Advanced Data Management (CSCI 640/490)

Scalable Dataframes

Dr. David Koop

Recent History in Databases

- Early 2000s: Commercial DBs dominated, Open-source DBs missing features
- Mid 2000s: MySQL adopted by web companies
- Late 2000s: NoSQL dos scale horizontally out of the box
- Early 2010s: New DBMSs that can scale across multiple machines natively and provide ACID guarantees

NewSQL Definitions

- Stonebraker's Definition:
 - SQL as the primary interface
 - ACID support for transactions
 - Non-locking concurrency control
 - High per-node performance
 - Parallel, shared-nothing architecture (what about shared-disk?)
- Wikipedia (Pavlo): A class of modern relational DBMSs that provide the same scalable performance of NoSQL systems for OLTP workloads while still maintaining the ACID guarantees of a traditional DBMS.

NewSQL Positioning

Three Types of NewSQL Systems

- New Architectures
 - New codebase without architectural baggage of legacy systems
 - Examples: VoltDB, Spanner, Clustrix
- Transparent Sharding Middleware:
 - Transparent data sharding & query redirecting over cluster of single-node DBMSs
 - Examples: citusdata, ScaleArc (usually support MySQL/postgres wire)
- Database-as-a-Service:
 - Distributed architecture designed specifically for cloud-native deployment
 - Examples: xeround, GenieDB, FathomDB (usually based on MySQL)

What went wrong?

- Almost every NewSQL company from the last decade has closed, sold for scraps, or pivoted to other markets
- Why?
 - Selling an OLTP Database System is hard
 - Startup cost of a relational system is harder than NoSQL
 - Existing DBMS Systems (MySQL, postgresql) are Good
 - Cloud Disruption
 - Can't sell on-premises
 - Can't complete on cost with cloud vendors
 - Lack of Open Source

Conclusions

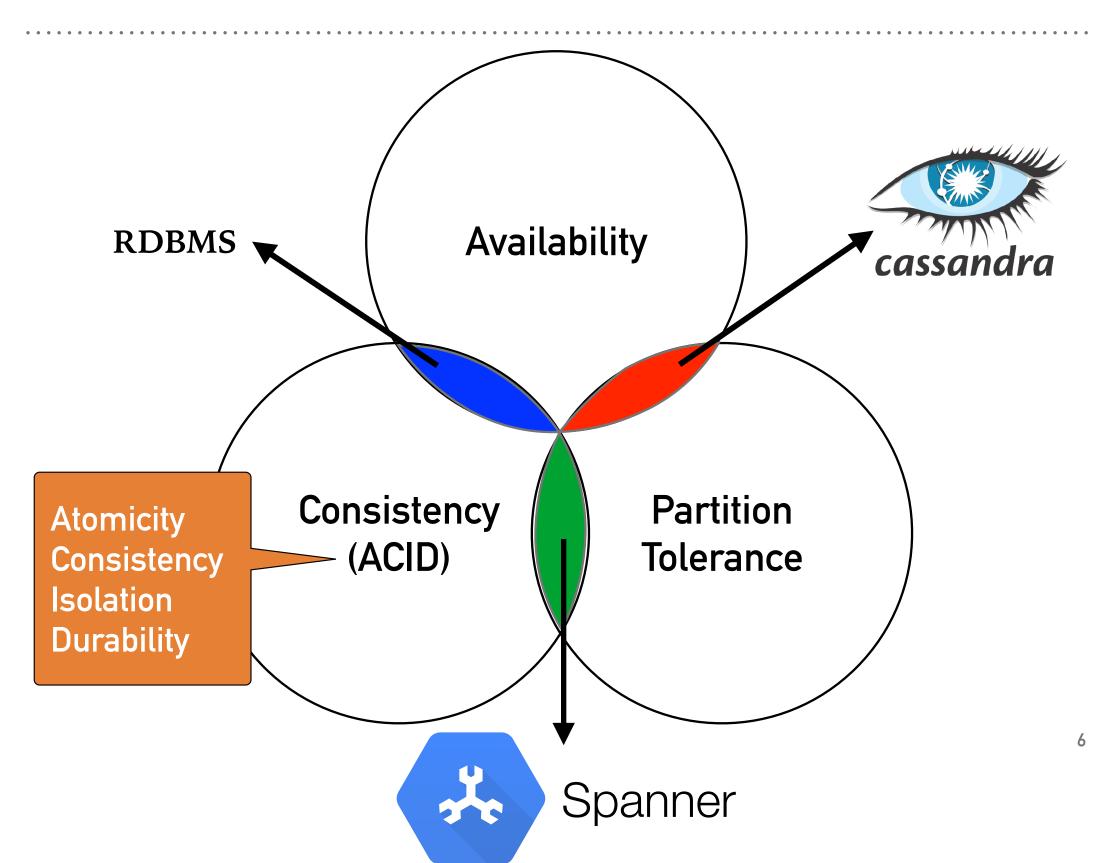
- NewSQL is dead
- Academic: the NewSQL movement was a success
- Business: a failure for those who embraced the NewSQL mantle
- Next?
 - You still need humans to design, configure, and optimize logical/physical aspects of a database
 - Humans are expensive
 - Automation is the future.

