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Visual Encoding
• How should we visualize this data?
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Name Region Population Life Expectancy Income

China East Asia & Pacific 1335029250 73.28 7226.07

India South Asia 1140340245 64.01 2731

United States America 306509345 79.43 41256.08

Indonesia East Asia & Pacific 228721000 71.17 3818.08

Brazil America 193806549 72.68 9569.78

Pakistan South Asia 176191165 66.84 2603

Bangladesh South Asia 156645463 66.56 1492

Nigeria Sub-Saharan Africa 141535316 48.17 2158.98

Japan East Asia & Pacific 127383472 82.98 29680.68

Mexico America 111209909 76.47 11250.37

Philippines East Asia & Pacific 94285619 72.1 3203.97

Vietnam East Asia & Pacific 86970762 74.7 2679.34

Germany Europe & Central Asia 82338100 80.08 31191.15

Ethiopia Sub-Saharan Africa 79996293 55.69 812.16

Turkey Europe & Central Asia 72626967 72.06 8040.78



D. Koop, CIS 680, Fall 2019

Share ! " #Bubbles $ 

Color

Select

Size

Zoom
20152015

30

40

50

60

70

80

ye
ar

s

Li
fe

 e
xp

ec
ta

nc
y 
▼

1800 1900 2000

World Regions

Search...  

Afghanistan

Albania

Algeria

Andorra

Angola

Antigua and Barbuda

Argentina

Armenia

Australia

Austria

Azerbaijan

Bahamas

Bahrain

Bangladesh

Barbados

Belarus

Population, total

100100%%

OPTIONS EXPAND PRESENT

English ▼  FACTS TEACH ABOUT ►HOW TO USE
Potential Solution

�3

[Gapminder, Wealth & Health of Nations]

https://www.gapminder.org/tools/#_chart-type=bubbles
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Visual Encoding
• How do we encode data visually? 
- Marks are the basic graphical elements in a visualization 
- Channels are ways to control the appearance of the marks 

• Marks classified by dimensionality: 

• Also can have surfaces, volumes 
• Think of marks as a mathematical definition, or if familiar with tools like Adobe 

Illustrator or Inkscape, the path & point definitions
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[Munzner (ill. Maguire), 2014]
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Channel Types
• Identity => what or where, Magnitude => how much
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[Munzner (ill. Maguire), 2014]

Magnitude Channels: Ordered Attributes Identity Channels: Categorical Attributes

Spatial region

Color hue

Motion

Shape

Position on common scale

Position on unaligned scale

Length (1D size)

Tilt/angle

Area (2D size)

Depth (3D position)

Color luminance

Color saturation

Curvature

Volume (3D size)

Channels: Expressiveness Types and Effectiveness Ranks
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Tableau Example
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http://faculty.cs.niu.edu/~dakoop/cis680-2019fa/examples/produce.twb
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Data In Tableau

• Categorical data = Dimension 
• Quantitative data = Measures
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Attributes

Attribute Types

Ordering Direction

Categorical Ordered

Ordinal Quantitative

Sequential Diverging Cyclic
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Vega-Lite Example
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https://vega.github.io/editor/#/url/vega-lite/N4KABGBEAkDODGALApgWwIaQFxUQFzwAdYsB6UgN2QHN0A6agSz0QFcAjOxge1IRQyUa6ALQAbZskoAWOgCtY3AHaQANOCgATdHkw5gkVgCcx2XAWJlSTWHgbM27VrGRH4yvMiV33qUtoBrbm5CUgBGADNIgAZ4TQAmAGYAVgBOVLD0ZPZUgHZ2ZMT4VPQANkTE9G1pUtIjdAB3UnhpAA5o1vR4ZIjE9gjpaVT4aNK8+IjkVvj0aXjNZPhc7OiwsOiJ0kIjbk1WeGR5RRUAX3UISAwjALNIdnQjNQ1IL3dNRiVqM1AIC4APb4aX5QCKMZBiTS3JToVDIJ7Ai54ACehDhOEg3CM72hpnOCMg6D+jFg30geGYYjRUAAsh5EGBuBEwCxkGAkcgHpATkCwGceZAkYCESCwRCoaxUPD8cjUbcAI6sdDeZg6RhUSA8vnAyDuMSYoX40HgyHo1B0qXamVUyBKbioD7oUyajTc7lAA
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Assignment 3
• Same stacked bar chart visualization 
• Three tools 
- Tableau (free academic license) 
- Vega-Lite 
- D3 

• For Vega-Lite, use the online editor 
• For D3, use the template files so the data is 

properly loaded 
• [CS 490] Only need to do a standard bar 

chart in D3
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http://faculty.cs.niu.edu/~dakoop/cs680-2019fa/assignment3.html
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Expressiveness and Effectiveness
• Expressiveness Principle: all data from the dataset and nothing more should 

be shown 
- Do encode ordered data in an ordered fashion 
- Don’t encode categorical data in a way that implies an ordering 

• Effectiveness Principle: the most important attributes should be the most 
salient 

- Saliency: how noticeable something is 
- How do the channels we have discussed measure up?
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Mackinlay's Ranking of Perceptual Tasks
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[Mackinlay,1986] 
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Iliinsky's Best Uses, +Ordering, +NumValues
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How do we get these rankings?
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esting set of perceptual tasks, we replicated Cleveland &
McGill’s [7] classic study (Exp. 1A) of proportionality es-
timates across spatial encodings (position, length, angle),
and Stone & Bartram’s [30] alpha contrast experiment (Exp.
2), involving transparency (luminance) adjustment of chart
grid lines. Our second goal was to conduct additional ex-
periments that demonstrate the use of Mechanical Turk for
generating new insights. We studied rectangular area judg-
ments (Exp. 1B), following the methodology of Cleveland &
McGill to enable comparison, and then investigated optimal
chart heights and gridline spacing (Exp. 3). Our third goal
was to analyze data from across our experiments to character-
ize the use of Mechanical Turk as an experimental platform.

In the following four sections, we describe our experiments
and focus on details specific to visualization. Results of a
more general nature are visited in our performance and cost
analysis; for example, we delay discussion of response time
results. Our experiments were initially launched with a lim-
ited number of assignments (typically 3) to serve as a pilot.
Upon completion of the trial assignments and verification of
the results, the number of assignments was increased.

EXPERIMENT 1A: PROPORTIONAL JUDGMENT
We first replicated Cleveland & McGill’s seminal study [7]
on Mechanical Turk. Their study was among the first to rank
visual variables empirically by their effectiveness for con-
veying quantitative values. It also has influenced the design
of automated presentation techniques [21, 22] and been suc-
cessfully extended by others (e.g., [36]). As such, it is a nat-
ural experiment to replicate to assess crowdsourcing.

Method
Seven judgment types, each corresponding to a visual en-
coding (such as position or angle) were tested. The first five
correspond to Cleveland & McGill’s original position-length
experiment; types 1 through 3 use position encoding along a
common scale (Figure 1), while 4 and 5 use length encoding.
Type 6 uses angle (as a pie chart) and type 7 uses circular
area (as a bubble chart, see Figure 2).

Ten charts were constructed at a resolution of 380⇥380 pix-
els, for a total of 70 trials (HITs). We mimicked the number,
values and aesthetics of the original charts as closely as pos-
sible. For each chart, N=50 subjects were instructed first to
identify the smaller of two marked values, and then “make
a quick visual judgment” to estimate what percentage the
smaller was of the larger. The first question served broadly to
verify responses; only 14 out of 3,481 were incorrect (0.4%).
Subjects were paid $0.05 per judgment.

To participate in the experiment, subjects first had to com-
plete a qualification test consisting of two labeled example
charts and three test charts. The test questions had the same
format as the experiment trials, but with multiple choice
rather than free text responses; only one choice was cor-
rect, while the others were grossly wrong. The qualification
thus did not filter inaccurate subjects—which would bias the
responses—but ensured that subjects understood the instruc-
tions. A pilot run of the experiment omitted this qualification
and over 10% of the responses were unusable. We discuss
this observation in more detail later in the paper.
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Figure 1: Stimuli for judgment tasks T1, T2 & T3. Sub-
jects estimated percent differences between elements.
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Figure 2: Area judgment stimuli. Top left: Bubble
chart (T7), Bottom left: Center-aligned rectangles (T8),
Right: Treemap (T9).

In the original experiment, Cleveland & McGill gave each
subject a packet with all fifty charts on individual sheets.
Lengthy tasks are ill-suited to Mechanical Turk; they are
more susceptible to “gaming” since the reward is higher, and
subjects cannot save drafts, raising the possibility of lost data
due to session timeout or connectivity error. We instead as-
signed each chart as an individual task. Since the vast ma-
jority (95%) of subjects accepted all tasks in sequence, the
experiment adhered to the original within-subjects format.

Results
To analyze responses, we replicated Cleveland & McGill’s
data exploration, using their log absolute error measure of
accuracy: log2(|judged percent - true percent| + 1

8 ). We first
computed the midmeans of log absolute errors1 for each chart
(Figure 3). The new results are similar (though not identical)
to the originals: the rough shape and ranking of judgment
types by accuracy (T1-5) are preserved, supporting the valid-
ity of the crowdsourced study.

Next we computed the log absolute error means and 95%
confidence intervals for each judgment type using bootstrap-
ping (c.f., [7]). The ranking of types by accuracy is consistent
between the two experiments (Figure 4). Types 1 and 2 are
closer in the crowdsourced study; this may be a result of a
smaller display mitigating the effect of distance. Types 4 and
5 are more accurate than in the original study, but position
encoding still significantly outperformed length encoding.

We also introduced two new judgment types to evaluate an-
gle and circular area encodings. Cleveland & McGill con-
ducted a separate position-angle experiment; however, they
used a different task format, making it difficult to compare

1The midmean–the mean of the middle two quartiles–is a robust measure
less susceptible to outliers. A log scale is used to measure relative propor-
tional error and the 1

8 term is included to handle zero-valued differences.

Test % difference in length between elements

�15

[Heer & Bostock, 2010]
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esting set of perceptual tasks, we replicated Cleveland &
McGill’s [7] classic study (Exp. 1A) of proportionality es-
timates across spatial encodings (position, length, angle),
and Stone & Bartram’s [30] alpha contrast experiment (Exp.
2), involving transparency (luminance) adjustment of chart
grid lines. Our second goal was to conduct additional ex-
periments that demonstrate the use of Mechanical Turk for
generating new insights. We studied rectangular area judg-
ments (Exp. 1B), following the methodology of Cleveland &
McGill to enable comparison, and then investigated optimal
chart heights and gridline spacing (Exp. 3). Our third goal
was to analyze data from across our experiments to character-
ize the use of Mechanical Turk as an experimental platform.

In the following four sections, we describe our experiments
and focus on details specific to visualization. Results of a
more general nature are visited in our performance and cost
analysis; for example, we delay discussion of response time
results. Our experiments were initially launched with a lim-
ited number of assignments (typically 3) to serve as a pilot.
Upon completion of the trial assignments and verification of
the results, the number of assignments was increased.

