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Proper Use of Line and Bar Charts
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[Adapted from Zacks and Tversky, 1999, Munzner (ill. Maguire), 2014]
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• What does the line indicate? 
• Does this make sense?
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Figure 5. Sunspot observations, 1700-1987. The first plot shows low-
frequency oscillations in the maximum values of sunspot cycles. The second 
plot brings the individual cycles into greater relief. 
 
Carbon Dioxide Measurements 
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Figure 6. Monthly atmospheric CO2 measurements. The first plot 
shows a baseline trend of increasing values, with a slight inflection. The 
second plot more clearly communicates the yearly oscillations. 
 
Figures 5-8 show the results of applying multi-scale banking to real-world 
data sets. Data sets are plotted at each computed aspect ratio, with banked 
trend lines shown in red. The power spectrum plot shows a frequency-
domain representation of the data, annotated with potential scales of 
interest. The aspect ratio plot shows the banked aspect ratios for each 
possible lowpass filtering of the data, annotated with the final aspect ratios 
returned by the algorithm. 

PRMTX Mutual Fund
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Figure 7. PRMTX mutual fund performance, 1997-2006. The first plot 
shows the boom and bust of the “dot-com” bubble and subsequent recovery. 
Tthe second plot affords closer consideration of short-term variations. 
 
Downloads of the prefuse toolkit 
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Figure 8. Daily download counts of the prefuse visualization toolkit. 
The first plot shows a general increase in downloads. The second plot shows 
weekly variations, including reduced downloads on the weekends. The third 
plot enables closer inspection of day-to-day spikes and decays. 
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Effect of Aspect Ratio in Line Charts
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[Heer and Agrawala, 2006]
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Fig. 6. Using a crosset to adjust the range of three rows at a time.

Figure 6). Compared to standard spreadsheet interactions for resizing
rows or columns, the resizing crosset does not require the selection
to be specified in advance. Since this operation impacts the layout of
crossets, the tool only shows a partial preview. The same is true for
separator adjustment tools and the automatic reordering tool.

By supporting crossing-based interactions, BERTIFIER makes it pos-
sible to quickly change arbitrary groups of adjacent rows and columns,
which is useful in many cases, including for automatically reorder-
ing rows or columns within identified groups. Crossing all rows or
columns allows users to apply operations to the entire table in a quasi-
instantaneous manner, provided the table fits the screen. All these
interactions remain consistent across all tools.

Crossets extend previous work on crossing-based interfaces in sev-
eral ways [1, 2, 5]. One problem with such interfaces is that they require
steering, a slow motor task [1]. Crossets do not have this problem since
the command is selected on mouse press, after which the user is allowed
to freely deviate from a straight trajectory. As far as we know, crossing
gestures have never been applied to manipulate multiple sliders at once,
and have never been used to interact with tables.

4.3 Human-Assisted Reordering
Human-Assisted reordering is supported both through manual reorder-
ing interactions and through automatic visual reordering.

4.3.1 Manual Reordering Interactions
As in previous implementations [14, 45, 46, 49], we support column
and row reordering by drag and drop. This is the first level of integra-
tion between automatic and manual reordering, and allows to tweak
the results of automatic reordering [33]. Following previous findings
that reordering rows and columns concurrently can be confusing to
users [49], we lock the reordering on the row or column based on
the initial dragging direction. To help users understand changes, we
perform animated transitions during the dragging operation.

Following previous recommendations [49–51], we also support drag-
ging on sets of rows and columns. We provide a tool that lets users
“glue” several rows or columns together (Figure 5 bottom right). Since
we distinguish between groups used for concurrent manipulation and
visual groups (i.e., separators), we avoided the ambiguous term “group”.
Our automatic reordering algorithm preserves rows and columns glued
together by the user, thus providing a second level of integration.

4.3.2 Automatic Visual Reordering
The principle of automatic visual reodering is that rows and columns
are reordered not according to the underlying data, but according to
their visual similarity. We believe this principle is easier to understand
for users not familiar with data analysis. Visual reordering is only a
user interface metaphor that does not have to accurately capture what
the system is doing, but which is meant to elicit a simple and “good
enough” mental model of the system to allow for easy tuning.

