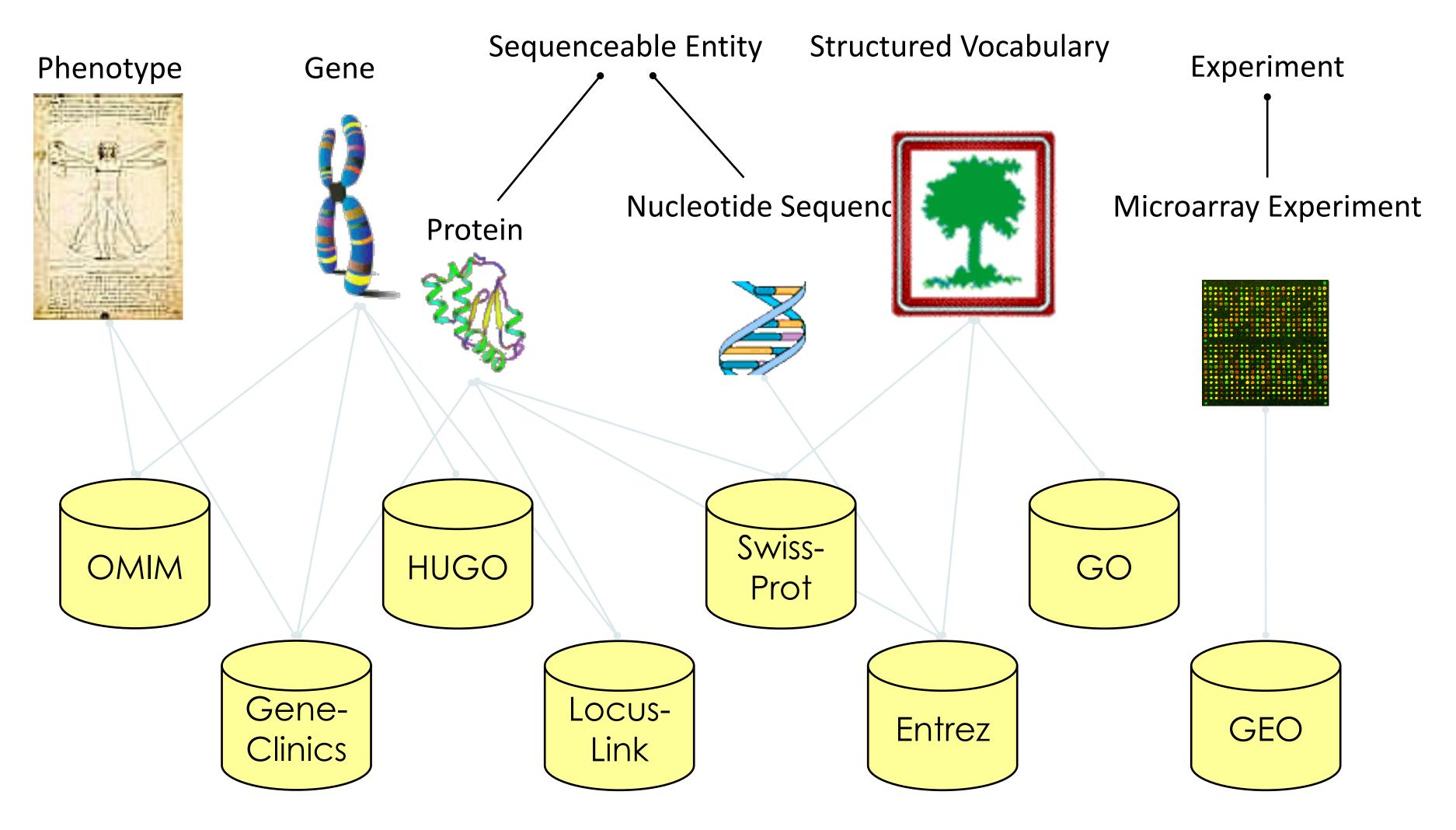
Advanced Data Management (CSCI 640/490)

Data Fusion

Dr. David Koop

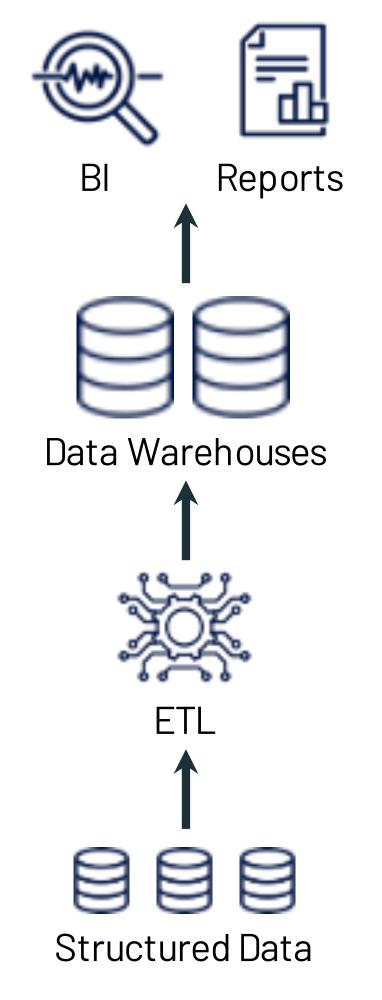
Reading Quiz

Data Integration: Combine Datasets with Different Data

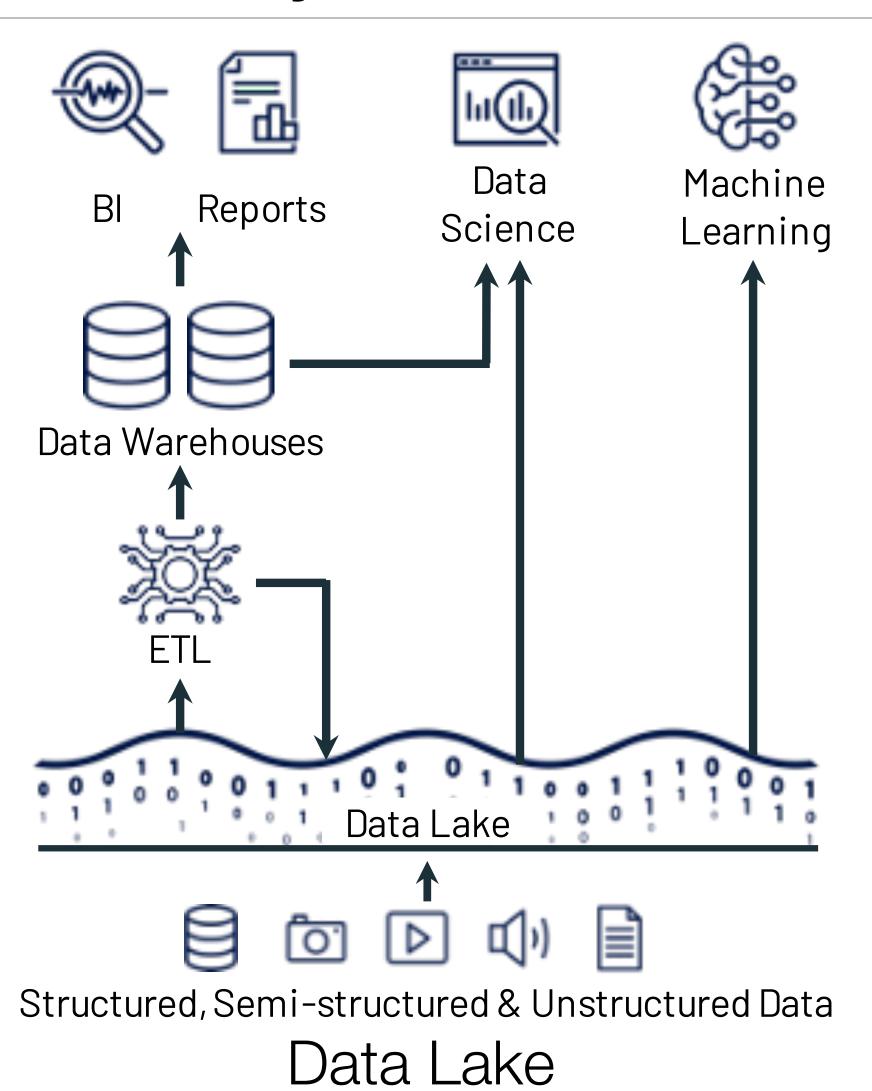


[A. Doan et al., 2012]