EXPERIMENT 1A: PROPORTIONAL JUDGMENT
We first replicated Cleveland & McGill’s seminal study [7]
on Mechanical Turk. Their study was among the first to rank
visual variables empirically by their effectiveness for con-
veying quantitative values. It also has influenced the design
of automated presentation techniques [21, 22] and been suc-
cessfully extended by others (e.g., [36]). As such, it is a nat-
ural experiment to replicate to assess crowdsourcing.

Method
Seven judgment types, each corresponding to a visual en-
coding (such as position or angle) were tested. The first five
correspond to Cleveland & McGill’s original position-length
experiment; types 1 through 3 use position encoding along a
common scale (Figure 1), while 4 and 5 use length encoding.
Type 6 uses angle (as a pie chart) and type 7 uses circular
area (as a bubble chart, see Figure 2).

Ten charts were constructed at a resolution of 380⇥380 pix-
els, for a total of 70 trials (HITs). We mimicked the number,
values and aesthetics of the original charts as closely as pos-
sible. For each chart, N=50 subjects were instructed first to
identify the smaller of two marked values, and then “make
a quick visual judgment” to estimate what percentage the
smaller was of the larger. The first question served broadly to
verify responses; only 14 out of 3,481 were incorrect (0.4%).
Subjects were paid $0.05 per judgment.

To participate in the experiment, subjects first had to com-
plete a qualification test consisting of two labeled example
charts and three test charts. The test questions had the same
format as the experiment trials, but with multiple choice
rather than free text responses; only one choice was cor-
rect, while the others were grossly wrong. The qualification
thus did not filter inaccurate subjects—which would bias the
responses—but ensured that subjects understood the instruc-
tions. A pilot run of the experiment omitted this qualification
and over 10% of the responses were unusable. We discuss
this observation in more detail later in the paper.
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Figure 2: Area judgment stimuli. Top left: Bubble
chart (T7), Bottom left: Center-aligned rectangles (T8),
Right: Treemap (T9).

In the original experiment, Cleveland & McGill gave each
subject a packet with all fifty charts on individual sheets.
Lengthy tasks are ill-suited to Mechanical Turk; they are
more susceptible to “gaming” since the reward is higher, and
subjects cannot save drafts, raising the possibility of lost data
due to session timeout or connectivity error. We instead as-
signed each chart as an individual task. Since the vast ma-
jority (95%) of subjects accepted all tasks in sequence, the
experiment adhered to the original within-subjects format.

Results
To analyze responses, we replicated Cleveland & McGill’s
data exploration, using their log absolute error measure of
accuracy: log2(|judged percent - true percent| + 1

8 ). We first
computed the midmeans of log absolute errors1 for each chart
(Figure 3). The new results are similar (though not identical)
to the originals: the rough shape and ranking of judgment
types by accuracy (T1-5) are preserved, supporting the valid-
ity of the crowdsourced study.

Next we computed the log absolute error means and 95%
confidence intervals for each judgment type using bootstrap-
ping (c.f., [7]). The ranking of types by accuracy is consistent
between the two experiments (Figure 4). Types 1 and 2 are
closer in the crowdsourced study; this may be a result of a
smaller display mitigating the effect of distance. Types 4 and
5 are more accurate than in the original study, but position
encoding still significantly outperformed length encoding.

We also introduced two new judgment types to evaluate an-
gle and circular area encodings. Cleveland & McGill con-
ducted a separate position-angle experiment; however, they
used a different task format, making it difficult to compare

1The midmean–the mean of the middle two quartiles–is a robust measure
less susceptible to outliers. A log scale is used to measure relative propor-
tional error and the 1

8 term is included to handle zero-valued differences.

Test % difference in length between elements
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[Heer & Bostock, 2010]

Answer: Left is ~5.6x longer than Right
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esting set of perceptual tasks, we replicated Cleveland &
McGill’s [7] classic study (Exp. 1A) of proportionality es-
timates across spatial encodings (position, length, angle),
and Stone & Bartram’s [30] alpha contrast experiment (Exp.
2), involving transparency (luminance) adjustment of chart
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ments (Exp. 1B), following the methodology of Cleveland &
McGill to enable comparison, and then investigated optimal
chart heights and gridline spacing (Exp. 3). Our third goal
was to analyze data from across our experiments to character-
ize the use of Mechanical Turk as an experimental platform.

In the following four sections, we describe our experiments
and focus on details specific to visualization. Results of a
more general nature are visited in our performance and cost
analysis; for example, we delay discussion of response time
results. Our experiments were initially launched with a lim-
ited number of assignments (typically 3) to serve as a pilot.
Upon completion of the trial assignments and verification of
the results, the number of assignments was increased.

EXPERIMENT 1A: PROPORTIONAL JUDGMENT
We first replicated Cleveland & McGill’s seminal study [7]
on Mechanical Turk. Their study was among the first to rank
visual variables empirically by their effectiveness for con-
veying quantitative values. It also has influenced the design
of automated presentation techniques [21, 22] and been suc-
cessfully extended by others (e.g., [36]). As such, it is a nat-
ural experiment to replicate to assess crowdsourcing.

Method
Seven judgment types, each corresponding to a visual en-
coding (such as position or angle) were tested. The first five
correspond to Cleveland & McGill’s original position-length
experiment; types 1 through 3 use position encoding along a
common scale (Figure 1), while 4 and 5 use length encoding.
Type 6 uses angle (as a pie chart) and type 7 uses circular
area (as a bubble chart, see Figure 2).

Ten charts were constructed at a resolution of 380⇥380 pix-
els, for a total of 70 trials (HITs). We mimicked the number,
values and aesthetics of the original charts as closely as pos-
sible. For each chart, N=50 subjects were instructed first to
identify the smaller of two marked values, and then “make
a quick visual judgment” to estimate what percentage the
smaller was of the larger. The first question served broadly to
verify responses; only 14 out of 3,481 were incorrect (0.4%).
Subjects were paid $0.05 per judgment.

To participate in the experiment, subjects first had to com-
plete a qualification test consisting of two labeled example
charts and three test charts. The test questions had the same
format as the experiment trials, but with multiple choice
rather than free text responses; only one choice was cor-
rect, while the others were grossly wrong. The qualification
thus did not filter inaccurate subjects—which would bias the
responses—but ensured that subjects understood the instruc-
tions. A pilot run of the experiment omitted this qualification
and over 10% of the responses were unusable. We discuss
this observation in more detail later in the paper.
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Figure 1: Stimuli for judgment tasks T1, T2 & T3. Sub-
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Figure 2: Area judgment stimuli. Top left: Bubble
chart (T7), Bottom left: Center-aligned rectangles (T8),
Right: Treemap (T9).

In the original experiment, Cleveland & McGill gave each
subject a packet with all fifty charts on individual sheets.
Lengthy tasks are ill-suited to Mechanical Turk; they are
more susceptible to “gaming” since the reward is higher, and
subjects cannot save drafts, raising the possibility of lost data
due to session timeout or connectivity error. We instead as-
signed each chart as an individual task. Since the vast ma-
jority (95%) of subjects accepted all tasks in sequence, the
experiment adhered to the original within-subjects format.

Results
To analyze responses, we replicated Cleveland & McGill’s
data exploration, using their log absolute error measure of
accuracy: log2(|judged percent - true percent| + 1

8 ). We first
computed the midmeans of log absolute errors1 for each chart
(Figure 3). The new results are similar (though not identical)
to the originals: the rough shape and ranking of judgment
types by accuracy (T1-5) are preserved, supporting the valid-
ity of the crowdsourced study.

Next we computed the log absolute error means and 95%
confidence intervals for each judgment type using bootstrap-
ping (c.f., [7]). The ranking of types by accuracy is consistent
between the two experiments (Figure 4). Types 1 and 2 are
closer in the crowdsourced study; this may be a result of a
smaller display mitigating the effect of distance. Types 4 and
5 are more accurate than in the original study, but position
encoding still significantly outperformed length encoding.

We also introduced two new judgment types to evaluate an-
gle and circular area encodings. Cleveland & McGill con-
ducted a separate position-angle experiment; however, they
used a different task format, making it difficult to compare

1The midmean–the mean of the middle two quartiles–is a robust measure
less susceptible to outliers. A log scale is used to measure relative propor-
tional error and the 1

8 term is included to handle zero-valued differences.

Test % difference in length between elements
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[Heer & Bostock, 2010]
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and Stone & Bartram’s [30] alpha contrast experiment (Exp.
2), involving transparency (luminance) adjustment of chart
grid lines. Our second goal was to conduct additional ex-
periments that demonstrate the use of Mechanical Turk for
generating new insights. We studied rectangular area judg-
ments (Exp. 1B), following the methodology of Cleveland &
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In the following four sections, we describe our experiments
and focus on details specific to visualization. Results of a
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visual variables empirically by their effectiveness for con-
veying quantitative values. It also has influenced the design
of automated presentation techniques [21, 22] and been suc-
cessfully extended by others (e.g., [36]). As such, it is a nat-
ural experiment to replicate to assess crowdsourcing.

Method
Seven judgment types, each corresponding to a visual en-
coding (such as position or angle) were tested. The first five
correspond to Cleveland & McGill’s original position-length
experiment; types 1 through 3 use position encoding along a
common scale (Figure 1), while 4 and 5 use length encoding.
Type 6 uses angle (as a pie chart) and type 7 uses circular
area (as a bubble chart, see Figure 2).

Ten charts were constructed at a resolution of 380⇥380 pix-
els, for a total of 70 trials (HITs). We mimicked the number,
values and aesthetics of the original charts as closely as pos-
sible. For each chart, N=50 subjects were instructed first to
identify the smaller of two marked values, and then “make
a quick visual judgment” to estimate what percentage the
smaller was of the larger. The first question served broadly to
verify responses; only 14 out of 3,481 were incorrect (0.4%).
Subjects were paid $0.05 per judgment.

To participate in the experiment, subjects first had to com-
plete a qualification test consisting of two labeled example
charts and three test charts. The test questions had the same
format as the experiment trials, but with multiple choice
rather than free text responses; only one choice was cor-
rect, while the others were grossly wrong. The qualification
thus did not filter inaccurate subjects—which would bias the
responses—but ensured that subjects understood the instruc-
tions. A pilot run of the experiment omitted this qualification
and over 10% of the responses were unusable. We discuss
this observation in more detail later in the paper.
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Figure 2: Area judgment stimuli. Top left: Bubble
chart (T7), Bottom left: Center-aligned rectangles (T8),
Right: Treemap (T9).

In the original experiment, Cleveland & McGill gave each
subject a packet with all fifty charts on individual sheets.
Lengthy tasks are ill-suited to Mechanical Turk; they are
more susceptible to “gaming” since the reward is higher, and
subjects cannot save drafts, raising the possibility of lost data
due to session timeout or connectivity error. We instead as-
signed each chart as an individual task. Since the vast ma-
jority (95%) of subjects accepted all tasks in sequence, the
experiment adhered to the original within-subjects format.