The implementation of this metaphor is fairly simple and relies on
two basic principles: i) the reordering algorithm should take as input
the data after it has been conditioned and normalized (e.g., betwewn
0 and 1), and ii) the visual encodings used should ensure that visual
differences are roughly proportional to numerical differences. From
this it follows that the automatic reordering algorithm will behave as if
it were operating visually. Next we discuss to what extent the condition
ii) is fulfilled by the visual encodings implemented in BERTIFIER.
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bar chart
Average
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Dual
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QUANTITY
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Fig. 7. Encodings in BERTIFIER. The range of each row is set to [1, 10]. 0
and 11 are beyond the range. Crosses encode N/A values.

4.3.3 Visual Encodings
BERTIFIER implements eight types of visual encodings (Figure 7). For
the sake of generality, we consider text as being one type of encoding.
Automatic reordering is however disabled on text to reinforce the visual
reordering metaphor. All encodings except grayscale have been either
explicitly mentioned in Bertin’s book [10] or were used by him. The
software can be easily extended with other types of encodings.

The black and white bar charts and average bar charts are particular
in that they encode summary statistics in addition to value: values
lower than the mean are shown in white or gray, while values above the
mean are shown in black. The line encoding is also different in that it
uses a positional encoding. These three encodings have been only used
occasionally and are not implemented in any of the physical matrices.

The remaining encodings are more common and all roughly follow
the rule that the quantity of ink—the average pixel darkness—is propor-
tional to the normalized data value. We enforced this rule to make the
encodings consistent with the visual reordering metaphor. For example,
the dual bar chart encodes the values from white to black, with a fully
hatched cell corresponding to the mean value of the row. In this case,
we use a 50% hatching to respect the rule of proportionality. Thus for
these four encodings, computing a numerical difference between cells
is equivalent to computing the difference in their average shading. The
rule of proportionality is challenging to implement for the “circle” en-
coding, since the circle is clipped and progressively turns into a square.
We chose to replicate Bertin’s original encoding although previous
work described an optimal scale for symbol size discrimination [38].
Deriving the correct circle radius is a geometrical problem without any
analytic solution, but we found the following good approximation:

r =

(
D = 2

p
v/⇡ if v  ⇡

4
1
2 (t+ t

6)(
p
2� 1) + 1 with t = D�1

2/⇡�1 if v >
⇡
4

with v being the cell value and r the (unclipped) circle radius.

4.3.4 Interactive Data Conditioning
Although users can pre-process their data in their spreadsheet as part
of step S1, BERTIFIER provides tools for performing further data
conditioning of rows on-the-fly (the “Adjust” toolbar in Figure 5).
Slider crossets are provided for i) adjusting the data range and clipping
the values accordingly, ii) reducing the maximum value of the data
(which has the effect of making all cells look brighter or disappear),
iii) turning values into discrete steps. In addition, users can iv) invert
row or columns values. i), iii) and iv) have been recommended by
Bertin [12] and i), ii) and iii) are implemented in CHART [7].

These operations change the matrix visually in a similar way as
photo retouching tools. Since the automatic reordering is performed
on post-processed values, these controls provide a way of fine-tuning
the reordering algorithm without explicitly tuning any of its internal
parameters. Specifically, rows that are made brighter will be given a
lower weight by the reordering algorithm. Rows that are made entirely
white will be ignored. A specific case of this is making all rows white
except one, which enables a regular sorting operation.

Sometimes it is useful to provide custom ranges (e. g., for applying a
uniform range to all rows). To achieve this, users can specify the range
of each row in the initial spreadsheet, using special header names. A
crosset in BERTIFIER allows to enable or disable this custom range.

Bertin’s Matrix Encodings

�4

[C.Perrin et al., 2014]
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Cluster Heatmap (with color)
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[File System Similarity, R. Musăloiu-E., 2009]
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Scatterplot Matrices and Parallel Coordinates
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[Munzner (ill. Maguire), 2014]
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Scatterplot Matrices and Parallel Coordinates
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[Munzner (ill. Maguire), 2014]
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Pie Charts: Arcs, Angles, or Areas?
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[R. Kosara and D. Skau, 2016]
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User Studies: Absolute Error Relative to Pie Chart
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[R. Kosara and D. Skau, 2016]
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Project Proposal
• Find an interesting subject or dataset 
- see List of lists of datasets [B. Keegan] 

• Understand the data available (format, types, semantics) 
• Figure out some interesting questions and tasks 
• Start brainstorming about visualizations and interactions 
• Inspiration: 
- Information Is Beautiful Awards 
- MBTA Viz 

