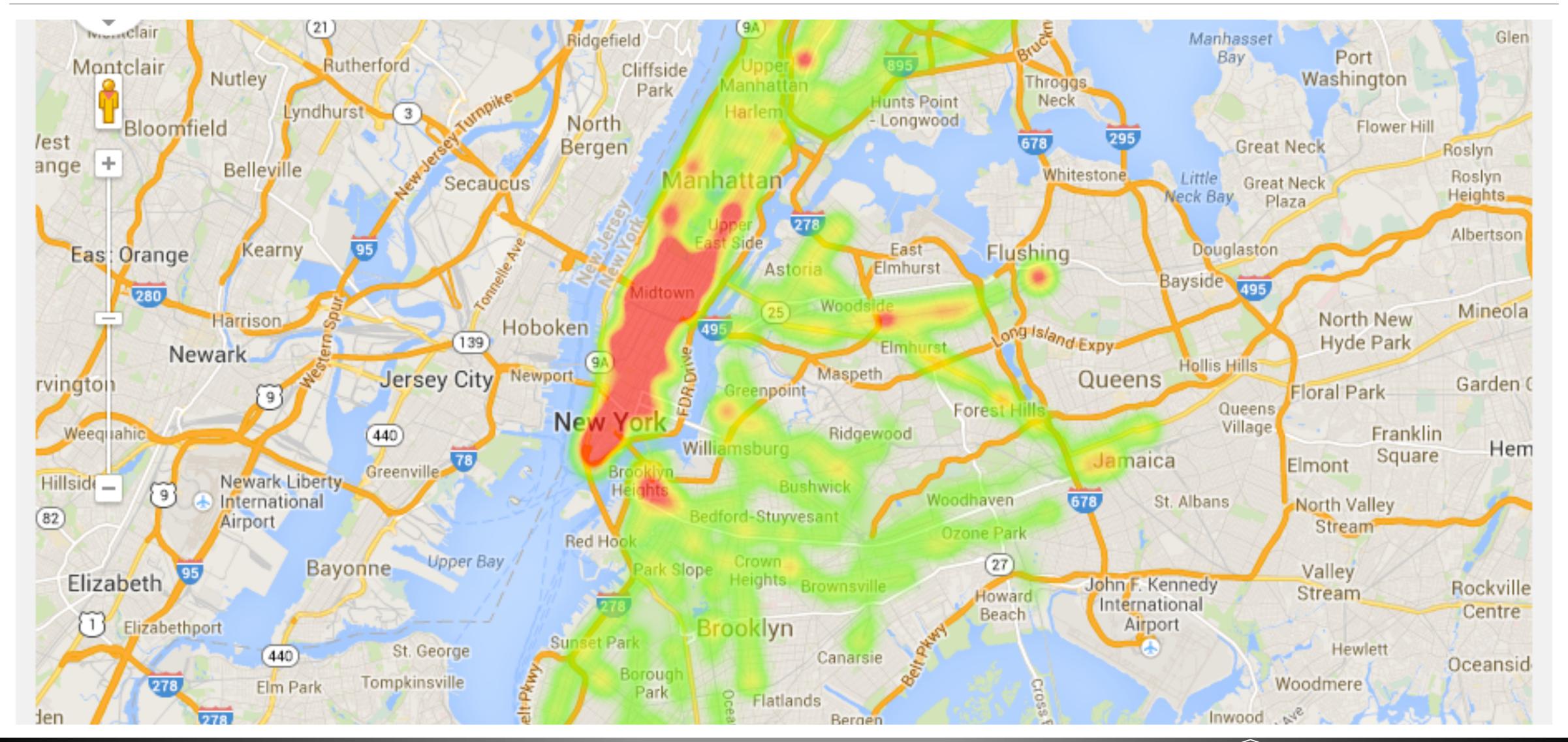
Advanced Data Management (CSCI 640/490)

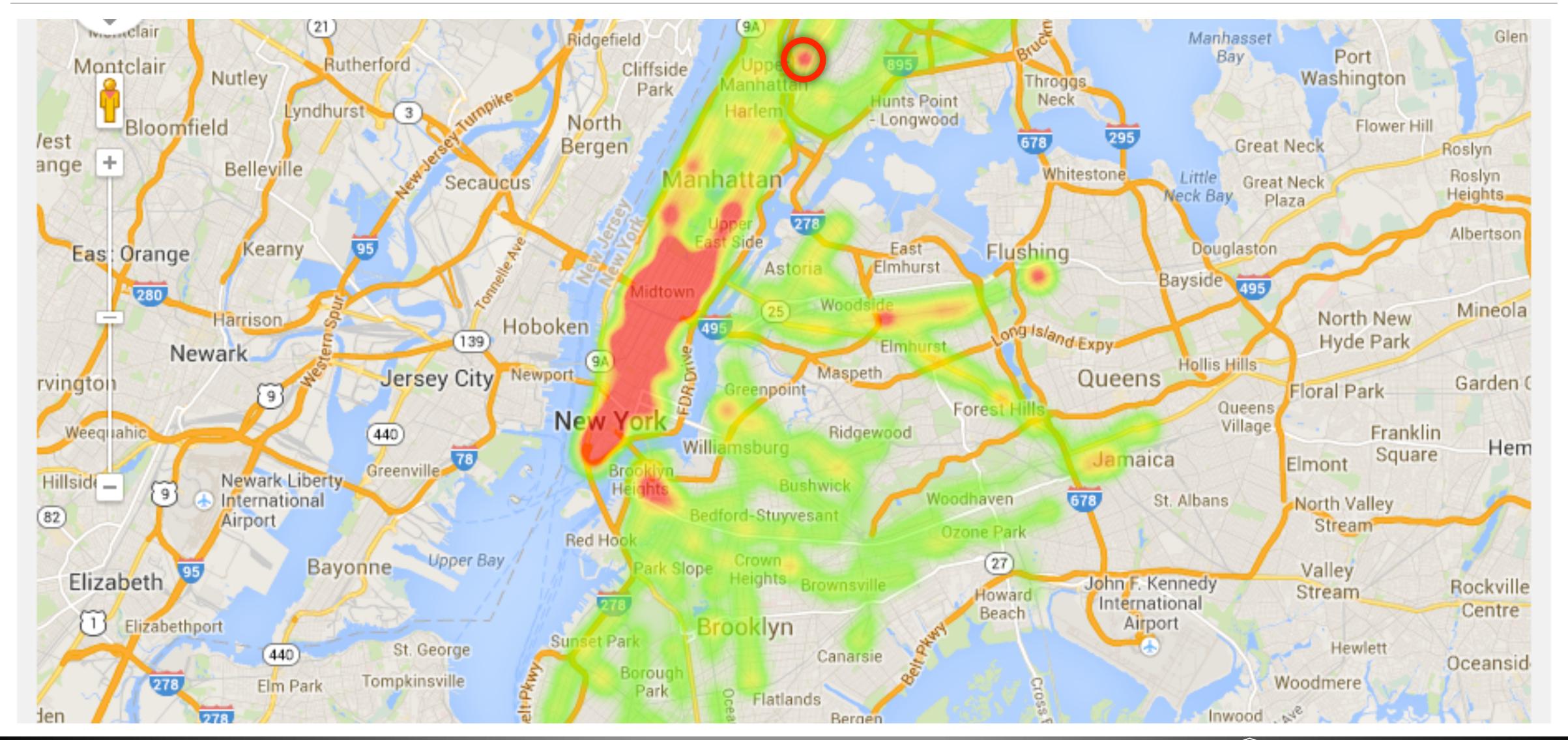
Spatial Data

Dr. David Koop

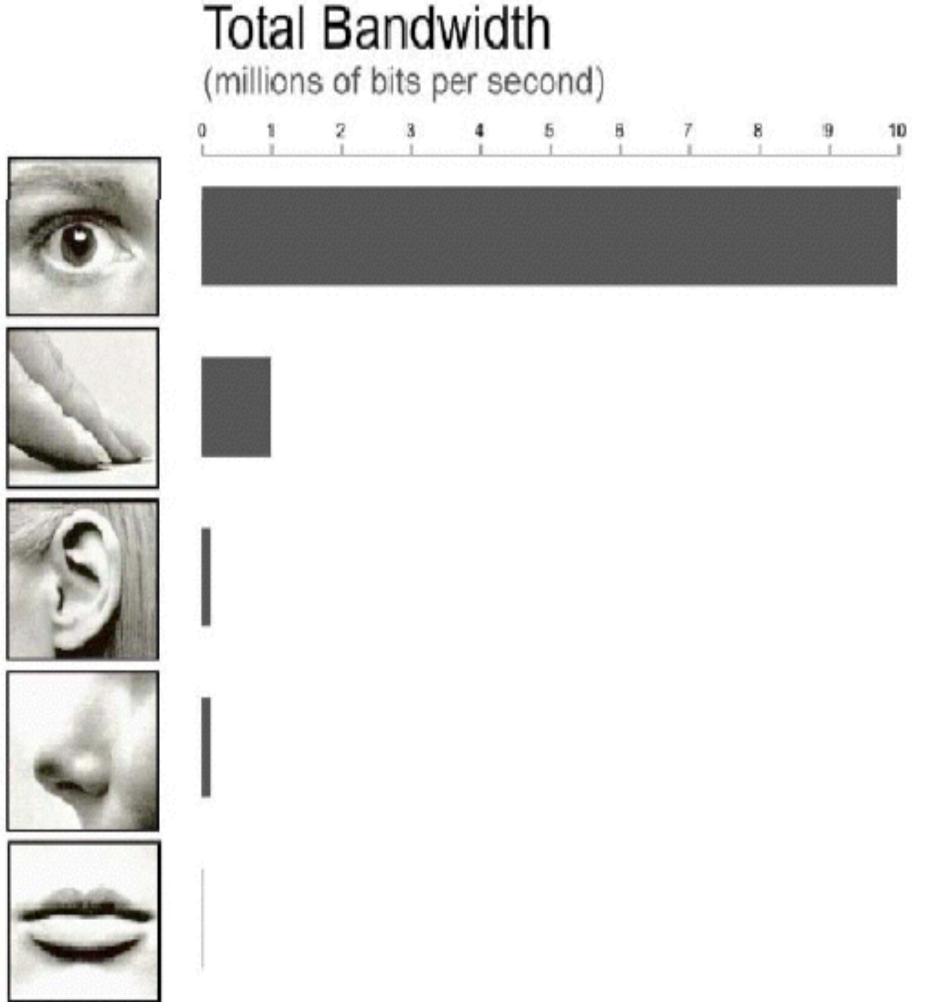
Data Exploration Through Visualization

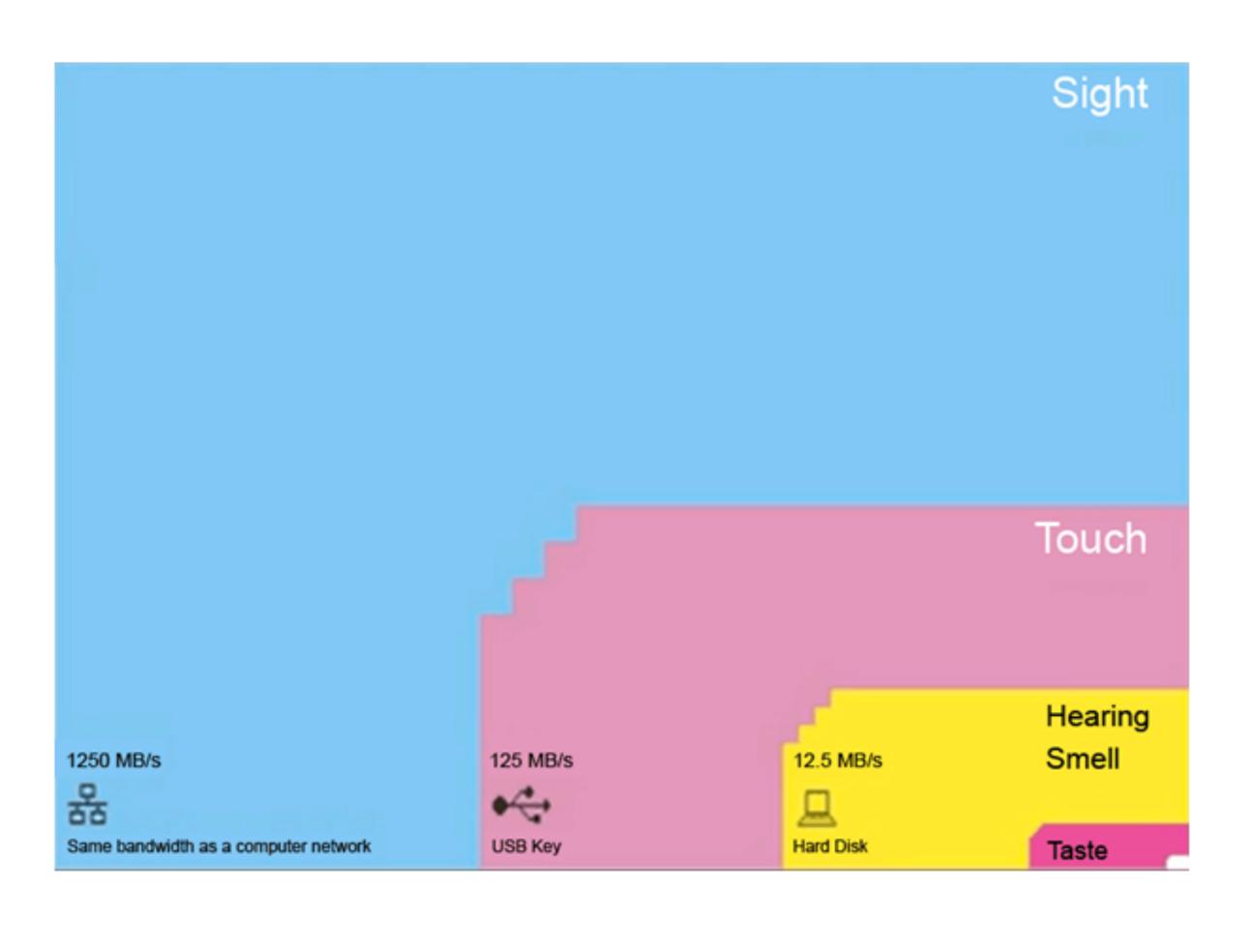


Data Exploration Through Visualization



Why do we visualize data?





[via A. Lex] [T. Nørretranders]

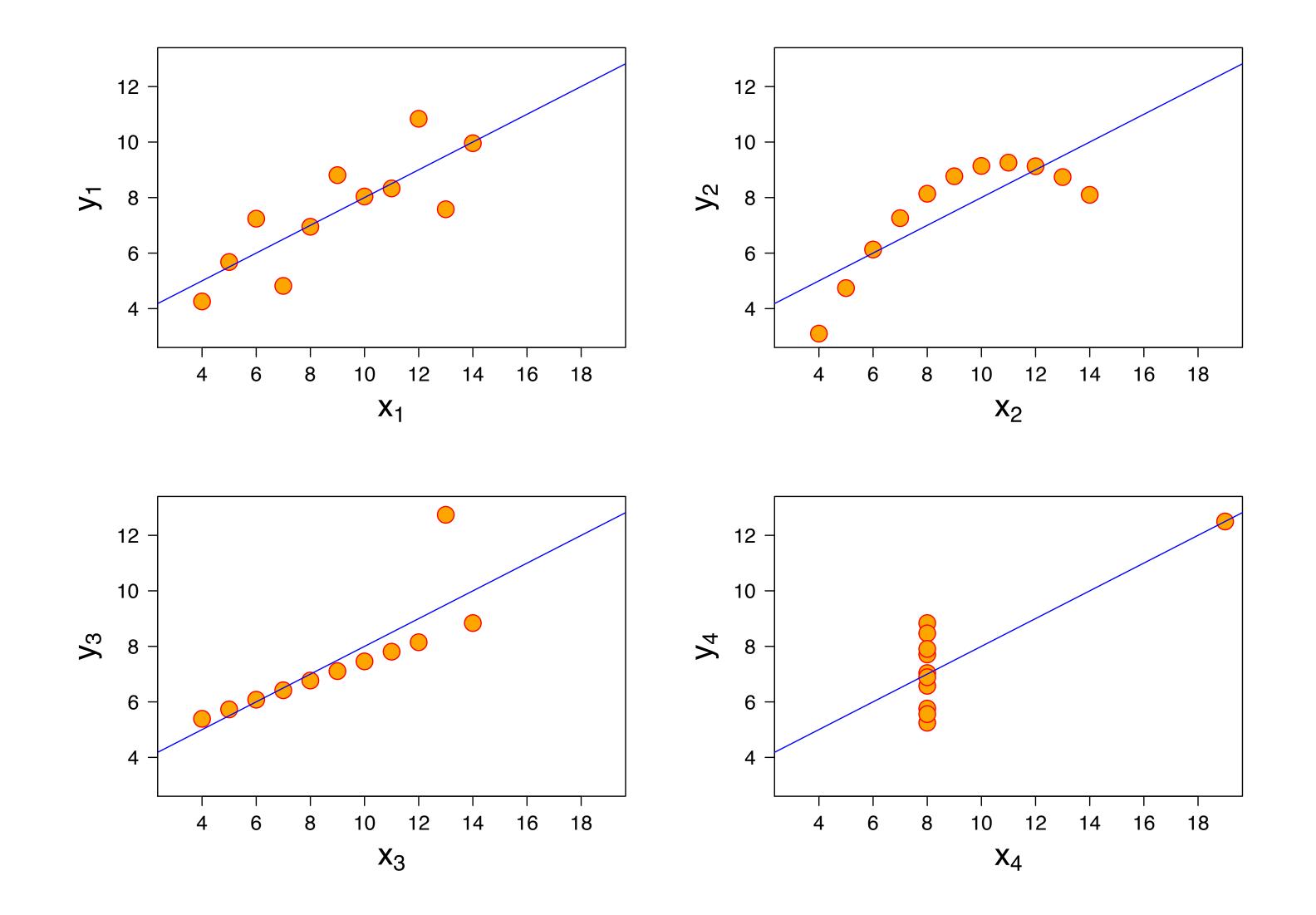
				III		IV	
X	У	X	У	X	У	X	У
10.0	8.04	10.0	9.14	10.0	7.46	8.0	6.58
8.0	6.95	8.0	8.14	8.0	6.77	8.0	5.76
13.0	7.58	13.0	8.74	13.0	12.74	8.0	7.71
9.0	8.81	9.0	8.77	9.0	7.11	8.0	8.84
11.0	8.33	11.0	9.26	11.0	7.81	8.0	8.47
14.0	9.96	14.0	8.10	14.0	8.84	8.0	7.04
6.0	7.24	6.0	6.13	6.0	6.08	8.0	5.25
4.0	4.26	4.0	3.10	4.0	5.39	19.0	12.50
12.0	10.84	12.0	9.13	12.0	8.15	8.0	5.56
7.0	4.82	7.0	7.26	7.0	6.42	8.0	7.91
5.0	5.68	5.0	4.74	5.0	5.73	8.0	6.89

[F. J. Anscombe]