Results
To analyze responses, we replicated Cleveland & McGill’s
data exploration, using their log absolute error measure of
accuracy: log2(|judged percent - true percent| + 1

8 ). We first
computed the midmeans of log absolute errors1 for each chart
(Figure 3). The new results are similar (though not identical)
to the originals: the rough shape and ranking of judgment
types by accuracy (T1-5) are preserved, supporting the valid-
ity of the crowdsourced study.

Next we computed the log absolute error means and 95%
confidence intervals for each judgment type using bootstrap-
ping (c.f., [7]). The ranking of types by accuracy is consistent
between the two experiments (Figure 4). Types 1 and 2 are
closer in the crowdsourced study; this may be a result of a
smaller display mitigating the effect of distance. Types 4 and
5 are more accurate than in the original study, but position
encoding still significantly outperformed length encoding.

We also introduced two new judgment types to evaluate an-
gle and circular area encodings. Cleveland & McGill con-
ducted a separate position-angle experiment; however, they
used a different task format, making it difficult to compare

1The midmean–the mean of the middle two quartiles–is a robust measure
less susceptible to outliers. A log scale is used to measure relative propor-
tional error and the 1

8 term is included to handle zero-valued differences.

Test % difference in length between elements
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[Heer & Bostock, 2010]
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generating new insights. We studied rectangular area judg-
ments (Exp. 1B), following the methodology of Cleveland &
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chart heights and gridline spacing (Exp. 3). Our third goal
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Upon completion of the trial assignments and verification of
the results, the number of assignments was increased.

EXPERIMENT 1A: PROPORTIONAL JUDGMENT
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on Mechanical Turk. Their study was among the first to rank
visual variables empirically by their effectiveness for con-
veying quantitative values. It also has influenced the design
of automated presentation techniques [21, 22] and been suc-
cessfully extended by others (e.g., [36]). As such, it is a nat-
ural experiment to replicate to assess crowdsourcing.

Method
Seven judgment types, each corresponding to a visual en-
coding (such as position or angle) were tested. The first five
correspond to Cleveland & McGill’s original position-length
experiment; types 1 through 3 use position encoding along a
common scale (Figure 1), while 4 and 5 use length encoding.
Type 6 uses angle (as a pie chart) and type 7 uses circular
area (as a bubble chart, see Figure 2).

Ten charts were constructed at a resolution of 380⇥380 pix-
els, for a total of 70 trials (HITs). We mimicked the number,
values and aesthetics of the original charts as closely as pos-
sible. For each chart, N=50 subjects were instructed first to
identify the smaller of two marked values, and then “make
a quick visual judgment” to estimate what percentage the
smaller was of the larger. The first question served broadly to
verify responses; only 14 out of 3,481 were incorrect (0.4%).
Subjects were paid $0.05 per judgment.

To participate in the experiment, subjects first had to com-
plete a qualification test consisting of two labeled example
charts and three test charts. The test questions had the same
format as the experiment trials, but with multiple choice
rather than free text responses; only one choice was cor-
rect, while the others were grossly wrong. The qualification
thus did not filter inaccurate subjects—which would bias the
responses—but ensured that subjects understood the instruc-
tions. A pilot run of the experiment omitted this qualification
and over 10% of the responses were unusable. We discuss
this observation in more detail later in the paper.
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Figure 1: Stimuli for judgment tasks T1, T2 & T3. Sub-
jects estimated percent differences between elements.
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Figure 2: Area judgment stimuli. Top left: Bubble
chart (T7), Bottom left: Center-aligned rectangles (T8),
Right: Treemap (T9).

In the original experiment, Cleveland & McGill gave each
subject a packet with all fifty charts on individual sheets.
Lengthy tasks are ill-suited to Mechanical Turk; they are
more susceptible to “gaming” since the reward is higher, and
subjects cannot save drafts, raising the possibility of lost data
due to session timeout or connectivity error. We instead as-
signed each chart as an individual task. Since the vast ma-
jority (95%) of subjects accepted all tasks in sequence, the
experiment adhered to the original within-subjects format.

Results
To analyze responses, we replicated Cleveland & McGill’s
data exploration, using their log absolute error measure of
accuracy: log2(|judged percent - true percent| + 1

8 ). We first
computed the midmeans of log absolute errors1 for each chart
(Figure 3). The new results are similar (though not identical)
to the originals: the rough shape and ranking of judgment
types by accuracy (T1-5) are preserved, supporting the valid-
ity of the crowdsourced study.

Next we computed the log absolute error means and 95%
confidence intervals for each judgment type using bootstrap-
ping (c.f., [7]). The ranking of types by accuracy is consistent
between the two experiments (Figure 4). Types 1 and 2 are
closer in the crowdsourced study; this may be a result of a
smaller display mitigating the effect of distance. Types 4 and
5 are more accurate than in the original study, but position
encoding still significantly outperformed length encoding.

We also introduced two new judgment types to evaluate an-
gle and circular area encodings. Cleveland & McGill con-
ducted a separate position-angle experiment; however, they
used a different task format, making it difficult to compare

1The midmean–the mean of the middle two quartiles–is a robust measure
less susceptible to outliers. A log scale is used to measure relative propor-
tional error and the 1

8 term is included to handle zero-valued differences.

Test % difference in length between elements

�19

[Modified from Heer & Bostock, 2010]
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esting set of perceptual tasks, we replicated Cleveland &
McGill’s [7] classic study (Exp. 1A) of proportionality es-
timates across spatial encodings (position, length, angle),
and Stone & Bartram’s [30] alpha contrast experiment (Exp.
2), involving transparency (luminance) adjustment of chart
grid lines. Our second goal was to conduct additional ex-
periments that demonstrate the use of Mechanical Turk for
generating new insights. We studied rectangular area judg-
ments (Exp. 1B), following the methodology of Cleveland &
McGill to enable comparison, and then investigated optimal
chart heights and gridline spacing (Exp. 3). Our third goal
was to analyze data from across our experiments to character-
ize the use of Mechanical Turk as an experimental platform.

In the following four sections, we describe our experiments
and focus on details specific to visualization. Results of a
more general nature are visited in our performance and cost
analysis; for example, we delay discussion of response time
results. Our experiments were initially launched with a lim-
ited number of assignments (typically 3) to serve as a pilot.
Upon completion of the trial assignments and verification of
the results, the number of assignments was increased.

EXPERIMENT 1A: PROPORTIONAL JUDGMENT
We first replicated Cleveland & McGill’s seminal study [7]
on Mechanical Turk. Their study was among the first to rank
visual variables empirically by their effectiveness for con-
veying quantitative values. It also has influenced the design
of automated presentation techniques [21, 22] and been suc-
cessfully extended by others (e.g., [36]). As such, it is a nat-
ural experiment to replicate to assess crowdsourcing.

Method
Seven judgment types, each corresponding to a visual en-
coding (such as position or angle) were tested. The first five
correspond to Cleveland & McGill’s original position-length
experiment; types 1 through 3 use position encoding along a
common scale (Figure 1), while 4 and 5 use length encoding.
Type 6 uses angle (as a pie chart) and type 7 uses circular
area (as a bubble chart, see Figure 2).

Ten charts were constructed at a resolution of 380⇥380 pix-
els, for a total of 70 trials (HITs). We mimicked the number,
values and aesthetics of the original charts as closely as pos-
sible. For each chart, N=50 subjects were instructed first to
identify the smaller of two marked values, and then “make
a quick visual judgment” to estimate what percentage the
smaller was of the larger. The first question served broadly to
verify responses; only 14 out of 3,481 were incorrect (0.4%).
Subjects were paid $0.05 per judgment.

To participate in the experiment, subjects first had to com-
plete a qualification test consisting of two labeled example
charts and three test charts. The test questions had the same
format as the experiment trials, but with multiple choice
rather than free text responses; only one choice was cor-
rect, while the others were grossly wrong. The qualification
thus did not filter inaccurate subjects—which would bias the
responses—but ensured that subjects understood the instruc-
tions. A pilot run of the experiment omitted this qualification
and over 10% of the responses were unusable. We discuss
this observation in more detail later in the paper.
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Figure 1: Stimuli for judgment tasks T1, T2 & T3. Sub-
jects estimated percent differences between elements.
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Figure 2: Area judgment stimuli. Top left: Bubble
chart (T7), Bottom left: Center-aligned rectangles (T8),
Right: Treemap (T9).

In the original experiment, Cleveland & McGill gave each
subject a packet with all fifty charts on individual sheets.
Lengthy tasks are ill-suited to Mechanical Turk; they are
more susceptible to “gaming” since the reward is higher, and
subjects cannot save drafts, raising the possibility of lost data
due to session timeout or connectivity error. We instead as-
signed each chart as an individual task. Since the vast ma-
jority (95%) of subjects accepted all tasks in sequence, the
experiment adhered to the original within-subjects format.

Results
To analyze responses, we replicated Cleveland & McGill’s
data exploration, using their log absolute error measure of
accuracy: log2(|judged percent - true percent| + 1

8 ). We first
computed the midmeans of log absolute errors1 for each chart
(Figure 3). The new results are similar (though not identical)
to the originals: the rough shape and ranking of judgment
types by accuracy (T1-5) are preserved, supporting the valid-
ity of the crowdsourced study.

Next we computed the log absolute error means and 95%
confidence intervals for each judgment type using bootstrap-
ping (c.f., [7]). The ranking of types by accuracy is consistent
between the two experiments (Figure 4). Types 1 and 2 are
closer in the crowdsourced study; this may be a result of a
smaller display mitigating the effect of distance. Types 4 and
5 are more accurate than in the original study, but position
encoding still significantly outperformed length encoding.

We also introduced two new judgment types to evaluate an-
gle and circular area encodings. Cleveland & McGill con-
ducted a separate position-angle experiment; however, they
used a different task format, making it difficult to compare

1The midmean–the mean of the middle two quartiles–is a robust measure
less susceptible to outliers. A log scale is used to measure relative propor-
tional error and the 1

8 term is included to handle zero-valued differences.

Test % difference in length between elements

�20

[Modified from Heer & Bostock, 2010]
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esting set of perceptual tasks, we replicated Cleveland &
McGill’s [7] classic study (Exp. 1A) of proportionality es-
timates across spatial encodings (position, length, angle),
and Stone & Bartram’s [30] alpha contrast experiment (Exp.
2), involving transparency (luminance) adjustment of chart
grid lines. Our second goal was to conduct additional ex-
periments that demonstrate the use of Mechanical Turk for
generating new insights. We studied rectangular area judg-
ments (Exp. 1B), following the methodology of Cleveland &
McGill to enable comparison, and then investigated optimal
chart heights and gridline spacing (Exp. 3). Our third goal
was to analyze data from across our experiments to character-
ize the use of Mechanical Turk as an experimental platform.

In the following four sections, we describe our experiments
and focus on details specific to visualization. Results of a
more general nature are visited in our performance and cost
analysis; for example, we delay discussion of response time
results. Our experiments were initially launched with a lim-
ited number of assignments (typically 3) to serve as a pilot.
Upon completion of the trial assignments and verification of
the results, the number of assignments was increased.