• Due Friday, October 11, 2019

�9

http://faculty.cs.niu.edu/~dakoop/cs680-2019fa/project.html#proposal
https://medium.com/information-expositions/list-of-lists-of-datasets-c9bf52370755
https://www.informationisbeautifulawards.com
http://mbtaviz.github.io
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Midterm
• Two weeks 
• Thursday, October 17
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Color
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How does light work?Light Reflection & Absorption
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[via M. Meyer]
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27

Human Color Perception
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[via M. Meyer]



D. Koop, CIS 680, Fall 2019

metamers

29

Metamerism
• Same responses == same color 
• Humans are not spectrometers 
• Do not get the whole function 
• Three responses 

�14

[via M. Meyer]

27
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Opponent Process Theory

�15

[Machado et. al, 2009]
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Color Blindness

�16

[Ishihara (Plate 9) via Wikipedia]
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Color Blindness
• Sex-linked: 8% of males and 0.4% of females of N. European ancestry 
• Abnormal distribution of cones (e.g. missing the S, M, or L types) 
• Either dichromatic (only two types of cones) or anomalous trichromatic (one 

type of cones has a defect) 
- Protanopia (L missing), Protanomaly (L defect) 
- Deuteranopia (M missing), Deuteranomaly (M defect) [Most Common] 
- Tritanopia (S missing), Tritanomaly (S defect) [Rare] 

• Dichromacy is rarer than anomalous trichromacy 
• Opponent process model explains why colors cannot be differentiated

�17
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35

Color Blindness
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[via M. Meyer]
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Simulating Color Blindness

�19

[Machado et. al, 2009]
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Simulating Color Blindness
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[Machado et. al, 2009]
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Simulating Color Blindness
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[Machado et. al, 2009]
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Simulating Deuteranopia (Colormaps)
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[@neilrkaye, reddit]

https://www.reddit.com/r/dataisbeautiful/comments/avcrwt/simulation_of_green_deficient_colour_blindness/


D. Koop, CIS 680, Fall 2019

Simulating Deuteranopia (Colormaps)

�22

[@neilrkaye, reddit]

https://www.reddit.com/r/dataisbeautiful/comments/avcrwt/simulation_of_green_deficient_colour_blindness/
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Primary Colors?
• Red, Green, and Blue
• Red, Yellow, and Blue
• Orange, Green, and Violet
• Cyan, Magenta, and Yellow

�23
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Primary Colors?
• Red, Green, and Blue
• Red, Yellow, and Blue
• Orange, Green, and Violet
• Cyan, Magenta, and Yellow
• All of the above!

�23
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Color Addition and Subtraction

�24
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Color Spaces and Gamuts
• Color space: the organization of all 

colors in space 
- Often human-specific, what we can 

see (e.g. CIELAB) 
• Color gamut: a subset of colors 
- Defined by corners of color space 
- What can be produced on a monitor 

(e.g. using RGB) 
- What can be produced on a printer 

(e.g. using CMYK) 
- The gamut of your monitor != the 

gamut of someone else's or a printer
�25

[Anatomy of a CIE Chromaticity Diagram]

http://dot-color.com/2012/08/14/color-space-confusion/
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Color Models
• A color model is a representation of color using some basis 
• RGB uses three numbers (red, blue, green) to represent color 
• Color space ~ color model, but there can be many color models used in the 

same color space (e.g. OGV) 
• Hue-Saturation-Lightness (HSL) is more intuitive and useful 
- Hue captures pure colors 
- Saturation captures the amount of white mixed with the color 
- Lightness captures the amount of black mixed with a color 
- HSL color pickers are often circular 

• Hue-Saturation-Value (HSV) is similar (swap black with gray for the final 
value), linearly related

�26
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Luminance
• HSL does not truly reflect the way we perceive color 
• Even though colors have the same lightness, we perceive their luminance 

differently 
• Our perception (L*) is nonlinear

�27

[Munzner (ill. Maguire), 2014 (based on Stone, 2006)]

Corners of the RGB 
color cube
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Perceptually Uniform Color Spaces
• L*a*b* allows perceptually accurate comparison and calculations of colors

�28

[J. Rus, CC-BY-SA (changed to horizontal layout)]
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Luminance Perception (Spatial Adaption)

�29

[E. H. Adelson, 1995]

http://web.mit.edu/persci/people/adelson/checkershadow_illusion.html
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Luminance Perception (Spatial Adaption)
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[E. H. Adelson, 1995]

http://web.mit.edu/persci/people/adelson/checkershadow_illusion.html
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http://www.handprint.com/HP/WCL/tech13.html

SIMULTANEOUS CONTRAST
Simultaneous Contrast
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Simultaneous Contrast

�32



D. Koop, CIS 680, Fall 2019

Simultaneous Contrast

�32
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Simultaneous Contrast
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What colors?