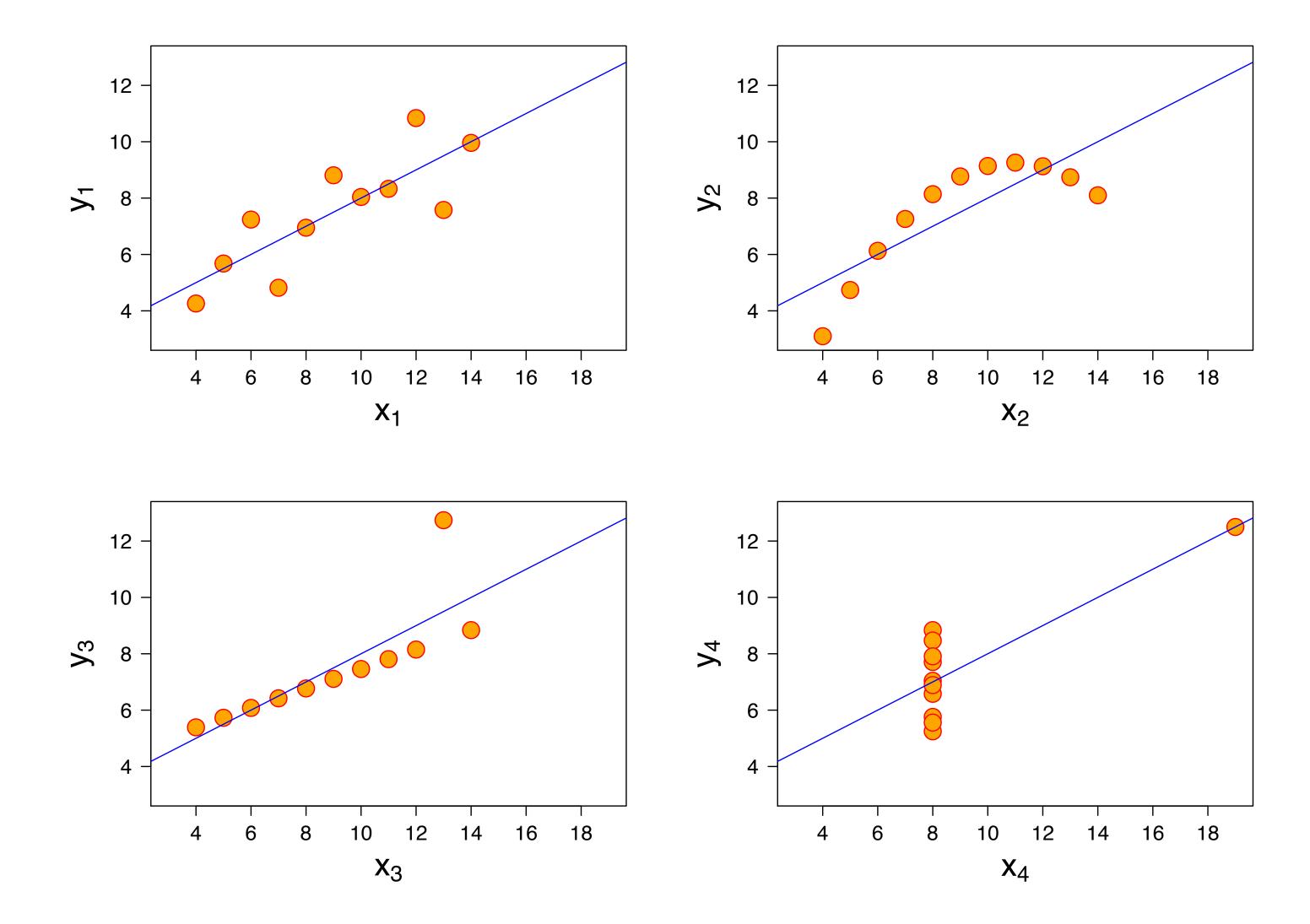
				III		IV	
X	У	X	У	X	У	X	У
10.0	8.04	10.0	9.14	10.0	7.46	8.0	6.58
8.0	6.95	8.0	8.14	8.0	6.77	8.0	5.76
13.0	7.58	13.0	8.74	13.0	12.74	8.0	7.71
9.0	8.81	9.0	8.77	9.0	7.11	8.0	8.84
11.0	8.33	11.0	9.26	11.0	7.81	8.0	8.47
14.0	9.96	14.0	8.10	14.0	8.84	8.0	7.04
6.0	7.24	6.0	6.13	6.0	6.08	8.0	5.25
4.0	4.26	4.0	3.10	4.0	5.39	19.0	12.50
12.0	10.84	12.0	9.13	12.0	8.15	8.0	5.56
7.0	4.82	7.0	7.26	7.0	6.42	8.0	7.91
5.0	5.68	5.0	4.74	5.0	5.73	8.0	6.89

Mean of x	9
Variance of x	11
Mean of y	7.50
Variance of y	4.122
Correlation	0.816

[F. J. Anscombe]



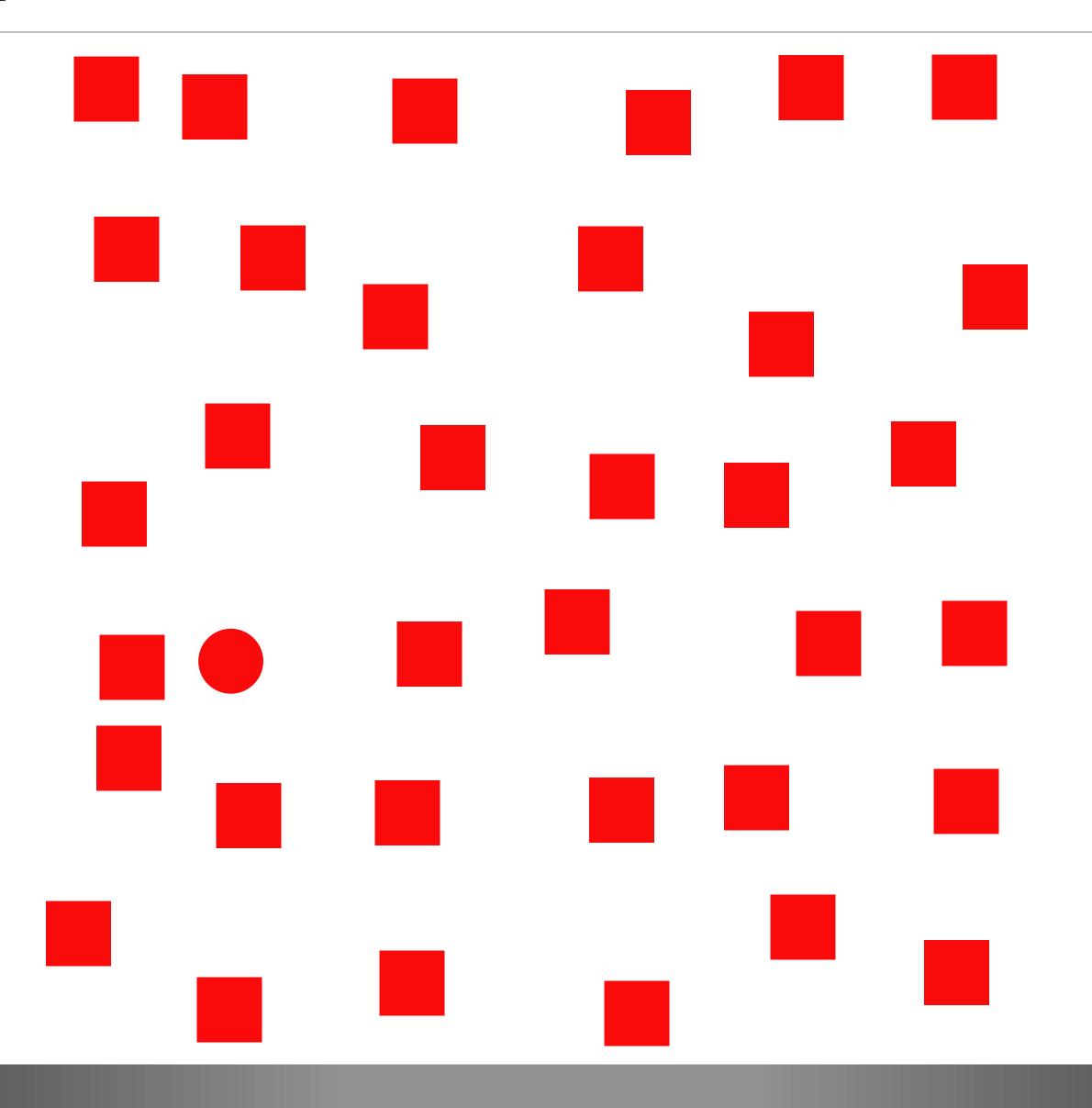
[F. J. Anscombe]



Mean of x	9
Variance of x	11
Mean of y	7.50
Variance of y	4.122
Correlation	0.816

[F. J. Anscombe]

Visual Pop-out

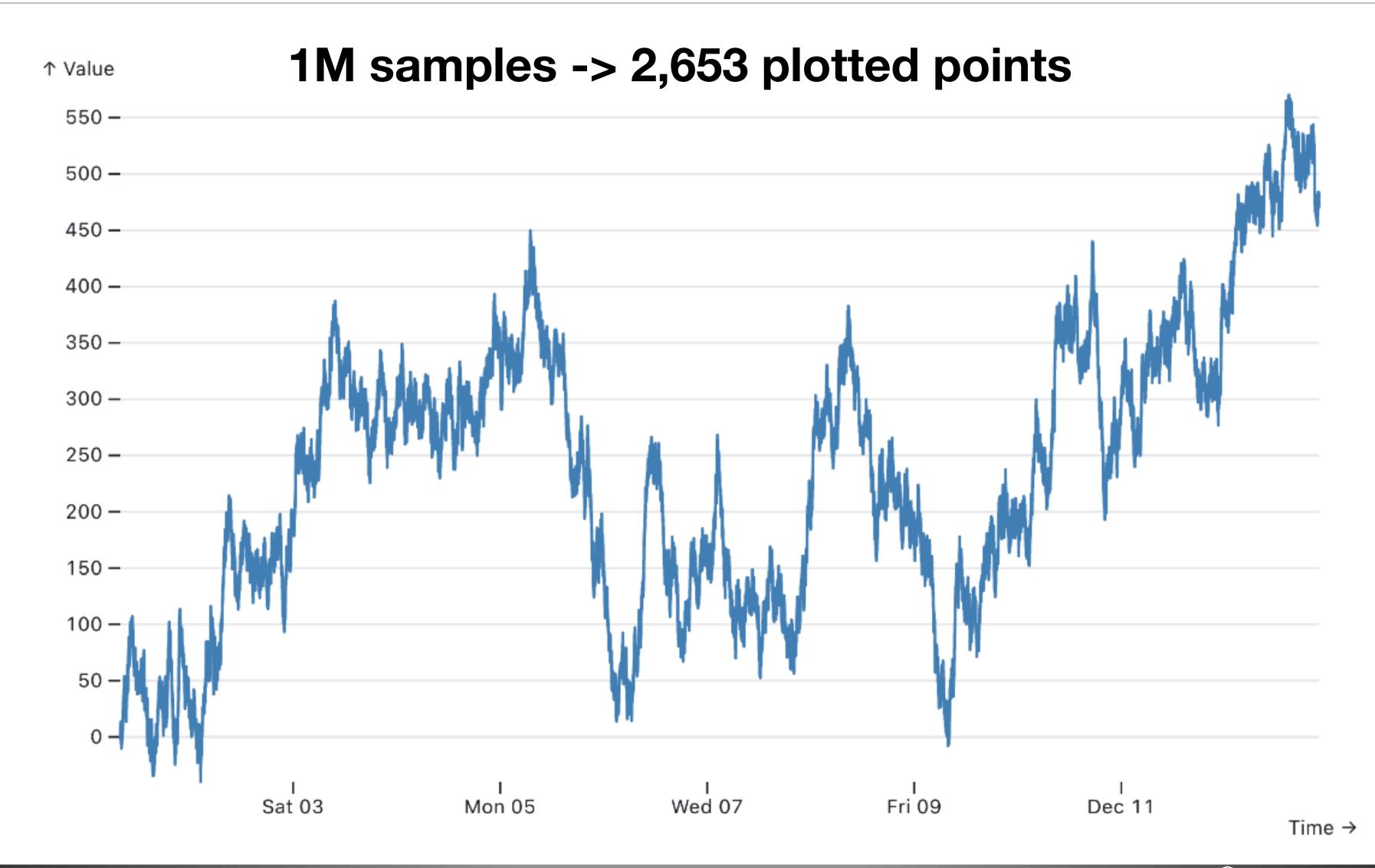


Supporting Scalable Visualization

- Two Problems:
 - Lots of data, how to display (encode) it
 - User interaction is key to gaining insight, requires low latency
- Addressing big data:
 - Encoding should focus on available resolution, not size of data
 - Approaches:
 - Sampling
 - Modeling
 - Binning
 - Bin → Aggregate (→ Smooth) → Plot

[J. Heer]

Time Series Aggregation



Time Series Aggregation

- Insight: the resolution is bound by the number of pixels
- Compute average value per pixel (1 point/pixel)
 - ...this may miss extreme (min, max) values
- Plot min/max values per pixel (2 points/pixel)
 - ...this does better, but still misrepresents
- M4: min/max values & timestamps (4 points/pixel)
 - ...this provides provable fidelity to the full data!

[Jugel, 2014, via <u>J. Heer]</u>

Effects of Latency

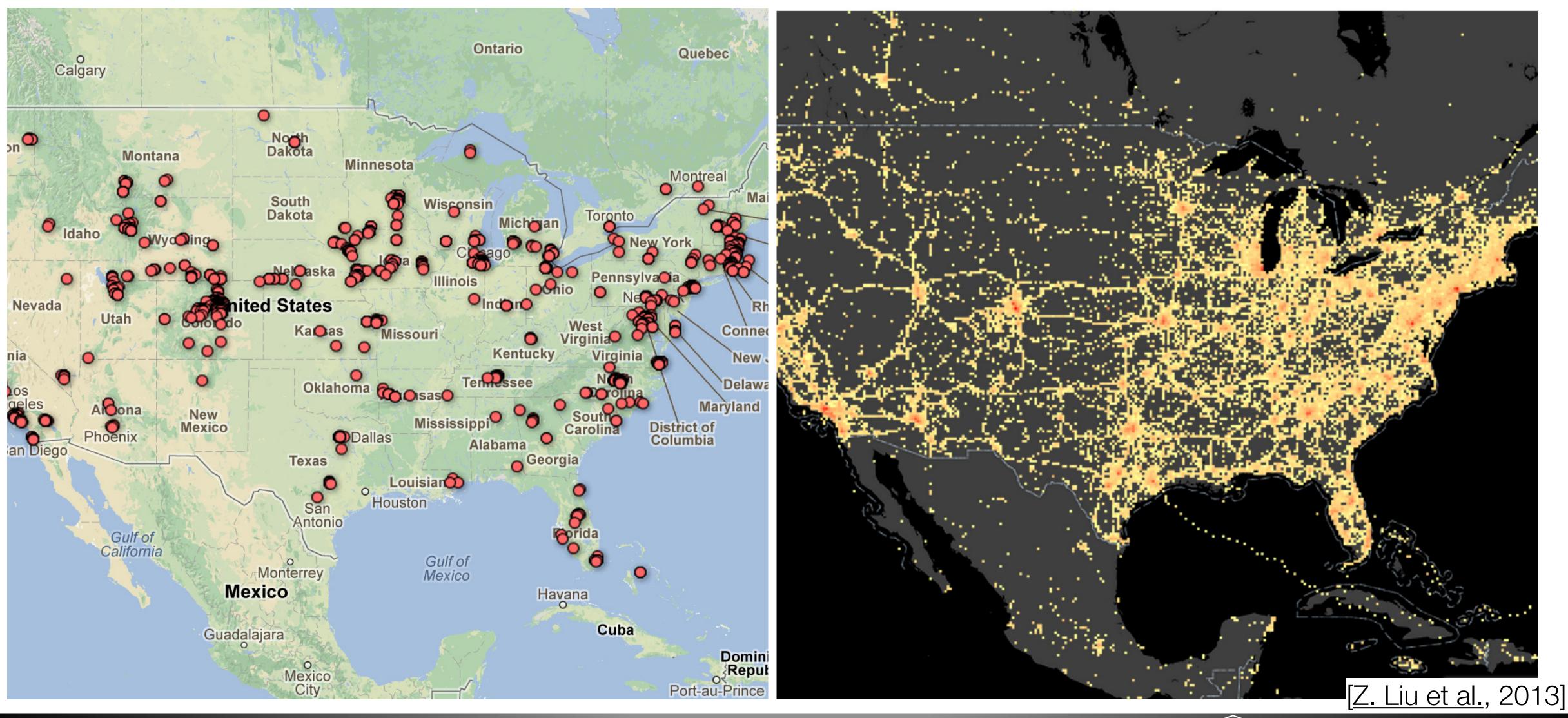
- Higher latency leads to...
 - Reduced user activity and data set coverage
 - Significantly fewer brushing actions
 - Less observation, generalization & hypothesis
- Interaction effect: Exposure to delay reduces subsequent performance in low-latency interface.
- Different interactions exhibit varied sensitivity to latency. Brushing is highly sensitive!

