Data Visualization (CIS 490/680)

Channels & Tables

Dr. David Koop

Visual Encoding

• How should we visualize this data?

Name	Region	Population	Life Expectancy	Income
China	East Asia & Pacific	1335029250	73.28	7226.07
India	South Asia	1140340245	64.01	2731
United States	America	306509345	79.43	41256.08
Indonesia	East Asia & Pacific	228721000	71.17	3818.08
Brazil	America	193806549	72.68	9569.78
Pakistan	South Asia	176191165	66.84	2603
Bangladesh	South Asia	156645463	66.56	1492
Nigeria	Sub-Saharan Africa	141535316	48.17	2158.98
Japan	East Asia & Pacific	127383472	82.98	29680.68
Mexico	America	111209909	76.47	11250.37
Philippines	East Asia & Pacific	94285619	72.1	3203.97
Vietnam	East Asia & Pacific	86970762	74.7	2679.34
Germany	Europe & Central Asia	82338100	80.08	31191.15
Ethiopia	Sub-Saharan Africa	79996293	55.69	812.16
Turkey	Europe & Central Asia	72626967	72.06	8040.78

Potential Solution

Visual Encoding

- How do we encode data visually?
 - Marks are the basic graphical elements in a visualization
 - Channels are ways to control the appearance of the marks
- Marks classified by dimensionality: \rightarrow Points Lines (\rightarrow)

- Also can have surfaces, volumes
- Illustrator or Inkscape, the path & point definitions

Think of marks as a mathematical definition, or if familiar with tools like Adobe

Visual Channels

D. Koop, CIS 680, Fall 2019

Channel Types

Identity => what or where, Magnitude => how much

(\mathbf{A})	Magnitude Channels: Order	ed Attributes
	Position on common scale	
	Position on unaligned scale	⊢- ● -1 ⊢●1
	Length (1D size)	
	Tilt/angle	//
	Area (2D size)	• • •
	Depth (3D position)	$\longmapsto \bullet \longmapsto \bullet$
	Color luminance	
	Color saturation	
	Curvature)))
	Volume (3D size)	• • • •

D. Koop, CIS 680, Fall 2019

→ Identity Channels: Categorical Attributes

Northern Illinois University 6

Tableau Example

Data In Tableau

→ Categorical + \bullet

- Categorical data = Dimension
- Quantitative data = Measures

<u>Vega-Lite Example</u>

<u>Assignment 3</u>

- Same stacked bar chart visualization
- Three tools
 - Tableau (free academic license)
 - Vega-Lite
 - D3
- For Vega-Lite, use the online editor
- For D3, use the template files so the data is properly loaded
- [CS 490] Only need to do a standard bar chart in D3

Expressiveness and Effectiveness

- Expressiveness Principle: all data from the dataset and nothing more should be shown
 - Do encode ordered data in an ordered fashion
 - Don't encode categorical data in a way that implies an ordering
- Effectiveness Principle: the most important attributes should be the most salient
 - Saliency: how noticeable something is
 - How do the channels we have discussed measure up?

D. Koop, CIS 680, Fall 2019

Mackinlay's Ranking of Perceptual Tasks

Quantitative

D. Koop, CIS 680, Fall 2019

Ordinal

Position Density Color Saturation Color Hue Texture Connection Containment Length Angle Slope Area Volume Shape

Nominal

- Position
- Color Hue
- Texture
- Connection
- Containment
- Density
- Color Saturation
- Shape
- Length
- Angle
- Slope
- Area
- Volume

Iliinsky's Best Uses, +Ordering, +NumValues

Example	Encoding	Ordered	Useful values	Quantitative	Ordinal	Categorical	Relational
• ••	position, placement	yes	infinite	Good	Good	Good	Good
1, 2, 3; A, B, C	text labels	optional (alphabetical or numbered)	infinite	Good	Good	Good	Good
	length	yes	many	Good	Good		
. • •	size, area	yes	many	Good	Good		
/	angle	yes	medium/few	Good	Good		
	pattern density	yes	few	Good	Good		
	weight, boldness	yes	few		Good		
	saturation, brightness	yes	few		Good		
	color	no	few (< 20)			Good	
	shape, icon	no	medium			Good	
	pattern texture	no	medium			Good	
	enclosure, connection	no	infinite			Good	Good
	line pattern	no	few				Good
}	line endings	no	few				Good
	line weight	yes	few		Good		

How do we get these rankings?