�33

[A. Kitaoka]

https://twitter.com/AkiyoshiKitaoka/status/842556026142375936
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What colors?

�33

[A. Kitaoka]

Red, yellow, blue 

Purple, orange 
do not exist! 

https://twitter.com/AkiyoshiKitaoka/status/842556026142375936
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What does this mean for visualization?
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What does this mean for visualization?
• We need to be aware of colorblindness when encoding via color 
• Our brains may misinterpret color (surrounding colors matter!) even if we 

aren't colorblind 
• Be careful! Don't assume that adding color always works the way you 

intended 
• Use known colormaps when possible

�35
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CIELAB

Commonly used in visualizations

Approximately perceptually linear

1 unit Euclidean difference equals 
1 Just Noticeable Difference (JND)

Violations of CIELAB Assumptions
• CIELAB: 
- Approximately perceptually linear 
- 1 unit of Euclidean distance = 1 Just 

Noticeable Difference (JND) 
- JND: people detect change at least 50% of 

the time 
• Assumptions CIELAB makes: 
- Simple world 
- Isolation 
- Geometric

�36

[D. Szafir, 2017]

http://cmci.colorado.edu/visualab/VisColors/17-VIS-ModelingColorDifference.pdf
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Simple World Assumption

Isolation Assumption

Geometric Assumption

Visualizations violate three CIELAB assumptions

Simple World Assumption

�37

[D. Szafir, 2017]

http://cmci.colorado.edu/visualab/VisColors/17-VIS-ModelingColorDifference.pdf
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Viewing Distance
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Surround
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Illumination
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Peak Color Outputs

Viewing 
Population

Simple World Assumption

Isolation Assumption

Geometric Assumption

Visualizations violate three CIELAB assumptions

Crowdsourced Sampling
Szafir, Stone, & Gleicher, 2014

Reinecke, Flatla, & Brooks, 2016

Problems with Simple World Assumption

�38

[D. Szafir, 2017]

http://cmci.colorado.edu/visualab/VisColors/17-VIS-ModelingColorDifference.pdf
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Simple World Assumption

Isolation Assumption

Geometric Assumption

Visualizations violate three CIELAB assumptions

Isolation Assumption

�39

[D. Szafir, 2017]

http://cmci.colorado.edu/visualab/VisColors/17-VIS-ModelingColorDifference.pdf
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Simple World Assumption

Isolation Assumption

Geometric Assumption

Visualizations violate three CIELAB assumptions
Problems with Isolation Assumption

�40

[D. Szafir, 2017]

http://cmci.colorado.edu/visualab/VisColors/17-VIS-ModelingColorDifference.pdf
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Simple World Assumption

Isolation Assumption

Geometric Assumption

Visualizations violate three CIELAB assumptions
Geometric Assumption

�41

[D. Szafir, 2017]

http://cmci.colorado.edu/visualab/VisColors/17-VIS-ModelingColorDifference.pdf
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Simple World Assumption

Isolation Assumption

Geometric Assumption

Visualizations violate three CIELAB assumptions

Size-Based Sampling
Carter & Silverstein, 2010

Stone, Szafir, & Setlur, 2014

Size Problem with Geometric Assumption

�42

[D. Szafir, 2017]

http://cmci.colorado.edu/visualab/VisColors/17-VIS-ModelingColorDifference.pdf
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Simple World Assumption

Isolation Assumption

Geometric Assumption

Visualizations violate three CIELAB assumptions

Shape Problem with Geometric Assumption

�43

[D. Szafir, 2017]

http://cmci.colorado.edu/visualab/VisColors/17-VIS-ModelingColorDifference.pdf
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Simple World Assumption