[Liu et al. via <u>J. Heer]</u>

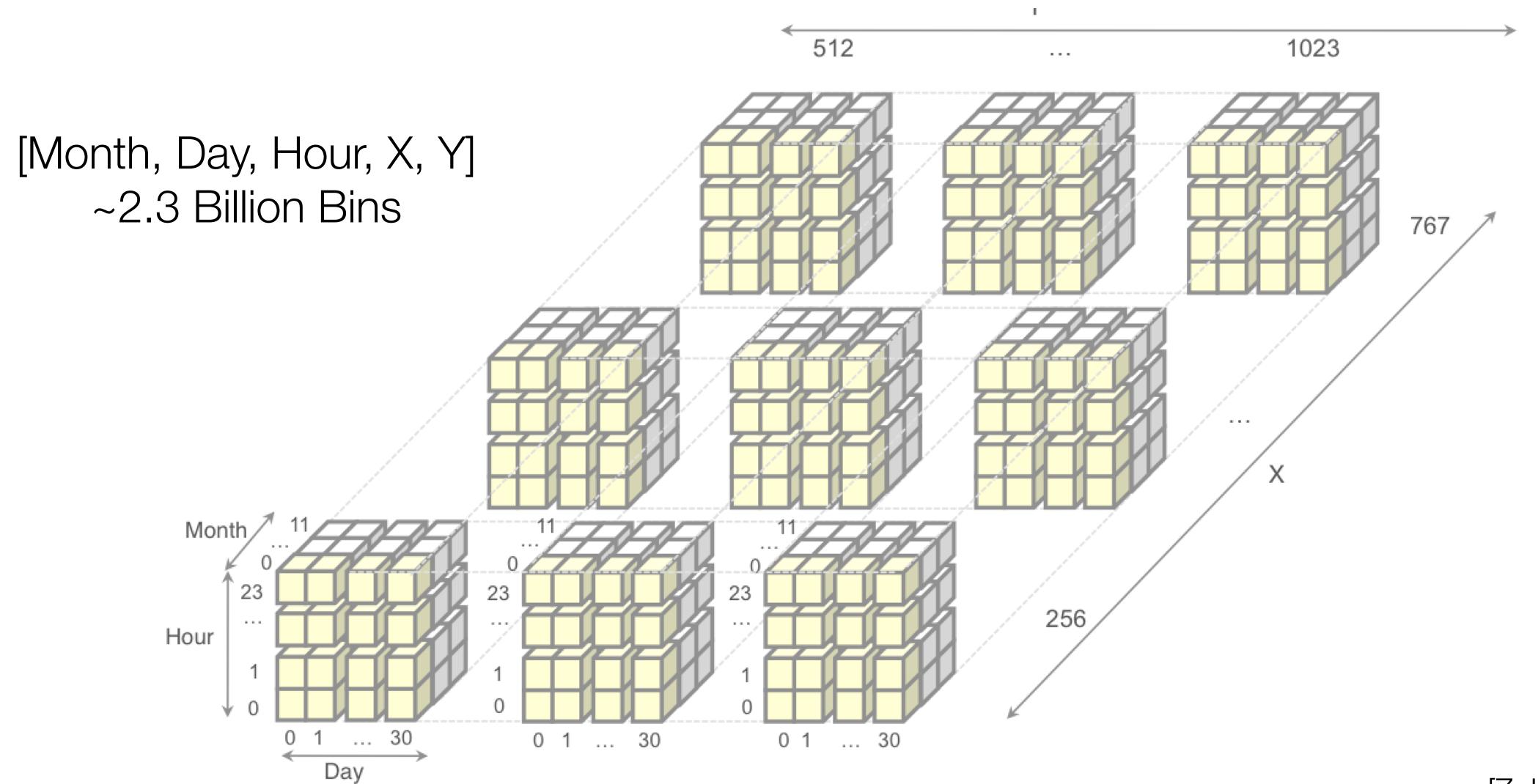
Interactive Scalability Solutions

- Use Database Technology: databases built for scalability
- Client-side Indexing (Data Cubes): take advantage of data structure
- Prefetching: load data before requests based on predictions
- Approximation: show estimates early but with error information

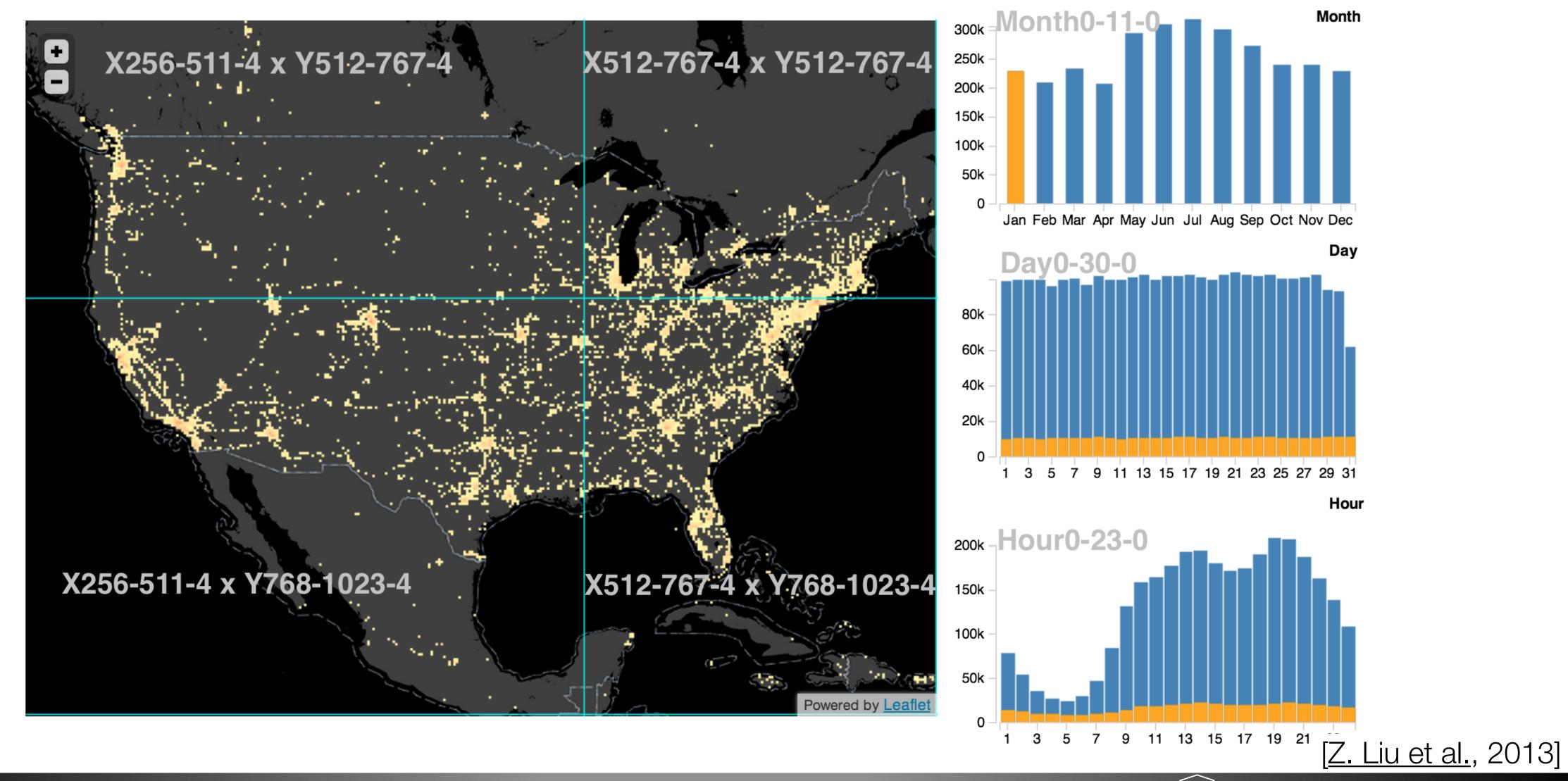
Sampling vs. Aggregation



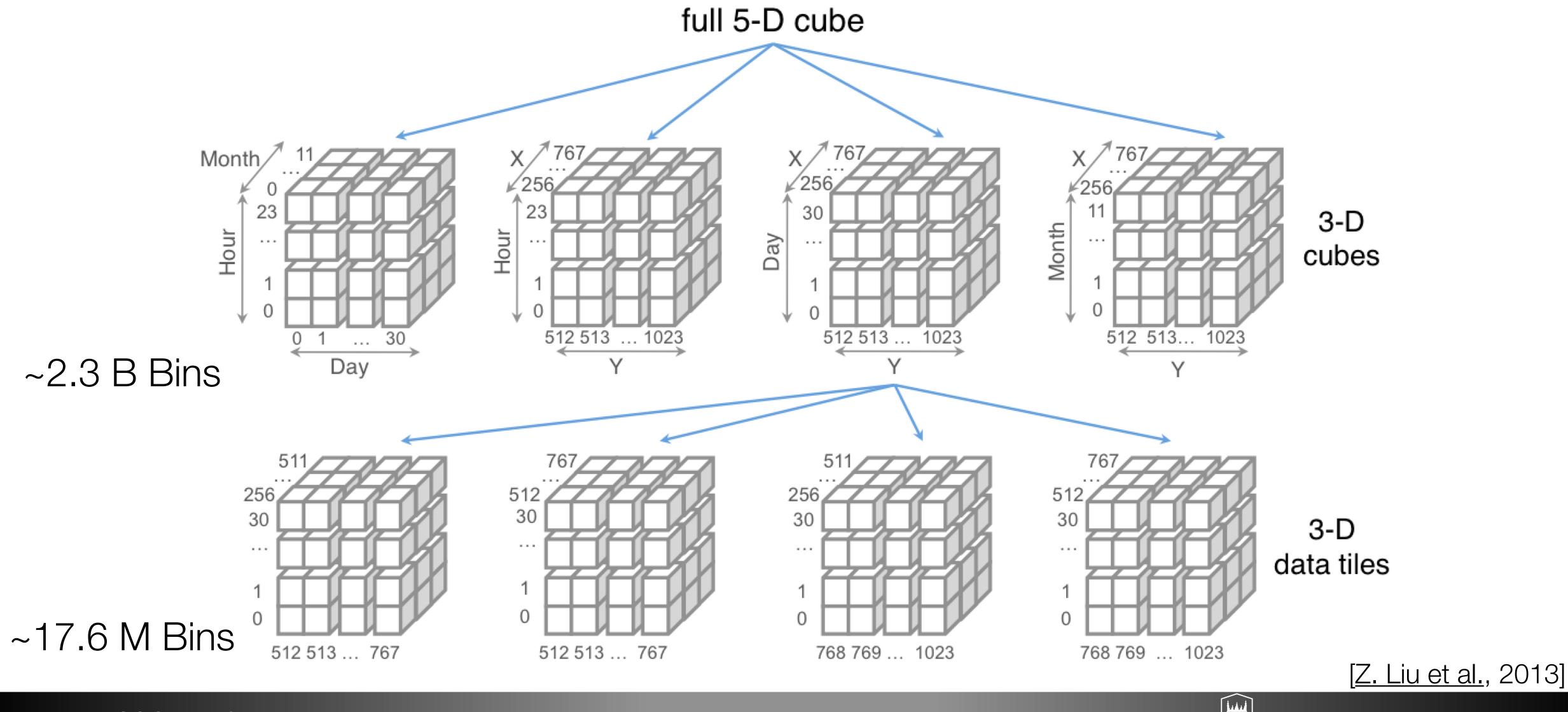
Full 5-D Data Cube



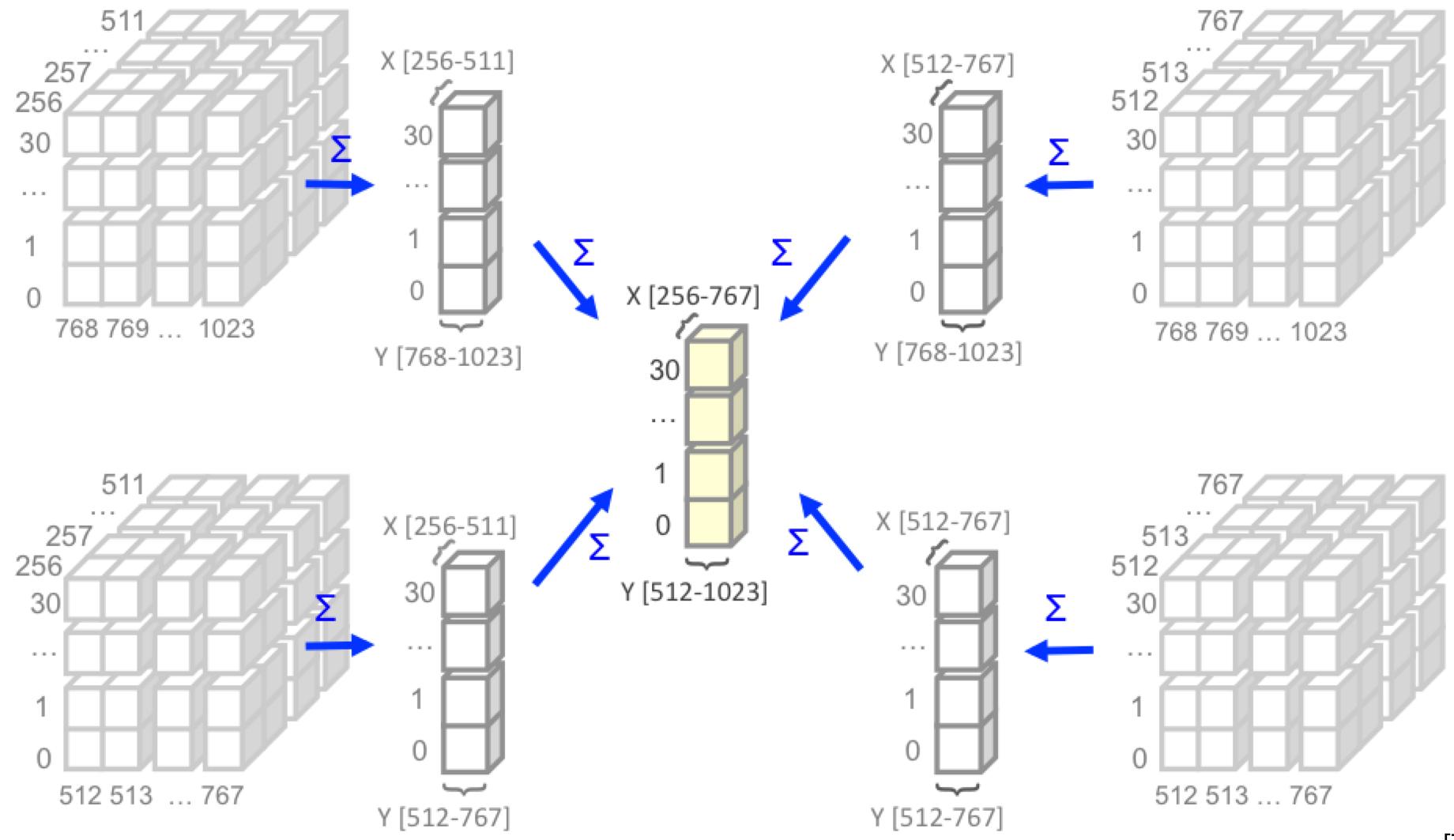
Break into Tiles



Data Cube Decomposition



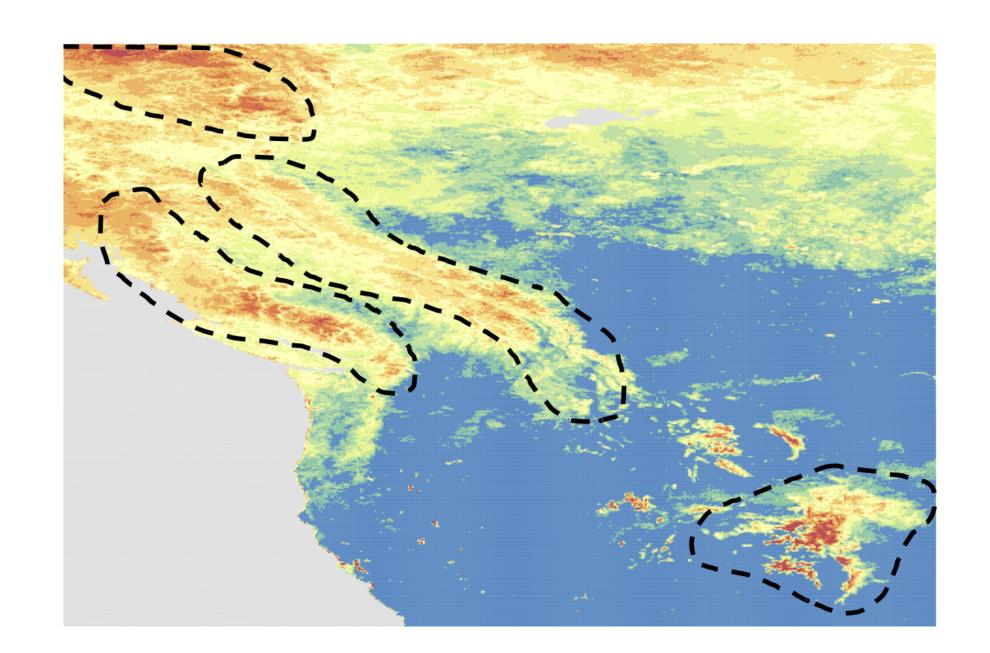
Aggregation of Tiles for Results

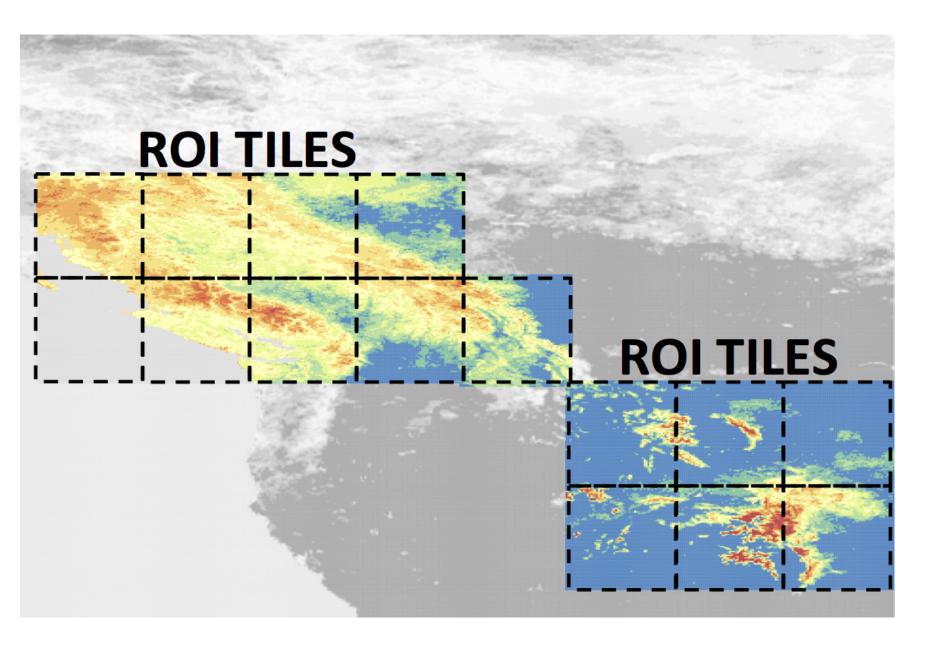


[Z. Liu et al., 2013]

Prefetching

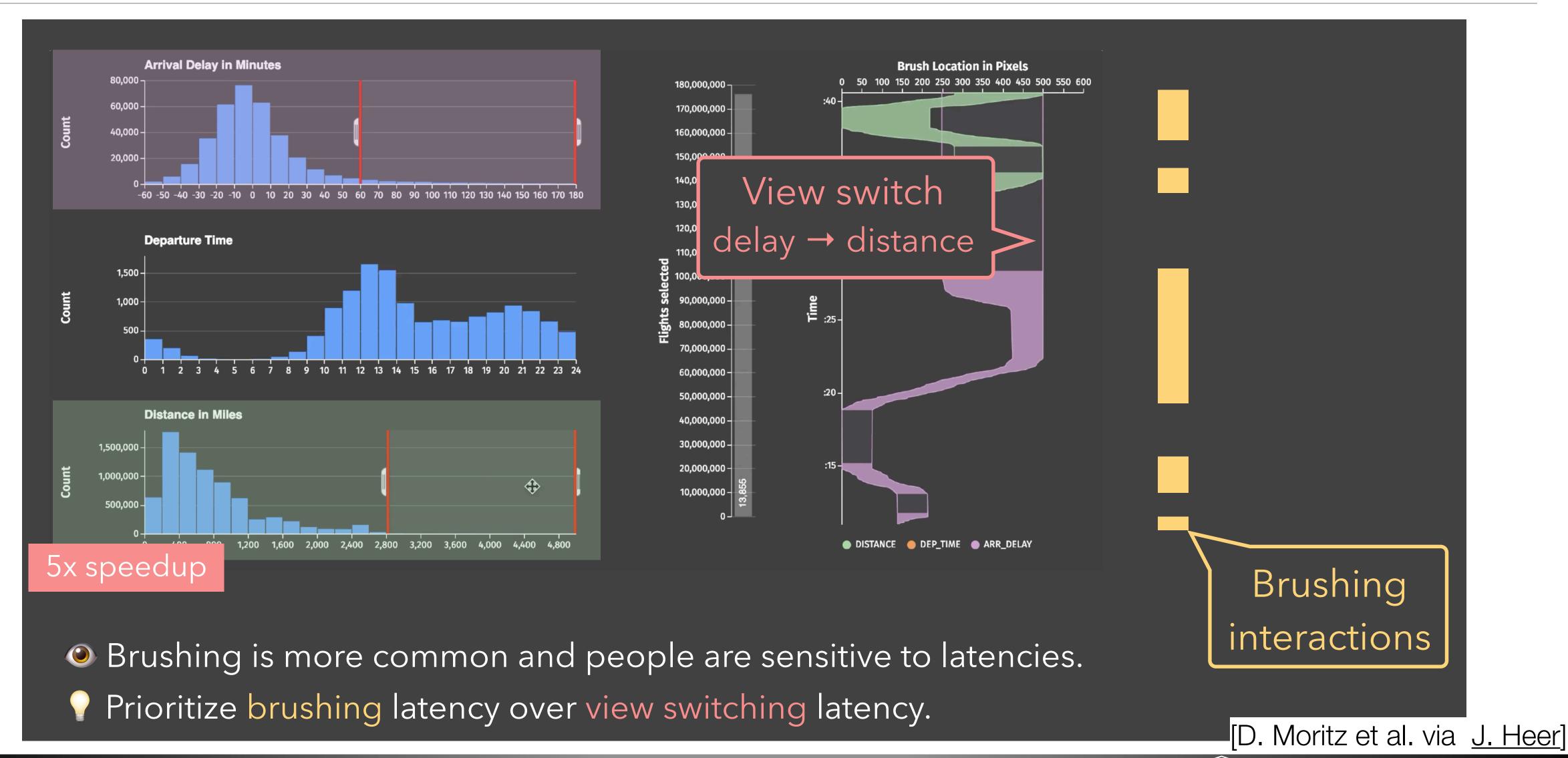
- Predict which tiles a user will need next and prefetch those
 - Use common patterns (zoom, pan)
 - Use regions of interest (ROIs)