Spanner Overview

- Focus on scaling databases focused on OLTP (not OLAP)
- Since OLTP, focus is on sharding rows
- Tries to satisfy CAP (which is impossible per CAP Theorem) by not worrying about 100% availability
- External consistency using multi-version concurrency control through timestamps
- ACID is important
- Structured: universe with zones with zone masters and then spans with span masters
- SQL-like (updates allow SQL to be used with Spanner)

Spanner and the CAP Theorem

HIGH AVAILABILITY: CAP THEOREM AND CASSANDRA



- Which type of system is Spanner?
 - C: consistency, which implies a single value for shared data
 - A: 100% availability, for both reads and updates
 - P: tolerance to network partitions
- Which two?
 - CA: close, but not totally available
 - So actually CP

External Consistency

- Traditional DB solution: two-phase locking—no writes while client reads
- "The system behaves as if all transactions were executed sequentially, even though Spanner actually runs them across multiple servers (and possibly in multiple datacenters) for higher performance and availability" [Google]
- Semantically indistinguishable from a single-machine database
- Uses multi-version concurrency control (MVCC) using timestamps
- Spanner uses TrueTime to generate monotonically increasing timestamps across all nodes of the system

Google Cloud Spanner

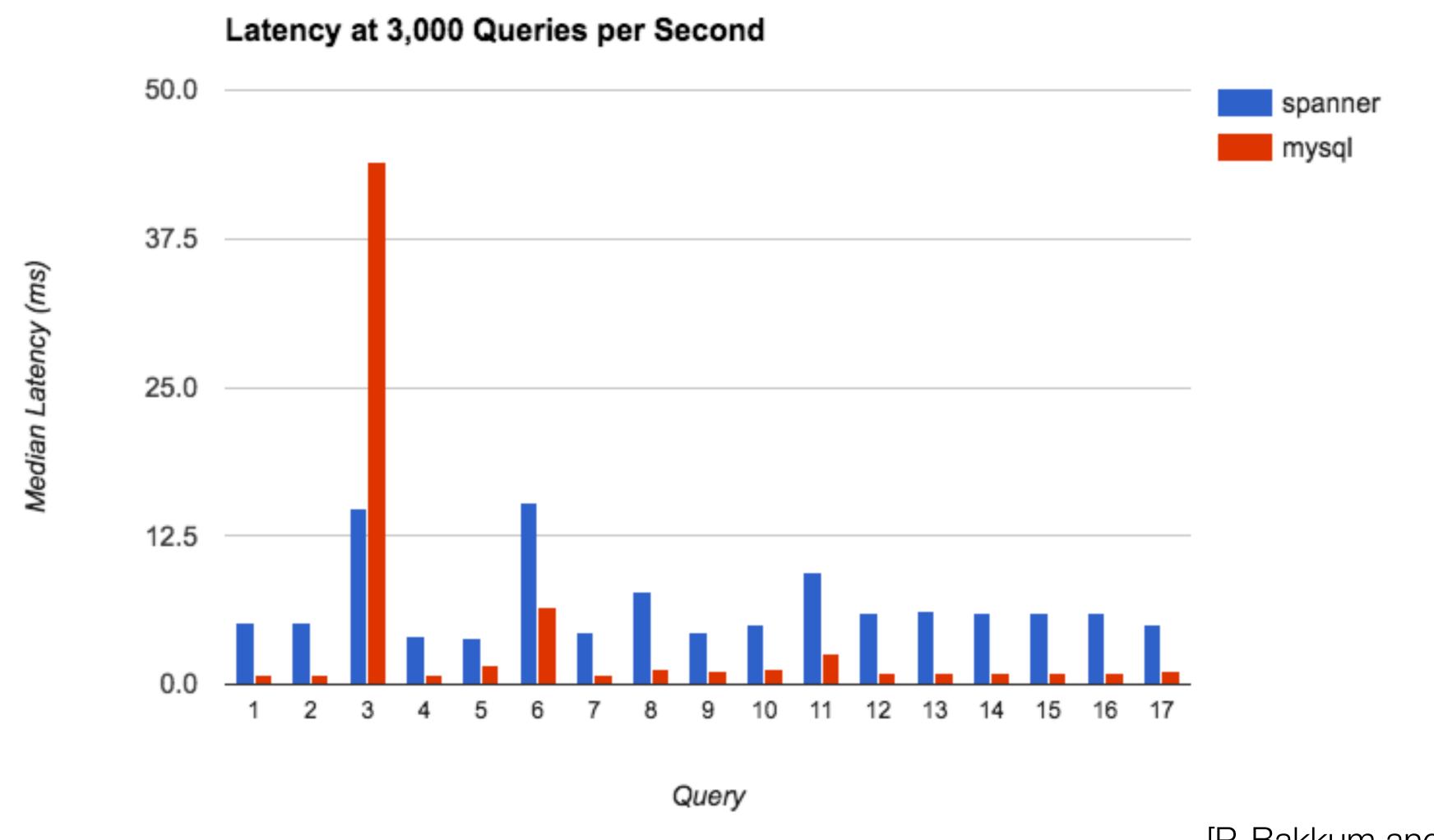
- https://cloud.google.com/spanner/
- Features:
 - Global Scale: thousands of nodes across regions / data centers
 - Fully Managed: replication and maintenance are automatic
 - Transactional Consistency: global transaction consistency
 - Relational Support: Schemas, ACID Transactions, SQL Queries
 - Security
 - Highly Available