Isolation Assumption

Geometric Assumption

Visualizations violate three CIELAB assumptions

Diagonally Symmetric Marks

Asymmetric Marks

Elongated Marks

Area Marks

Types of Geometry
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[D. Szafir, 2017]

http://cmci.colorado.edu/visualab/VisColors/17-VIS-ModelingColorDifference.pdf
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Run the tests!
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6 pixels 
0.25°

12 pixels 
0.5°

18 pixels 
0.75°

25 pixels 
1.0°

37 pixels 
1.5°

50 pixels 
2.0°

6 (diameters, within) × 6 (color differences, within) × 3 (color axis, between)

81 participants on Mechanical Turk (5,668 trials)
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[D. Szafir, 2017]

http://cmci.colorado.edu/visualab/VisColors/17-VIS-ModelingColorDifference.pdf
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[D. Szafir, 2017]

http://cmci.colorado.edu/visualab/VisColors/17-VIS-ModelingColorDifference.pdf
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[D. Szafir, 2017]

http://cmci.colorado.edu/visualab/VisColors/17-VIS-ModelingColorDifference.pdf
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[D. Szafir, 2017]

http://cmci.colorado.edu/visualab/VisColors/17-VIS-ModelingColorDifference.pdf
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Color perception in real-world visualizations  
is complicated
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Akiyoshi Kitaoka's Illusion pages

�51

http://www.ritsumei.ac.jp/~akitaoka/index-e.html
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Colormap
• A colormap specifies a mapping between colors and data values 
• Colormap should follow the expressiveness principle 
• Types of colormaps:

�52

[Munzner (ill. Maguire), 2014]
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Categorical vs. Ordered
• Hue has no implicit ordering: use for categorical data 
• Saturation and luminance do: use for ordered data

�53

[Munzner (ill. Maguire), 2014]

Saturation

Luminance 

Hue
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Categorical Colormap Guidelines
• Don't use too many colors (~12) 
• Remember your background has a color, too 
• Nameable colors help 
• Be aware of luminance (e.g. difference between blue and yellow) 
• Think about other marks you might wish to use in the visualization

�54
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Categorical Colormaps

�55

[colorbrewer2.org]

http://colorbrewer2.org
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Categorical Colormaps

�56

[colorbrewer2.org]

http://colorbrewer2.org
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Number of distinguishable colors?

�57

[Sinha & Meller, 2007]
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Number of distinguishable colors?
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[Sinha & Meller, 2007]
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Discriminability
• Often, fewer colors are better 
• Don't let viewers combine colors because they can't tell the difference 
• Make the combinations yourself 
• Also, can use the "Other" category to reduce the number of colors

�58
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Discriminability
• Often, fewer colors are better 
• Don't let viewers combine colors because they can't tell the difference 
• Make the combinations yourself 
• Also, can use the "Other" category to reduce the number of colors

�59
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Ordered Colormaps
• Used for ordinal or quantitative attributes 
• [0, N]: Sequential 
• [-N, 0, N]: Diverging (has some meaningful midpoint) 
• Can use hue, saturation, and luminance 
• Remember hue is not a magnitude channel so be careful 
• Can be continuous (smooth) or segmented (sharp boundaries) 
- Segmented matches with ordinal attributes  
- Can be used with quantitative data, too.

�60
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Continuous Colormap

�61

[Bergman et al., 1995]
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Segmented Colormap

�62

[Bergman et al., 1995]
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Is continuous better than segmented?
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Evaluating the Impact of Binning 2D Scalar Fields
Lace Padilla, P. Samuel Quinan, Miriah Meyer, and Sarah H. Creem-Regehr

Fig. 1: Experimental stimuli for five binning conditions: A. Continuous, B. 10m binning, C. 20m binning, D. 30m binning, E. 40m
binning

Abstract— The expressiveness principle for visualization design asserts that a visualization should encode all of the available data,
and only the available data, implying that continuous data types should be visualized with a continuous encoding channel. And yet,
in many domains binning continuous data is not only pervasive, but it is accepted as standard practice. Prior work provides no clear
guidance for when encoding continuous data continuously is preferable to employing binning techniques or how this choice affects
data interpretation and decision making. In this paper, we present a study aimed at better understanding the conditions in which
the expressiveness principle can or should be violated for visualizing continuous data. We provided participants with visualizations
employing either continuous or binned greyscale encodings of geospatial elevation data and compared participants’ ability to complete
a wide variety of tasks. For various tasks, the results indicate significant differences in decision making, confidence in responses, and
task completion time between continuous and binned encodings of the data. In general, participants with continuous encodings were
faster to complete many of the tasks, but never outperformed those with binned encodings, while performance accuracy with binned
encodings was superior to continuous encodings in some tasks. These findings suggest that strict adherence to the expressiveness
principle is not always advisable. We discuss both the implications and limitations of our results and outline various avenues for
potential work needed to further improve guidelines for using continuous versus binned encodings for continuous data types.