Storage for Data Analysis



Data Warehouse



Data Machine BI Reports Science Learning Metadata, Caching, and Indexing Layer Data Lake

Structured, Semi-structured & Unstructured Data

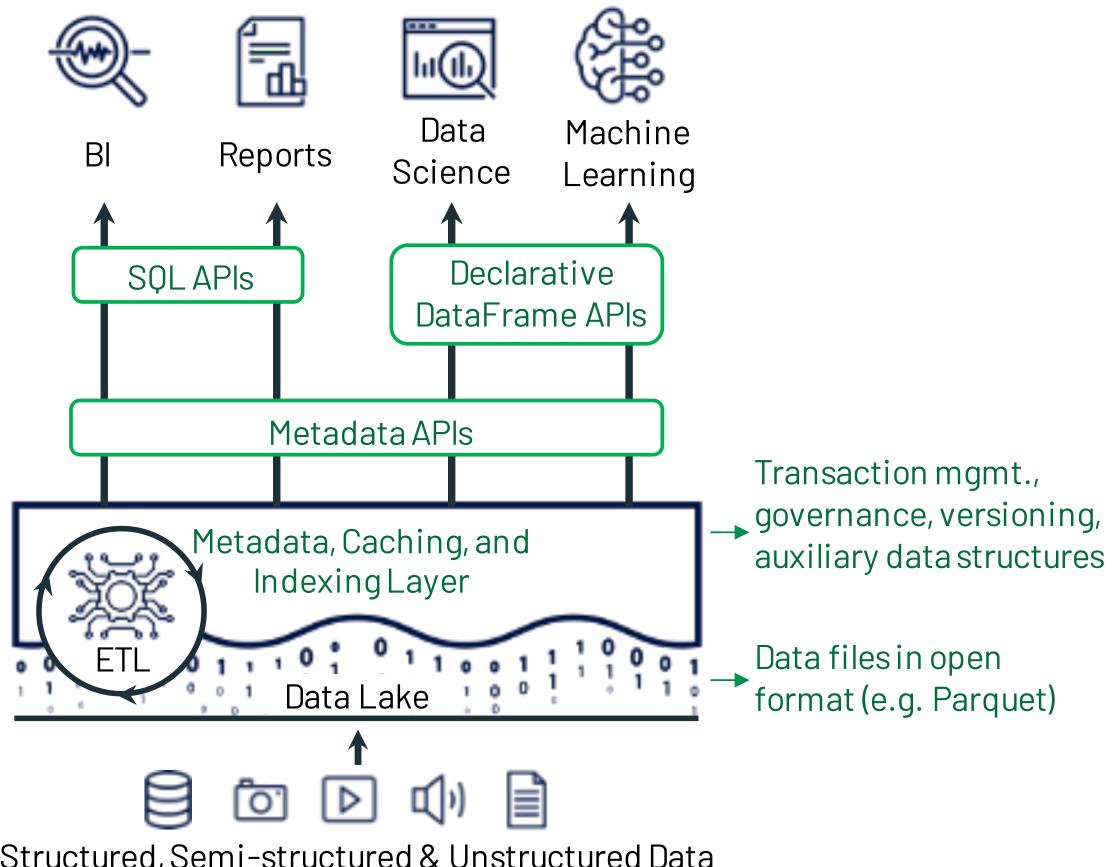
Data Lakehouse

[M. Armbrust et al., 2021]

Data Lakehouse

Solutions:

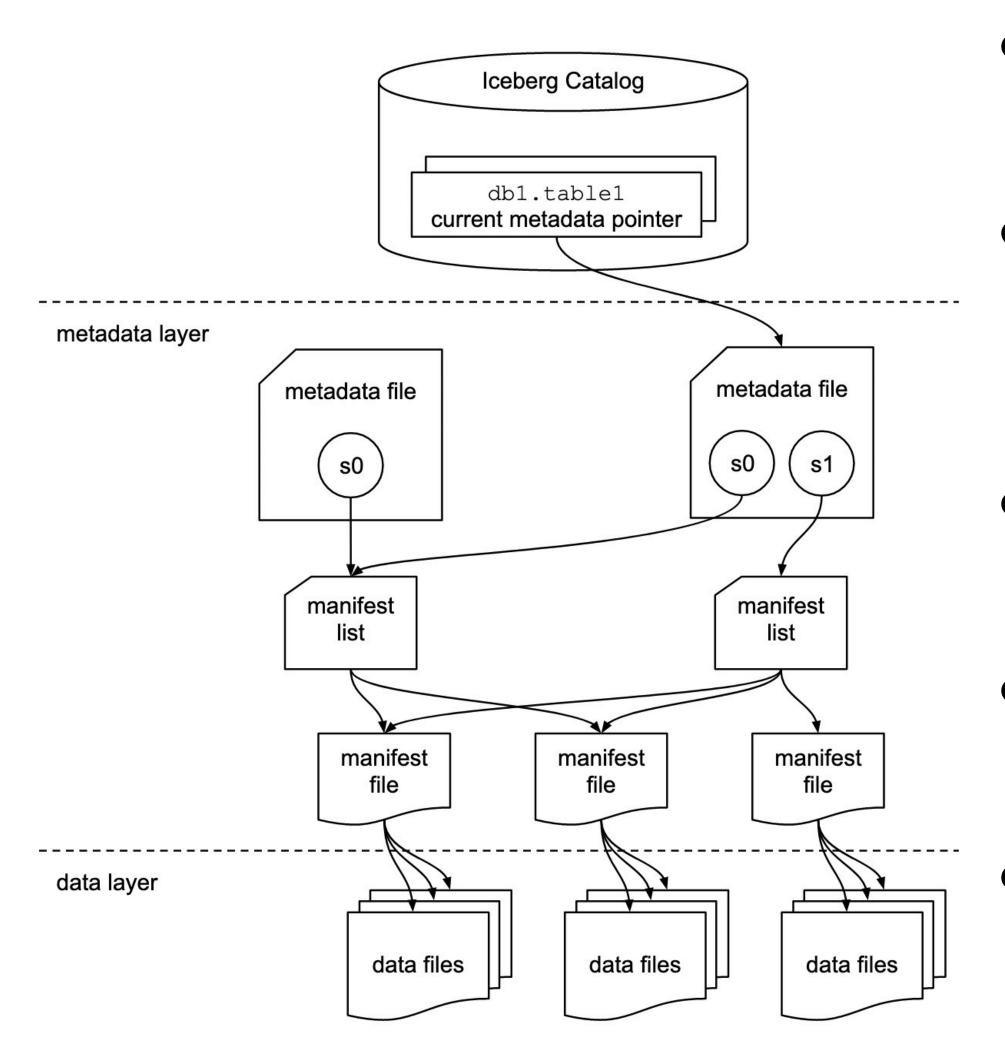
- Reliable data management on data lakes: add metadata APIs
- Support for machine learning and data science: allow use of declarative dataframe APIs
- SQL performance: allow use of SQL APIs