More Recent Tests: Spanner vs. MySQL

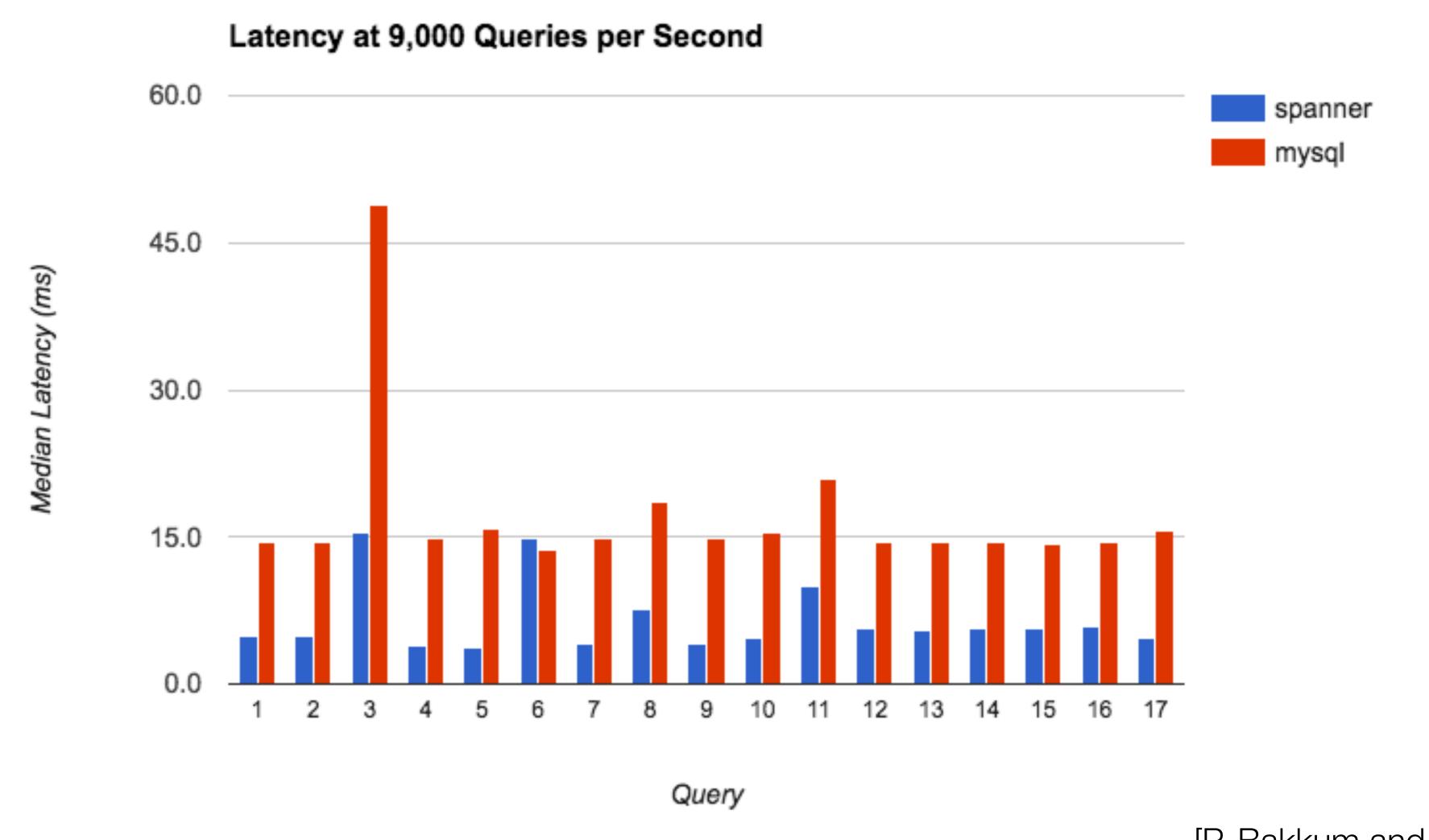
	Frequency	Query
1	0.30%	INSERT INTO `terms` (`term`, `rank`, `set_id`, `last_modified`) VALUES (?,?,?,?),(?,?,?,?)
2	0.25%	INSERT INTO `terms` (`term`, `rank`, `set_id`, `last_modified`, `definition`) VALUES (?,?,?,?,?),(?,?,?,?,?),(?,?,?,?,?),
3	4.22%	INSERT INTO `terms` (`term`,`rank`,`set_id`,`last_modified`) VALUES (?,?,?,?)
4	1.88%	INSERT INTO `terms` (`term`,`rank`,`set_id`,`last_modified`,`definition`) VALUES (?,?,?,?,?)
5	3.28%	SELECT * FROM `terms` WHERE (`is_deleted` = 0) AND (`set_id` IN (??)) AND (`rank` IN (0,1,2,3)) AND (`term` != ")
6	14.13%	SELECT `set_id`, COUNT(*) FROM `terms` WHERE (`is_deleted` = 0) AND (`set_id` = ?) GROUP BY `set_id`
7	12.56%	SELECT * FROM `terms` WHERE (`id` = ?)
8	0.49%	SELECT * FROM `terms` WHERE (`id` IN (??) AND `set_id` IN (??))
9	4.11%	SELECT `id`, `set_id` FROM `terms` WHERE (`set_id` = ?) LIMIT 20000
10	0.43%	SELECT `id`, `set_id` FROM `terms` WHERE (`set_id` IN (??)) LIMIT 20000
11	0.59%	SELECT * FROM `terms` WHERE (`id` IN (??))
12	36.76%	SELECT * FROM `terms` WHERE (`set_id` = ?)
13	0.61%	SELECT * FROM `terms` WHERE (`set_id` IN (??))
14	6.10%	UPDATE `terms` SET `definition`=?, `last_modified`=? WHERE `id`=? AND `set_id`=?
15	0.33%	UPDATE `terms` SET `is_deleted`=?, `last_modified`=? WHERE `id` IN (??) AND `set_id`=??
16	12.56%	UPDATE `terms` SET `rank`=?, `last_modified`=? WHERE `id`=? AND `set_id`=?
17	1.06%	UPDATE `terms` SET `word`=?, `last_modified`=? WHERE `id`=? AND `set_id`=?
18	0.32%	UPDATE `terms` SET `definition`=?, `word`=?, `last_modified`=? WHERE `id`=? AND `set_id`=?