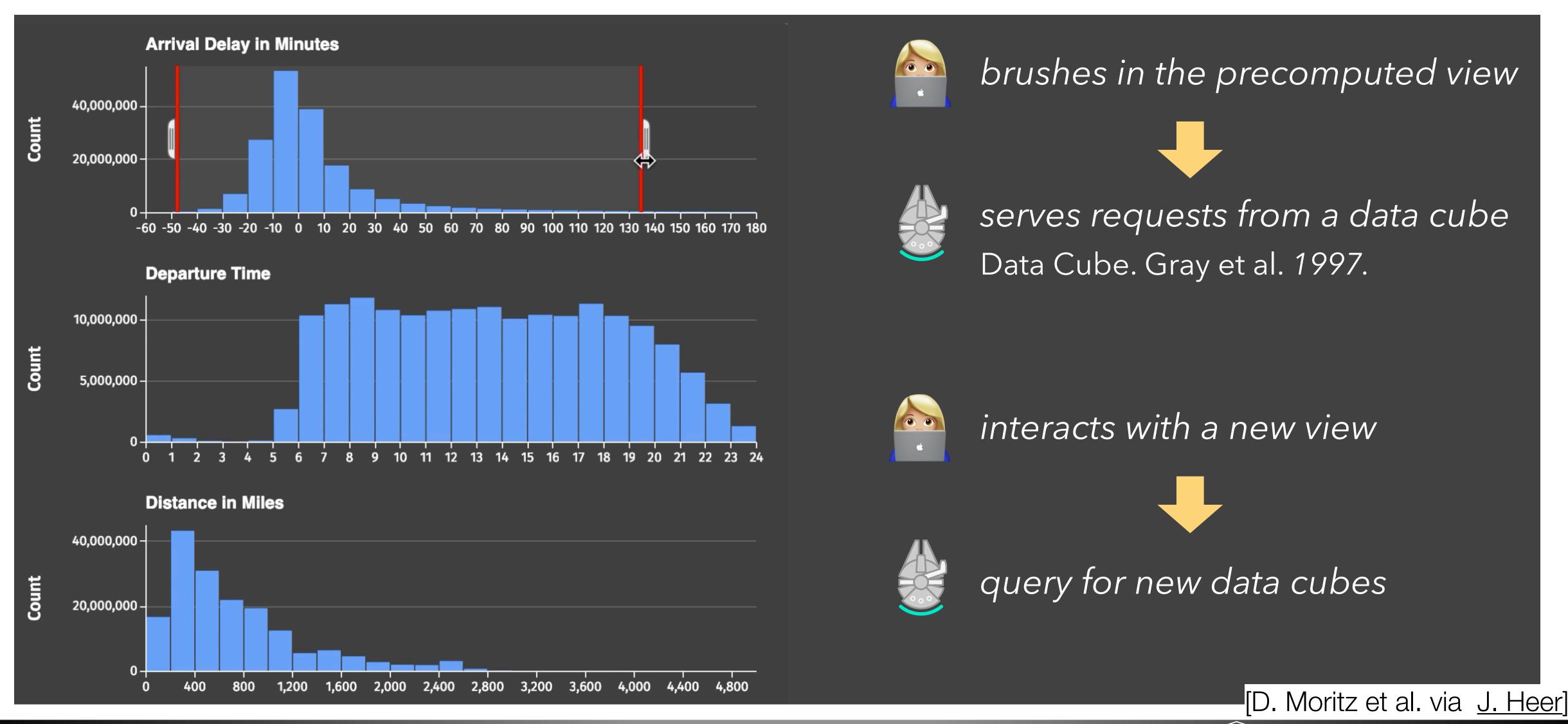


[Battle et al., 2016]

Latency Differences in Tasks



Task-Prioritized Prefetching



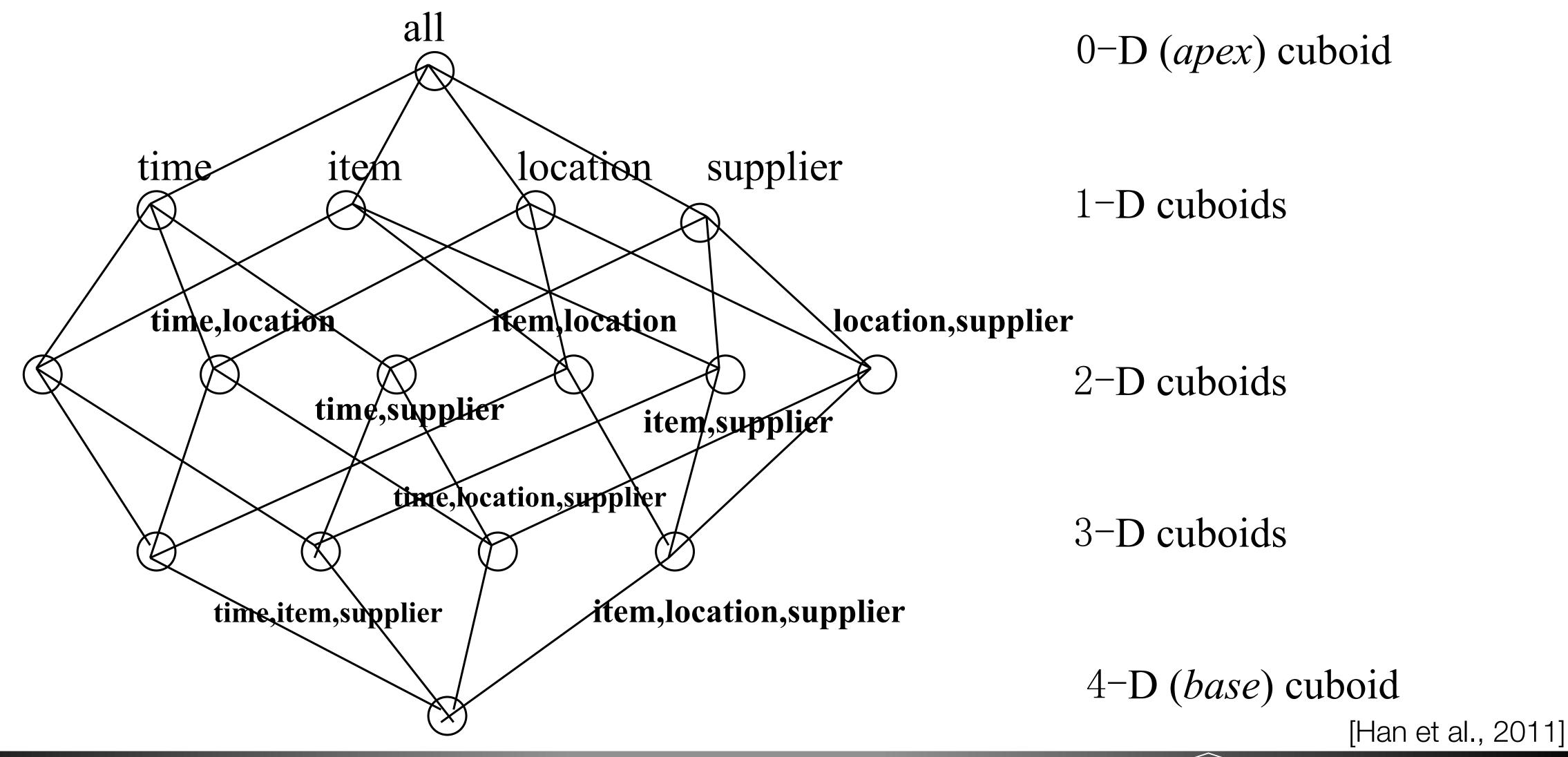
Assignment 5

• Spatial, Graph, and Temporal Data Processing

Data Cubes

J. Han, M. Kamber, and J. Pei

Data Cube: A Lattice of Cuboids



Cube Operations

- Roll-up: aggregate up the given hierarchy
- Drill-down: refine down the given hierarchy
- Roll-up and drill-down are "inverses"

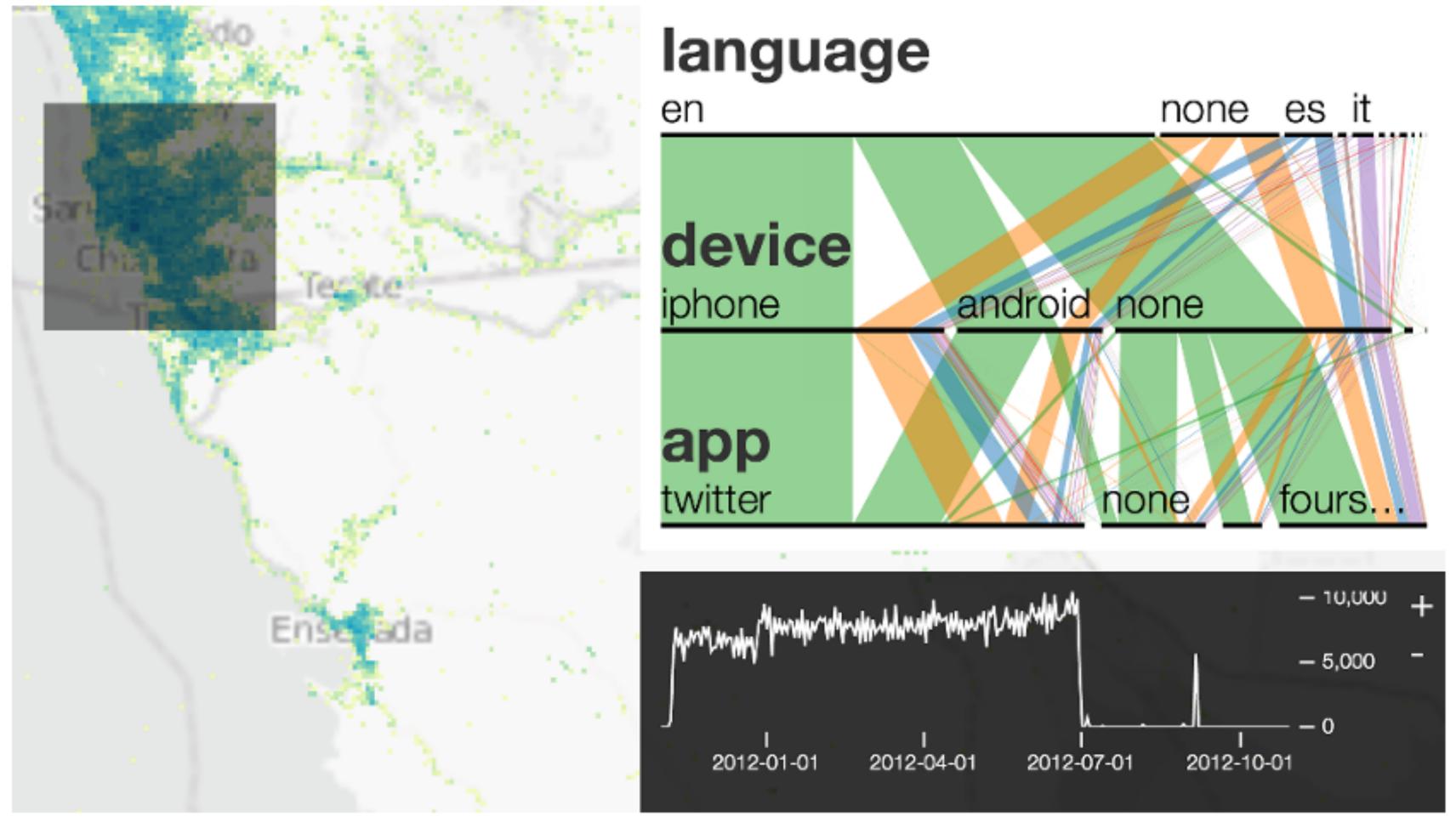
Spatial Data Exploration Motivation

L. Battle

Nanocubes for Real-Time Exploration of Spatiotemporal Datasets

L. Lins, J. T. Klosowski, and C. Scheidegger

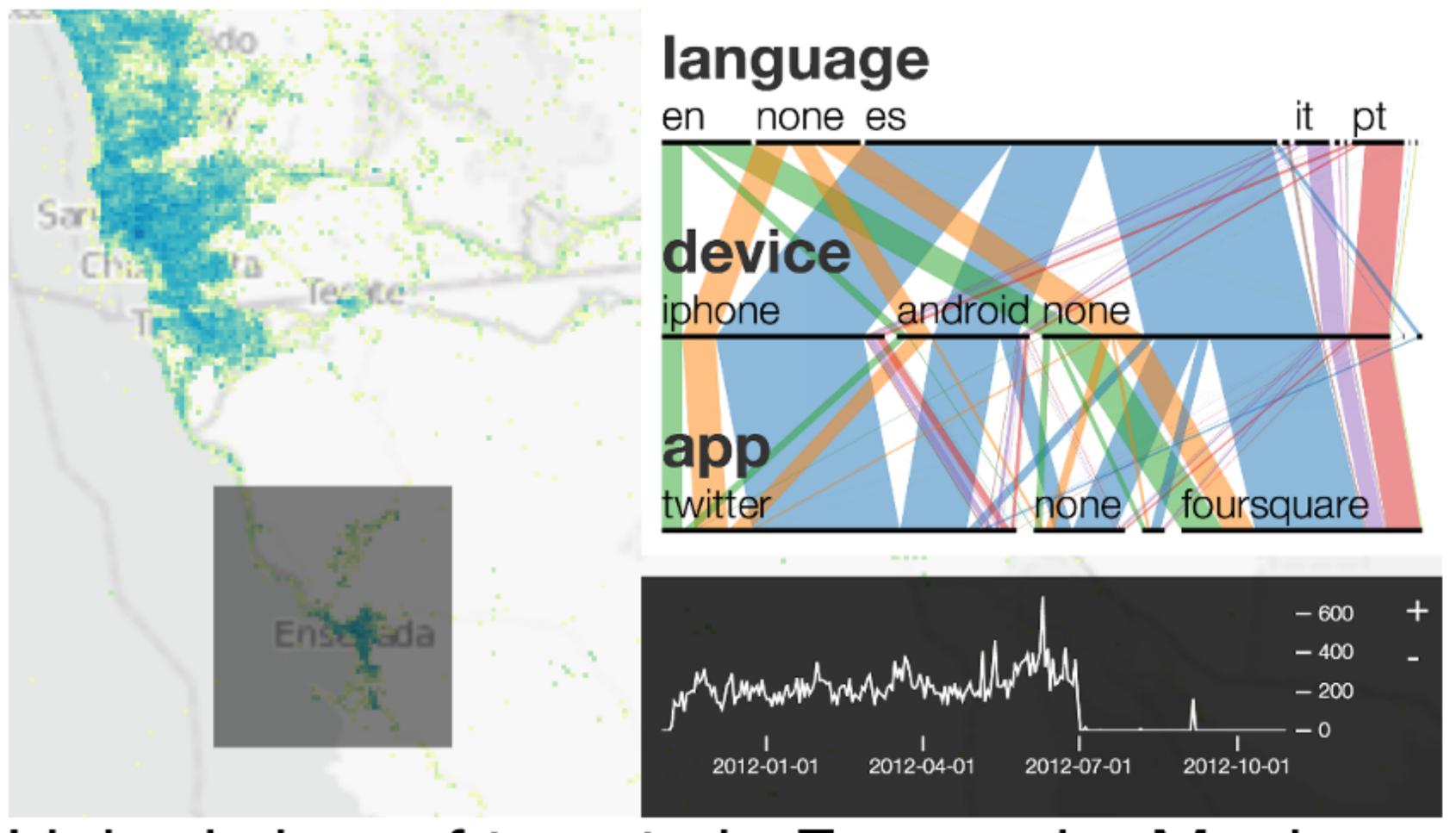
Goal: Interactive Exploration of Data Cubes



Linked view of tweets in San Diego, US

[Lins et. al, 2013]