Index Terms—Geographic/Geospatial Visualization, Qualitative Evaluation, Color Perception, Perceptual Cognition

1 INTRODUCTION

A foundational design principle in visualization is the expressiveness
principle, which states that a visual encoding should express all of the
relationships in the data, and only the relationships in the data [24, 35].
For a continuous data type, this implies that a continuous encoding
channel is a good choice. In practice, however, domains such as car-
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tography [43] and meteorology [36] have strong conventions that visu-
alize continuous data with a discrete encoding. These domains rely on
visual channels, such as color and saturation to encode a continuous
function defined over two-dimensional space, known as a 2D scalar
field. They commonly do so by employing discrete colormaps or con-
tour lines, also called isarithmic maps [43].

Existing literature provides little guidance about encoding contin-
uous, 2D scalar fields with binned colormaps, or how this design de-
cision affects data interpretation and decision making. Research into
properties of colormaps for encoding continuous data types has largely
focused on continuous colormaps [2, 28, 38, 48]. This line of research
provides guidance on how to capture properties of the data, such as
divergence around a center point [48] or emphasis on one end of the
data range [2]. These papers go so far as proposing corresponding
binned colormaps, but do not make claims, or even discuss, their ef-
ficacy for continuous data. Work on transfer function design has also
proposed methods for binning colors, but with a focus on volumetric
scalar fields, with the underlying goal of classifying materials or fea-
tures [12], as opposed to directly understanding the continuous nature

Continuous
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Evaluating the Impact of Binning 2D Scalar Fields
Lace Padilla, P. Samuel Quinan, Miriah Meyer, and Sarah H. Creem-Regehr

Fig. 1: Experimental stimuli for five binning conditions: A. Continuous, B. 10m binning, C. 20m binning, D. 30m binning, E. 40m
binning

Abstract— The expressiveness principle for visualization design asserts that a visualization should encode all of the available data,
and only the available data, implying that continuous data types should be visualized with a continuous encoding channel. And yet,
in many domains binning continuous data is not only pervasive, but it is accepted as standard practice. Prior work provides no clear
guidance for when encoding continuous data continuously is preferable to employing binning techniques or how this choice affects
data interpretation and decision making. In this paper, we present a study aimed at better understanding the conditions in which
the expressiveness principle can or should be violated for visualizing continuous data. We provided participants with visualizations
employing either continuous or binned greyscale encodings of geospatial elevation data and compared participants’ ability to complete
a wide variety of tasks. For various tasks, the results indicate significant differences in decision making, confidence in responses, and
task completion time between continuous and binned encodings of the data. In general, participants with continuous encodings were
faster to complete many of the tasks, but never outperformed those with binned encodings, while performance accuracy with binned
encodings was superior to continuous encodings in some tasks. These findings suggest that strict adherence to the expressiveness
principle is not always advisable. We discuss both the implications and limitations of our results and outline various avenues for
potential work needed to further improve guidelines for using continuous versus binned encodings for continuous data types.

Index Terms—Geographic/Geospatial Visualization, Qualitative Evaluation, Color Perception, Perceptual Cognition

1 INTRODUCTION

A foundational design principle in visualization is the expressiveness
principle, which states that a visual encoding should express all of the
relationships in the data, and only the relationships in the data [24, 35].
For a continuous data type, this implies that a continuous encoding
channel is a good choice. In practice, however, domains such as car-
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tography [43] and meteorology [36] have strong conventions that visu-
alize continuous data with a discrete encoding. These domains rely on
visual channels, such as color and saturation to encode a continuous
function defined over two-dimensional space, known as a 2D scalar
field. They commonly do so by employing discrete colormaps or con-
tour lines, also called isarithmic maps [43].