EXPERIMENT 1A: PROPORTIONAL JUDGMENT
We first replicated Cleveland & McGill’s seminal study [7]
on Mechanical Turk. Their study was among the first to rank
visual variables empirically by their effectiveness for con-
veying quantitative values. It also has influenced the design
of automated presentation techniques [21, 22] and been suc-
cessfully extended by others (e.g., [36]). As such, it is a nat-
ural experiment to replicate to assess crowdsourcing.

Method
Seven judgment types, each corresponding to a visual en-
coding (such as position or angle) were tested. The first five
correspond to Cleveland & McGill’s original position-length
experiment; types 1 through 3 use position encoding along a
common scale (Figure 1), while 4 and 5 use length encoding.
Type 6 uses angle (as a pie chart) and type 7 uses circular
area (as a bubble chart, see Figure 2).

Ten charts were constructed at a resolution of 380⇥380 pix-
els, for a total of 70 trials (HITs). We mimicked the number,
values and aesthetics of the original charts as closely as pos-
sible. For each chart, N=50 subjects were instructed first to
identify the smaller of two marked values, and then “make
a quick visual judgment” to estimate what percentage the
smaller was of the larger. The first question served broadly to
verify responses; only 14 out of 3,481 were incorrect (0.4%).
Subjects were paid $0.05 per judgment.

To participate in the experiment, subjects first had to com-
plete a qualification test consisting of two labeled example
charts and three test charts. The test questions had the same
format as the experiment trials, but with multiple choice
rather than free text responses; only one choice was cor-
rect, while the others were grossly wrong. The qualification
thus did not filter inaccurate subjects—which would bias the
responses—but ensured that subjects understood the instruc-
tions. A pilot run of the experiment omitted this qualification
and over 10% of the responses were unusable. We discuss
this observation in more detail later in the paper.
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Figure 1: Stimuli for judgment tasks T1, T2 & T3. Sub-
jects estimated percent differences between elements.
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Figure 2: Area judgment stimuli. Top left: Bubble
chart (T7), Bottom left: Center-aligned rectangles (T8),
Right: Treemap (T9).

In the original experiment, Cleveland & McGill gave each
subject a packet with all fifty charts on individual sheets.
Lengthy tasks are ill-suited to Mechanical Turk; they are
more susceptible to “gaming” since the reward is higher, and
subjects cannot save drafts, raising the possibility of lost data
due to session timeout or connectivity error. We instead as-
signed each chart as an individual task. Since the vast ma-
jority (95%) of subjects accepted all tasks in sequence, the
experiment adhered to the original within-subjects format.

Results
To analyze responses, we replicated Cleveland & McGill’s
data exploration, using their log absolute error measure of
accuracy: log2(|judged percent - true percent| + 1

8 ). We first
computed the midmeans of log absolute errors1 for each chart
(Figure 3). The new results are similar (though not identical)
to the originals: the rough shape and ranking of judgment
types by accuracy (T1-5) are preserved, supporting the valid-
ity of the crowdsourced study.

Next we computed the log absolute error means and 95%
confidence intervals for each judgment type using bootstrap-
ping (c.f., [7]). The ranking of types by accuracy is consistent
between the two experiments (Figure 4). Types 1 and 2 are
closer in the crowdsourced study; this may be a result of a
smaller display mitigating the effect of distance. Types 4 and
5 are more accurate than in the original study, but position
encoding still significantly outperformed length encoding.

We also introduced two new judgment types to evaluate an-
gle and circular area encodings. Cleveland & McGill con-
ducted a separate position-angle experiment; however, they
used a different task format, making it difficult to compare

1The midmean–the mean of the middle two quartiles–is a robust measure
less susceptible to outliers. A log scale is used to measure relative propor-
tional error and the 1

8 term is included to handle zero-valued differences.

Test % difference in area between elements

�21

[Heer & Bostock, 2010]
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esting set of perceptual tasks, we replicated Cleveland &
McGill’s [7] classic study (Exp. 1A) of proportionality es-
timates across spatial encodings (position, length, angle),
and Stone & Bartram’s [30] alpha contrast experiment (Exp.
2), involving transparency (luminance) adjustment of chart
grid lines. Our second goal was to conduct additional ex-
periments that demonstrate the use of Mechanical Turk for
generating new insights. We studied rectangular area judg-
ments (Exp. 1B), following the methodology of Cleveland &
McGill to enable comparison, and then investigated optimal
chart heights and gridline spacing (Exp. 3). Our third goal
was to analyze data from across our experiments to character-
ize the use of Mechanical Turk as an experimental platform.

In the following four sections, we describe our experiments
and focus on details specific to visualization. Results of a
more general nature are visited in our performance and cost
analysis; for example, we delay discussion of response time
results. Our experiments were initially launched with a lim-
ited number of assignments (typically 3) to serve as a pilot.
Upon completion of the trial assignments and verification of
the results, the number of assignments was increased.

EXPERIMENT 1A: PROPORTIONAL JUDGMENT
We first replicated Cleveland & McGill’s seminal study [7]
on Mechanical Turk. Their study was among the first to rank
visual variables empirically by their effectiveness for con-
veying quantitative values. It also has influenced the design
of automated presentation techniques [21, 22] and been suc-
cessfully extended by others (e.g., [36]). As such, it is a nat-
ural experiment to replicate to assess crowdsourcing.

Method
Seven judgment types, each corresponding to a visual en-
coding (such as position or angle) were tested. The first five
correspond to Cleveland & McGill’s original position-length
experiment; types 1 through 3 use position encoding along a
common scale (Figure 1), while 4 and 5 use length encoding.
Type 6 uses angle (as a pie chart) and type 7 uses circular
area (as a bubble chart, see Figure 2).

Ten charts were constructed at a resolution of 380⇥380 pix-
els, for a total of 70 trials (HITs). We mimicked the number,
values and aesthetics of the original charts as closely as pos-
sible. For each chart, N=50 subjects were instructed first to
identify the smaller of two marked values, and then “make
a quick visual judgment” to estimate what percentage the
smaller was of the larger. The first question served broadly to
verify responses; only 14 out of 3,481 were incorrect (0.4%).
Subjects were paid $0.05 per judgment.

To participate in the experiment, subjects first had to com-
plete a qualification test consisting of two labeled example
charts and three test charts. The test questions had the same
format as the experiment trials, but with multiple choice
rather than free text responses; only one choice was cor-
rect, while the others were grossly wrong. The qualification
thus did not filter inaccurate subjects—which would bias the
responses—but ensured that subjects understood the instruc-
tions. A pilot run of the experiment omitted this qualification
and over 10% of the responses were unusable. We discuss
this observation in more detail later in the paper.
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Figure 1: Stimuli for judgment tasks T1, T2 & T3. Sub-
jects estimated percent differences between elements.
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Figure 2: Area judgment stimuli. Top left: Bubble
chart (T7), Bottom left: Center-aligned rectangles (T8),
Right: Treemap (T9).

In the original experiment, Cleveland & McGill gave each
subject a packet with all fifty charts on individual sheets.
Lengthy tasks are ill-suited to Mechanical Turk; they are
more susceptible to “gaming” since the reward is higher, and
subjects cannot save drafts, raising the possibility of lost data
due to session timeout or connectivity error. We instead as-
signed each chart as an individual task. Since the vast ma-
jority (95%) of subjects accepted all tasks in sequence, the
experiment adhered to the original within-subjects format.

Results
To analyze responses, we replicated Cleveland & McGill’s
data exploration, using their log absolute error measure of
accuracy: log2(|judged percent - true percent| + 1

8 ). We first
computed the midmeans of log absolute errors1 for each chart
(Figure 3). The new results are similar (though not identical)
to the originals: the rough shape and ranking of judgment
types by accuracy (T1-5) are preserved, supporting the valid-
ity of the crowdsourced study.

Next we computed the log absolute error means and 95%
confidence intervals for each judgment type using bootstrap-
ping (c.f., [7]). The ranking of types by accuracy is consistent
between the two experiments (Figure 4). Types 1 and 2 are
closer in the crowdsourced study; this may be a result of a
smaller display mitigating the effect of distance. Types 4 and
5 are more accurate than in the original study, but position
encoding still significantly outperformed length encoding.

We also introduced two new judgment types to evaluate an-
gle and circular area encodings. Cleveland & McGill con-
ducted a separate position-angle experiment; however, they
used a different task format, making it difficult to compare

1The midmean–the mean of the middle two quartiles–is a robust measure
less susceptible to outliers. A log scale is used to measure relative propor-
tional error and the 1

8 term is included to handle zero-valued differences.

Test % difference in area between elements
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[Heer & Bostock, 2010]
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esting set of perceptual tasks, we replicated Cleveland &
McGill’s [7] classic study (Exp. 1A) of proportionality es-
timates across spatial encodings (position, length, angle),
and Stone & Bartram’s [30] alpha contrast experiment (Exp.
2), involving transparency (luminance) adjustment of chart
grid lines. Our second goal was to conduct additional ex-
periments that demonstrate the use of Mechanical Turk for
generating new insights. We studied rectangular area judg-
ments (Exp. 1B), following the methodology of Cleveland &
McGill to enable comparison, and then investigated optimal
chart heights and gridline spacing (Exp. 3). Our third goal
was to analyze data from across our experiments to character-
ize the use of Mechanical Turk as an experimental platform.

In the following four sections, we describe our experiments
and focus on details specific to visualization. Results of a
more general nature are visited in our performance and cost
analysis; for example, we delay discussion of response time
results. Our experiments were initially launched with a lim-
ited number of assignments (typically 3) to serve as a pilot.
Upon completion of the trial assignments and verification of
the results, the number of assignments was increased.

EXPERIMENT 1A: PROPORTIONAL JUDGMENT
We first replicated Cleveland & McGill’s seminal study [7]
on Mechanical Turk. Their study was among the first to rank
visual variables empirically by their effectiveness for con-
veying quantitative values. It also has influenced the design
of automated presentation techniques [21, 22] and been suc-
cessfully extended by others (e.g., [36]). As such, it is a nat-
ural experiment to replicate to assess crowdsourcing.

Method
Seven judgment types, each corresponding to a visual en-
coding (such as position or angle) were tested. The first five
correspond to Cleveland & McGill’s original position-length
experiment; types 1 through 3 use position encoding along a
common scale (Figure 1), while 4 and 5 use length encoding.
Type 6 uses angle (as a pie chart) and type 7 uses circular
area (as a bubble chart, see Figure 2).

Ten charts were constructed at a resolution of 380⇥380 pix-
els, for a total of 70 trials (HITs). We mimicked the number,
values and aesthetics of the original charts as closely as pos-
sible. For each chart, N=50 subjects were instructed first to
identify the smaller of two marked values, and then “make
a quick visual judgment” to estimate what percentage the
smaller was of the larger. The first question served broadly to
verify responses; only 14 out of 3,481 were incorrect (0.4%).
Subjects were paid $0.05 per judgment.