[P. Bakkum and D. Cepeda, 2017]

Latency: Spanner vs. MySQL

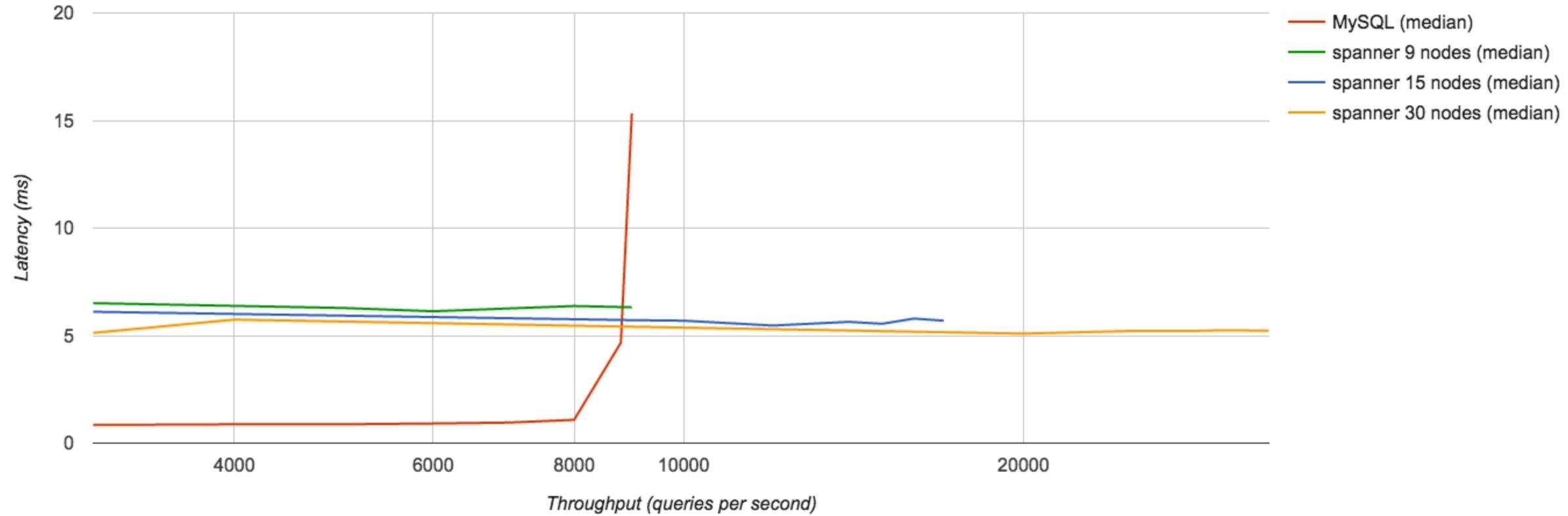


Latency: Spanner vs. MySQL