Existing literature provides little guidance about encoding contin-
uous, 2D scalar fields with binned colormaps, or how this design de-
cision affects data interpretation and decision making. Research into
properties of colormaps for encoding continuous data types has largely
focused on continuous colormaps [2, 28, 38, 48]. This line of research
provides guidance on how to capture properties of the data, such as
divergence around a center point [48] or emphasis on one end of the
data range [2]. These papers go so far as proposing corresponding
binned colormaps, but do not make claims, or even discuss, their ef-
ficacy for continuous data. Work on transfer function design has also
proposed methods for binning colors, but with a focus on volumetric
scalar fields, with the underlying goal of classifying materials or fea-
tures [12], as opposed to directly understanding the continuous nature
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Evaluating the Impact of Binning 2D Scalar Fields
Lace Padilla, P. Samuel Quinan, Miriah Meyer, and Sarah H. Creem-Regehr

Fig. 1: Experimental stimuli for five binning conditions: A. Continuous, B. 10m binning, C. 20m binning, D. 30m binning, E. 40m
binning

Abstract— The expressiveness principle for visualization design asserts that a visualization should encode all of the available data,
and only the available data, implying that continuous data types should be visualized with a continuous encoding channel. And yet,
in many domains binning continuous data is not only pervasive, but it is accepted as standard practice. Prior work provides no clear
guidance for when encoding continuous data continuously is preferable to employing binning techniques or how this choice affects
data interpretation and decision making. In this paper, we present a study aimed at better understanding the conditions in which
the expressiveness principle can or should be violated for visualizing continuous data. We provided participants with visualizations
employing either continuous or binned greyscale encodings of geospatial elevation data and compared participants’ ability to complete
a wide variety of tasks. For various tasks, the results indicate significant differences in decision making, confidence in responses, and
task completion time between continuous and binned encodings of the data. In general, participants with continuous encodings were
faster to complete many of the tasks, but never outperformed those with binned encodings, while performance accuracy with binned
encodings was superior to continuous encodings in some tasks. These findings suggest that strict adherence to the expressiveness
principle is not always advisable. We discuss both the implications and limitations of our results and outline various avenues for
potential work needed to further improve guidelines for using continuous versus binned encodings for continuous data types.

Index Terms—Geographic/Geospatial Visualization, Qualitative Evaluation, Color Perception, Perceptual Cognition

1 INTRODUCTION

A foundational design principle in visualization is the expressiveness
principle, which states that a visual encoding should express all of the
relationships in the data, and only the relationships in the data [24, 35].
For a continuous data type, this implies that a continuous encoding
channel is a good choice. In practice, however, domains such as car-
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tography [43] and meteorology [36] have strong conventions that visu-
alize continuous data with a discrete encoding. These domains rely on
visual channels, such as color and saturation to encode a continuous
function defined over two-dimensional space, known as a 2D scalar
field. They commonly do so by employing discrete colormaps or con-
tour lines, also called isarithmic maps [43].

Existing literature provides little guidance about encoding contin-
uous, 2D scalar fields with binned colormaps, or how this design de-
cision affects data interpretation and decision making. Research into
properties of colormaps for encoding continuous data types has largely
focused on continuous colormaps [2, 28, 38, 48]. This line of research
provides guidance on how to capture properties of the data, such as
divergence around a center point [48] or emphasis on one end of the
data range [2]. These papers go so far as proposing corresponding
binned colormaps, but do not make claims, or even discuss, their ef-
ficacy for continuous data. Work on transfer function design has also
proposed methods for binning colors, but with a focus on volumetric
scalar fields, with the underlying goal of classifying materials or fea-
tures [12], as opposed to directly understanding the continuous nature
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Types of Tasks
• Locate/Explore & Identify: Highest Point (Global, In Region), 275m 
• Locate/Explore & Compare: Height Compare/Rank 
• Explore & Identify: Steepest 
• Lookup & Identify: Lookup 
• Explore & Compare: Steepness Compare/Rank 
• Browse & Summarize: Average Height 
• Browse & Compare: Compare Average Height 
• Combination: Steepest at 355m
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(a) Click locations overlaid on the continu-
ous encoding, showing three main regions.
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(b) Number of clicks per region by binning
technique.

Fig. 6: Steepest Task

Fig. 7: A visualization of the spatial frequency of the DEM used in
this study.

binning conditions. We can speculate that different binning techniques
influenced some participants’ incorrect assumptions relating elevation
and steepness; however, future studies are needed to fully understand
these effects.