Structured, Semi-structured & Unstructured Data

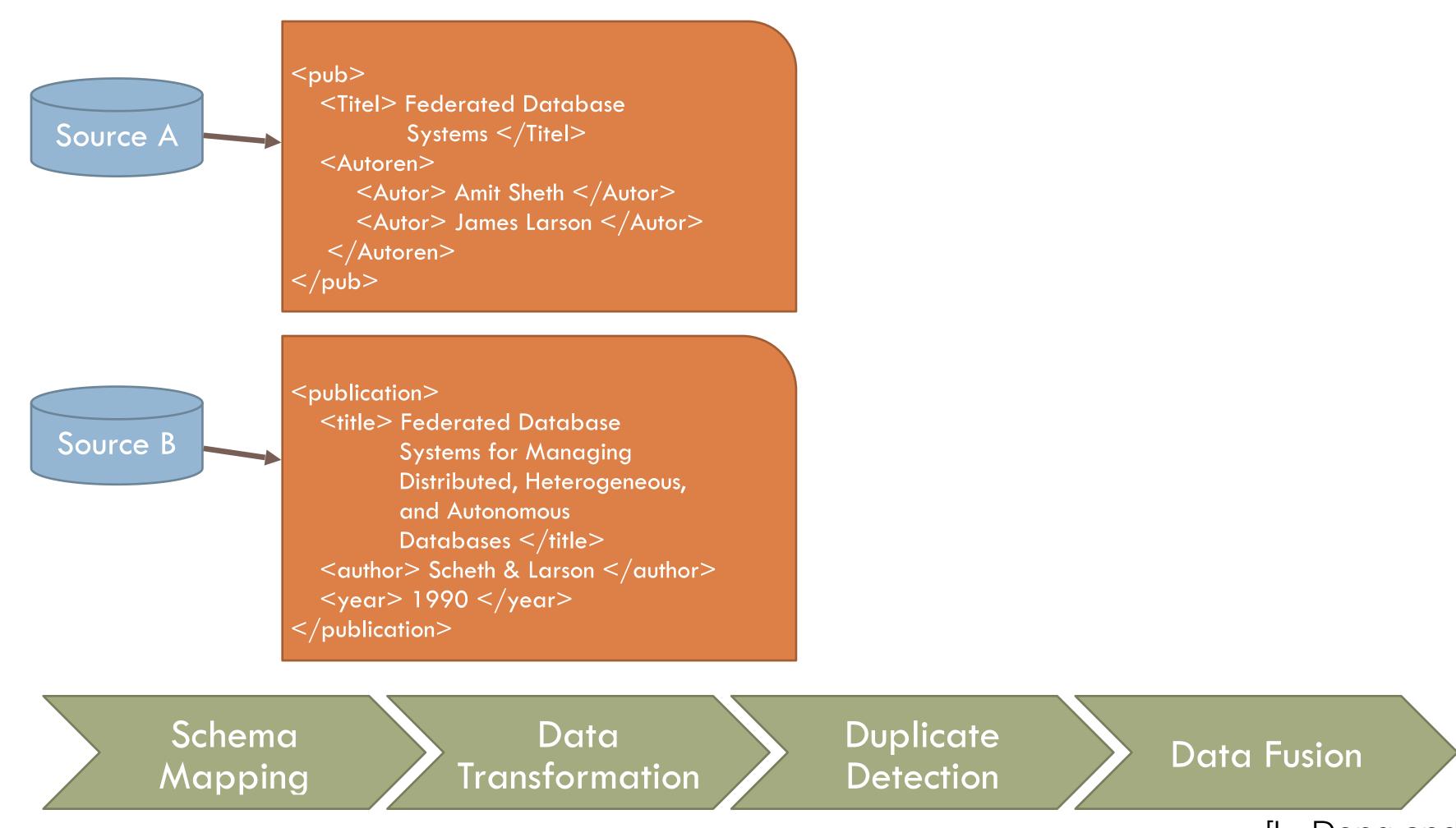
[M. Armbrust et al., 2021]