To participate in the experiment, subjects first had to com-
plete a qualification test consisting of two labeled example
charts and three test charts. The test questions had the same
format as the experiment trials, but with multiple choice
rather than free text responses; only one choice was cor-
rect, while the others were grossly wrong. The qualification
thus did not filter inaccurate subjects—which would bias the
responses—but ensured that subjects understood the instruc-
tions. A pilot run of the experiment omitted this qualification
and over 10% of the responses were unusable. We discuss
this observation in more detail later in the paper.
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Figure 1: Stimuli for judgment tasks T1, T2 & T3. Sub-
jects estimated percent differences between elements.
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Figure 2: Area judgment stimuli. Top left: Bubble
chart (T7), Bottom left: Center-aligned rectangles (T8),
Right: Treemap (T9).

In the original experiment, Cleveland & McGill gave each
subject a packet with all fifty charts on individual sheets.
Lengthy tasks are ill-suited to Mechanical Turk; they are
more susceptible to “gaming” since the reward is higher, and
subjects cannot save drafts, raising the possibility of lost data
due to session timeout or connectivity error. We instead as-
signed each chart as an individual task. Since the vast ma-
jority (95%) of subjects accepted all tasks in sequence, the
experiment adhered to the original within-subjects format.

Results
To analyze responses, we replicated Cleveland & McGill’s
data exploration, using their log absolute error measure of
accuracy: log2(|judged percent - true percent| + 1

8 ). We first
computed the midmeans of log absolute errors1 for each chart
(Figure 3). The new results are similar (though not identical)
to the originals: the rough shape and ranking of judgment
types by accuracy (T1-5) are preserved, supporting the valid-
ity of the crowdsourced study.

Next we computed the log absolute error means and 95%
confidence intervals for each judgment type using bootstrap-
ping (c.f., [7]). The ranking of types by accuracy is consistent
between the two experiments (Figure 4). Types 1 and 2 are
closer in the crowdsourced study; this may be a result of a
smaller display mitigating the effect of distance. Types 4 and
5 are more accurate than in the original study, but position
encoding still significantly outperformed length encoding.

We also introduced two new judgment types to evaluate an-
gle and circular area encodings. Cleveland & McGill con-
ducted a separate position-angle experiment; however, they
used a different task format, making it difficult to compare

1The midmean–the mean of the middle two quartiles–is a robust measure
less susceptible to outliers. A log scale is used to measure relative propor-
tional error and the 1

8 term is included to handle zero-valued differences.

Test % difference in area between elements
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esting set of perceptual tasks, we replicated Cleveland &
McGill’s [7] classic study (Exp. 1A) of proportionality es-
timates across spatial encodings (position, length, angle),
and Stone & Bartram’s [30] alpha contrast experiment (Exp.
2), involving transparency (luminance) adjustment of chart
grid lines. Our second goal was to conduct additional ex-
periments that demonstrate the use of Mechanical Turk for
generating new insights. We studied rectangular area judg-
ments (Exp. 1B), following the methodology of Cleveland &
McGill to enable comparison, and then investigated optimal
chart heights and gridline spacing (Exp. 3). Our third goal
was to analyze data from across our experiments to character-
ize the use of Mechanical Turk as an experimental platform.

In the following four sections, we describe our experiments
and focus on details specific to visualization. Results of a
more general nature are visited in our performance and cost
analysis; for example, we delay discussion of response time
results. Our experiments were initially launched with a lim-
ited number of assignments (typically 3) to serve as a pilot.
Upon completion of the trial assignments and verification of
the results, the number of assignments was increased.

EXPERIMENT 1A: PROPORTIONAL JUDGMENT
We first replicated Cleveland & McGill’s seminal study [7]
on Mechanical Turk. Their study was among the first to rank
visual variables empirically by their effectiveness for con-
veying quantitative values. It also has influenced the design
of automated presentation techniques [21, 22] and been suc-
cessfully extended by others (e.g., [36]). As such, it is a nat-
ural experiment to replicate to assess crowdsourcing.

Method
Seven judgment types, each corresponding to a visual en-
coding (such as position or angle) were tested. The first five
correspond to Cleveland & McGill’s original position-length
experiment; types 1 through 3 use position encoding along a
common scale (Figure 1), while 4 and 5 use length encoding.
Type 6 uses angle (as a pie chart) and type 7 uses circular
area (as a bubble chart, see Figure 2).

Ten charts were constructed at a resolution of 380⇥380 pix-
els, for a total of 70 trials (HITs). We mimicked the number,
values and aesthetics of the original charts as closely as pos-
sible. For each chart, N=50 subjects were instructed first to
identify the smaller of two marked values, and then “make
a quick visual judgment” to estimate what percentage the
smaller was of the larger. The first question served broadly to
verify responses; only 14 out of 3,481 were incorrect (0.4%).
Subjects were paid $0.05 per judgment.

To participate in the experiment, subjects first had to com-
plete a qualification test consisting of two labeled example
charts and three test charts. The test questions had the same
format as the experiment trials, but with multiple choice
rather than free text responses; only one choice was cor-
rect, while the others were grossly wrong. The qualification
thus did not filter inaccurate subjects—which would bias the
responses—but ensured that subjects understood the instruc-
tions. A pilot run of the experiment omitted this qualification
and over 10% of the responses were unusable. We discuss
this observation in more detail later in the paper.
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Figure 1: Stimuli for judgment tasks T1, T2 & T3. Sub-
jects estimated percent differences between elements.
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Figure 2: Area judgment stimuli. Top left: Bubble
chart (T7), Bottom left: Center-aligned rectangles (T8),
Right: Treemap (T9).

In the original experiment, Cleveland & McGill gave each
subject a packet with all fifty charts on individual sheets.
Lengthy tasks are ill-suited to Mechanical Turk; they are
more susceptible to “gaming” since the reward is higher, and
subjects cannot save drafts, raising the possibility of lost data
due to session timeout or connectivity error. We instead as-
signed each chart as an individual task. Since the vast ma-
jority (95%) of subjects accepted all tasks in sequence, the
experiment adhered to the original within-subjects format.

Results
To analyze responses, we replicated Cleveland & McGill’s
data exploration, using their log absolute error measure of
accuracy: log2(|judged percent - true percent| + 1

8 ). We first
computed the midmeans of log absolute errors1 for each chart
(Figure 3). The new results are similar (though not identical)
to the originals: the rough shape and ranking of judgment
types by accuracy (T1-5) are preserved, supporting the valid-
ity of the crowdsourced study.

Next we computed the log absolute error means and 95%
confidence intervals for each judgment type using bootstrap-
ping (c.f., [7]). The ranking of types by accuracy is consistent
between the two experiments (Figure 4). Types 1 and 2 are
closer in the crowdsourced study; this may be a result of a
smaller display mitigating the effect of distance. Types 4 and
5 are more accurate than in the original study, but position
encoding still significantly outperformed length encoding.

We also introduced two new judgment types to evaluate an-
gle and circular area encodings. Cleveland & McGill con-
ducted a separate position-angle experiment; however, they
used a different task format, making it difficult to compare

1The midmean–the mean of the middle two quartiles–is a robust measure
less susceptible to outliers. A log scale is used to measure relative propor-
tional error and the 1

8 term is included to handle zero-valued differences.

Test % difference in area between elements
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esting set of perceptual tasks, we replicated Cleveland &
McGill’s [7] classic study (Exp. 1A) of proportionality es-
timates across spatial encodings (position, length, angle),
and Stone & Bartram’s [30] alpha contrast experiment (Exp.
2), involving transparency (luminance) adjustment of chart
grid lines. Our second goal was to conduct additional ex-
periments that demonstrate the use of Mechanical Turk for
generating new insights. We studied rectangular area judg-
ments (Exp. 1B), following the methodology of Cleveland &
McGill to enable comparison, and then investigated optimal
chart heights and gridline spacing (Exp. 3). Our third goal
was to analyze data from across our experiments to character-
ize the use of Mechanical Turk as an experimental platform.

In the following four sections, we describe our experiments
and focus on details specific to visualization. Results of a
more general nature are visited in our performance and cost
analysis; for example, we delay discussion of response time
results. Our experiments were initially launched with a lim-
ited number of assignments (typically 3) to serve as a pilot.
Upon completion of the trial assignments and verification of
the results, the number of assignments was increased.

EXPERIMENT 1A: PROPORTIONAL JUDGMENT
We first replicated Cleveland & McGill’s seminal study [7]
on Mechanical Turk. Their study was among the first to rank
visual variables empirically by their effectiveness for con-
veying quantitative values. It also has influenced the design
of automated presentation techniques [21, 22] and been suc-
cessfully extended by others (e.g., [36]). As such, it is a nat-
ural experiment to replicate to assess crowdsourcing.

Method
Seven judgment types, each corresponding to a visual en-
coding (such as position or angle) were tested. The first five
correspond to Cleveland & McGill’s original position-length
experiment; types 1 through 3 use position encoding along a
common scale (Figure 1), while 4 and 5 use length encoding.
Type 6 uses angle (as a pie chart) and type 7 uses circular
area (as a bubble chart, see Figure 2).

Ten charts were constructed at a resolution of 380⇥380 pix-
els, for a total of 70 trials (HITs). We mimicked the number,
values and aesthetics of the original charts as closely as pos-
sible. For each chart, N=50 subjects were instructed first to
identify the smaller of two marked values, and then “make
a quick visual judgment” to estimate what percentage the
smaller was of the larger. The first question served broadly to
verify responses; only 14 out of 3,481 were incorrect (0.4%).
Subjects were paid $0.05 per judgment.

To participate in the experiment, subjects first had to com-
plete a qualification test consisting of two labeled example
charts and three test charts. The test questions had the same
format as the experiment trials, but with multiple choice
rather than free text responses; only one choice was cor-
rect, while the others were grossly wrong. The qualification
thus did not filter inaccurate subjects—which would bias the
responses—but ensured that subjects understood the instruc-
tions. A pilot run of the experiment omitted this qualification
and over 10% of the responses were unusable. We discuss
this observation in more detail later in the paper.
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Figure 1: Stimuli for judgment tasks T1, T2 & T3. Sub-
jects estimated percent differences between elements.
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Figure 2: Area judgment stimuli. Top left: Bubble
chart (T7), Bottom left: Center-aligned rectangles (T8),
Right: Treemap (T9).

In the original experiment, Cleveland & McGill gave each
subject a packet with all fifty charts on individual sheets.
Lengthy tasks are ill-suited to Mechanical Turk; they are
more susceptible to “gaming” since the reward is higher, and
subjects cannot save drafts, raising the possibility of lost data
due to session timeout or connectivity error. We instead as-
signed each chart as an individual task. Since the vast ma-
jority (95%) of subjects accepted all tasks in sequence, the
experiment adhered to the original within-subjects format.

Results
To analyze responses, we replicated Cleveland & McGill’s
data exploration, using their log absolute error measure of
accuracy: log2(|judged percent - true percent| + 1

8 ). We first
computed the midmeans of log absolute errors1 for each chart
(Figure 3). The new results are similar (though not identical)
to the originals: the rough shape and ranking of judgment
types by accuracy (T1-5) are preserved, supporting the valid-
ity of the crowdsourced study.