An additional complicating factor when asking participants to make
judgments of steepness comes from the high spatial frequency of the
gradient magnitude (See Figure 7). In the areas with the greatest gra-
dient magnitude, relatively close points (i.e., only a few pixels apart)
could have vastly different gradient magnitude values. While beyond
the scope of this study, future work should investigate strategies to
account for this.

3.3.5 Lookup and Identify Task
7. Lookup. This task followed the Steepest Point task and asked
participants to report the lowest and highest values adjacent to their
click; thus, accuracy of lowest and highest points were analyzed sep-
arately. For the lowest value, participants were the least accurate us-
ing the continuous encoding, specifically when compared to the 30m
and 40m binnings. Accuracy was calculated by subtracting the re-
ported lower adjacent elevation from the actual lower adjacent ele-
vation, creating an error score in CIELAB space distance. Outliers
> 2SD above the mean were removed (7.8% of trials). A one-way
between-subjects ANOVA, (controlling for reported higher adjacent
elevation), showed there was a significant effect of binning technique,
F(4,451) = 4.418, p = .001,h2

p = .057. The mean error score for
the continuous encoding (M = 134.91,SD= 105.20) was significantly
less accurate than the 30m binning (M = 94.33,SD = 87.21) and 40m
binning (M = 86.20,SD = 82.88), p < .05 (See Figure 8a).

A similar analysis was performed on the reported upper adjacent
elevation. Outliers > 2SD above the mean were removed (2% of tri-
als). There was a significant effect of binning technique on reporting
the upper adjacent elevation, F(4,479) = 2.602, p = .03,h2

p = .044.
However, post hoc Tukey HSD comparisons did not reveal signif-
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Fig. 8: Lookup Task. Error bars (95% CI)

Fig. 9: An example portion of the continuous encoding from the Steep-
ness Compare task, showing Area A and Area B.

icant differences between the conditions at the p < .05 level when
accounting for multiple comparisons. To understand the main ef-
fect of binning, planned contrast codes were generated which com-
pared the continuous encoding to the binned encodings. Similar to the
lower elevation analysis above, we found that the continuous encoding
(M = 128.60,SD = 100.90) was less accurate than binned encoding
(M = 107.36,SD = 97.16), F(1,490) = 7.79, p = 0.005 (See Figure
8b).

3.3.6 Explore and Compare Task

8. Steepness Compare. A binomial logistic regression found that
there was no significant effect of binning technique on a steepness
comparison, c2(d f = 7) = 1.35, p = .98. Area A contained the steep-
est point with a magnitude gradient of 44.33, and Area B contained
the second steepest point with a magnitude gradient of 41.65 (See
Figure 9). 62% of participants incorrectly selected Area B as con-
taining the steeper point. Similar to the Steepest task, these findings
suggest that participants’ prior understanding of topography and an as-
sumption about a connection between steepness and peaks could have
biased incorrect responses. Additionally, these findings may be influ-
enced by the issues related to the high spatial frequency of the gradient
magnitude noted in Section 3.3.4.

9. Steepness Rank. An ordinal logistic regression was used to test the
effect of binning technique on rankings of the greatest gradient mag-
nitude between regions. Participants responded to this question by
entering rankings of 1-3 (three indicating the greatest gradient magni-
tude region and one the least) for regions A, B, and C. Each of these
regions were selected because they contained the 3rd, 4th, and 5th
steepest points (See Figure 10). The ordinal logistic regression equa-
tion did significantly predict rankings when using binning technique
and regions as predictors c2(d f = 9) = 137.79, p < .00, but binning
technique did not effect gradient magnitude rankings. Both the regions
and the order of rankings were significant predictors of rankings.

This task and the prior tasks relating to steepness judgments suggest
that a number of different factors likely influenced a reduced effect
of binning, such as prior assumptions about how elevation peaks and
slopes relate and variable gradient magnitudes.

Results
• "[C]ontrary to the expressiveness principle, 

no cases were found in which a continuous 
encoding of 2D scalar field data was 
advantageous for task accuracy, and for 
some tasks, specific binned encodings 
facilitated accuracy." 

• "[S]upport for the counterintuitive finding that 
decisions with binned encoding were slower 
than those made with continuous encoding" 

• Word of caution: single image!
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Don't Use Rainbow Colormaps
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Which has a discontinuity?

https://twitter.com/Mbussonn/status/982739252516536320


D. Koop, CIS 680, Fall 2019

Other Colormaps Work Better
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Which has a discontinuity?
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