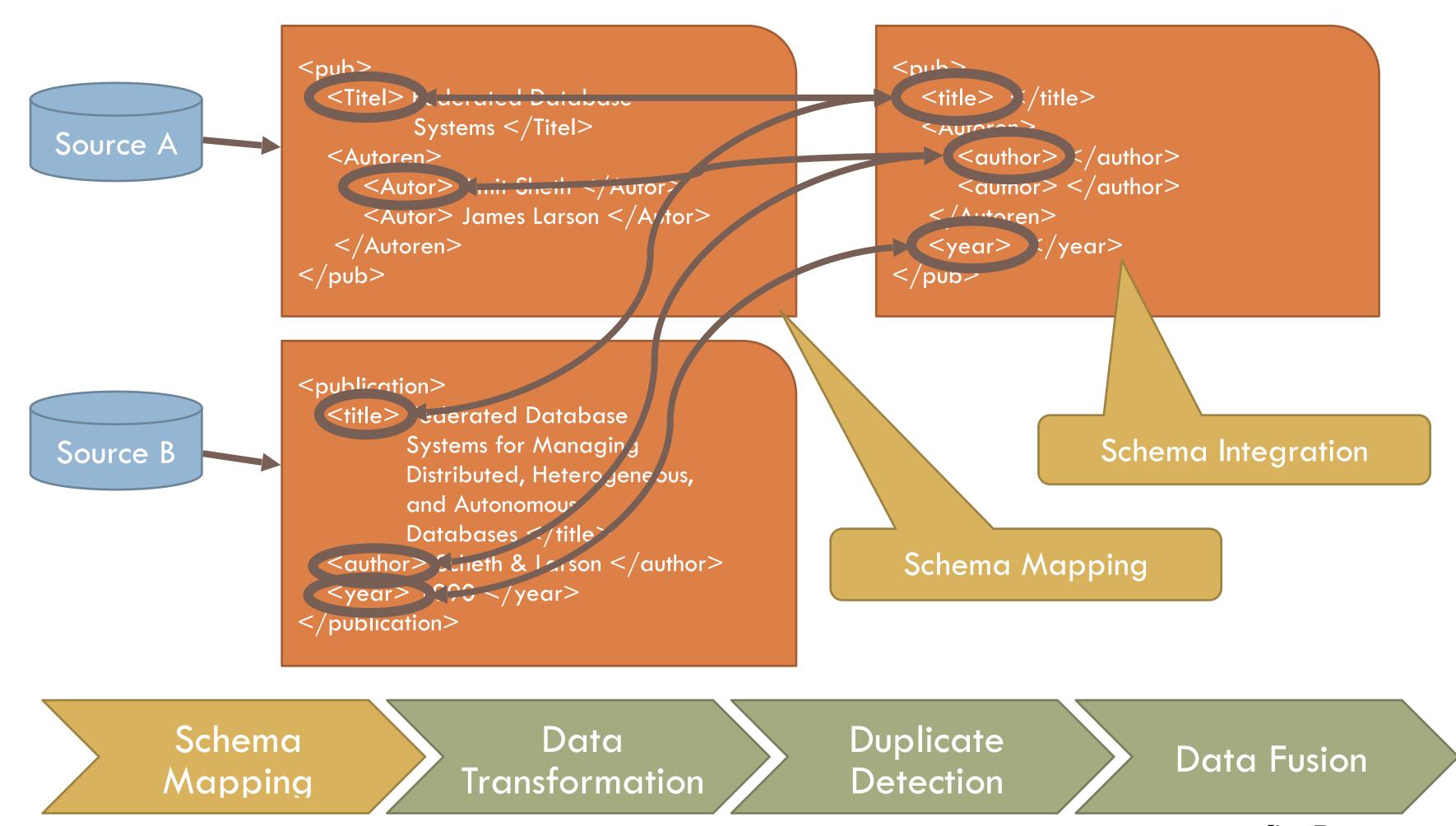
Apache Iceberg

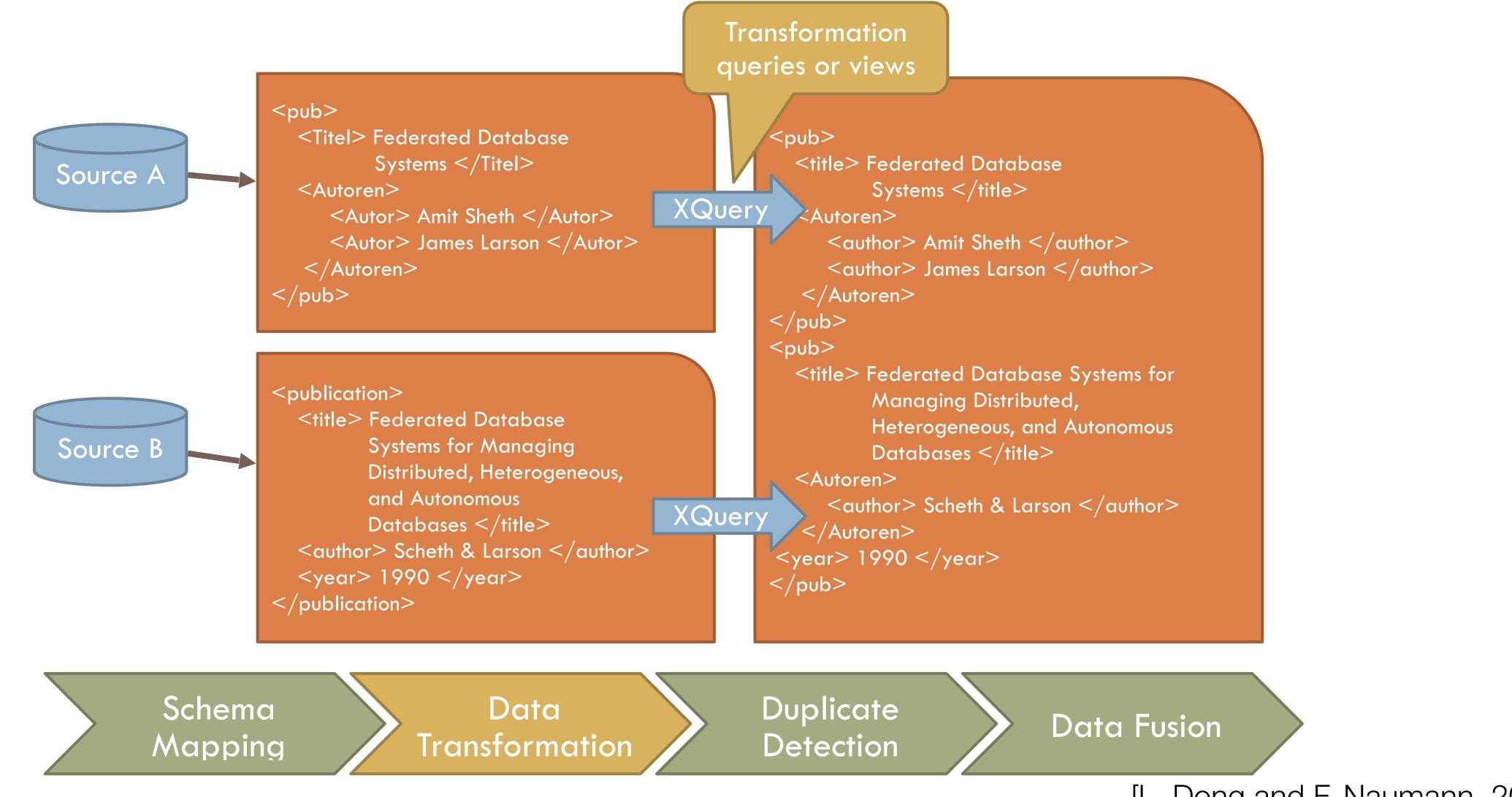


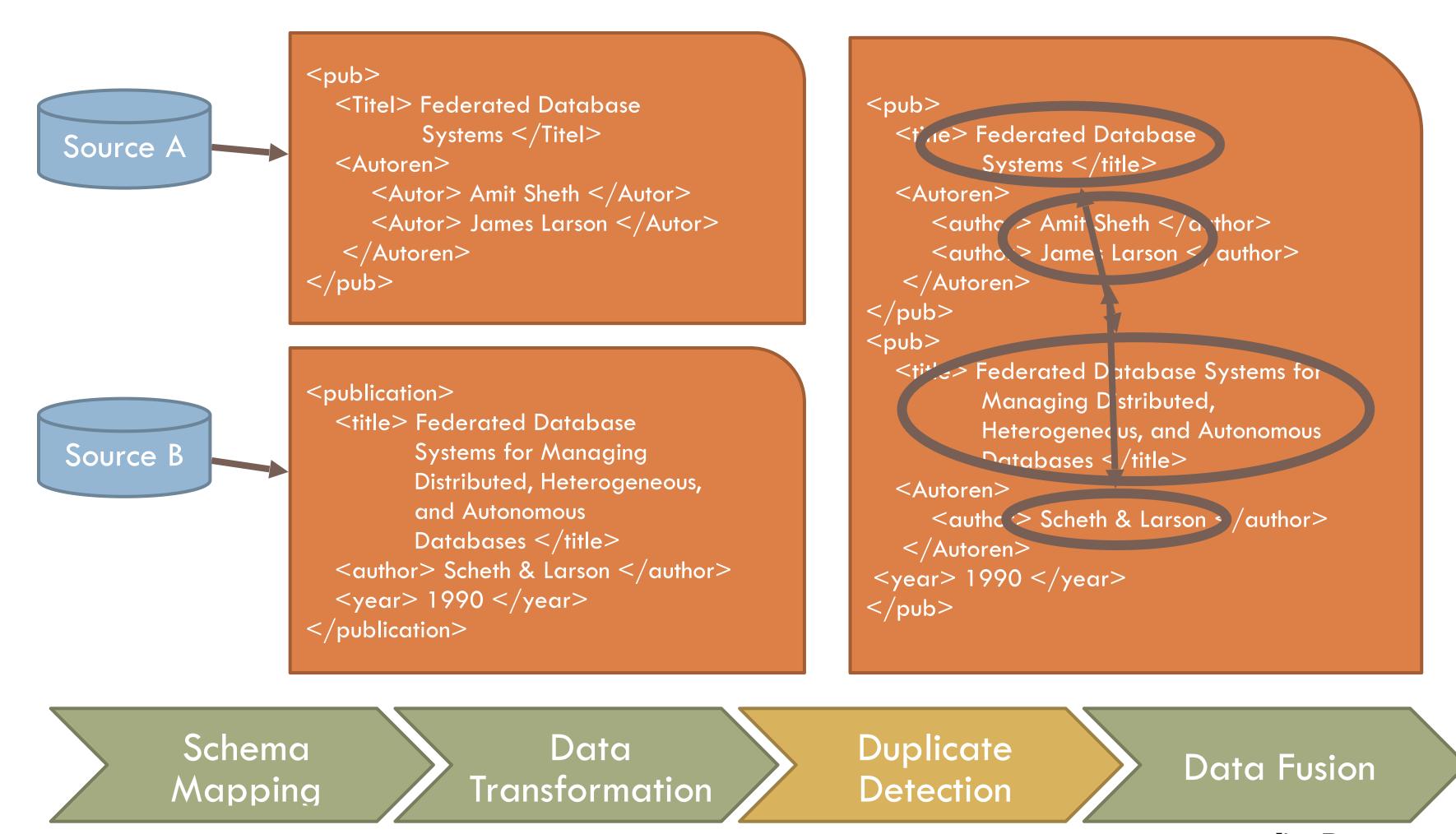
- Data Files: store the actual data (parquet, avro, orc)
- Manifest Files: track a group of data files (and delete files); have metadata for filtering (min/ max)
- Manifest Lists: which manifest files make up a table at a given point in time (snapshot)
- Metadata file: keeps track of table creates or data add/delete
- Catalog: Tracks the tables and pointer to the most recently created metadata file

[A. Merced, 2022]