Next we computed the log absolute error means and 95%
confidence intervals for each judgment type using bootstrap-
ping (c.f., [7]). The ranking of types by accuracy is consistent
between the two experiments (Figure 4). Types 1 and 2 are
closer in the crowdsourced study; this may be a result of a
smaller display mitigating the effect of distance. Types 4 and
5 are more accurate than in the original study, but position
encoding still significantly outperformed length encoding.

We also introduced two new judgment types to evaluate an-
gle and circular area encodings. Cleveland & McGill con-
ducted a separate position-angle experiment; however, they
used a different task format, making it difficult to compare

1The midmean–the mean of the middle two quartiles–is a robust measure
less susceptible to outliers. A log scale is used to measure relative propor-
tional error and the 1

8 term is included to handle zero-valued differences.

Test % difference in area between elements
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esting set of perceptual tasks, we replicated Cleveland &
McGill’s [7] classic study (Exp. 1A) of proportionality es-
timates across spatial encodings (position, length, angle),
and Stone & Bartram’s [30] alpha contrast experiment (Exp.
2), involving transparency (luminance) adjustment of chart
grid lines. Our second goal was to conduct additional ex-
periments that demonstrate the use of Mechanical Turk for
generating new insights. We studied rectangular area judg-
ments (Exp. 1B), following the methodology of Cleveland &
McGill to enable comparison, and then investigated optimal
chart heights and gridline spacing (Exp. 3). Our third goal
was to analyze data from across our experiments to character-
ize the use of Mechanical Turk as an experimental platform.

In the following four sections, we describe our experiments
and focus on details specific to visualization. Results of a
more general nature are visited in our performance and cost
analysis; for example, we delay discussion of response time
results. Our experiments were initially launched with a lim-
ited number of assignments (typically 3) to serve as a pilot.
Upon completion of the trial assignments and verification of
the results, the number of assignments was increased.

EXPERIMENT 1A: PROPORTIONAL JUDGMENT
We first replicated Cleveland & McGill’s seminal study [7]
on Mechanical Turk. Their study was among the first to rank
visual variables empirically by their effectiveness for con-
veying quantitative values. It also has influenced the design
of automated presentation techniques [21, 22] and been suc-
cessfully extended by others (e.g., [36]). As such, it is a nat-
ural experiment to replicate to assess crowdsourcing.

Method
Seven judgment types, each corresponding to a visual en-
coding (such as position or angle) were tested. The first five
correspond to Cleveland & McGill’s original position-length
experiment; types 1 through 3 use position encoding along a
common scale (Figure 1), while 4 and 5 use length encoding.
Type 6 uses angle (as a pie chart) and type 7 uses circular
area (as a bubble chart, see Figure 2).

Ten charts were constructed at a resolution of 380⇥380 pix-
els, for a total of 70 trials (HITs). We mimicked the number,
values and aesthetics of the original charts as closely as pos-
sible. For each chart, N=50 subjects were instructed first to
identify the smaller of two marked values, and then “make
a quick visual judgment” to estimate what percentage the
smaller was of the larger. The first question served broadly to
verify responses; only 14 out of 3,481 were incorrect (0.4%).
Subjects were paid $0.05 per judgment.

To participate in the experiment, subjects first had to com-
plete a qualification test consisting of two labeled example
charts and three test charts. The test questions had the same
format as the experiment trials, but with multiple choice
rather than free text responses; only one choice was cor-
rect, while the others were grossly wrong. The qualification
thus did not filter inaccurate subjects—which would bias the
responses—but ensured that subjects understood the instruc-
tions. A pilot run of the experiment omitted this qualification
and over 10% of the responses were unusable. We discuss
this observation in more detail later in the paper.
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Figure 1: Stimuli for judgment tasks T1, T2 & T3. Sub-
jects estimated percent differences between elements.
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Figure 2: Area judgment stimuli. Top left: Bubble
chart (T7), Bottom left: Center-aligned rectangles (T8),
Right: Treemap (T9).

In the original experiment, Cleveland & McGill gave each
subject a packet with all fifty charts on individual sheets.
Lengthy tasks are ill-suited to Mechanical Turk; they are
more susceptible to “gaming” since the reward is higher, and
subjects cannot save drafts, raising the possibility of lost data
due to session timeout or connectivity error. We instead as-
signed each chart as an individual task. Since the vast ma-
jority (95%) of subjects accepted all tasks in sequence, the
experiment adhered to the original within-subjects format.

Results
To analyze responses, we replicated Cleveland & McGill’s
data exploration, using their log absolute error measure of
accuracy: log2(|judged percent - true percent| + 1

8 ). We first
computed the midmeans of log absolute errors1 for each chart
(Figure 3). The new results are similar (though not identical)
to the originals: the rough shape and ranking of judgment
types by accuracy (T1-5) are preserved, supporting the valid-
ity of the crowdsourced study.

Next we computed the log absolute error means and 95%
confidence intervals for each judgment type using bootstrap-
ping (c.f., [7]). The ranking of types by accuracy is consistent
between the two experiments (Figure 4). Types 1 and 2 are
closer in the crowdsourced study; this may be a result of a
smaller display mitigating the effect of distance. Types 4 and
5 are more accurate than in the original study, but position
encoding still significantly outperformed length encoding.

We also introduced two new judgment types to evaluate an-
gle and circular area encodings. Cleveland & McGill con-
ducted a separate position-angle experiment; however, they
used a different task format, making it difficult to compare

1The midmean–the mean of the middle two quartiles–is a robust measure
less susceptible to outliers. A log scale is used to measure relative propor-
tional error and the 1

8 term is included to handle zero-valued differences.

Test % difference in area between elements
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Answer: B is ~2.5 larger (in area) than A
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Cleveland & McGill Experiments
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Figure 4. Graphs from position-length experiment. 

tracted by perceiving position along a scale, in this case 
the horizontal axis. The y values can be perceived in a 
similar manner. 

The real power of a Cartesian graph, however, does 
not derive only from one's ability to perceive the x and 
y values separately but, rather, from one's ability to un- 
derstand the relationship of x and y. For example, in Fig- 
ure 7 we see that the relationship is nonlinear and see the 
nature of that nonlinearity. The elementary task that en- 
ables us to do this is perception of direction. Each pair 
of points on the plot, (xi, yi) and (xj, yj), with xi =$ Xj, 
has an associated slope 

(yj - y)(xj - xi). 

The eye-brain system is capable of extracting such a 
slope by perceiving the direction of the line segment join- 
ing (xi, yi) and (xj, yj). We conjecture that the perception 
of these slopes allows the eye-brain system to imagine 
a smooth curve through the points, which is then used to 
judge the pattern. For example, in Figure 7 one can per- 
ceive that the slopes for pairs of points on the left side 
of the plot are greater than those on the right side of the 
plot, which is what enables one to judge that the rela- 
tionship is nonlinear. 

That the elementary task of judging directions on a 
Cartesian graph is vital for understanding the relationship 
of x and y is demonstrated in Figure 8. The same x and 
y values are shown by paired bars. As with the Cartesian 

MURDER RATES, 1978 
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SHADINGS- _ , _, 

RE 12.1_ 

-~ 1 5.8- 
RATES PER 100,000 POPULATION 

Figure 5. Statistical map with shading. 
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Figure 2. Sample distribution function of 1978 murder rate. 

judging position along a common scale, which in this case 
is the horizontal scale. 

Bar Charts 

Figures 3 and 4 contain bar charts that were shown to 
subjects in perceptual experiments. The few noticeable 
peculiarities are there for purposes of the experiments, 
described in a later section. 

Judging position is a task used to extract the values of 
the data in the bar chart in the right panel of Figure 3. 
But now the graphical elements used to portray the 
data-the bars-also change in length and area. We con- 
jecture that the primary elementary task is judging po- 
sition along a common scale, but judgments of area and 
length probably also play a role. 

Pie Charts 

The left panel of Figure 3 is a pie chart, one of the most 
commonly used graphs for showing the relative sizes of 
the parts of a whole. For this graph we conjecture that 
the primary elementary visual task for extracting the nu- 
merical information is perception of angle, but the areas 
and arc lengths of the pie slices are variable and probably 
are also involved in judging the data. 

Divided Bar Charts 

Figure 4 has three div'ided bar charts (Types 2, 4, and 
5). For each of the three, the totals of A and B can be 
compared by perceiving position along the scale. Position 
judgments can also be used to compare the two bottom 

diviionsin ech cse; or Tpe 2the otto divsin 
are arkd wth ots.Allothr vluesmus becomare 
by he lemntay tsk f prcevin difernt ar enghs 

examples are the two divisions marked with dots in Type 
4 and the two marked in Type 5. 

Statistical Maps With Shading 

A chart frequently used to portray information as a 
function of geographical location is a statistical map with 
shading, such as Figure 5 (from Gale and Halperin 1982), 
which shows the murder data of Figure 2. Values of a 
real variable are encoded by filling in geographical re- 
gions using any one of many techniques that produce 
gray-scale shadings. In Figure 5 the technique illustrated 
uses grids drawn with different spacings; the data are not 
proportional to the grid spacing but, rather, to a compli- 
cated function of spacing. We conjecture that the primary 
elementary task used to extract the data in this case is 
the perception of shading, but judging the sizes of the 
squares formed by the grids probably also plays a role, 
particularly for the large squares. 

Curve-Difference Charts 

Another class of commonly used graphs is curve-dif- 
ference charts: Two or more curves are drawn on the 
graph, and vertical differences between some of the 
curves encode real variables that are to be extracted. One 
type of curve-difference chart is a divided, or aggregate, 
line chart (Monkhouse and Wilkinson 1963), which is typ- 
ically used to show how parts of a whole change through 
time. 

Figure 6 is a curve-difference chart. The original was 
drawn by William Playfair; because our photograph of 
the original was of poor quality, we had the figure re- 
drafted, trying to keep as close to the original as possible. 
The two curves portray exports from England to the East 
Indies and imports to England from the East Indies. The 
vertical distances between the two curves, which encode 
the export-import imbalance, are highlighted. The quan- 
titative information about imports and exports is ex- 
tracted by perceiving position along a common scale, and 
the information about the imbalances is extracted by per- 
ceiving length, that is, vertical distance between the two 
curves. 

Cartesian Graphs and Why They Work 

Figure 7 is a Cartesian graph of paired values of two 
variables, x and y. The values of x can be visually ex- 

40 
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Figure 3. Graphs from position-angle experiment. 
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Heer & Bostock Experiments
• Rerun Cleveland & McGill’s experiment using Mechanical Turk 
• … with more tests

�28

[Heer & Bostock, 2010]

esting set of perceptual tasks, we replicated Cleveland &
McGill’s [7] classic study (Exp. 1A) of proportionality es-
timates across spatial encodings (position, length, angle),
and Stone & Bartram’s [30] alpha contrast experiment (Exp.
2), involving transparency (luminance) adjustment of chart
grid lines. Our second goal was to conduct additional ex-
periments that demonstrate the use of Mechanical Turk for
generating new insights. We studied rectangular area judg-
ments (Exp. 1B), following the methodology of Cleveland &
McGill to enable comparison, and then investigated optimal
chart heights and gridline spacing (Exp. 3). Our third goal
was to analyze data from across our experiments to character-
ize the use of Mechanical Turk as an experimental platform.