D. Koop, CIS 680, Fall 2019

[Modified from Heer & Bostock, 2010]

Northern Illinois University

D. Koop, CIS 680, Fall 2019

Answer: Right is 4x larger than Left

[Modified from Heer & Bostock, 2010]

D. Koop, CIS 680, Fall 2019

Answer: A is ~2.25x larger (in area) than B

Answer: B is ~6.1x larger (in area) than A

D. Koop, CIS 680, Fall 2019

Northern Illinois University

D. Koop, CIS 680, Fall 2019

Northern Illinois University

Cleveland & McGill Experiments

Figure 4. Graphs from position–length experiment.

Figure 3. Graphs from position-angle experiment.

Heer & Bost

- Rerun Clevelan
- ... with more te

Figure 2: Area judgment stimuli. Top left: Bubble chart (T7), Bottom left: Center-aligned rectangles (T8), Right: Treemap (T9).

Results Summary

D. Koop, CIS 680, Fall 2019

[Munzner (ill. Maguire) based on Heer & Bostock, 2014]

Northern Illinois University

Psychophysics

- How do we perceive changes in stimuli
- The Psychophysical Power Law [Stevens, 1975]: All sensory channels follow a power function based on stimulus intensity ($S = I^n$)
- Length is fairly accurate
- Magnified vs. compressed sensations

Ranking Channels by Effectiveness

D. Koop, CIS 680, Fall 2019

Effectivenes

Least

Northern Illinois University

Discriminability

What is problematic here?

D. Koop, CIS 680, Fall 2019

[Koop et al., 2013]

Northern Illinois University 32

Discriminability

- Can someone tell the difference?
- Example: Line width
 - Matching a particular width with a legend
 - Comparing two widths

• How many values (bins) can be used so that a person can tell the difference?

Separability

- Cannot treat all channels as independent!
- Separable means each individual channel can be distinguished
- Integral means the channels are perceived together

D. Koop, CIS 680, Fall 2019

[Munzner (ill. Maguire) based on Ware, 2014]

Separable or Integral?

READING, EARNING MONEY **ND**

The latest data from the U.S. Census's American Community Survey paints a fascinating picture of the United States at the county level. We've looked at the educational achievement and the median income of the entire nation, to see where people are going to school, where they're earning money, and if there is any correlation.

15" 22" 30" 40"

(E) COLLEGE GRADUATES

The map at right is a product of overlaying the three sets of data. The variation in hue and value has been produced from the data shown above. In general, darker counties represent a more educated, better paid population while lighter areas represent communities with fewer graduates and lower incomes.

A collaboration between SDGD and Gregory Hubace SOURCE: US Census

Separable or Integral?

Visual Popout

Visual Popout: Parallel Lines Require Search...

Relative vs. Absolute Judgments

- Weber's Law:
 - We judge based on relative not absolute differences
 - The amount of perceived difference is relative to the object's magnitude!

Luminance Perception

Edward H. Adelson

Luminance Perception

Edward H. Adelson

D. Koop, CIS 680, Fall 2019

Tables

	REMOTE	STATION	FF V	SEN/DIS	7-D AFAS UNL	D AFAS/RMF I	JOINT RR TKT	7-D UNL	30-D UNL
1	R011	42ND STREET & 8TH AVENUE	00228985	00008471	00000441	00001455	00000134	00033341	00071255
2	R170	14TH STREET-UNION SQUARE	00224603	00011051	00000827	00003026	00000660	00089367	00199841
3	R046	42ND STREET & GRAND CENTRAL	00207758	00007908	00000323	00001183	00003001	00040759	00096613
4	R012	34TH STREET & 8TH AVENUE	00188311	00006490	00000498	00001279	00003622	00035527	00067483
5	R293	34TH STREET – PENN STATION	00168768	00006155	00000523	00001065	00005031	00030645	00054376
6	R033	42ND STREET/TIMES SQUARE	00159382	00005945	00000378	00001205	00000690	00058931	00078644
7	R022	34TH STREET & 6TH AVENUE	00156008	00006276	00000487	00001543	00000712	00058910	00110466
8	R084	59TH STREET/COLUMBUS CIRCLE	00155262	00009484	00000589	00002071	00000542	00053397	00113966
9	R020	47-50 STREETS/ROCKEFELLER	00143500	00006402	00000384	00001159	00000723	00037978	00090745
10	R179	86TH STREET-LEXINGTON AVE	00142169	00010367	00000470	00001839	00000271	00050328	00125250
11	R023	34TH STREET & 6TH AVENUE	00134052	00005005	00000348	00001112	00000649	00031531	00075040
12	R029	PARK PLACE	00121614	00004311	00000287	00000931	00000792	00025404	00065362
13	R047	42ND STREET & GRAND CENTRAL	00100742	00004273	00000185	00000704	00001241	00022808	00068216

