
Advanced Data Management (CSCI 640/490)

Data Integration

Dr. David Koop

D. Koop, CSCI 640/490, Fall 2025

Data Cleaning Types
• How can statistical techniques improve efficiency or reliability of data

cleaning? (Data Cleaning with Statistics)
- Example: Wrangler, polars

• How how can we improve the reliability of statistical analytics with data
cleaning? (Data Cleaning for Statistics)

- Example: SampleClean

2

[D. Haas et al., 2016]
D. Koop, CSCI 640/490, Fall 2025

148 J. Zhu et al.

this survey, we focus on three primary data cleaning tasks,
i.e., error detection, data repairing and data imputation, to
handle erroneous and missing values. Figure 1 provides an
overview of these three tasks, with the relationship between
them. Error detection aims to identify potentially errone-
ous values within the relational data, which can be further
repaired by data repairing methods to avoid over-repair and
information loss. Data repairing can assist in resolving con-
flicts and duplicates, thereby improving data quality and pro-
viding high-quality information for imputing missing data.
Additionally, data imputation benefits both error detection
and data repairing tasks. By accurately imputing incomplete
cells, more available data can be obtained, thereby enhanc-
ing the signals required for the other two tasks. In a word,
these three data cleaning tasks complement each other and
have been extensively studied in existing works.

In the early research for data cleaning tasks, traditional
methods are extensively studied, because of their interpret-
ability and efficiency. However, since they may be limited by
fundamental assumptions and the inability to model complex
data relationships, with the rapid development of artificial
intelligence (AI), various AI-based methods are designed
to improve data quality. Although AI-based techniques can
leverage sophisticated signal design and powerful learning
capabilities to model complex relationships, yet they often
lack interpretability and performance guarantees, demand-
ing substantial computational resources and time costs. This
shows that these traditional methods and AI-based tech-
niques own different advantages and disadvantages, which
inspires us to conduct a comprehensive survey of them in
this study.

1.1 Traditional versus AI

As shown in Fig. 2, we analyze and compare traditional
methods and AI methods mainly in five dimensions. To

further highlight the differences and advantages of AI-based
methods, we categorize methods utilizing deep neural net-
works as deep learning (DL) based, while the remaining
methods are classified as machine learning (ML) based. In
general, AI-based methods exhibit stronger modeling capa-
bilities, resulting in superior effectiveness but lower effi-
ciency, with higher computation and time costs. On the other
hand, traditional methods spend lower costs providing the
interpretable data cleaning results but lacking generaliza-
tion ability according to specific assumptions. Specifically,
ML-based methods occupy a middle ground in terms of cost,
interpretability, and efficiency. They are not as low-cost and
efficient as traditional methods nor as high-cost and low-
efficiency as deep learning methods. ML-based methods
excel in generalization and effectiveness, offering robust
solutions across various applications while maintaining a
degree of interpretability. This makes ML-based methods
advantageous in scenarios where a balance between perfor-
mance and interpretability is crucial. DL-based methods,
while the most costly and having the lowest interpretability
and efficiency, excel in generalization and effectiveness. DL-
based methods can handle complex data patterns and large
datasets, significantly enhancing model accuracy and predic-
tive power. However, the high computational demands and
lower interpretability limit its use in applications requiring
real-time decision-making and high transparency.

1.1.1 Traditional

Traditional methods can generally be summarized into sev-
eral categories, such as statistical [28–32], cluster [33–37],
and constraint [38–43], according to the used signals.1
For instance, cluster-based error detection methods, like
DBSCAN [33], often utilize the density signal among data
points to delineate clusters and subsequently detect errors.
Constraint-based repair methods, like Holistic [39], leverage
denial constraints and a conflict hypergraph to ascertain the
minimum alterations necessary for repairs. Since both the
clustering process and its outcomes, along with the samples
that violate constraints, are observable, the results of error
detection are readily interpretable. Meanwhile, statistical-
based imputation methods, like mean/median imputation
[44], involve directly filling missing values based on the
mean/median value of observations, requiring low com-
putational resources, resulting in low cost and high time
efficiency. However, traditional methods may be tailored
to specific quality issues, thus making certain fundamental
assumptions. For instance, the mean/median imputer method
presupposes those data following the missing completely at
random pattern, when imputed values may introduce errors
and be susceptible to outliers [45]. Moreover, due to the