In the following four sections, we describe our experiments
and focus on details specific to visualization. Results of a
more general nature are visited in our performance and cost
analysis; for example, we delay discussion of response time
results. Our experiments were initially launched with a lim-
ited number of assignments (typically 3) to serve as a pilot.
Upon completion of the trial assignments and verification of
the results, the number of assignments was increased.

EXPERIMENT 1A: PROPORTIONAL JUDGMENT
We first replicated Cleveland & McGill’s seminal study [7]
on Mechanical Turk. Their study was among the first to rank
visual variables empirically by their effectiveness for con-
veying quantitative values. It also has influenced the design
of automated presentation techniques [21, 22] and been suc-
cessfully extended by others (e.g., [36]). As such, it is a nat-
ural experiment to replicate to assess crowdsourcing.

Method
Seven judgment types, each corresponding to a visual en-
coding (such as position or angle) were tested. The first five
correspond to Cleveland & McGill’s original position-length
experiment; types 1 through 3 use position encoding along a
common scale (Figure 1), while 4 and 5 use length encoding.
Type 6 uses angle (as a pie chart) and type 7 uses circular
area (as a bubble chart, see Figure 2).

Ten charts were constructed at a resolution of 380⇥380 pix-
els, for a total of 70 trials (HITs). We mimicked the number,
values and aesthetics of the original charts as closely as pos-
sible. For each chart, N=50 subjects were instructed first to
identify the smaller of two marked values, and then “make
a quick visual judgment” to estimate what percentage the
smaller was of the larger. The first question served broadly to
verify responses; only 14 out of 3,481 were incorrect (0.4%).
Subjects were paid $0.05 per judgment.

To participate in the experiment, subjects first had to com-
plete a qualification test consisting of two labeled example
charts and three test charts. The test questions had the same
format as the experiment trials, but with multiple choice
rather than free text responses; only one choice was cor-
rect, while the others were grossly wrong. The qualification
thus did not filter inaccurate subjects—which would bias the
responses—but ensured that subjects understood the instruc-
tions. A pilot run of the experiment omitted this qualification
and over 10% of the responses were unusable. We discuss
this observation in more detail later in the paper.
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Figure 1: Stimuli for judgment tasks T1, T2 & T3. Sub-
jects estimated percent differences between elements.
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Figure 2: Area judgment stimuli. Top left: Bubble
chart (T7), Bottom left: Center-aligned rectangles (T8),
Right: Treemap (T9).

In the original experiment, Cleveland & McGill gave each
subject a packet with all fifty charts on individual sheets.
Lengthy tasks are ill-suited to Mechanical Turk; they are
more susceptible to “gaming” since the reward is higher, and
subjects cannot save drafts, raising the possibility of lost data
due to session timeout or connectivity error. We instead as-
signed each chart as an individual task. Since the vast ma-
jority (95%) of subjects accepted all tasks in sequence, the
experiment adhered to the original within-subjects format.

Results
To analyze responses, we replicated Cleveland & McGill’s
data exploration, using their log absolute error measure of
accuracy: log2(|judged percent - true percent| + 1

8 ). We first
computed the midmeans of log absolute errors1 for each chart
(Figure 3). The new results are similar (though not identical)
to the originals: the rough shape and ranking of judgment
types by accuracy (T1-5) are preserved, supporting the valid-
ity of the crowdsourced study.

Next we computed the log absolute error means and 95%
confidence intervals for each judgment type using bootstrap-
ping (c.f., [7]). The ranking of types by accuracy is consistent
between the two experiments (Figure 4). Types 1 and 2 are
closer in the crowdsourced study; this may be a result of a
smaller display mitigating the effect of distance. Types 4 and
5 are more accurate than in the original study, but position
encoding still significantly outperformed length encoding.

We also introduced two new judgment types to evaluate an-
gle and circular area encodings. Cleveland & McGill con-
ducted a separate position-angle experiment; however, they
used a different task format, making it difficult to compare

1The midmean–the mean of the middle two quartiles–is a robust measure
less susceptible to outliers. A log scale is used to measure relative propor-
tional error and the 1

8 term is included to handle zero-valued differences.
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Positions

Rectangular 
areas 

(aligned or in a 
treemap)

Angles

Circular 
areas

Cleveland & McGill’s  Results

Crowdsourced Results

1.0 3 .01.5 2 .52 .0
Log Error

1.0 3 .01.5 2 .52 .0
Log Error

Results Summary
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[Munzner (ill. Maguire) based on Heer & Bostock, 2014]
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Psychophysics
• How do we perceive changes in stimuli 
• The Psychophysical Power Law [Stevens, 

1975]: All sensory channels follow a power 
function based on stimulus intensity (S = In) 

• Length is fairly accurate 
• Magnified vs. compressed sensations
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[Munzner (ill. Maguire), 2014]
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Magnitude Channels: Ordered Attributes Identity Channels: Categorical Attributes

Spatial region

Color hue

Motion

Shape

Position on common scale

Position on unaligned scale

Length (1D size)

Tilt/angle

Area (2D size)

Depth (3D position)

Color luminance

Color saturation

Curvature

Volume (3D size)

Channels: Expressiveness Types and Effectiveness RanksRanking Channels by Effectiveness
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[Munzner (ill. Maguire), 2014]
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PythonSource

vtkDataSetReader

vtkDataSetMapper

vtkActor
vtkLODActor

vtkRenderer

VTKCell

vtkScalarBarActor

vtkColorTransferFunction
vtkLookupTable

vtkImageClip
vtkImageDataGeometryFilter

vtkImageResample
vtkImageReslice
vtkWarpScalar

PythonSource
vtkElevationFilter
vtkOutlineFilter

vtkPolyDataMapper

vtkActor

vtkProperty

vtkCubeAxesActor2D

vtkCamera

File

vtkPolyDataNormals

Discriminability
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[Koop et al., 2013]

What is problematic here?
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Discriminability
• Can someone tell the difference? 
• How many values (bins) can be used so that a person can tell the difference? 
• Example: Line width 
- Matching a particular width with a legend 
- Comparing two widths

�33
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Separability
• Cannot treat all channels as independent! 
• Separable means each individual channel can be distinguished 
• Integral means the channels are perceived together 

�34

[Munzner (ill. Maguire) based on Ware, 2014]

Position
    Hue (Color)

Size
    Hue (Color)

Width
    Height

Red
    Green

Fully separable Some interference Some/significant 
interference

Major interference
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Separable or Integral?
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[GOOD]

http://magazine.good.is/infographics/america-s-richest-counties-and-best-educated-counties
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Separable or Integral?
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[GOOD]

http://magazine.good.is/infographics/america-s-richest-counties-and-best-educated-counties
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Visual Popout
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[C. G. Healey]

http://www.csc.ncsu.edu/faculty/healey/PP/
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Visual Popout: Parallel Lines Require Search…
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[Munzner (ill. Maguire), 2014]
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Relative vs. Absolute Judgments
• Weber’s Law: 
- We judge based on relative not absolute differences 
- The amount of perceived difference is relative to the object’s magnitude!

�38

[Munzner (ill. Maguire), 2014]
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Luminance Perception

�39

[E. H. Adelson, 1995]

http://web.mit.edu/persci/people/adelson/checkershadow_illusion.html
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Luminance Perception
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[E. H. Adelson, 1995]

http://web.mit.edu/persci/people/adelson/checkershadow_illusion.html
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Tables
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Tables

Attributes (columns)

Items 
(rows)

Cell containing value

Networks

Link

Node 
(item)

Trees

Fields (Continuous)

Attributes (columns)

Value in cell

Cell

Multidimensional Table

Value in cell

Grid of positions

Geometry (Spatial)

Position

Dataset Types

Visualization of Tables
• Items and attributes 
• For now, attributes are not known to be 

positions 
• Keys and values 
- key is an independent attribute that is 

unique and identifies item 
- value tells some aspect of an item 

• Keys: categorical/ordinal 
• Values: +quantitative 
• Levels: unique values of categorical or 

ordered attributes
�42

[Munzner (ill. Maguire), 2014]
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Arrange Tables

Express Values

Separate, Order, Align Regions

Axis Orientation

Layout Density

Dense Space-Filling

Separate Order Align

1 Key 2  Keys 3 Keys Many Keys
List Recursive SubdivisionVolumeMatrix

Rectilinear Parallel Radial

Arrange Tables
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[Munzner (ill. Maguire), 2014]

Arrange Tables

Express Values

Separate, Order, Align Regions

Axis Orientation

Layout Density

Dense Space-Filling

Separate Order Align

1 Key 2  Keys 3 Keys Many Keys
List Recursive SubdivisionVolumeMatrix

Rectilinear Parallel Radial
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Express Values: Scatterplots
• Data: two quantitative values 
• Task: find trends, clusters, outliers 
• How: marks at spatial position in horizontal 

and vertical directions 

• Correlation: dependence between two 
attributes 

- Positive and negative correlation 
- Indicated by lines 

• Coordinate system (axes) and labels are 
important!

�44
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Journal of Statistical Software 19

variability decreases with sample size. But on the log-log scale, Figure 2(b), there is a clear
pattern. This is particularly easy to see the pattern when we add the line of best fit from a
robust linear model.

R> ggplot(data = devi, aes(x = n, y = dist) + geom_point()

R>

R> last_plot() +

R> scale_x_log10() +

R> scale_y_log10() +

R> geom_smooth(method = "rlm", se = F)
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Figure 2: (a) Plot of n vs deviation. Variability of deviation is dominated by sample size: small
samples have large variability. (b) Log-log plot makes it easy to see the pattern of variation as well as
unusually high values. The blue line is a robust line of best fit.

We are interested in points that have high y-values, relative to their x-neighbours. Controlling
for the number of deaths, these points represent the diseases which depart the most from the
overall pattern.

To find these unusual points, we fit a robust linear model and plot the residuals, Figure 3.
The plot shows an empty region around a residual of 1.5. So somewhat arbitrarily, we’ll select
those diseases with a residual greater than 1.5. We do this in two steps: first, we select the
appropriate rows from devi (one row per disease), and then we find the matching temporal
course information from the original summary dataset (24 rows per disease).

R> devi$resid <- resid(rlm(log(dist) ~ log(n), data = devi))

R> unusual <- subset(devi, resid > 1.5)

R> hod_unusual <- match_df(hod2, unusual)

Coordinate Systems
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variability decreases with sample size. But on the log-log scale, Figure 2(b), there is a clear
pattern. This is particularly easy to see the pattern when we add the line of best fit from a
robust linear model.

R> ggplot(data = devi, aes(x = n, y = dist) + geom_point()

R>

R> last_plot() +

R> scale_x_log10() +

R> scale_y_log10() +

R> geom_smooth(method = "rlm", se = F)
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(a) Linear scales
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Figure 2: (a) Plot of n vs deviation. Variability of deviation is dominated by sample size: small
samples have large variability. (b) Log-log plot makes it easy to see the pattern of variation as well as
unusually high values. The blue line is a robust line of best fit.