Throughput: Spanner vs. MySQL

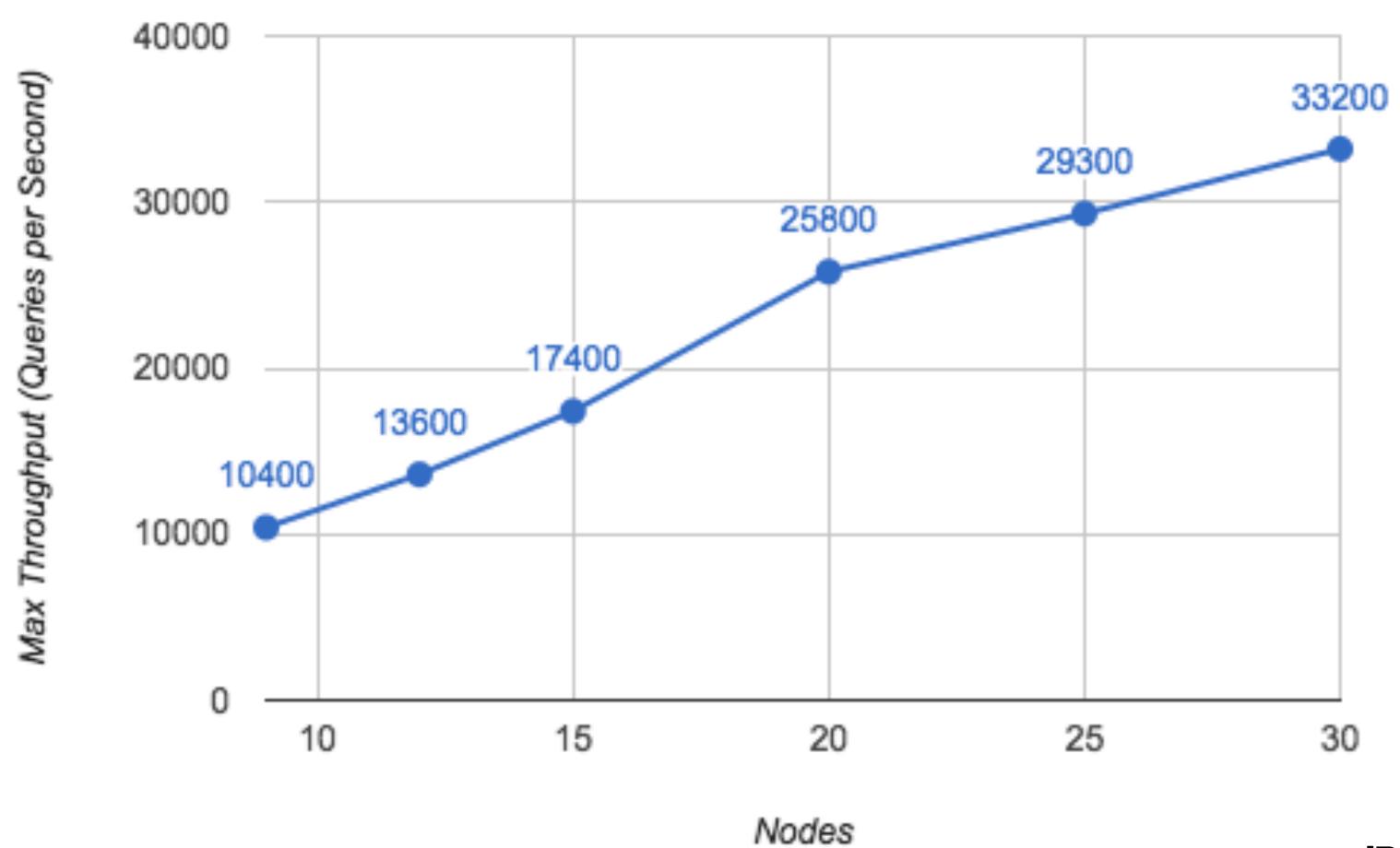
Median Latency as Throughput Increases



[P. Bakkum and D. Cepeda, 2017]