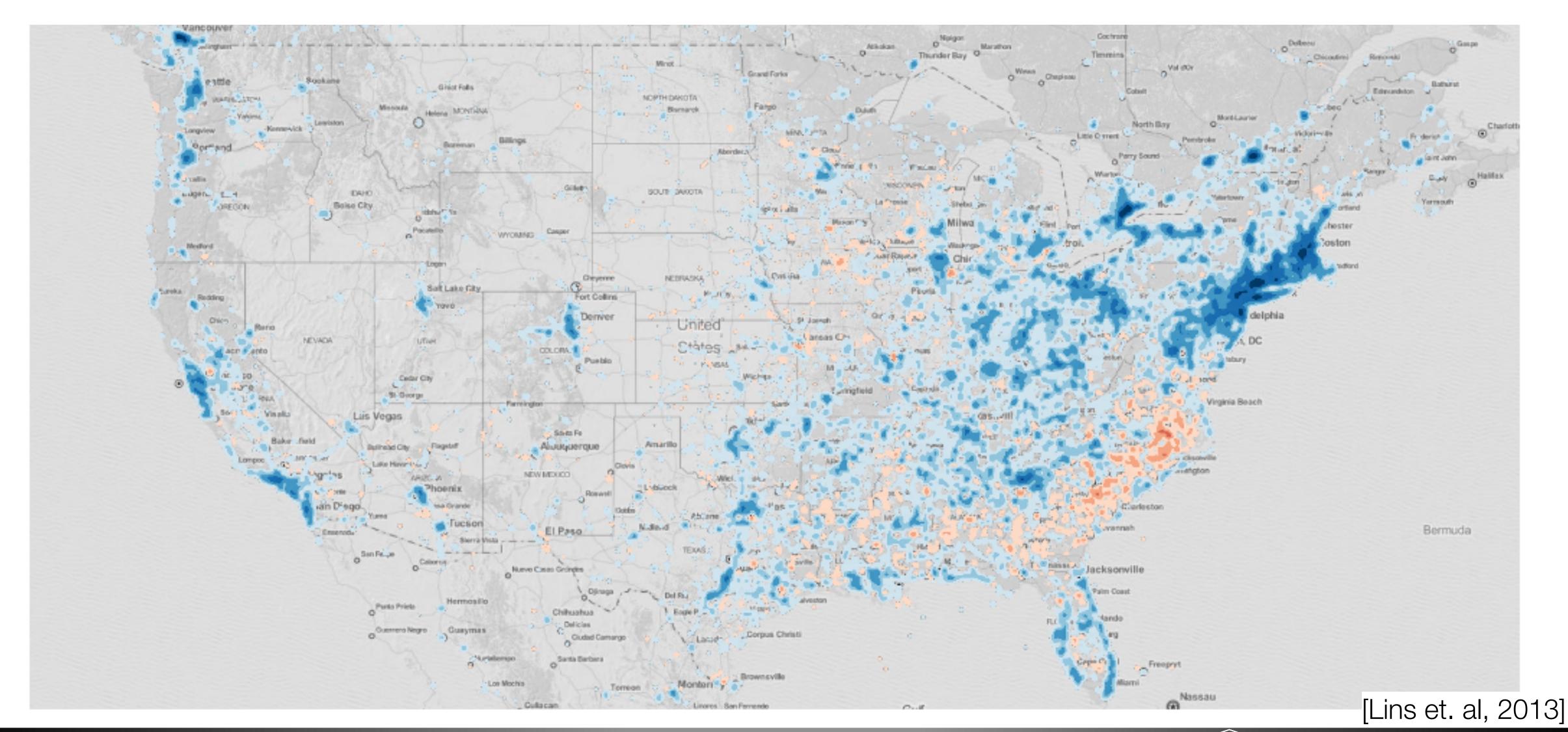
Move to Another Location



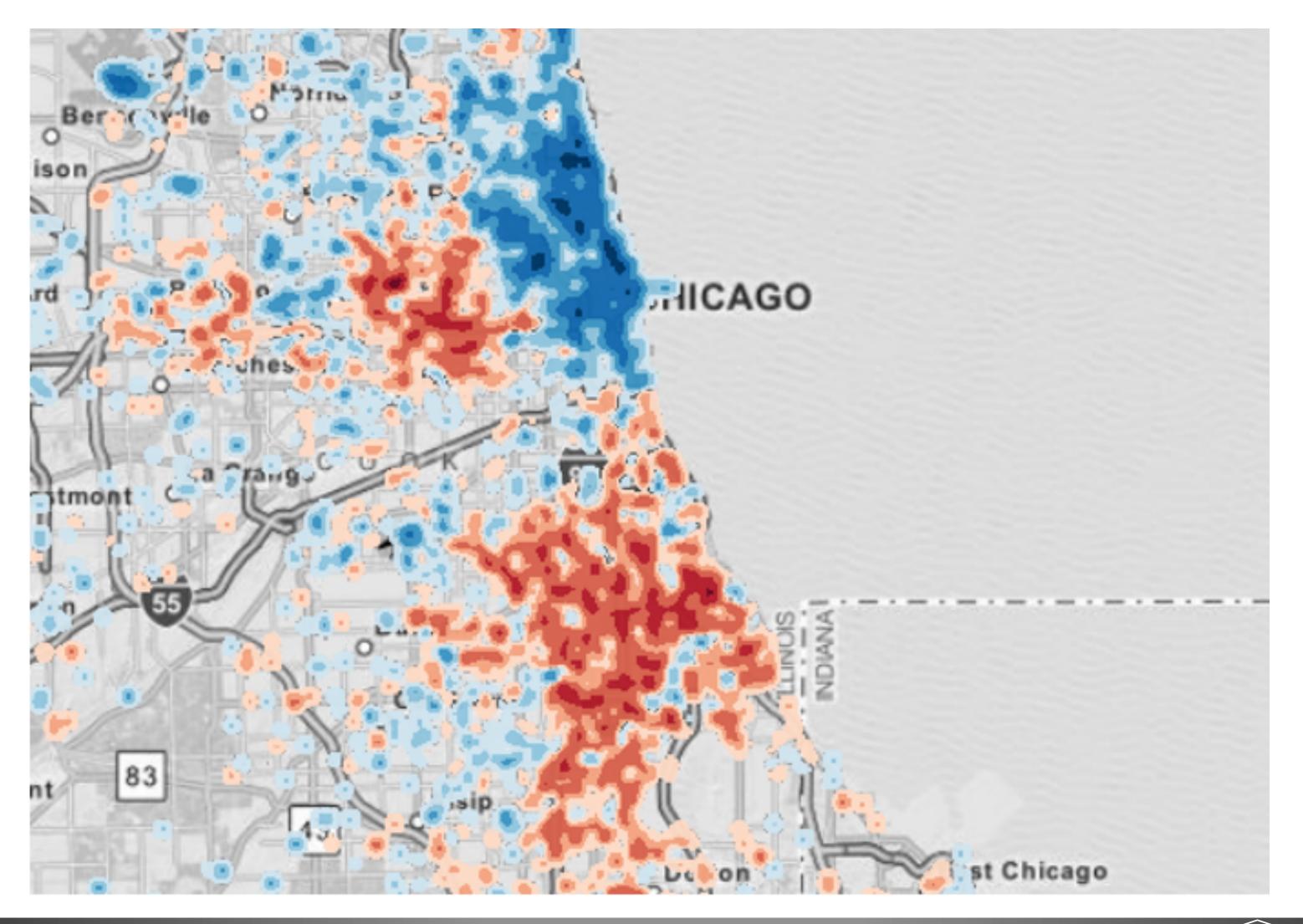
Linked view of tweets in Ensenada, Mexico

[Lins et. al, 2013]

iPhone vs. Android Map

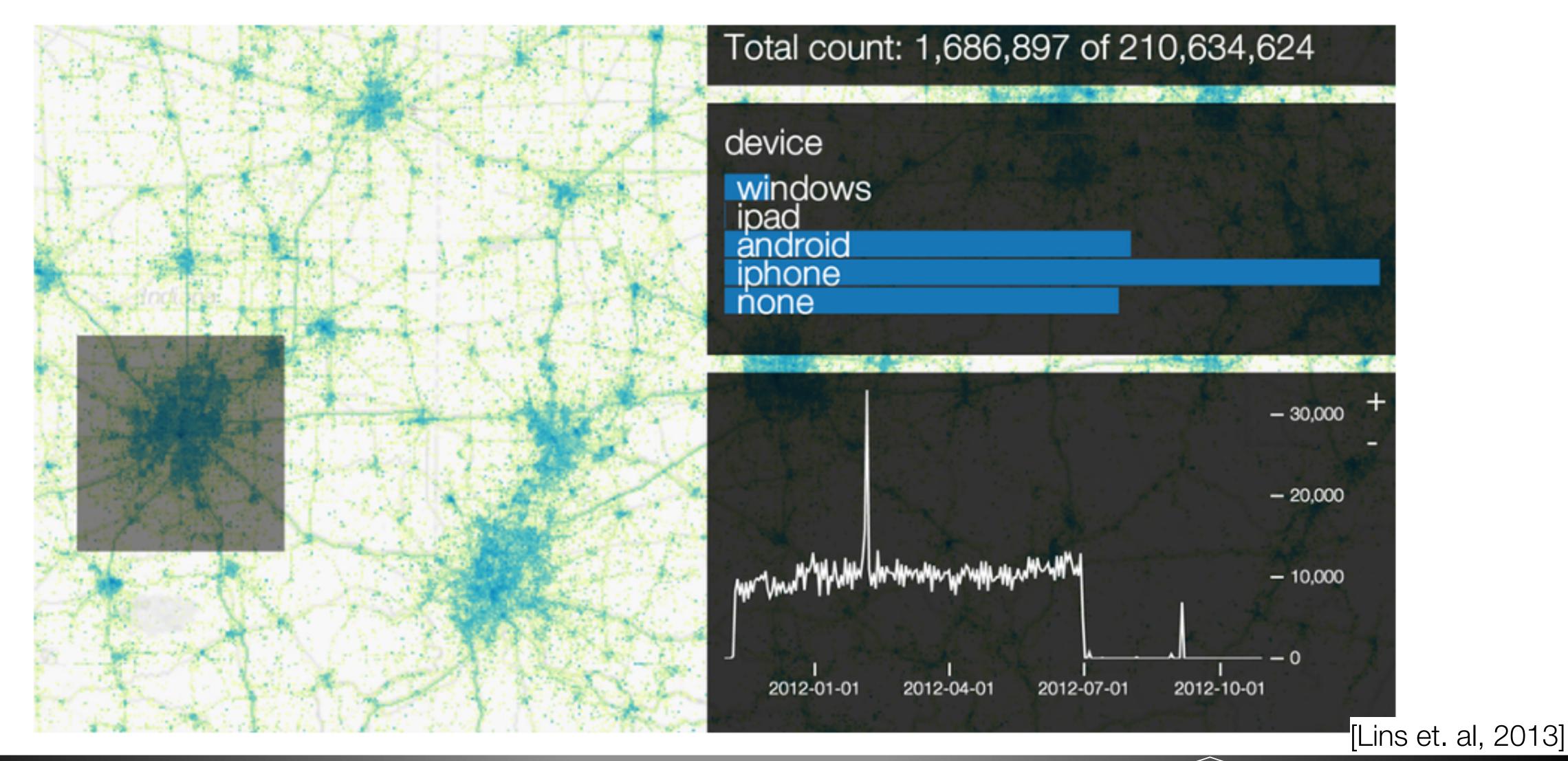


Zoom into Chicago

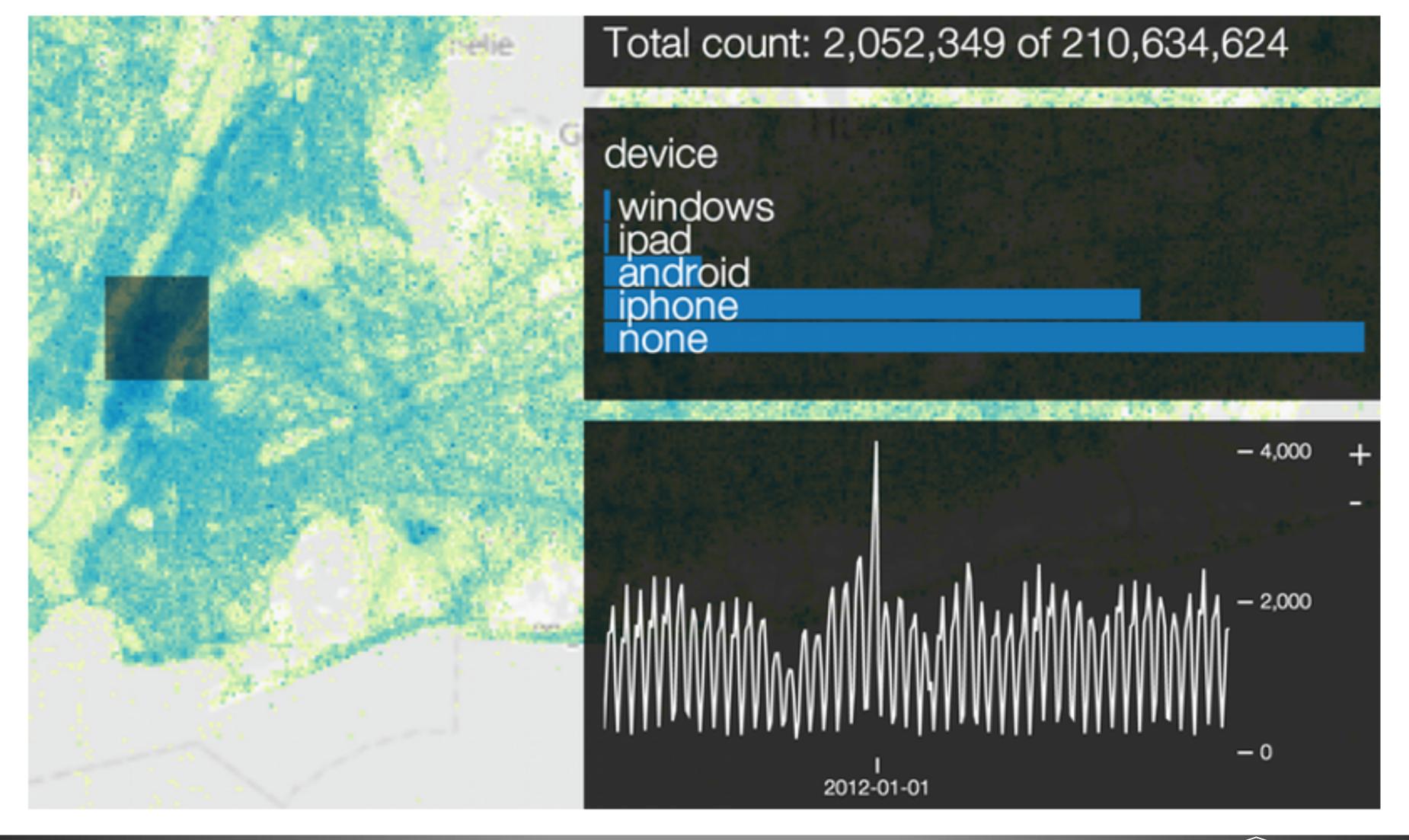


[Lins et. al, 2013]

SuperBowl in Indianapolis



New Year's Eve in Manhattan



[Lins et. al, 2013]

Aggregations on Spatiotemporal Data

- Spatial: e.g. counting events in a spatial region (world or San Fran.)
- Temporal: e.g. queries at multiple scares (hour, day, week, month)
- Seek to address Visual Information Seeking Mantra:
- Overview first, zoom and filter, details-on-demand
- Multidimensional:
 - Latitude, Longitude, Time + more

Data Cube Aggregations

Relation	A

Country	Device	Language
US	Android	en
US	iPhone	ru
South Africa	iPhone	en
India	Android	en
Australia	iPhone	en

В

Aggregation

Country	Device	Language	Count
All	All	All	5

Group By on Device, Language C

Country	Device	Language	Count
All	Android	en	2
All	iPhone	en	2
All	iPhone	ru	1

Cube on Device, Language

Country	Device	Language	Count
All	All	All	5
All	Android	All	2
All	iPhone	All	3
All	All	en	4
All	All	ru	1
All	iPhone	ru	1
All	Android	en	2
All	iPhone	en	2

Equivalent to Group By on all possible subsets of {Device, Language}

[Lins et. al, 2013]

D

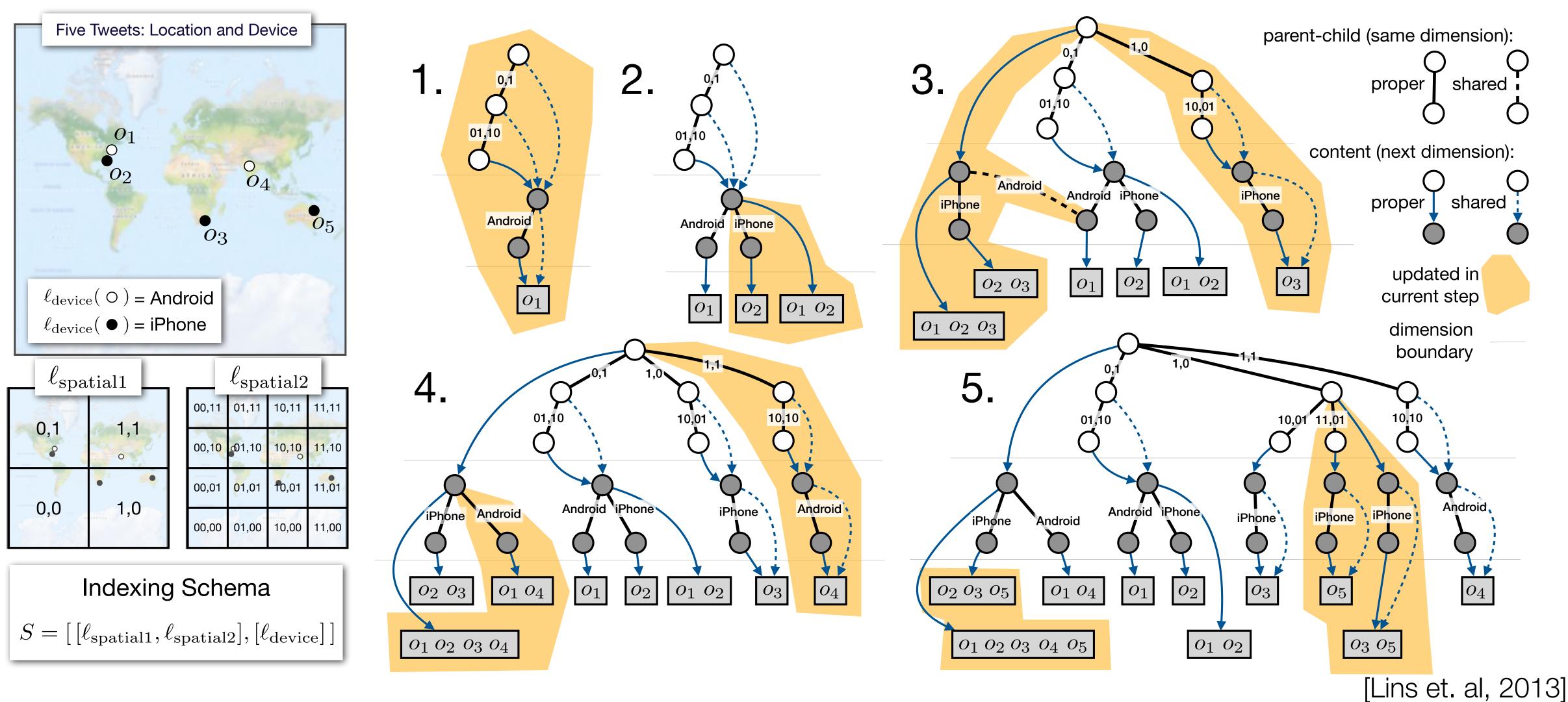
Nanocube Queries

Representing natural language queries as data cube queries

Natural language query	S		c		t		URL
count of all Delta flights	R	U	R	{ Delta }	R	U	/where/carrier=Delta
count of all Delta flights in the Midwest	R	Midwest	R	{ Delta }	R	U	/region/Midwest/where/carrier=Delta
count of all flights in 2010	R	U	D		R	2010	/field/carrier/when/2010
time-series of all United flights in 2009	R	U	R	{ United }	D	2009	/tseries/when/2009/where/carrier=United
heatmap of Delta flights in 2010	D	tile0	R	{ Delta }	R	2010	/tile/tile0/when/2010/where/carrier=Delta

