Advanced Data Management (CSCI 640/490)

Data Integration

Dr. David Koop

Data Cleaning Types

- How can statistical techniques improve efficiency or reliability of data cleaning? (Data Cleaning with Statistics)
 - Example: Wrangler, polars
- How how can we improve the reliability of statistical analytics with data cleaning? (Data Cleaning for Statistics)
 - Example: SampleClean

[D. Haas et al., 2016]

Data Cleaning Overview

[J. Zhu et al., 2024]

Classifying Data Quality Problems

[E. Rahm & H. H. Do, 2000]

SampleClean (and Variants)

- Dirty Data?
 - Missing Values
 - Duplicate Values
 - Incorrect Values
 - Inconsistent Values
- Estimate query results using a sample of the data
- Two ideas:
 - Direct Estimate
 - Correction

SampleClean Framework

[J. Wang et al., 2014]

HoloClean

- A holistic data cleaning framework that combines qualitative methods with quantitative methods:
 - Qualitative: use integrity constraints or external data sources
 - Quantitative: use statistics of the data
- Driven by probabilistic inference. Users only need to provide a dataset to be cleaned and describe high-level domain specific signals.
- Can scale to large real-world dirty datasets and perform automatic repairs with high accuracy

HoloClean

The HoloClean Framework Output Input **Proposed Cleaned Dataset** Dataset to be cleaned 1. Error detection **DBAName** Address City State Zip DBAName City State Address Zip 3465 S module John Chicago t1 60608 Morgan ST Veliotis Sr. 3465 S John Chicago 60608 Morgan ST 3465 S Veliotis Sr. Chicago t2 60608 Veliotis Sr. Morgan ST 3465 S John Chicago 60609 Morgan ST Veliotis Sr. 3465 S t3 Chicago 60608 Morgan ST Veliotis Sr. 3465 S John 2. Automatic Chicago 60609 Veliotis Sr. Morgan ST 3465 S John Chicago 60608 dD compilation to a Veliotis Sr. Morgan ST 3465 S Cicago IL 60608 Johnnyo's Morgan ST probabilistic **Marginal Distribution** graphical model of Cell Assignments **Denial Constraints External Information** Possible Values | Probability Cell c1: DBAName → Zip Ext_City Ext_State Ext_Address c2: Zip → City, State 60608 0.84 t2.Zip 3465 S Morgan ST c3: City, State, Address → Zip Chicago 60608 60609 0.16 3. Repair via Chicago 60610 0.95 Chicago **Matching Dependencies** statistical learning t4.City 0.05 Cicago Chicago 259 E Erie ST 60611 m1: $Zip = Ext_Zip \rightarrow City = Ext_City$ and infernece m2: Zip = Ext_Zip → State = Ext_State John Veliotis Sr. 0.99 60623 Chicago Cermak Rd t4.DBAName m3: City = Ext_City \(\Lambda \) State = Ext_State \(\Lambda \) Johnnyo's 0.01

T. Rekatsinas et al., 2017

 \land Address = Ext_Address \rightarrow Zip = Ext_Zip

Data Cleaning and Al

- Traditional Methods are often efficient and interpretable
- Deep Learning is expensive and hard to understand but can be more effective
- Machine Learning provides a balance?

		Cost	Generalization	Interpretability	Efficiency	Effectiveness
	Traditional	¥			<i>P P P</i>	\$
AI $\left\{ \left[\right] \right.$	ML	¥¥			5	\$\frac{1}{2}
	DL	¥¥¥			5	

[J. Zhu et al., 2024]

Data Repair using LLMs (RetClean)

- Non-retrieval based: Send tuple to LLMs and identify tuple(s) and column(s) to be fixed
- Retrieval-based:
 - Indexer: Get top-k relevant tuples from a database/data lake
 - Reranker: Rank relevance using ColBERT/CrossBERT
 - Reasoner: Determine, using LLM, which tuple and value to use for fix
 - Reasoner keeps track of lineage

Data Repair using LLMs (RetClean)

[Naeem et al., 2024]

Data Imputation Challenges

[R. Cappuzzo et al., 2024]

CSAN Panel: Real Jobs in the Real World

- Tuesday, Oct. 7, 5:30–7:30pm
- Provides an insight into jobs from NIU alumni
- Food is Provided
- Sponsored by the Computer Science Alumni Network and the NIU Alumni Association

Test 1

- This Wednesday, October 8, 12:30-1:45pm in PM 103
- In-Class, paper/pen & pencil
- Covers material through this week
- Format:
 - Multiple Choice
 - Free Response
 - One extra 2-sided page for CSCI 640 Students
- Info will be on the course webpage

Assignment 3

- Clean the Ask a Manager Salary Survey Data
- Use polars to clean and transform data
- Will add a few more tasks or tasks using another tool

Outline

- Data Integration
- Data Matching (Entity Resolution)
- Data Fusion: Monday
- Data Fusion Techniques: Wednesday
 - Integrating Conflicting Data: The Role of Source Dependence, X. L. Dong et al., 2009
 - Quiz at the beginning of class on Wednesday, Oct. 15

Introduction to Data Integration

A. Doan, A. Halevy, and Z. Ives

Data Integration

Movie: Title, director, year, genre

Actors: title, actor

Plays: movie, location, startTime

Reviews: title, rating, description

Sources S1 and S3 are relevant, sources S4 and S5 are irrelevant, and source S2 is relevant but possibly redundant.

[AH Doan et al., 2012]

Data Integration & Data Matching

- Data Integration: focus on integrating data from different sources
- Data Matching (aka Entity Resolution aka Record Linkage):
 want to know that two entities (often in different sources) are the same "real" entity

Record Linkage Motivation

- Often data from different sources need to be integrated and linked
 - To allow data analyses that are impossible on individual databases
 - To improve data quality
 - To enrich data with additional information
- Lack of unique entity identifiers means that linking is often based on personal information
- When databases are linked across organisations, maintaining privacy and confidentiality is vital
- The linking of databases is challenged by data quality, database size, and privacy concerns

[P. Christen, 2019]

Motivating Example

- Preventing the outbreak of epidemics requires monitoring of occurrences of unusual patterns of symptoms, ideally in real time
- Data from many different sources will need to be collected (including travel and immigration records; doctors, emergency and hospital admissions; drug purchases; social network and location data; and possibly even animal health data)

[P. Christen, 2019], image: [Pharexia, Wikipedia]

Record Linkage

P. Christen