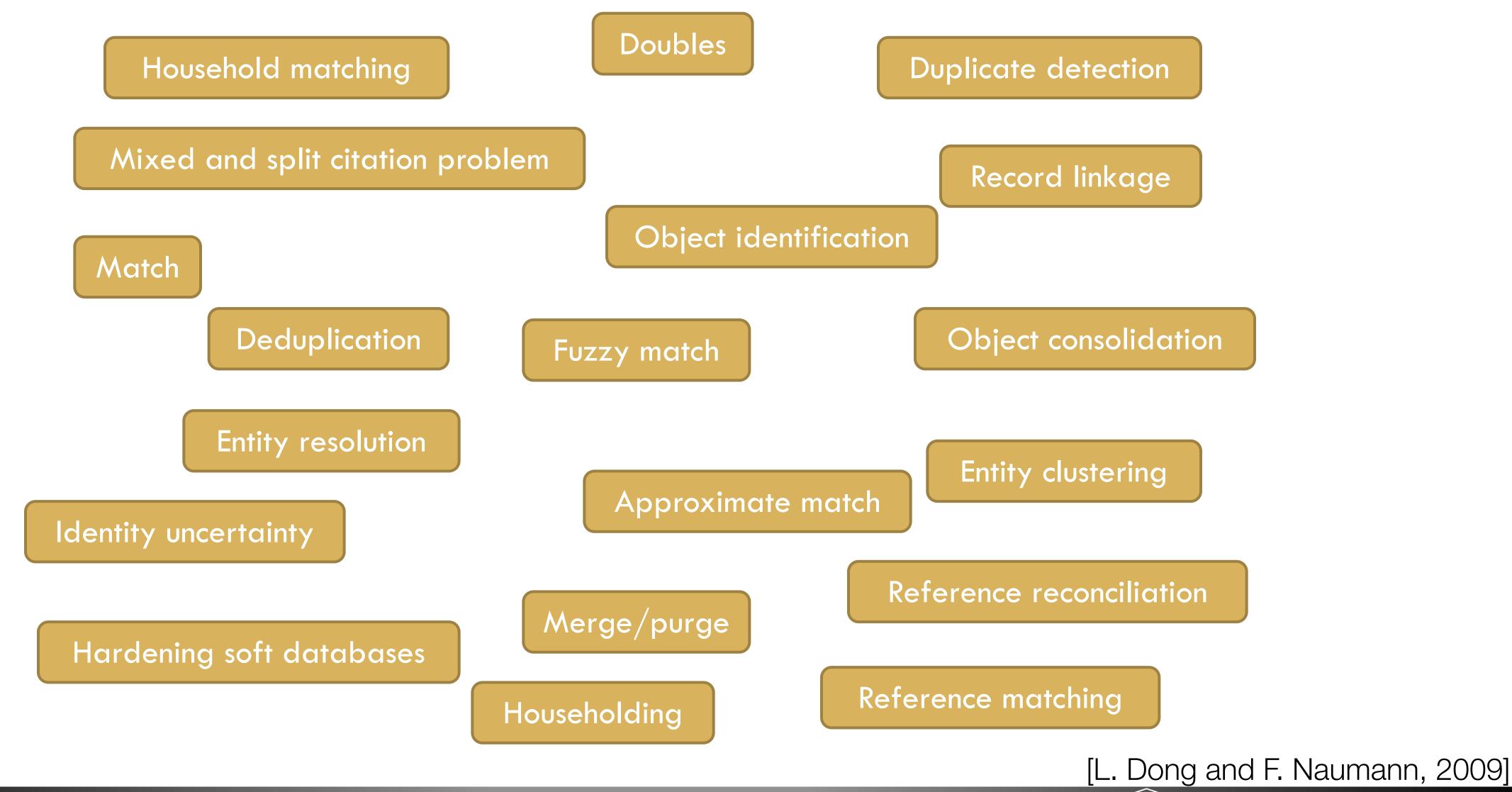




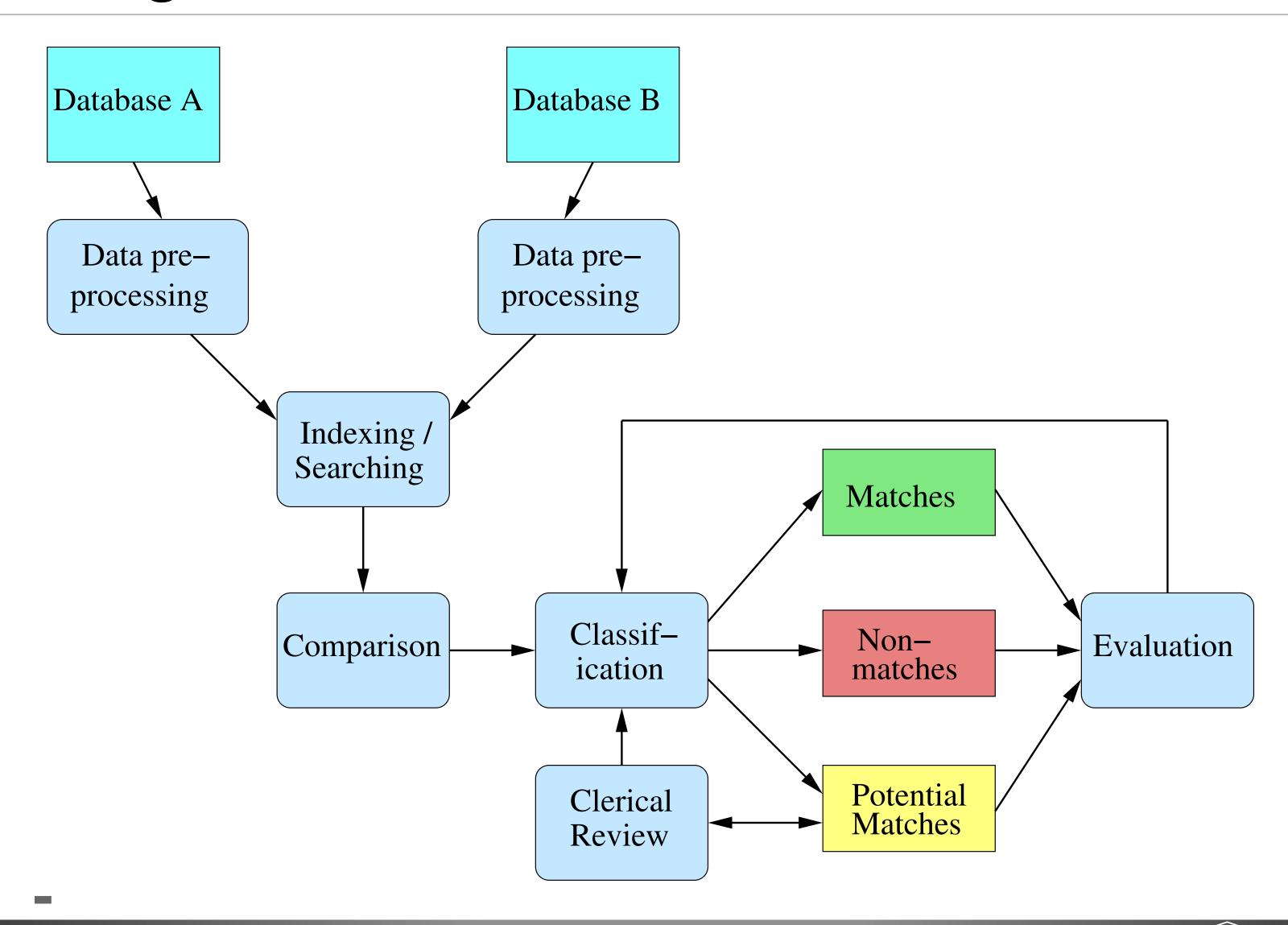


"Duplicate Detection" has many Duplicates

"Duplicate Detection" has many Duplicates



Record Linkage Process

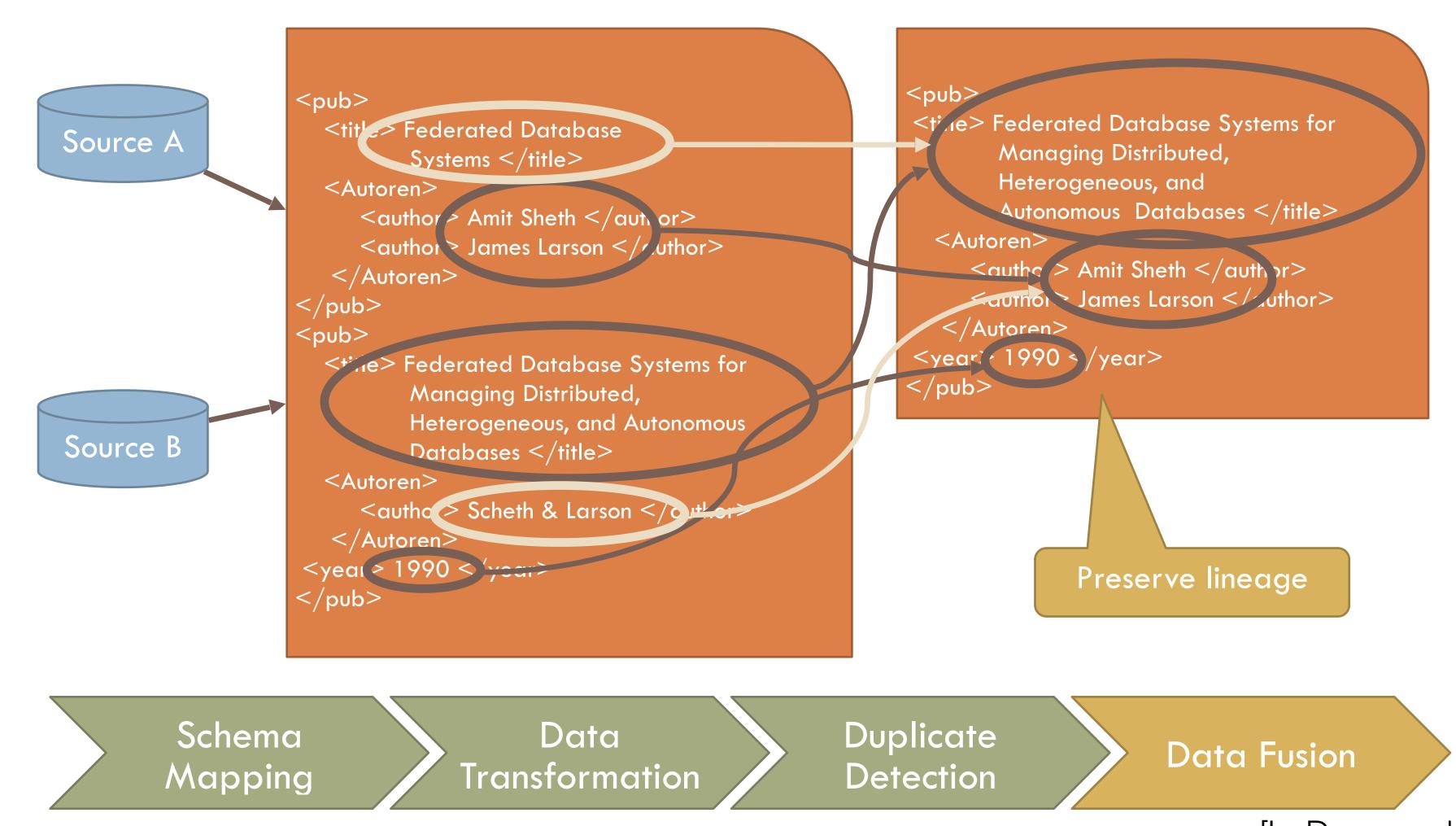


[P. Christen, 2019]