Max Throughput vs. Nodes

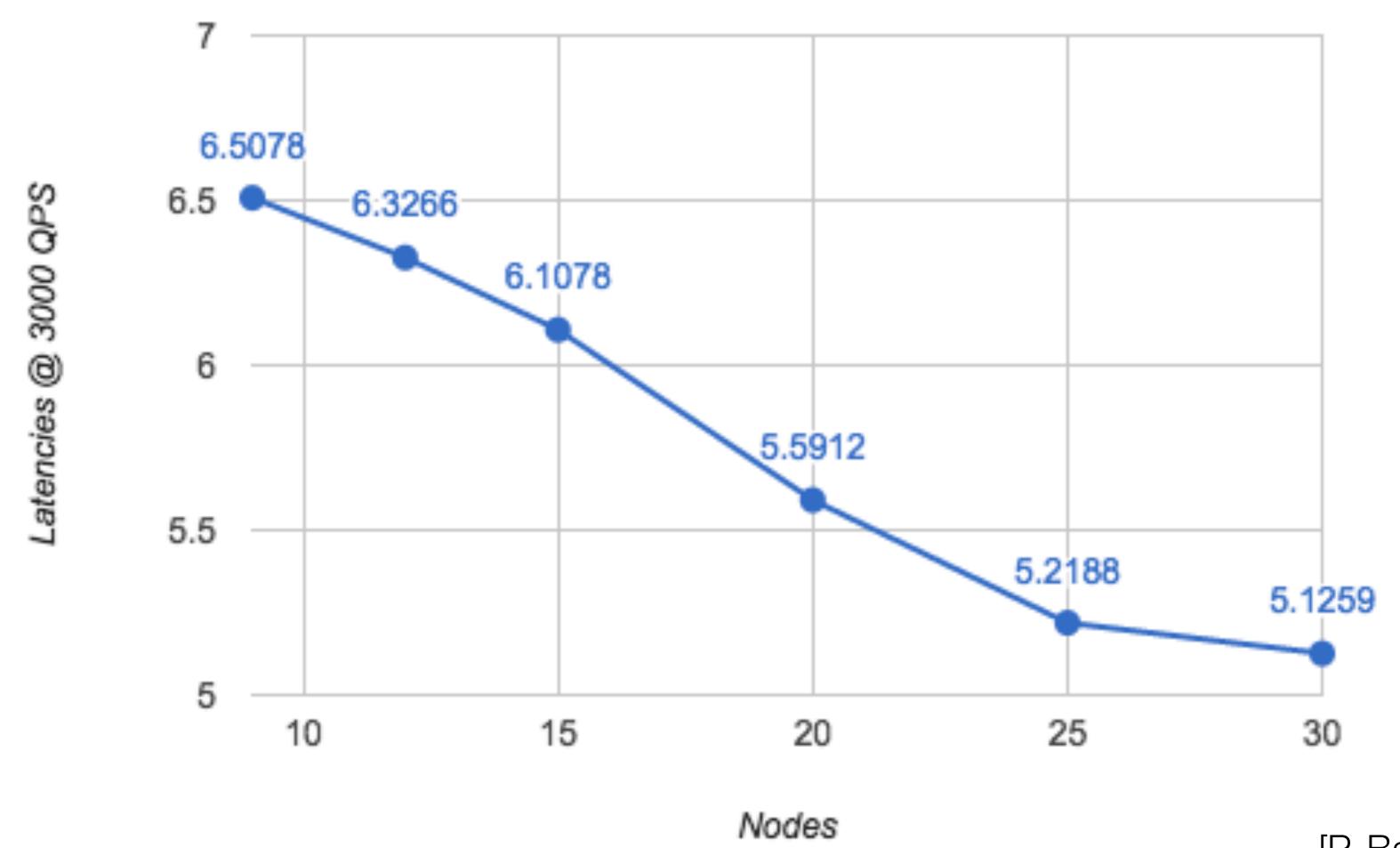
Max Throughput vs Nodes



[P. Bakkum and D. Cepeda, 2017]

Spanner: Latency vs. Nodes

Latency at 3000 QPS vs Nodes



Assignment 4

- Work on Data Integration and Data Fusion
- Integrate university ranking datasets from different institutions
- Integrate information based on names and matching
- Record Matching:
 - Which universities are the same?
- Data Fusion:
 - Names
 - Enrollments
 - Rankings
- Courselet to be posted later today

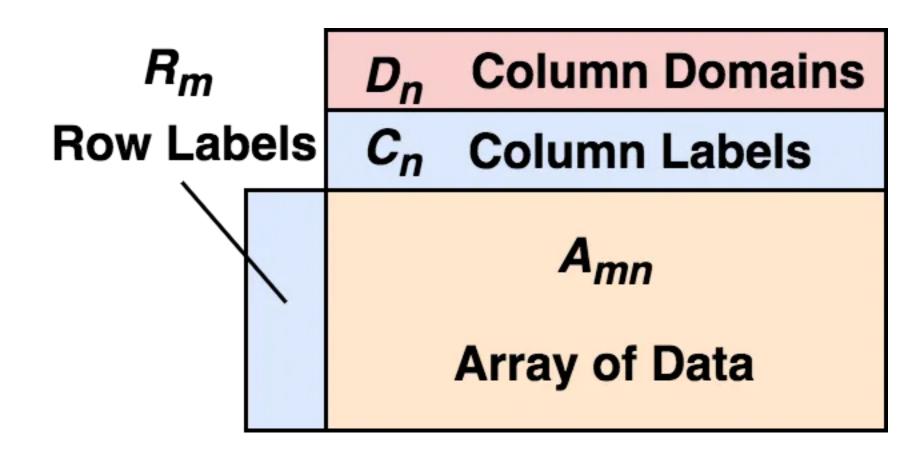
Scalable Dataframes

History of Dataframes

- Originally in Statistical Models in S, [J. M. Chambers & T. J. Hastie, 1992]
- R, open-source alternative to S, developed in 2000 (with dataframes)
- Pandas, 2009
- Spark, 2010 (resilient distributed dataset [RDD], Dataset API)

Formalizing Dataframes

- Combines parts of matrices, databases, and spreadsheets
- Ordered rows (unlike databases)
- Types can be inferred at runtime, not the same across all columns
- Lots of "intuitive" functions (600+)



[D. Petersohn, 2022]

Differences between Databases & Dataframes



[D. Petersohn, 2022]

Scaling Dataframes

- Solutions:
 - Spark
 - Dask
 - Polars
 - Vaex
 - Modin

Issues with scaling dataframes

- Which API to learn?
- How to scale beyond a single machine?

Scaling up your pandas workflows with Modin

D. Petersohn

<u>Ibis Overview</u>

Blazing fast dataframes in Python with Polars

J. L. C. Rodríguez

polars cloud