We are interested in points that have high y-values, relative to their x-neighbours. Controlling
for the number of deaths, these points represent the diseases which depart the most from the
overall pattern.

To find these unusual points, we fit a robust linear model and plot the residuals, Figure 3.
The plot shows an empty region around a residual of 1.5. So somewhat arbitrarily, we’ll select
those diseases with a residual greater than 1.5. We do this in two steps: first, we select the
appropriate rows from devi (one row per disease), and then we find the matching temporal
course information from the original summary dataset (24 rows per disease).

R> devi$resid <- resid(rlm(log(dist) ~ log(n), data = devi))

R> unusual <- subset(devi, resid > 1.5)

R> hod_unusual <- match_df(hod2, unusual)

Coordinate Systems
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variability decreases with sample size. But on the log-log scale, Figure 2(b), there is a clear
pattern. This is particularly easy to see the pattern when we add the line of best fit from a
robust linear model.

R> ggplot(data = devi, aes(x = n, y = dist) + geom_point()

R>

R> last_plot() +

R> scale_x_log10() +

R> scale_y_log10() +

R> geom_smooth(method = "rlm", se = F)

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●
●

●
●

●

●

●
●●

●●
●

●

●
●

●

●

●

●

●

●
●● ●

●
●

●

●●

●●●

●●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●●
●

●●
●

●

●● ●●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●●

● ●● ●

●

●●

●

●● ●
●
●

●

●

● ●

●

●

●
●

●
●

●

●

●
●

●

●

●

●●

●●

●

●
●

●

●

●
●

●●

●
●

●

●

●

●
●●●●

●

●
●

●●●

●
●

●

●

●

●
●

●

●

●● ●
●

● ●
●

● ● ●●

●

●

●

●

●

●
●

●
●
●●

●

●
●

●

●

●

●

●

●

●

● ● ●●
●

●

●●

●

●

●
●

●
●

●

●

●

● ●

●

●

●●●●
●
●●●

●
●
●

●

●
●

●●●

●

●

●●

●

●

●

● ●
●
●●●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●●●

● ●●

●
●

●
●

●

●

●

●

●
●
●

●

●●

●

●

●

●

● ●●●

●●●

●●

●

●

●

●

●

●

●●

●●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

● ●

●

●
●
●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

0.000

0.002

0.004

0.006

0 10000 20000 30000 40000
n

di
st

(a) Linear scales
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Figure 2: (a) Plot of n vs deviation. Variability of deviation is dominated by sample size: small
samples have large variability. (b) Log-log plot makes it easy to see the pattern of variation as well as
unusually high values. The blue line is a robust line of best fit.

We are interested in points that have high y-values, relative to their x-neighbours. Controlling
for the number of deaths, these points represent the diseases which depart the most from the
overall pattern.

To find these unusual points, we fit a robust linear model and plot the residuals, Figure 3.
The plot shows an empty region around a residual of 1.5. So somewhat arbitrarily, we’ll select
those diseases with a residual greater than 1.5. We do this in two steps: first, we select the
appropriate rows from devi (one row per disease), and then we find the matching temporal
course information from the original summary dataset (24 rows per disease).

R> devi$resid <- resid(rlm(log(dist) ~ log(n), data = devi))

R> unusual <- subset(devi, resid > 1.5)

R> hod_unusual <- match_df(hod2, unusual)

[Wickham, 2014]
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[Gapminder, Wealth & Health of Nations]

https://www.gapminder.org/tools/#_chart-type=bubbles
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Scatterplot
• Data: two quantitative values 
• Task: find trends, clusters, outliers 
• How: marks at spatial position in horizontal and vertical directions 
• Scalability: hundreds of items 

• "Ranking Visualizations of Correlation Using Weber’s Law", 2014: 
- Correlation perception can be modeled via Weber’s Law 
- Scatterplots are one of the best visualizations for both positive and negative 

correlation 
- Further analysis: M. Kay and J. Heer, "Beyond Weber's Law", 2015

�47

http://www.cs.tufts.edu/~remco/publications/2014/InfoVis2014-JND.pdf
https://idl.cs.washington.edu/files/2015-BeyondWebersLaw-InfoVis.pdf
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Separate, Order, and Align: Categorical Regions
• Categorical: =, != 
• Spatial position can be used for categorical attributes 
• Use regions, distinct contiguous bounded areas, to encode categorical 

attributes 
• Three operations on the regions: 
- Separate (use categorical attribute) 
- Align 
- Order 

• Alignment and order can use same or different attribute

�48

(use some other ordered attribute)
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List Alignment: Bar Charts
• Data: one quantitative attribute, one 

categorical attribute 
• Task: lookup & compare values 
• How: line marks, vertical position 

(quantitative), horizontal position (categorical) 
• What about length? 
• Ordering criteria: alphabetical or using 

quantitative attribute 
• Scalability: distinguishability 
- bars at least one pixel wide 
- hundreds

�49

[Munzner (ill. Maguire), 2014]

100

75

50

25

0     

Animal Type

100

75

50

25

0     

Animal Type



D. Koop, CIS 680, Fall 2019

CA TX NY FL IL PA OH MI GA NC NJ VA WA AZ MA IN TN MOMD WI MN CO AL SC LA KY OR OK CT IA MS AR KS UT NV NMWV NE ID ME NH HI RI MT DE SD AK ND VT DC WY
0.0

5.0M

10M

15M

20M

25M

30M

35M
Po

pu
la

tio
n 65 Years and Over

45 to 64 Years

25 to 44 Years

18 to 24 Years

14 to 17 Years

5 to 13 Years

Under 5 Years

Stacked Bar Charts

�50

[Stacked Bar Chart, M. Bostock, 2017]

https://bl.ocks.org/mbostock/3886208
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[Grouped Bar Chart, M. Bostock, 2017]

http://bl.ocks.org/mbostock/3887051
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Stacked Bar Charts
• Data: multidimensional table: one quantitative, two categorical 
• Task: lookup values, part-to-whole relationship, trends 
• How: line marks: position (both horizontal & vertical), subcomponent line 

marks: length, color 
• Scalability: main axis (hundreds like bar chart), bar classes (<12) 

• Orientation: vertical or horizontal (swap how horizontal and vertical position 
are used.

�52
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than 6,000 data sets at once. While the layout method of the Name-
Voyager was not novel—it used a standard stacked graph layout, 
with some level-of-detail calculations—the popular response to the 
applet suggested that stacked graphs have the ability to engage mass 
audiences.

A follow-up design to the NameVoyager, described in [20], 
showed hierarchical time series. That is, it used interactivity and 
color to display time series that were arranged into categories and 
subcategories. In the Many Eyes system [17], this technique was 
made broadly available on the web.

A final related work is the Revisionist [7] visualization of changes 
in source code over time. While not technically a stacked graph, the 
geometry is related since each line of code is represented by a curved 
stripe. Revisionist minimizes visual distortion by having a curved 
baseline that allows the visualization to roughly align identical lines 
of code between releases.

3 LAST.FM AND THE NEW YORK TIMES

3.1 Listening History - Last.fm

Listening History was created by the first author for a class 
project at Carnegie Mellon University. The six-week assignment was 
to collect and display a data set in an interesting and novel way. As 
described in the introduction, Listening History [4] visualizes trends 
in an individual’s music listening, as derived from data in the last.
fm service. The x-axis represents time and each stripe represents an 
artist. The thickness of a stripe shows the number of times that songs 
from the artist were listened to in a given week. The color, as detailed 
in section 5, encodes two dimensions: the saturation is determined by 
the overall number of times an artist is listened, and the hue is related 
to the earliest date at which one of the artist’s songs were heard.

A critical design goal for this visualization was to create a graphic 
that did not look scientific or mathematical, but rather felt organic 
and emotionally pleasing. In section 5 we will see that, ironically, 
achieving this goal relied on significant computation. A side effect 
of the algorithm is the signature asymmetry between the top and 
bottom curves which form the organic shape and, as discussed later, 
minimizes internal distortion.

At the end of the course, a few large-scale posters, some over 12 
feet long, were printed as holiday gifts. The reaction of the recipients 
provides evidence, if anecdotal, that the graphic succeeded in elicit-
ing strong emotional reactions when people saw their own listening 
history. People often remarked at the ability to see critical life events 
reflected in their music listening habits.

One pointed to the beginning and end of three separate relation-
ships, and how his listening trends changed dramatically. Another 
noted the moment when her dog had died, and the resulting impact 
on the next month of listening. A third pointed out his dramatic differ-
ences between summer and winter listening trends. As in the Themail 
system of Viégas et al. [18], the visualization of historical and per-
sonal data seemed effective at eliciting reflective storytelling. 

After Listening History was made public, there was high 
demand for personalized versions of these graphics by other last.fm 
members. In fact this demand was so strong that a number of imita-
tors emerged, including Maya’s Extra Stats [12] and Godwin’s Last 
Graph [13] Interestingly, these services and other imitators use the 
simpler ThemeRiver layout and a simpler color scheme.

The popularity of these imitators (Last Graph has created visu-
alizations for more than 24,000 users) suggests the hypothesis that 
stacked graphs have an ability to communicate large amounts of data 
to the general public in an intriguing and satisfactory way.

3.2 New York Times - Box Office Revenue

The Box Office Revenue graph, created by the first author and the 
graphics department of the Times [2,6] highlighted the dichotomy 
between box office hits and Oscar nominations, discussed in the orig-
inal article. The printed graphic ran vertically to best use the avail-
able space, time running top to bottom; the online version ran left 
to right. To allow a quick reading of the graph, coloring was much 
simpler than in Listening History: a discrete palette signified ranges 
of overall revenue. Furthermore, stroke lines were added because of 
issues with print registration.

The online response to these graphics was intense and rapid. 
Many blogs and social websites featured long lists of comments dis-
cussing data-points shown in the graph. As with the NameVoyager, 
blog posters and their commenters engaged in a social style of data 
analysis and critique of the new visual form. What follows are anec-
dotes discussing these visualizations, which provide a rough sense of 
the breadth and intensity of the online response.

Individual bloggers often found particular discoveries and pointed 
them out to their readers. For example, one said:

C1: note the double spike on ‘Harry Potter an the Order of the 
Phoenix’. And the long hump on ‘Alvin and the Chipmunks’. 
‘Juno’ also has an interesting curve as it did almost nothing for 
a month before popping out later in it’s run. Though that may be 
because it was released in just enough theaters to become Oscars fig 1 – section from Listening History of primary author

fig 2 – films from the summer of 2007

Streamgraphs
• Include a time attribute 
• Data: multidimensional table, one 

quantitative attribute (count), one ordered 
key attribute (time), one categorical key 
attribute 

• + derived attribute: layer ordering 
(quantitative) 

• Task: analyze trends in time, find (maxmial) 
outliers 

• How: derived position+geometry, length, 
color 
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[Byron and Wattenberg, 2012]
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Streamgraphs
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[Ebb and Flow of Movies, M. Bloch et al., New York Times, 2008]

http://www.nytimes.com/interactive/2008/02/23/movies/20080223_REVENUE_GRAPHIC.html