Record Linkage Techniques

- Deterministic matching
 - Rule-based matching (complex to build and maintain)
- Probabilistic record linkage [Fellegi and Sunter, 1969]
 - Use available attributes for linking (often personal information, like names, addresses, dates of birth, etc.)
 - Calculate match weights for attributes
- "Computer science" approaches
 - Based on machine learning, data mining, database, or information retrieval techniques
 - Supervised classification: Requires training data (true matches)
 - Unsupervised: Clustering, collective, and graph based

[P. Christen, 2019]



Assignment 3

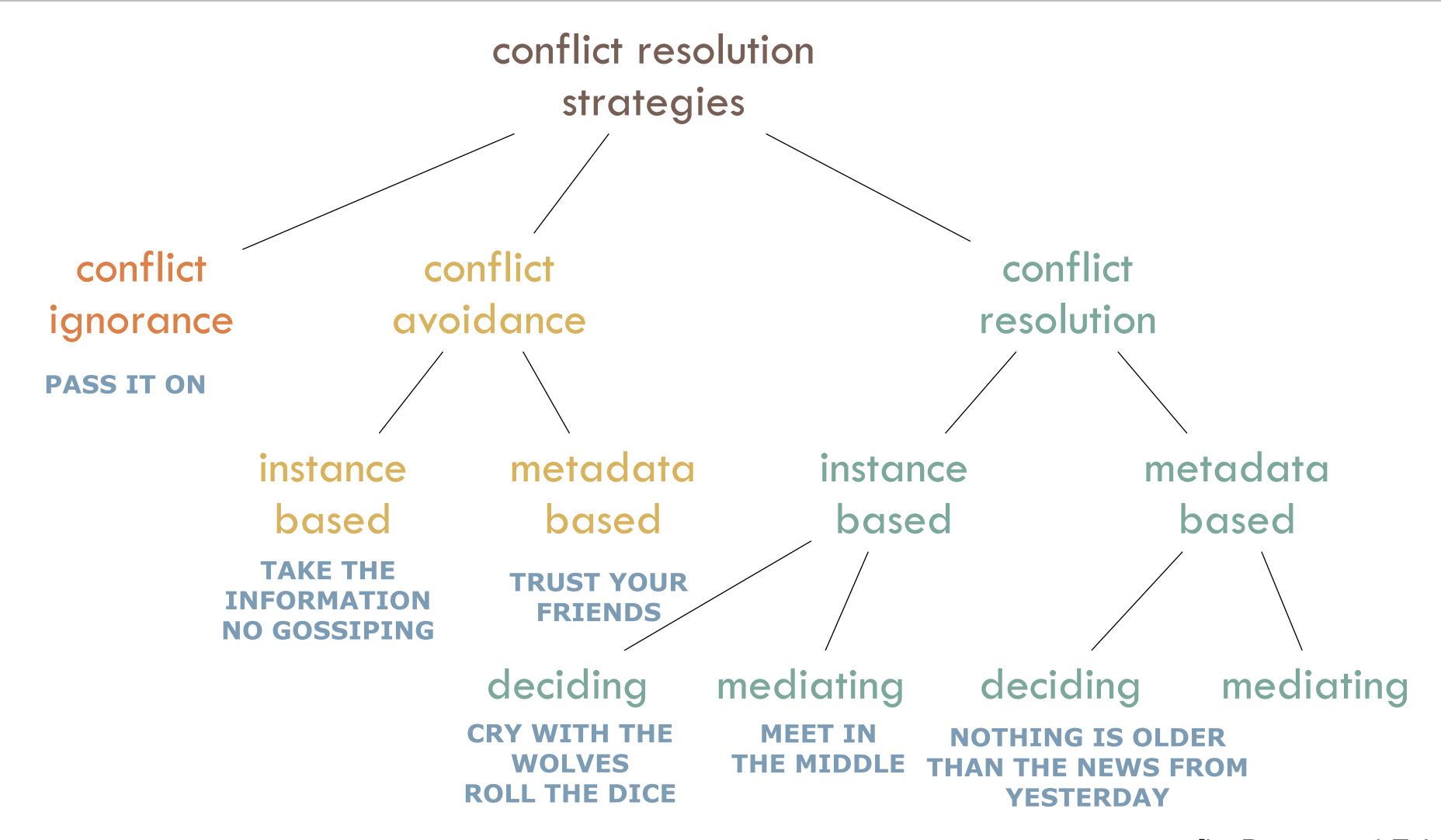
- Ask a Manager Salary Data
- Use Polars & OpenRefine
- Moved deadline to next Tuesday, October. 21

Data Fusion

Data Fusion

- Problem: Given a duplicate, create a single object representation while resolving conflicting data values.
- Difficulties:
 - Null values: Subsumption and complementation
 - Contradictions in data values
 - Uncertainty & truth: Discover the true value and model uncertainty in this process
 - Metadata: Preferences, recency, correctness
 - Lineage: Keep original values and their origin
 - Implementation in DBMS: SQL, extended SQL, UDFs, etc.

Conflict Resolution Strategies



Integrating Conflicting Data: The Role of Source Dependence

X. L. Dong, L. Berti-Equille, and D. Srivastava

Discussion

- What is the paper's main contribution?
- Do you buy the argument? Any issues with the experiments?
- Can you think of any scenarios where the proposed technique will fail?
- Questions?

Example Problem

Example Problem

	SI	S2	S3
Stonebraker	MIT	Berkeley	MIT
Dewitt	MSR	MSR	UWisc
Bernstein	MSR	1SR MSR M	MSR
Carey	UCI	AT&T	BEA
Halevy	Google	Google	UW

Naive Voting Works

	SI	S2	S3
Stonebraker	MIT	Berkeley	MIT
Dewitt	MSR	MSR	UWisc
Bernstein	MSR	MSR	MSR
Carey	UCI	AT&T	BEA
Halevy	Google	Google	UW

Naive Voting Only Works if Data Sources are Independent

Naive Voting Only Works if Data Sources are Independent

	SI	S2	S3	S4	S5
Stonebraker	MIT	Berkeley	MIT	MIT	MS
Dewitt	MSR	MSR	UWisc	UWisc	UWisc
Bernstein	MSR	MSR	MSR	MSR	MSR
Carey	UCI	AT&T	BEA	BEA	BEA
Halevy	Google	Google	UW	UW	UW

S4 and S5 copy from S3

	SI	S2	S3	S4	S5
Stonebraker	MIT	Berkeley	MIT	MIT	MS
Dewitt	MSR	MSR	UWisc	UWisc	UWisc
Bernstein	MSR	MSR	MSR	MSR	MSR
Carey	UCI	AT&T	BEA	BEA	BEA
Halevy	Google	Google	UW	UW	UW