Fig. 1 Overview of three data cleaning tasks for erroneous and miss-
ing values

1 Please see the detailed discussion in Sects. 2-4.

Data Cleaning Overview

3

[J. Zhu et al., 2024]
D. Koop, CSCI 640/490, Fall 2025

https://link.springer.com/article/10.1007/s41019-024-00266-7

3

Single-Source Problems

Schema Level
(Lack of integrity
constraints, poor
schema design)

Instance Level
(Data entry errors)

Multi-Source Problems

Schema Level Instance Level

Data Quality Problems

- Naming conflicts
- Structural conflicts
…

- Inconsistent aggregating
- Inconsistent timing
…

(Heterogeneous
data models and
schema designs)

(Overlapping,
contradicting and
inconsistent data)

- Uniqueness
- Referential integrity
…

- Misspellings
- Redundancy/duplicates
- Contradictory values
…

Figure 2. Classification of data quality problems in data sources

2.1 Single-source problems
The data quality of a source largely depends on the degree to which it is governed by schema and integrity
constraints controlling permissable data values. For sources without schema, such as files, there are few
restrictions on what data can be entered and stored, giving rise to a high probability of errors and
inconsistencies. Database systems, on the other hand, enforce restrictions of a specific data model (e.g., the
relational approach requires simple attribute values, referential integrity, etc.) as well as application-specific
integrity constraints. Schema-related data quality problems thus occur because of the lack of appropriate
model-specific or application-specific integrity constraints, e.g., due to data model limitations or poor
schema design, or because only a few integrity constraints were defined to limit the overhead for integrity
control. Instance-specific problems relate to errors and inconsistencies that cannot be prevented at the
schema level (e.g., misspellings).

Scope/Problem Dirty Data Reasons/Remarks
Attribute Illegal values bdate=30.13.70 values outside of domain range
Record Violated attribute

dependencies
age=22, bdate=12.02.70 age = (current date – birth date)

should hold
Record
type

Uniqueness
violation

emp1=(name=”John Smith”, SSN=”123456”)
emp2=(name=”Peter Miller”, SSN=”123456”)

uniqueness for SSN (social security
number) violated

Source Referential
integrity violation

emp=(name=”John Smith”, deptno=127) referenced department (127) not defined

Table 1. Examples for single-source problems at schema level (violated integrity constraints)
For both schema- and instance-level problems we can differentiate different problem scopes: attribute (field),
record, record type and source; examples for the various cases are shown in Tables 1 and 2. Note that
uniqueness constraints specified at the schema level do not prevent duplicated instances, e.g., if information
on the same real world entity is entered twice with different attribute values (see example in Table 2).

Scope/Problem Dirty Data Reasons/Remarks
Missing values phone=9999-999999 unavailable values during data entry

(dummy values or null)
Misspellings city=”Liipzig” usually typos, phonetic errors
Cryptic values,
Abbreviations

experience=”B”;
occupation=”DB Prog.”

Embedded values name=”J. Smith 12.02.70 New York” multiple values entered in one attribute
(e.g. in a free-form field)

Attribute

Misfielded values city=”Germany”
Record Violated attribute

dependencies
city=”Redmond”, zip=77777 city and zip code should correspond

Word
transpositions

name1= “J. Smith”, name2=”Miller P.” usually in a free-form field

Duplicated records emp1=(name=”John Smith”,...);
emp2=(name=”J. Smith”,...)

same employee represented twice due to
some data entry errors

Record
type

Contradicting
records

emp1=(name=”John Smith”, bdate=12.02.70);
emp2=(name=”John Smith”, bdate=12.12.70)

the same real world entity is described by
different values

Source Wrong references emp=(name=”John Smith”, deptno=17) referenced department (17) is defined but
wrong

Table 2. Examples for single-source problems at instance level

Classifying Data Quality Problems

4

[E. Rahm & H. H. Do, 2000]
D. Koop, CSCI 640/490, Fall 2025

https://dbs.uni-leipzig.de/file/TBDE2000.pdf

SampleClean (and Variants)
• Dirty Data?
- Missing Values
- Duplicate Values
- Incorrect Values
- Inconsistent Values

• Estimate query results using a sample of the data
• Two ideas:
- Direct Estimate
- Correction

5D. Koop, CSCI 640/490, Fall 2025

!

