43

## Types of Geometry





### Asymmetric Marks

### D. Koop, CIS 680, Fall 2019



Area Marks









### Run the tests!







### D. Koop, CIS 680, Fall 2019

1.5°

2.0°









## Point Size: consistent with previous results



D. Koop, CIS 680, Fall 2019

[D. Szafir, 2017]





47

## Bar Thickness and Length: longer bars help











# Line Thickness: better than points



| 0.3 0.4 0.5<br>Thickness<br>ual Angle |                               |     |     |
|---------------------------------------|-------------------------------|-----|-----|
| Thickness<br><i>ual Angle</i>         | 0.3                           | 0.4 | 0.5 |
|                                       | Thickness<br><i>ual Angle</i> |     |     |







## Color perception in real-world visualizations is complicated







### Akiyoshi Kitaoka's Illusion pages







# Colormap

- A colormap specifies a mapping between colors and data values
- Colormap should follow the expressiveness principle

**Binary** 

• Types of colormaps:





D. Koop, CIS 680, Fall 2019







Northern Illinois University







## Categorical vs. Ordered

- Hue has no implicit ordering: use for categorical data
- Saturation and luminance do: use for ordered data

Luminance

Saturation

Hue

D. Koop, CIS 680, Fall 2019







Northern Illinois University







# Categorical Colormap Guidelines

- Don't use too many colors (~12)
- Remember your background has a color, too
- Nameable colors help
- Be aware of luminance (e.g. difference between blue and yellow) Think about other marks you might wish to use in the visualization







## Categorical Colormaps



### D. Koop, CIS 680, Fall 2019



Northern Illinois University







## Categorical Colormaps











## Number of distinguishable colors?











## Number of distinguishable colors?





D. Koop, CIS 680, Fall 2019



[Sinha & Meller, 2007]







## Discriminability

- Often, fewer colors are better
- Don't let viewers combine colors because they can't tell the difference
- Make the combinations yourself
- Also, can use the "Other" category to reduce the number of colors









## Discriminability

- Often, fewer colors are better
- Don't let viewers combine colors because they can't tell the difference
- Make the combinations yourself
- Also, can use the "Other" category to reduce the number of colors









## Ordered Colormaps

- Used for ordinal or quantitative attributes
- [0, N]: Sequential
- [-N, 0, N]: Diverging (has some meaningful midpoint)
- Can use hue, saturation, and luminance
- Remember hue is not a magnitude channel so be careful
- Can be **continuous** (smooth) or **segmented** (sharp boundaries)
  - Segmented matches with ordinal attributes
  - Can be used with quantitative data, too.









## Continuous Colormap



### D. Koop, CIS 680, Fall 2019



Northern Illinois University







### Segmented Colormap











## Is continuous better than segmented?







## Continuous











## Many Segments



### D. Koop, CIS 680, Fall 2019





Northern Illinois University




# Fewer Segments



### D. Koop, CIS 680, Fall 2019









## Types of Tasks

- Locate/Explore & Identify: Highest Point (Global, In Region), 275m
- Locate/Explore & Compare: Height Compare/Rank
- Explore & Identify: Steepest
- Lookup & Identify: Lookup
- Explore & Compare: Steepness Compare/Rank
- Browse & Summarize: Average Height
- Browse & Compare: Compare Average Height
- Combination: Steepest at 355m

### D. Koop, CIS 680, Fall 2019











## Results

- "[C]ontrary to the expressiveness principle, no cases were found in which a continuous encoding of 2D scalar field data was advantageous for task accuracy, and for some tasks, specific binned encodings facilitated accuracy."
- "[S]upport for the counterintuitive finding that decisions with binned encoding were slower than those made with continuous encoding"
- Word of caution: single image!

### D. Koop, CIS 680, Fall 2019













# Don't Use Rainbow Colormaps



Which has a discontinuity?

D. Koop, CIS 680, Fall 2019







Northern Illinois University







## Other Colormaps Work Better



Which has a discontinuity?

D. Koop, CIS 680, Fall 2019







Northern Illinois University