S4 and S5 copy from S3

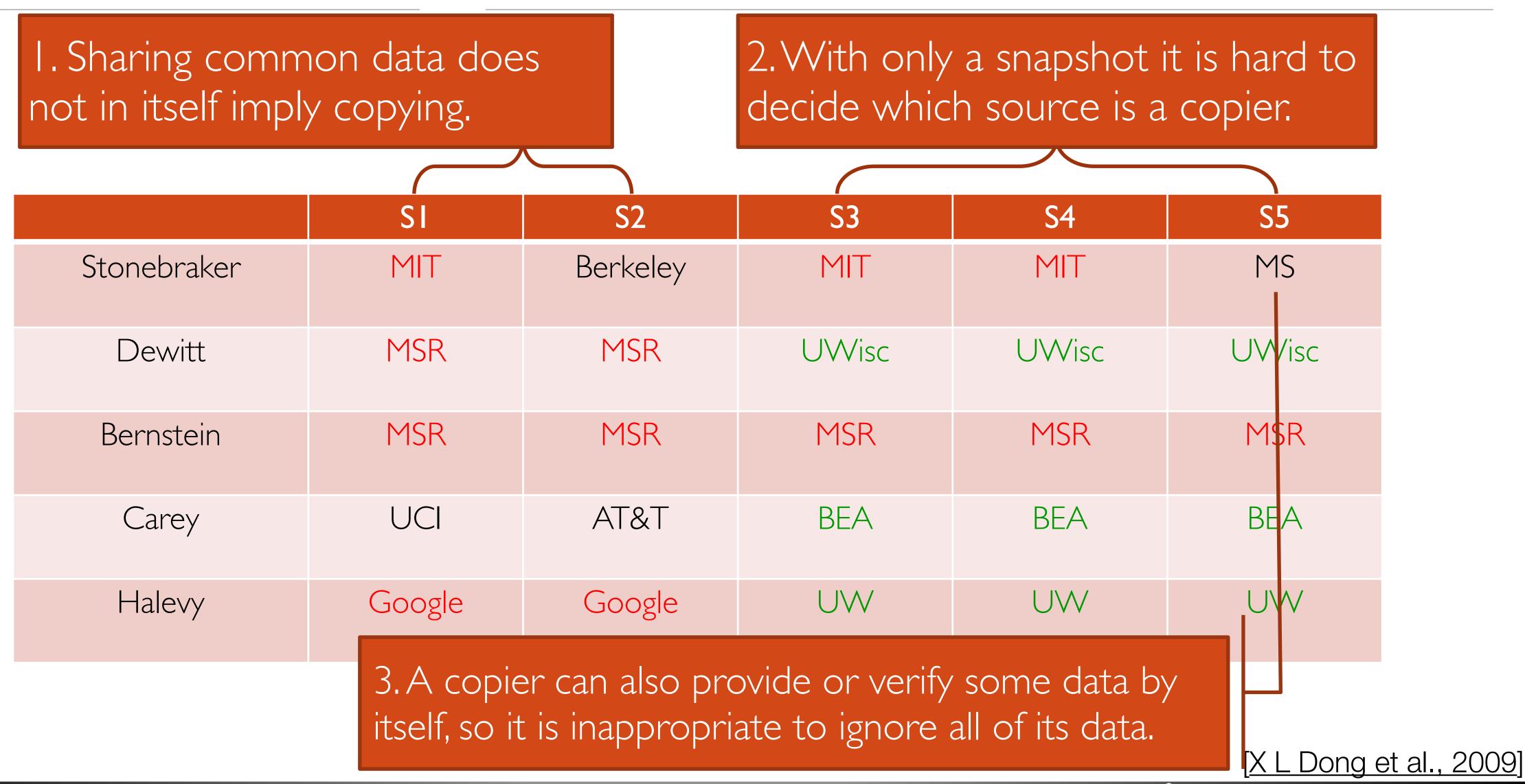
	SI	S2	S3	S4	S5
Stonebraker	MIT	Berkeley	MIT	MIT	MS
Dewitt	MSR	MSR	UWisc	UWisc	UVVisc
Bernstein	MSR	MSR	MSR	M\$R	MSR
Carey	UCI	AT&T	BEA	BEA	BEA
Halevy	Google	Google	UW	U\W	UW

	SI	S2	S3	S4	S5
Stonebraker	MIT	Berkeley	MIT	MIT	MS
Dewitt	MSR	MSR	UWisc	UWisc	UWisc
Bernstein	MSR	MSR	MSR	MSR	MSR
Carey	UCI	AT&T	BEA	BEA	BEA
Halevy	Google	Google	UW	UW	UW

	SI	S2	S3	S4	S5
Stonebraker	MIT	Berkeley	MIT	MIT	MS
Dewitt	MSR	MSR	UWisc	UWisc	UWisc
Bernstein	MSR	MSR	MSR	MSR	MSR
Carey	UCI	AT&T	BEA	BEA	BEA
Halevy	Google	Google	UW	UW	UW

2. With only a snapshot it is hard to decide which source is a copier.

	SI	S2	S3	S4	S5
Stonebraker	MIT	Berkeley	MIT	MIT	MS
Dewitt	MSR	MSR	UWisc	UWisc	UWisc
Bernstein	MSR	MSR	MSR	MSR	MSR
Carey	UCI	AT&T	BEA	BEA	BEA
Halevy	Google	Google	UW	UW	UW



Source Dependence

- Source dependence: two sources S and T deriving the same part of data directly or transitively from a common source (can be one of S or T).
 - Independent source
 - Copier
 - copying part (or all) of data from other sources
 - may verify or revise some of the copied values
 - may add additional values
- Assumptions
 - Independent values
 - Independent copying
 - No loop copying

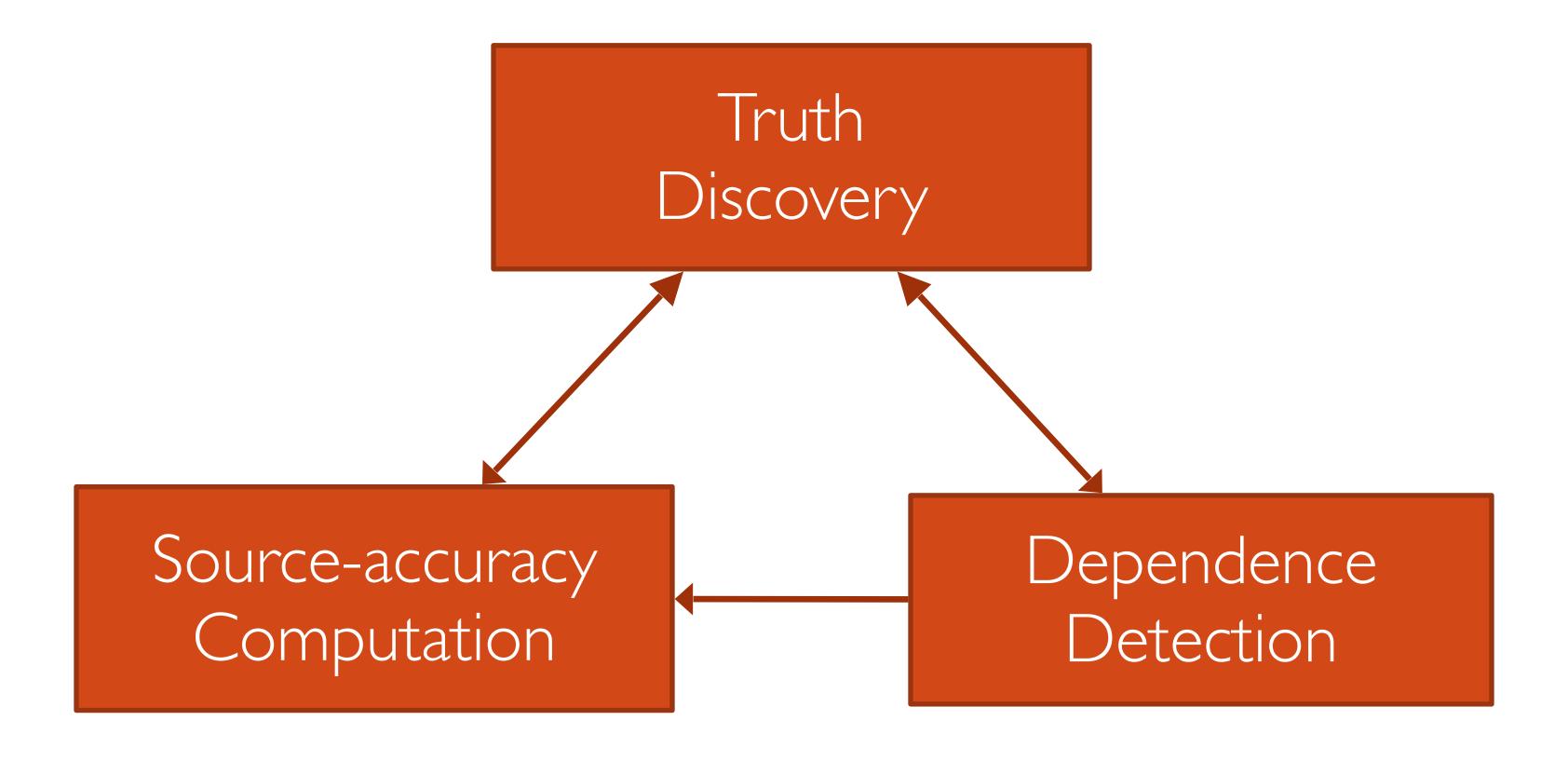
Core Case

- Conditions
 - Same source accuracy
 - Uniform false-value distribution
 - Categorical value
- Proposition: W. independent "good" sources, Naïve voting selects values with highest probability to be true.