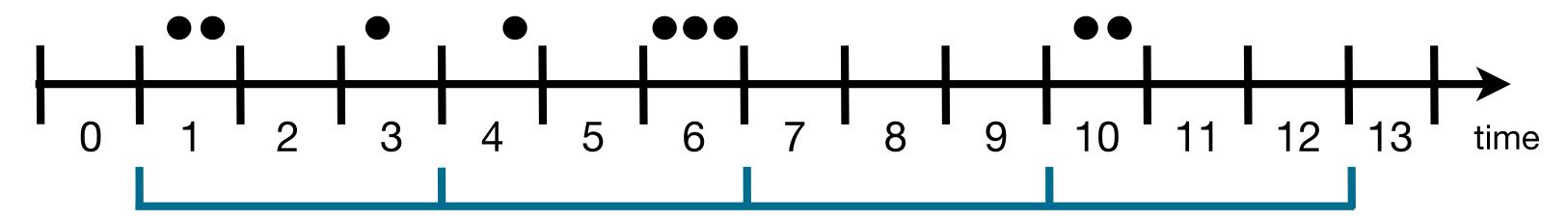
- s = space, c = category, t = time
- R = rollup, D = drill down
- <value> after RD = subset of dimension's domain, U = universe
- Note that time queries are stored in an array of cumulative counts

Building a Nanocube



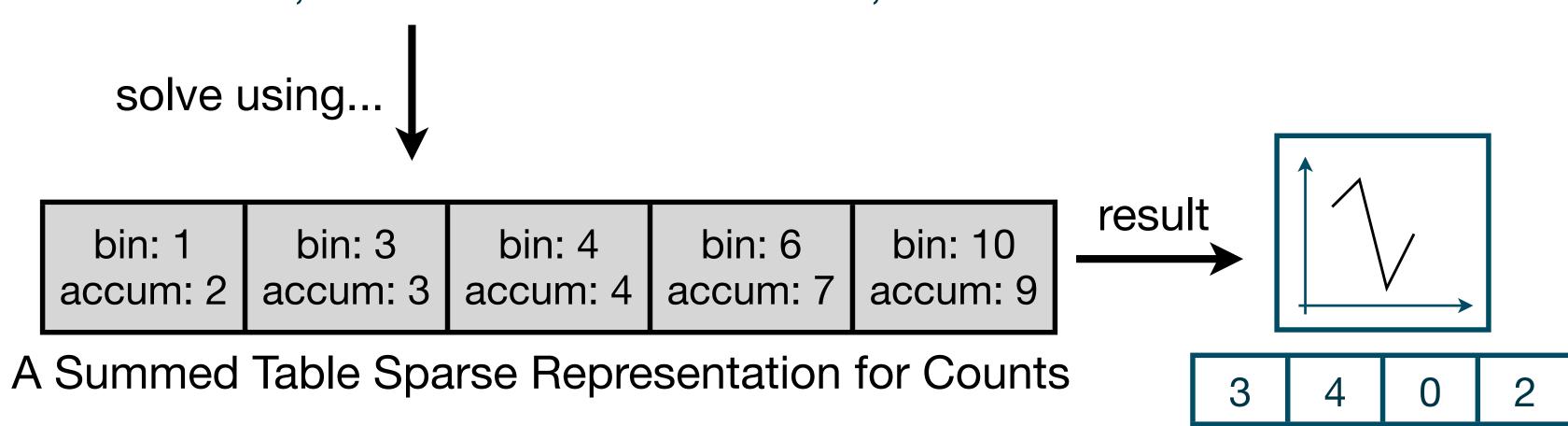
Summed-area Table

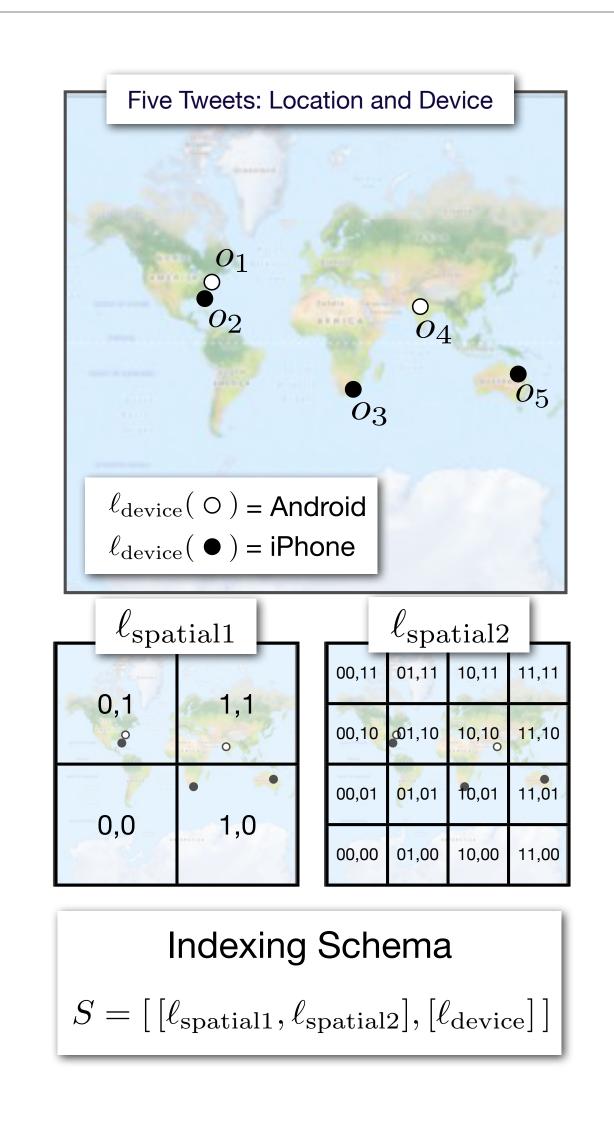
 Every node in the previous figure stores an array of timestamped counts like this:

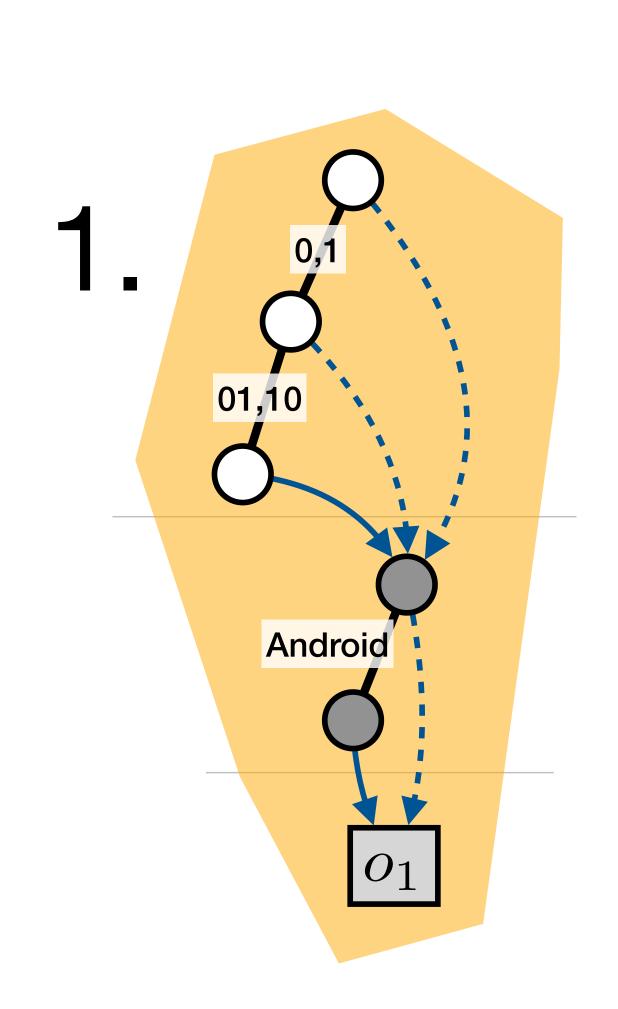


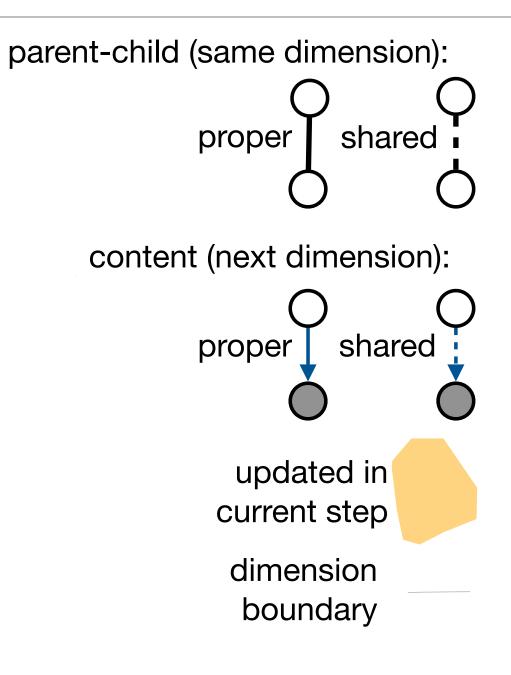
query/tseries/1/3/4

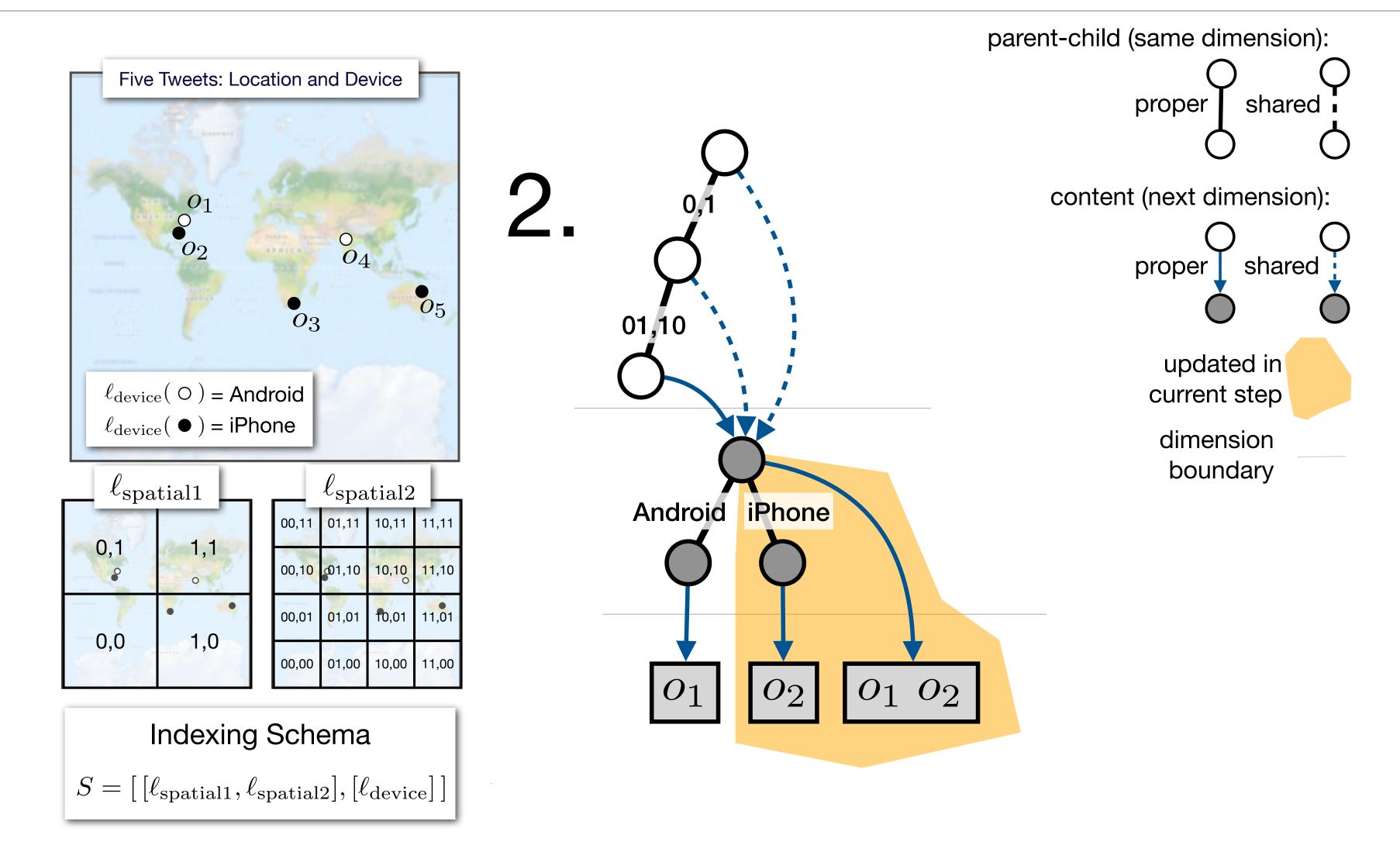
start at bin 1, use buckets of 3 bins each, and collect 4 of these buckets