Visualization of Tables

- Items and attributes
- For now, attributes are not known to be positions
- Keys and values
 - key is an independent attribute that is unique and identifies item
 - value tells some aspect of an item
- Keys: categorical/ordinal
- Values: +quantitative
- Levels: unique *values* of categorical or ordered attributes

D. Koop, CIS 680, Fall 2019

 \rightarrow Multidimensional Table

[Munzner (ill. Maguire), 2014]

Arrange Tables **Express Values** (\rightarrow) Separate, Order, Align Regions → Order → Align → Separate ' 🔳 📕 🖡 → 1 Key List **Axis Orientation** (\rightarrow) → Rectilinear → Parallel → Radial

D. Koop, CIS 680, Fall 2019

→ Dense

→ Space-Filling

 \rightarrow 2 Keys Matrix

 \rightarrow Many Keys **Recursive Subdivision**

Northern Illinois University 43

Express Values: Scatterplots

D. Koop, CIS 680, Fall 2019

- Data: two quantitative values
- Task: find trends, clusters, outliers
- How: marks at spatial position in horizontal and vertical directions
- Correlation: dependence between two attributes
 - Positive and negative correlation
 - Indicated by lines
 - Coordinate system (axes) and labels are important!

Coordinate Systems

D. Koop, CIS 680, Fall 2019

Coordinate Systems

D. Koop, CIS 680, Fall 2019

Bubble Plot

Scatterplot

- Data: two quantitative values
- Task: find trends, clusters, outliers
- How: marks at spatial position in horizontal and vertical directions
- Scalability: hundreds of items
- "<u>Ranking Visualizations of Correlation Using Weber's Law</u>", 2014:
 - Correlation perception can be modeled via Weber's Law
 - Scatterplots are one of the best visualizations for both positive and negative correlation
 - Further analysis: M. Kay and J. Heer, "Beyond Weber's Law", 2015

Separate, Order, and Align: Categorical Regions

- Categorical: =, !=
- Spatial position can be used for categorical attributes
- Use **regions**, distinct contiguous bounded areas, to encode categorical attributes
- Three operations on the regions:
 - Separate (use categorical attribute)
 - Align (use some other ordered attribute)
 - Order
- Alignment and order can use same or different attribute

List Alignment: Bar Charts

- Data: one quantitative attribute, one categorical attribute
- Task: lookup & compare values
- How: line marks, vertical position (quantitative), horizontal position (categorical)
- What about **length**?
- Ordering criteria: alphabetical or using quantitative attribute
- Scalability: distinguishability
 - bars at least one pixel wide
 - hundreds

D. Koop, CIS 680, Fall 2019

Stacked Bar Charts

5 Years and Over	
45 to 64 Years	
25 to 44 Years	
18 to 24 Years	
14 to 17 Years	
5 to 13 Years	
Under 5 Years	

Grouped Bar Chart

65 Years and Over	
45 to 64 Years	
25 to 44 Years	
18 to 24 Years	
14 to 17 Years	
5 to 13 Years	
Under 5 Years	

Stacked Bar Charts

- Data: multidimensional table: one quantitative, **two** categorical • Task: lookup values, part-to-whole relationship, trends How: line marks: position (both horizontal & vertical), subcomponent line
- marks: length, color
- Scalability: main axis (hundreds like bar chart), bar classes (<12)
- Orientation: vertical or horizontal (swap how horizontal and vertical position) are used.

Streamgraphs

- Include a time attribute
- Data: multidimensional table, one quantitative attribute (count), one ordered key attribute (time), one categorical key attribute
- + derived attribute: layer ordering (quantitative)
- Task: analyze trends in time, find (maxmial) outliers
- How: derived position+geometry, length, color

Streamgraphs

D. Koop, CIS 680, Fall 2019

[Ebb and Flow of Movies, M. Bloch et al., New York Times, 2008]