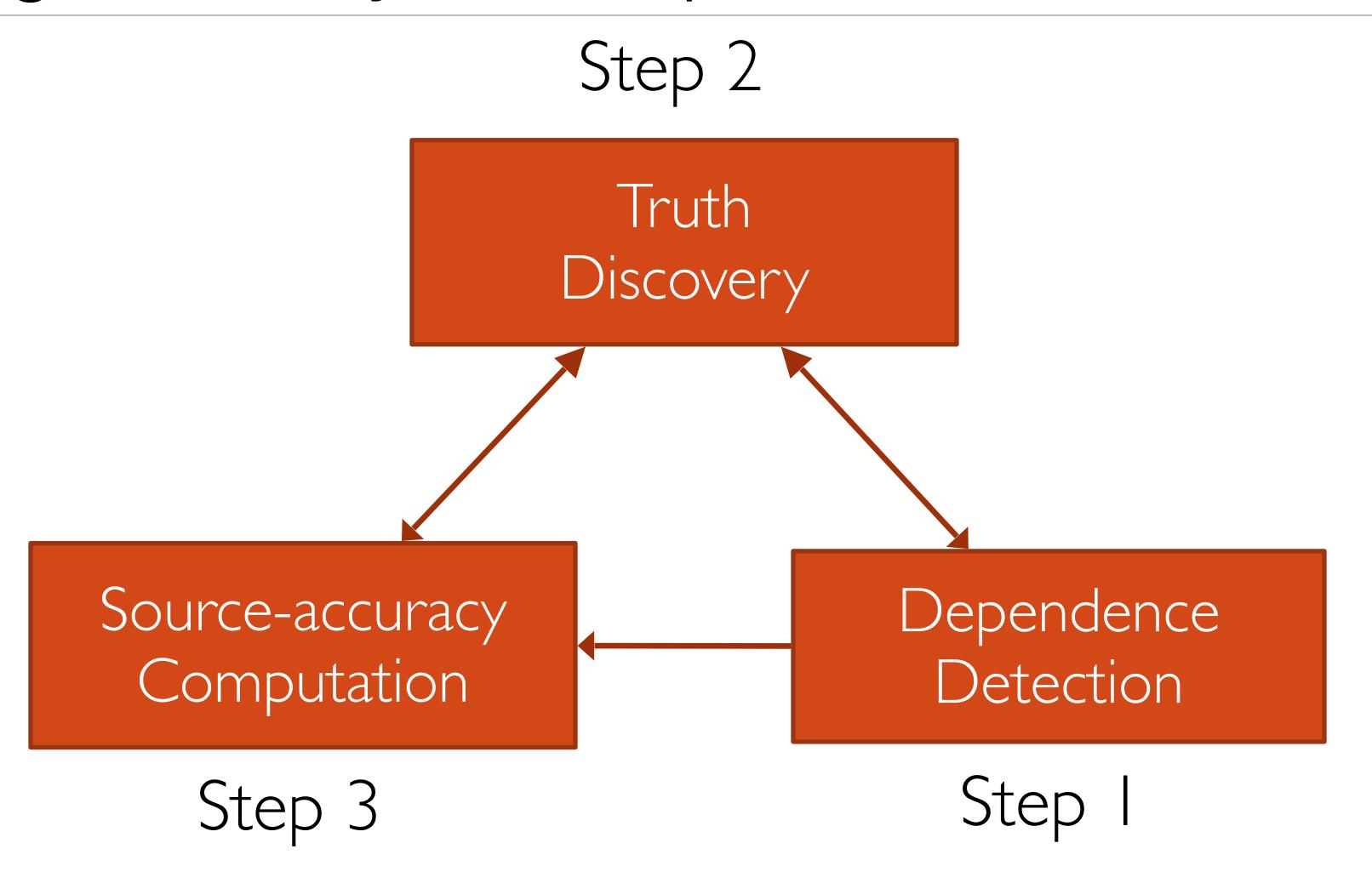
Ideas

- If two sources share a lot of false values, they are more likely to be dependent.
- S1 is more likely to copy from S2, if the accuracy of the common data is highly different from the accuracy of S1.

Combining Accuracy and Dependence

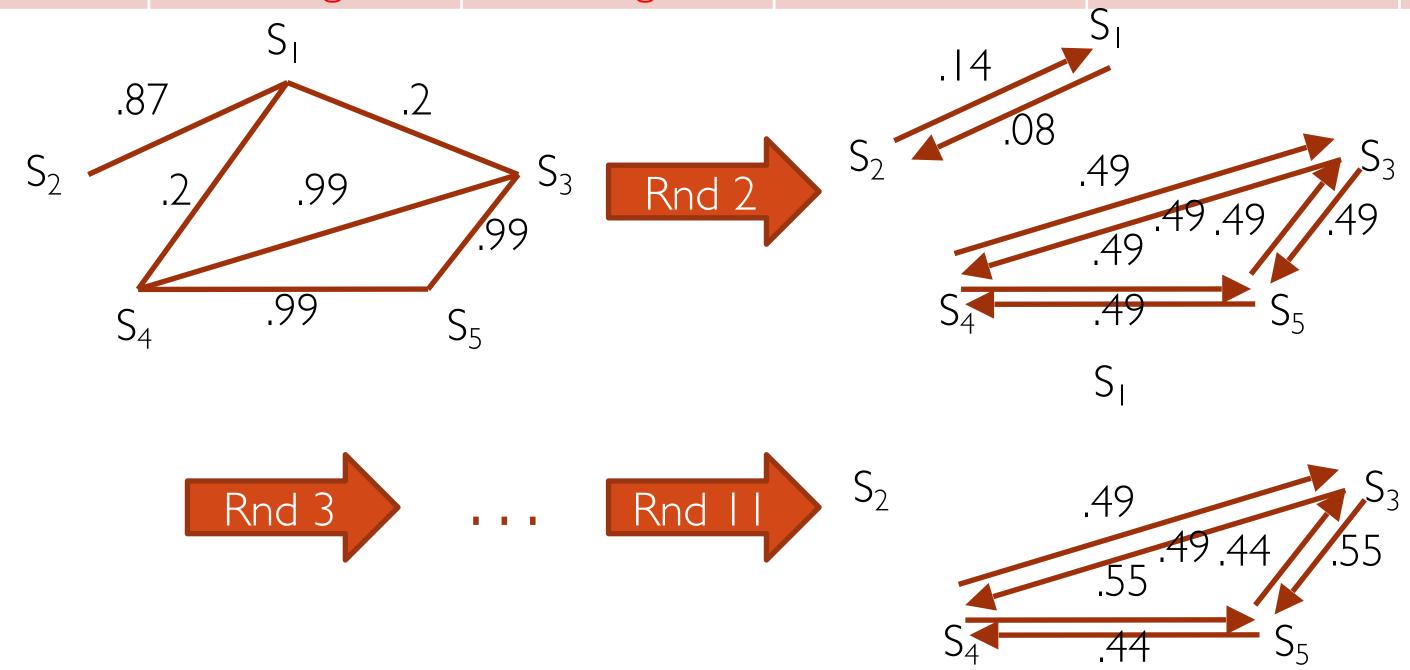


Combining Accuracy and Dependence



The Motivating Example

	SI	S2	S3	S4	S5
Stonebraker	MIT	Berkeley	MIT	MIT	MS
Dewitt	MSR	MSR	UWisc	UWisc	UWisc
Bernstein	MSR	MSR	MSR	MSR	MSR
Carey	UCI	AT&T	BEA	BEA	BEA
Halevy	Google	Google	UW	UW	UW



The Motivating Example

Accuracy	SI	S2	S3	S4	S5
Round 1	.52	.42	.53	.53	.53
Round 2	.63	.46	.55	.55	.55
Round 3	.71	.52	.53	.53	.37
Round 4	.79	.57	.48	.48	.31
Round 11	.97	.61	.40	.40	.21

Value		Carey			Halevy	
Confidence	UCI	AT&T	BEA	Google	UW	
Round 1	1.61	1.61	2.0	2.1	2.0	
Round 2	1.68	1.3	2.12	2.74	2.12	
Round 3	2.12	1.47	2.24	3.59	2.24	
Round 4	2.51	1.68	2.14	4.01	2.14	
Round 11	4.73	2.08	1.47	6.67	1.47	