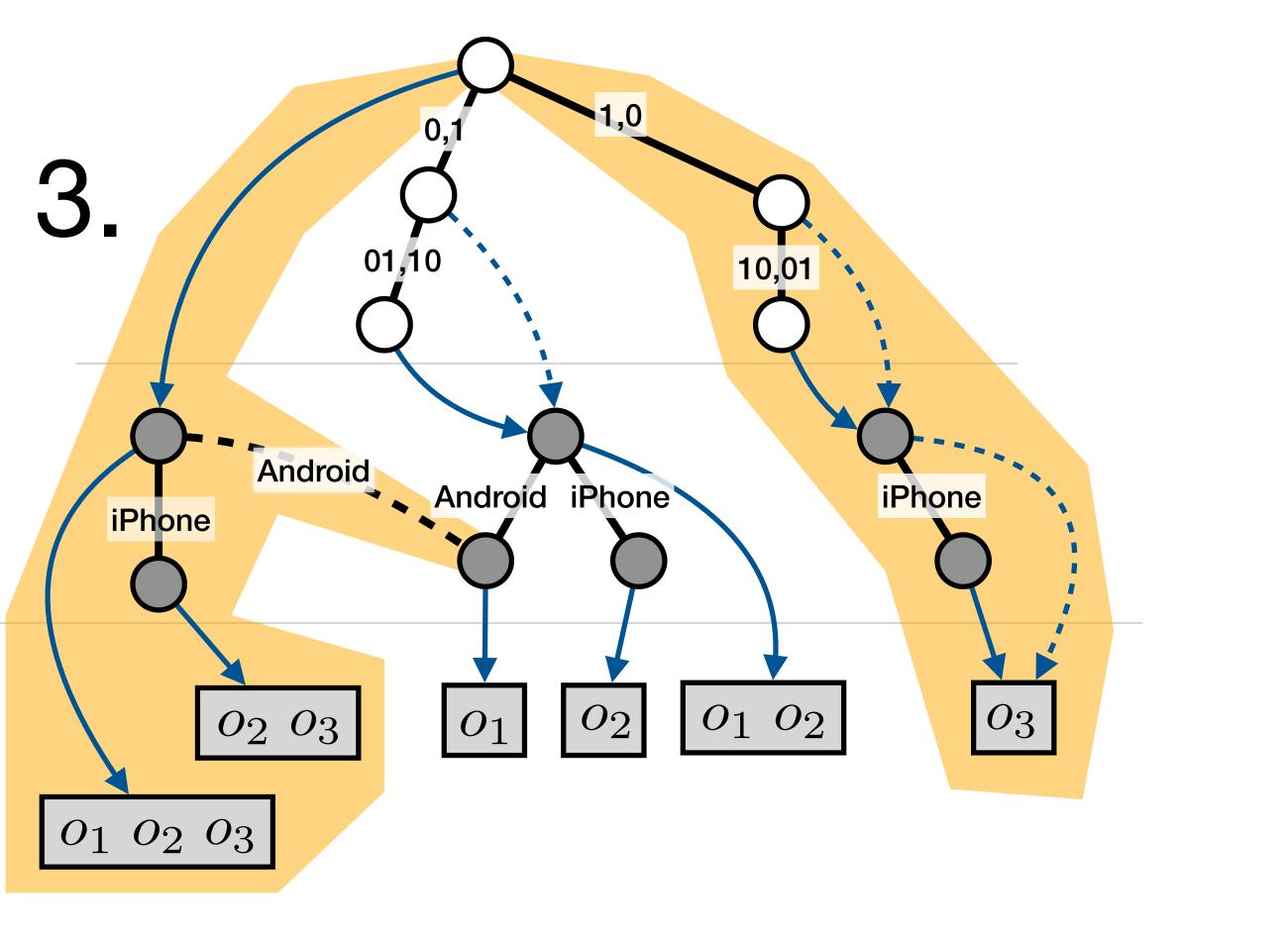


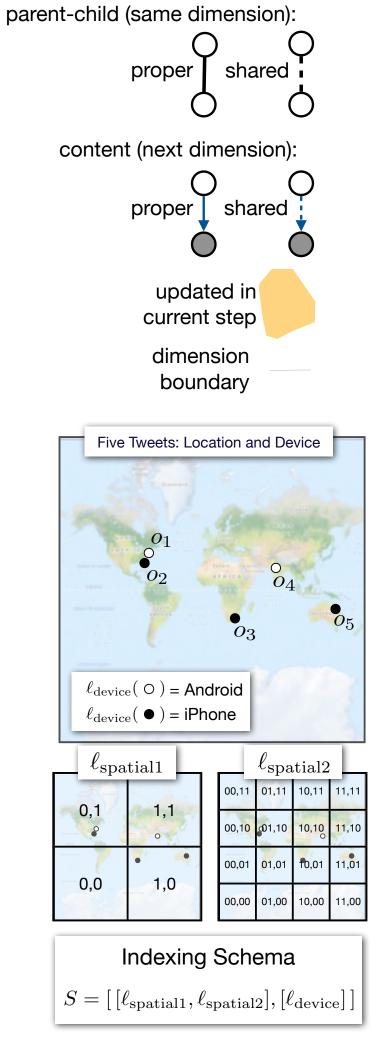


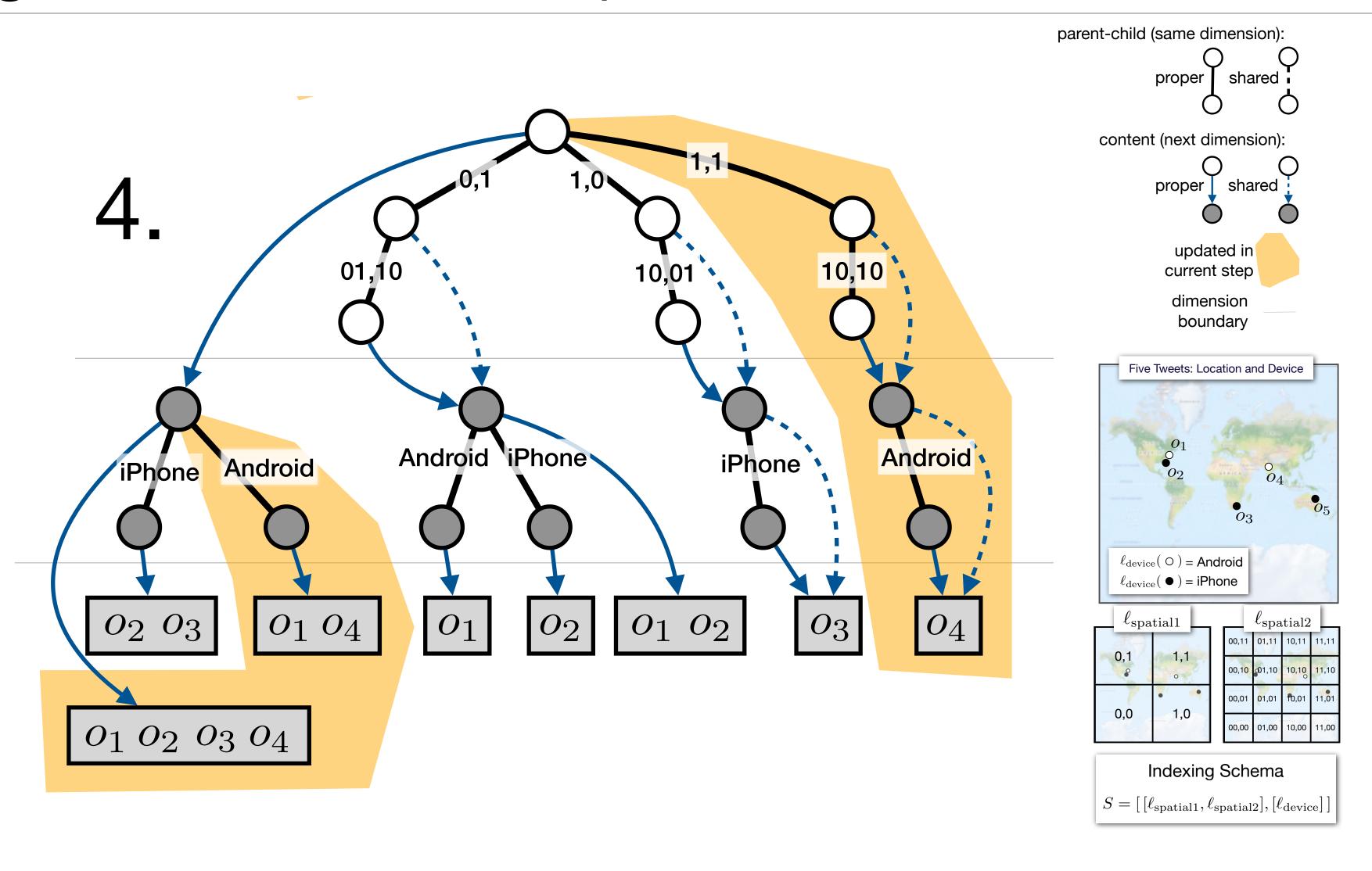


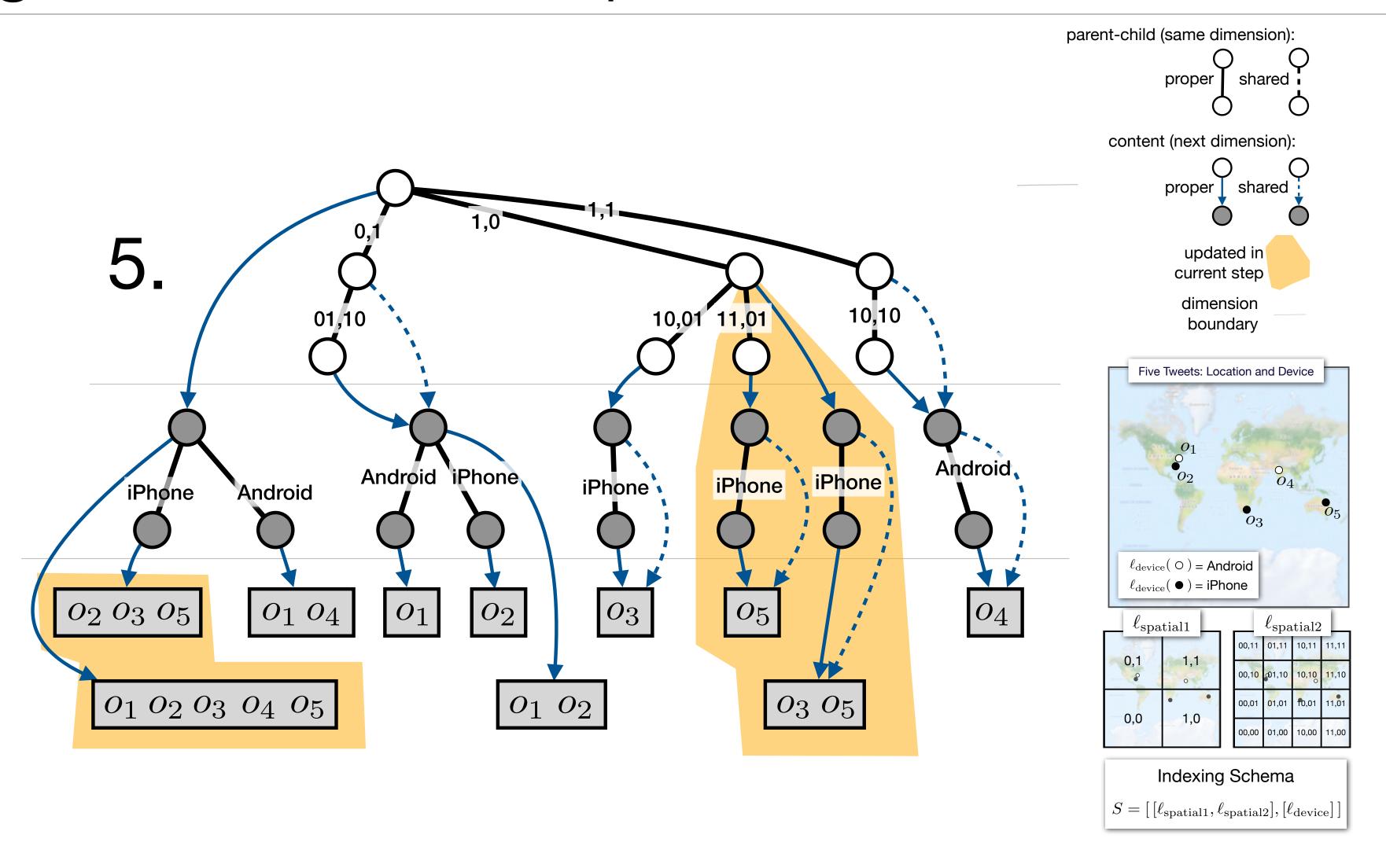








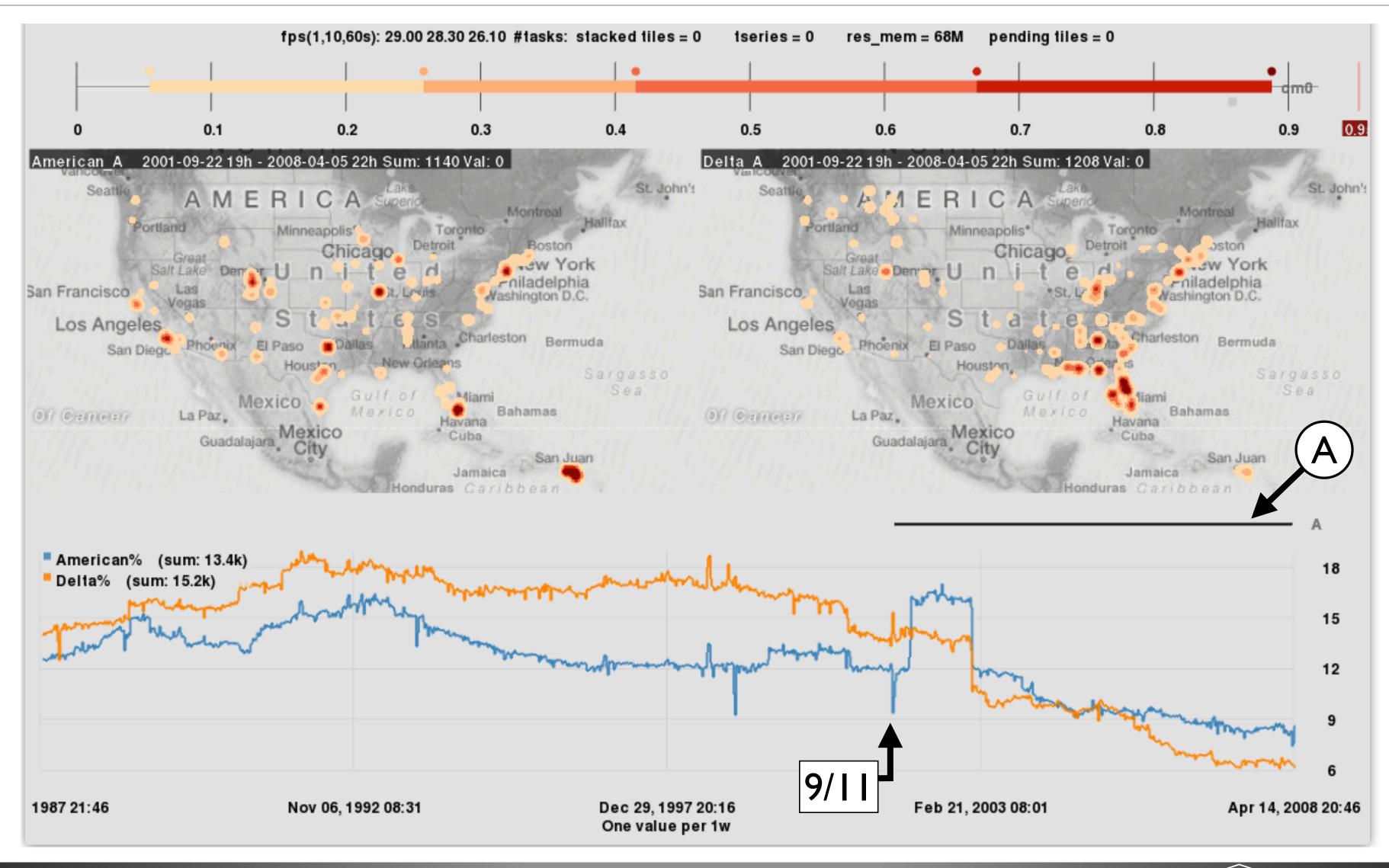




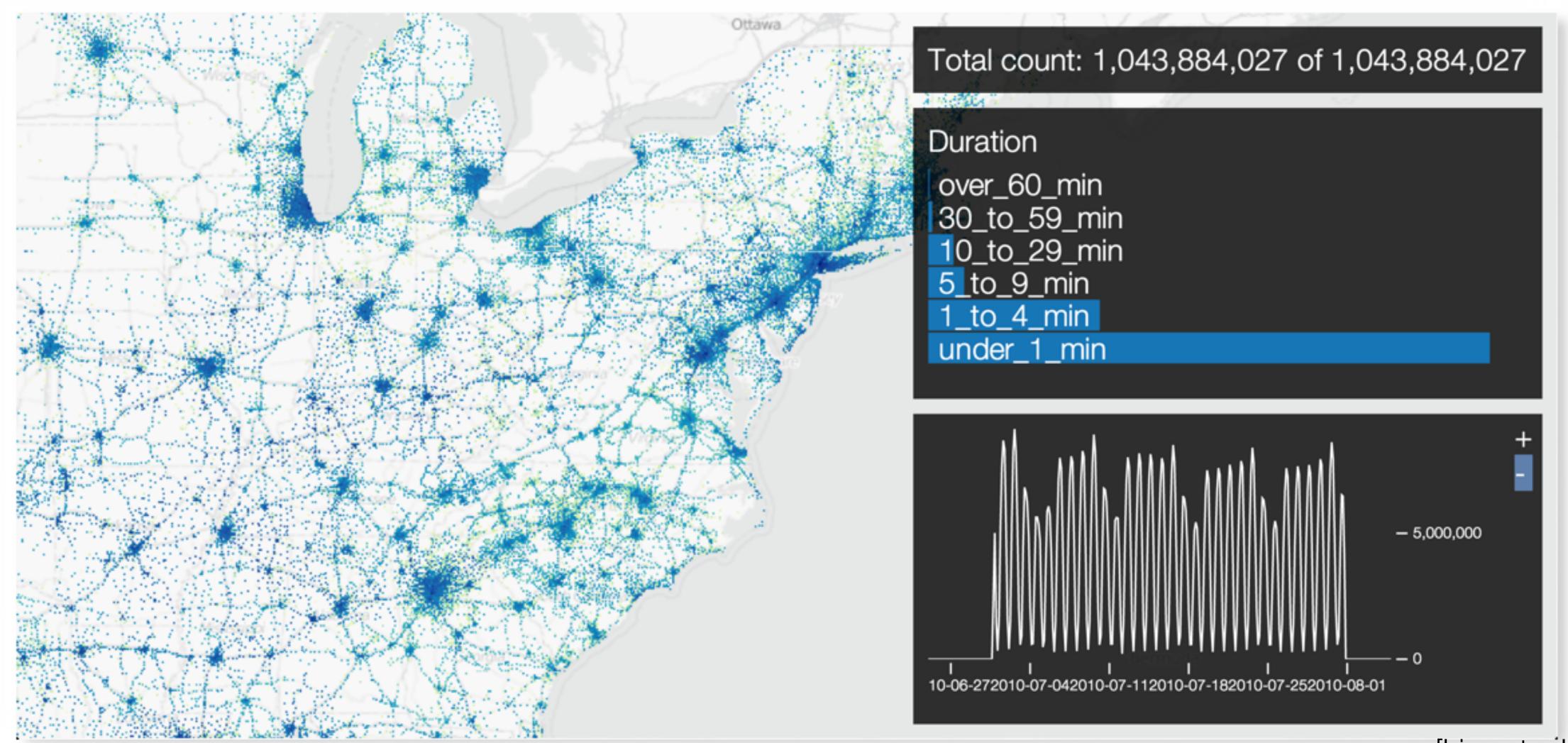
Nanocubes Discussion

- Save space by organizing the data in a manner that takes advantage of data sparseness
- Limited to one spatial dimension, one temporal dimension
- Precompute once, then exploration has low latency

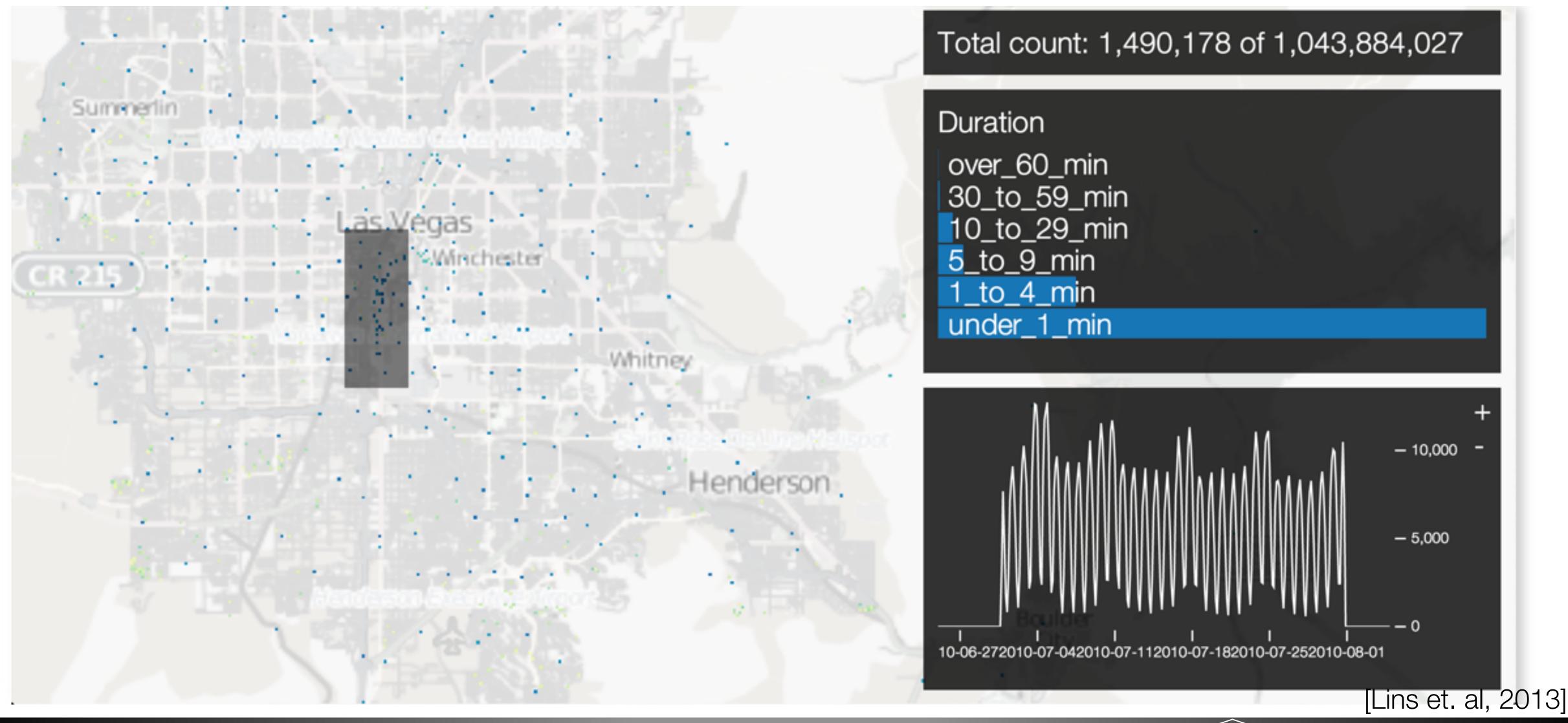
Example: American vs. Delta



Example: Cell Data Records



Example: Cell Data Records



Big Spatial Data Management

A. Eldawy

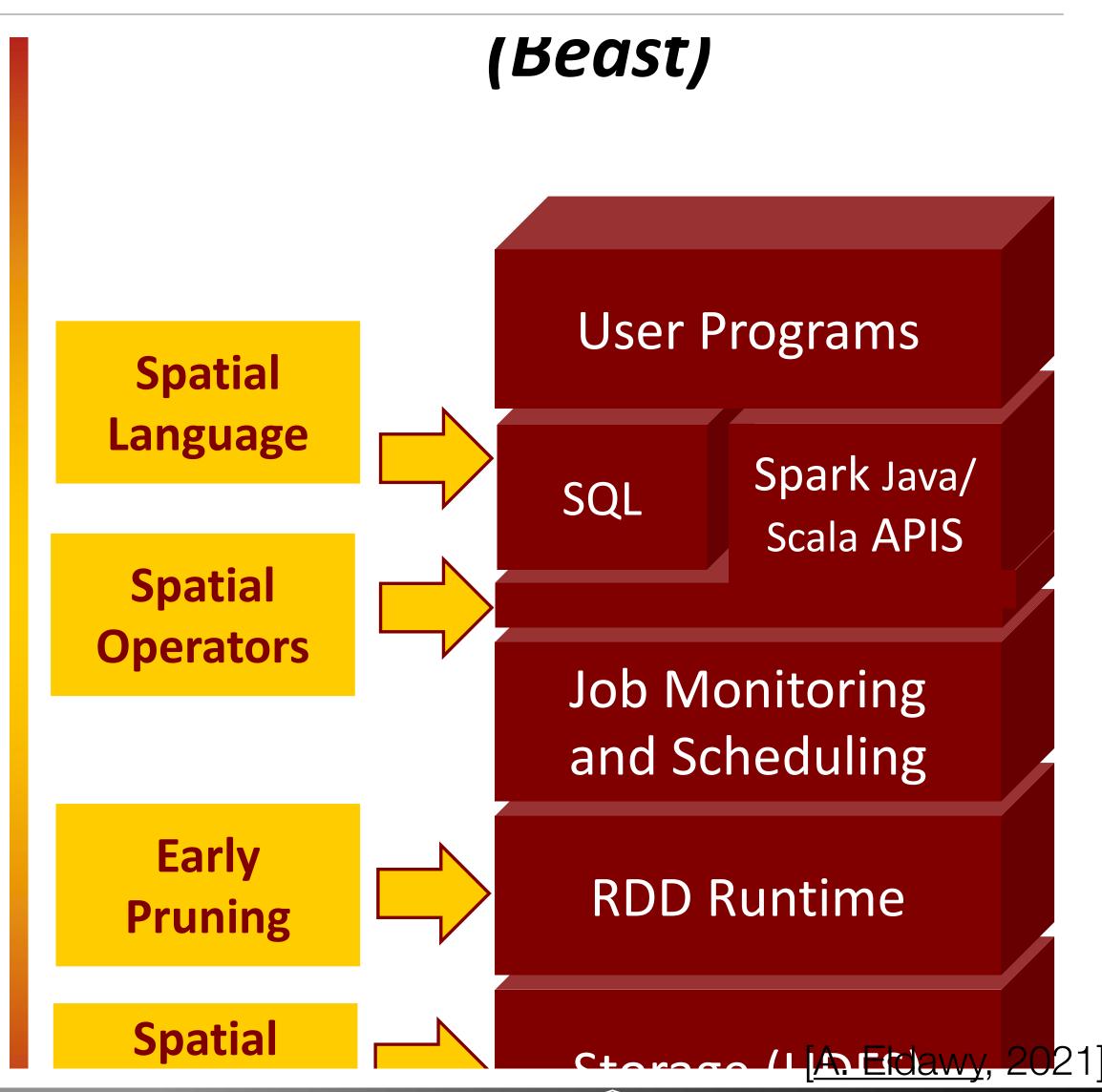
Motivation

- Complexity of geospatial file formats and problems with reading in a distributed context
- Load balancing the processing across nodes
- Existing solutions focus on one dataset instead of many
- Need a visual-based interface