Dirty!Data!

Result!Es.ma.on!
(RawSC)!

Dirty!
Sample!

Cleaned!
Sample!

Result!Es.ma.on!
(NormalizedSC)!

Results!with!Con<!
fidence!Intervals!

Aggregate!
Queries!

Sample!Crea.on!

Data!Cleaning!

Results!with!Con<!
fidence!Intervals!

Figure 2: The SampleClean framework.

entire table. To determine it, one way would be to estimate
its value from the sample. However, both analytical proofs
and empirical tests have shown that this method can lead to
highly inaccurate query results [10]. Therefore, in our pa-
per, we determine the duplication factor from the complete
relation.

It is important to note, however, that compared to full
cleaning, we only need to determine the duplication factor
for those tuples in the sample. As with other uses of sam-
pling, this can result in significant cost savings in duplicate
detection. In the following, we will describe how to apply ex-
isting deduplication techniques to compute the duplication
factor, and explain why it is cheaper to determine the du-
plication factor for a sample of the data, even though doing
so requires access to the complete relation.

Duplicate detection (also known as entity resolution) aims
to identify di↵erent tuples that refer to the same real-world
entity. This problem has been extensively studied for several
decades [22]. Most deduplication approaches consist of two
phases:

1. Blocking. Due to the large (quadratic) cost of all-

pair comparisons, data is partitioned into a number

of blocks, and duplicates are considered only within a

block. For instance, if we partition papers based on

conference_name, then only the papers that are pub-

lished in the same conference will be checked for dupli-

cates;

2. Matching. To decide whether two tuples are duplicates

or not, existing techniques typically model this problem

as a classification problem, and train a classifier to la-

bel each tuple pair as duplicate or non-duplicate [9].

In some recent research (and also at many compa-

nies) crowdsourcing is used to get humans to match

tuples [20,54].

A recent survey on duplicate detection has argued that the
matching phase is typically much more expensive than the
blocking phase [13]. For instance, an evaluation of the popu-
lar duplicate detection technique [9] shows that the matching
phase takes on the order of minutes for a dataset of thou-
sands of tuples [39]. This is especially true in the context of
crowdsourced matching where each comparison is performed
by a crowd worker costing both time and money. Sample-
Clean reduces the number of comparisons in the matching
phase, as we only have to match each tuple in the sample
with the others in its block. For example, if we sample 1% of
the table, then we can reduce the matching cost by a factor
of 100.

2.3.3 Result Estimation
After cleaning a sample, SampleClean uses the cleaned

sample to estimate the result of aggregate queries. Simi-
lar to existing SAQP systems, we can estimate query results
directly from the cleaned sample. However, due to data er-
ror, result estimation can be very challenging. For example,

consider the avg(citation_count) query in previous section.
Assume that the data has duplication errors and that papers
with a higher citation count tend to have more duplicates.
The greater the number of duplicates, the higher probability
a paper is sampled, and thus the cleaned sample may con-
tain more highly cited papers, leading to an over-estimated
citation count. We formalize these issues and propose the
RawSC approach to address them in Section 3.
Another quantity of interest is how much the dirty data

di↵ers from the cleaned data. We can estimate the mean
di↵erence based on comparing the dirty and cleaned sam-
ple, and then correct a query result on the dirty data with
this estimate. We describe this alternative approach, called
NormalizedSC, and compare its performance with RawSC
in Section 4.

SampleClean v.s. SAQP: SAQP assumes perfectly clean
data while SampleClean relaxes this assumption and makes
cleaning feasible. In RawSC, we take a sample of data, ap-
ply a data cleaning technique, and then estimate the result.
The result estimation is similar to SAQP, however, we re-
quire a few additional scaling factors related to the clean-
ing. On the other hand, NormalizedSC is quite di↵erent
from typical SAQP frameworks. NormalizedSC estimates
the average di↵erence between the dirty and cleaned data,
and this is only possible in systems that couple data clean-
ing and sampling. What is surprising about SampleClean
is that sampling a relatively small population of the overall
data makes it feasible to manually or algorithmically clean
the sample, and experiments confirm that this cleaning of-
ten more than compensates for the error introduced by the
sampling.