Beast Architecture

Spatial Modules User Programs Spark Java/ SQL Scala APIS Job Monitoring and Scheduling RDD Runtime

(Spatial) **User Program RDD APIs** Job Monitoring and Scheduling + **RDD Runtime** Storage



Beast Architecture

Big
Spatial
Data
Apps

Visualization Framework

RDD-based Query Processor

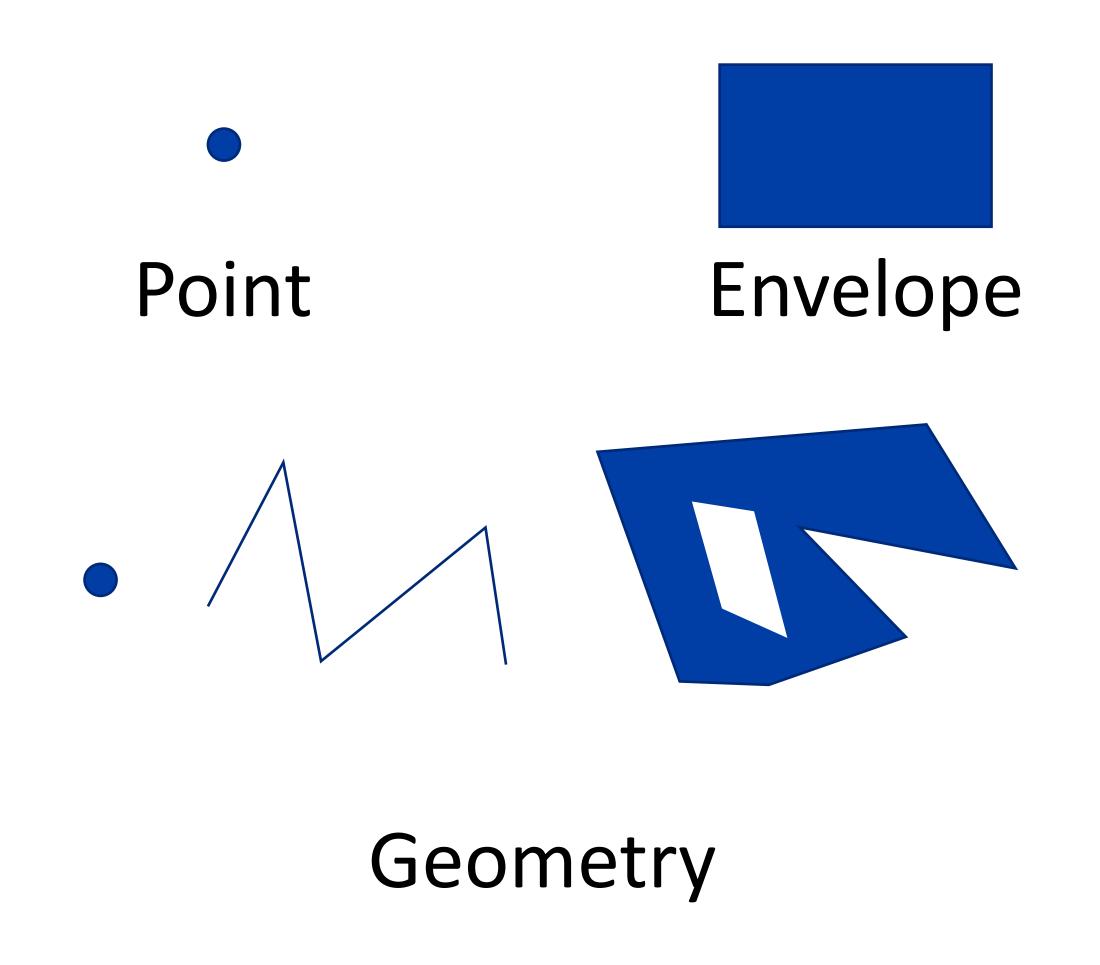
Spatial Partitioner & Load Balancer

In-situ Spark Loaders/Writers

Spatial Data Types

[A. Eldawy, 2021]

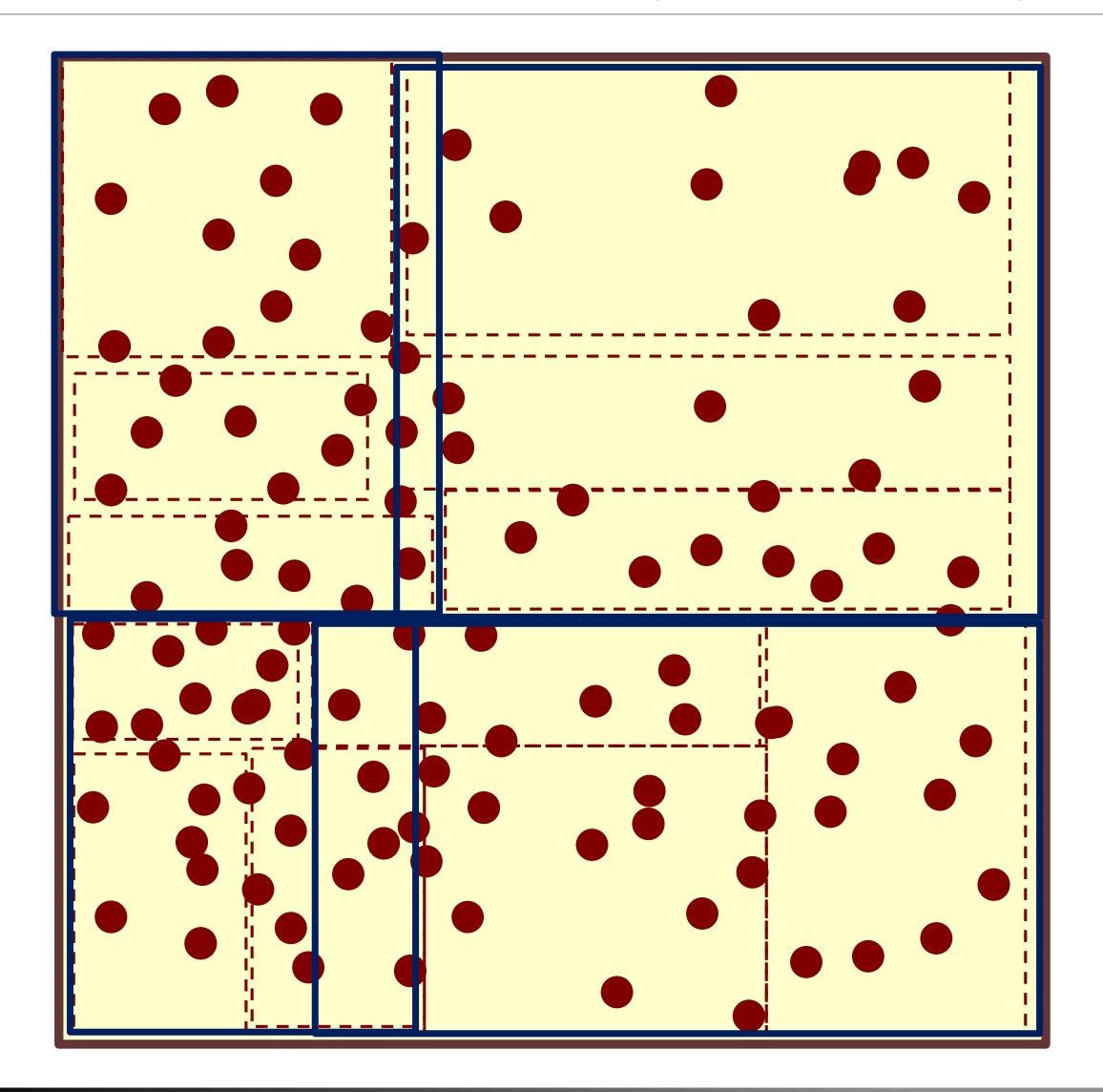
Beast Spatial Data Types

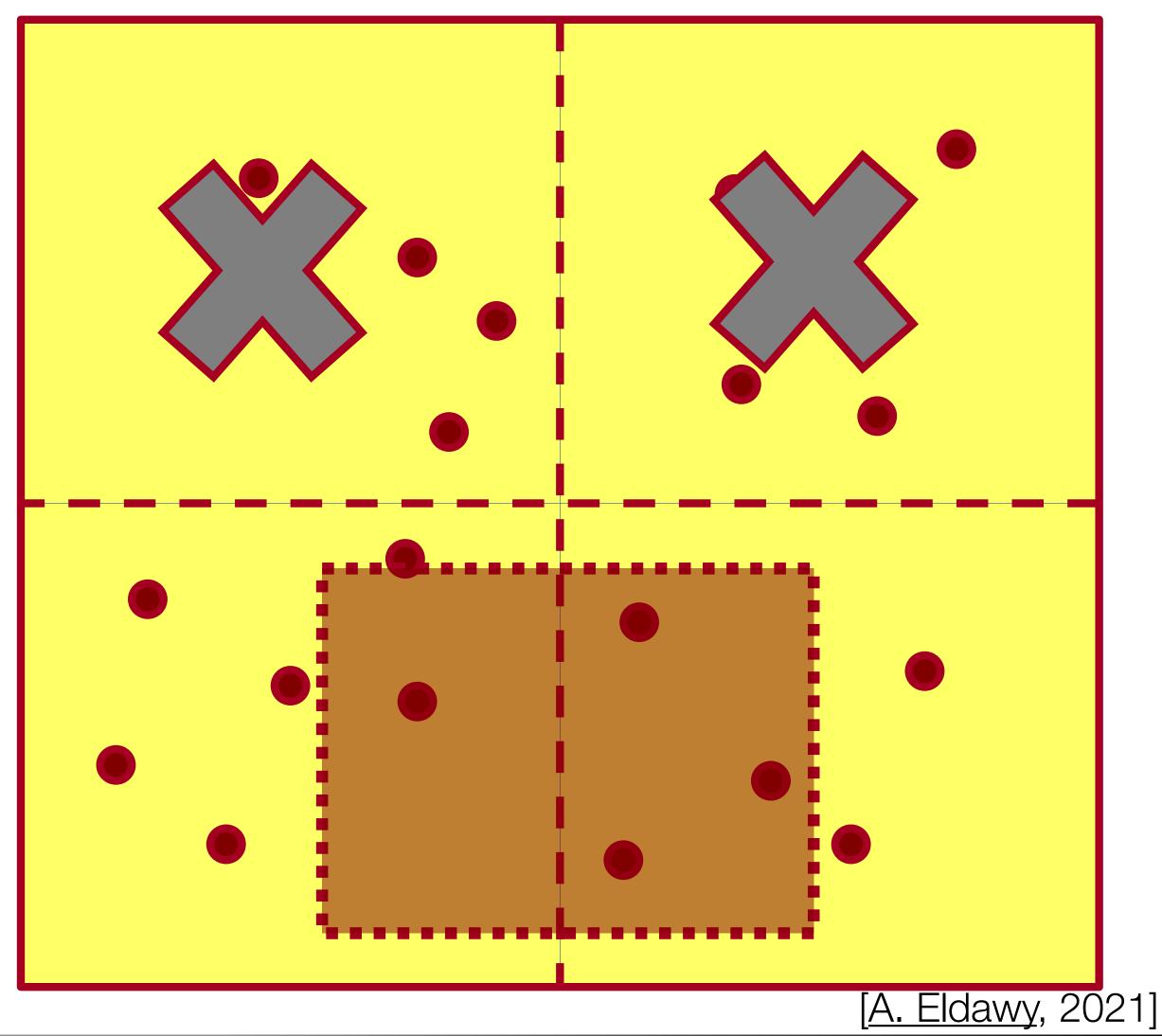


Feature

[A. Eldawy, 2021]

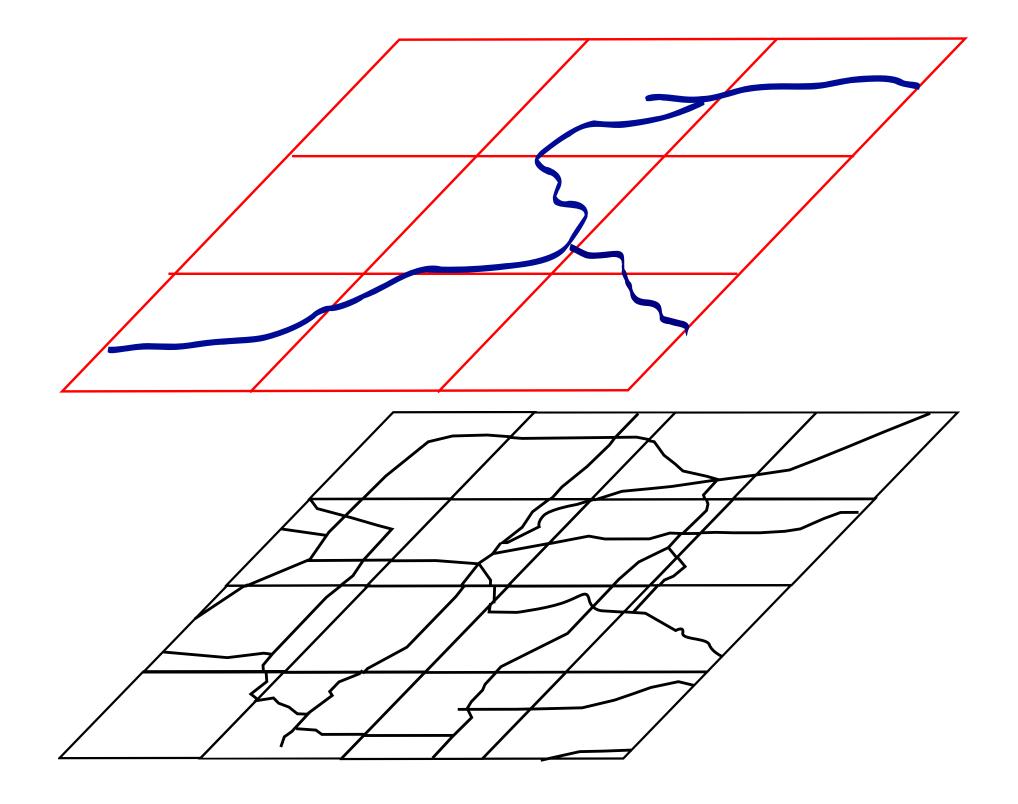
Beast Partitioning/Indexing & Range Query





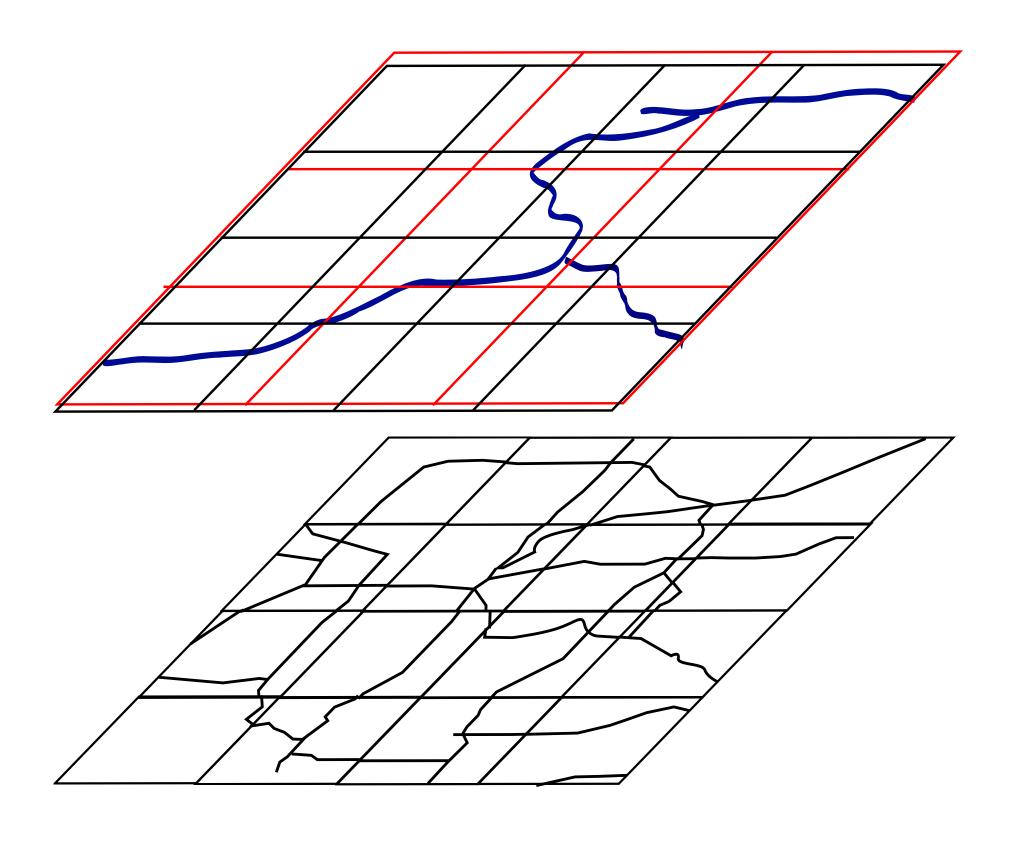
Beast Spatial Join

Join Directly



Total of 36 overlapping pairs

Partition – Join



Only 16 overlapping pairs

[A. Eldawy, 2021]