2.3.4 Example: SampleClean with OpenRefine
In this section, we will walk through an example imple-

mentation of SampleClean using OpenRefine [46] to clean
the data. Consider our example dirty dataset of publica-
tions in Figure 1(a). First, the user creates a sample of data
(e.g., 100 records) and loads this sample into the OpenRefine
spreadsheet interface. The user can use the tool to detect
data errors such as missing attributes, and fill in the cor-
rect values (e.g., from another data source or based on prior
domain expertise). Next, for deduplication, the system will
propose potential matches for each publication in the sam-
ple based on a blocking technique and the user can accept
or reject these matches. Finally, the clean sample with the
deduplication information is loaded back into the dataset.
In this example, sampling reduces the data cleaning e↵ort
for the user. The user needs to inspect only 100 records in-
stead of the entire dataset, and has no more than 100 sets
of potential duplicates to manually check.
To query this clean sample, we need to apply Sample-

Clean’s result estimation to ensure that the estimate remains
unbiased after cleaning since some records may have been
corrected, or marked as duplicates. In the rest of the paper,
we discuss the details of how to ensure unbiased estimates,
and how large the sample needs to be to get a result of
acceptable quality.

3. RawSC ESTIMATION

In this section, we present the RawSC estimation ap-
proach. RawSC takes a sample of data as input, applies
a data cleaning technique to the sample, runs an aggregate
query directly on the clean sample, and returns a result with
a confidence interval.

3.1 Sample Estimates

We will first introduce the estimation setting without data
errors and explain some results about estimates from sam-

SampleClean Framework

6

[J. Wang et al., 2014]
D. Koop, CSCI 640/490, Fall 2025

HoloClean
• A holistic data cleaning framework that combines qualitative methods with

quantitative methods:
- Qualitative: use integrity constraints or external data sources
- Quantitative: use statistics of the data

• Driven by probabilistic inference. Users only need to provide a dataset to be
cleaned and describe high-level domain specific signals.

• Can scale to large real-world dirty datasets and perform automatic repairs
with high accuracy

7

[T. Rekatsinas et al., 2017]
D. Koop, CSCI 640/490, Fall 2025

http://www.vldb.org/pvldb/vol10/p1190-rekatsinas.pdf

HoloClean

8

[T. Rekatsinas et al., 2017]
D. Koop, CSCI 640/490, Fall 2025

http://www.vldb.org/pvldb/vol10/p1190-rekatsinas.pdf

Data Cleaning and AI
• Traditional Methods are often efficient and interpretable
• Deep Learning is expensive and hard to understand but can be more

effective
• Machine Learning provides a balance?

9

[J. Zhu et al., 2024]
D. Koop, CSCI 640/490, Fall 2025

149Relational Data Cleaning Meets Artificial Intelligence: A Survey

complexity and diversity of data quality issues in real-world
scenarios, traditional methods may fall short in accurately
uncovering relationships between data, revealing shortcom-
ings in generalization. For example, DBSCAN assumes that
data clusters should be composed of high-density regions,
which should be separated by low-density regions, making
it ineffective in handling clusters with uneven density [46].

1.1.2 ML

In contrast to traditional methods, ML-based cleaning meth-
ods usually rely on more sophisticated signals [47–50], often
employing machine learning techniques or incorporating rel-
atively simple networks [51, 52, 52]. This enables them to
model more complex relationships and achieve better effec-
tiveness in many scenarios compared to traditional methods.
For example, the ML-based method, Raha [47], serves as
a configuration-free error detection approach, generating a
limited number of error detection algorithm configurations
covering various types of data errors, thereby producing
expressive feature vectors for each tuple value. HoloClean
[53] integrates integrity constraints, external data, and quan-
titative statistical information to rectify errors within data.
Besides, BoostClean [49] combines statistical and machine
learning methods in a boost-clean architecture. As for meth-
ods like RNNI [51] and MLPI [52], they apply recurrent
neural networks (RNN) and Multilayer Perceptrons (MLP),
respectively, in data imputation. Due to the consideration of
broader cleaning scenarios and the incorporation of various
signals and techniques, ML-based methods typically incur a
higher computational cost and are less efficient due to their
complexity. They also generally provide better generaliza-
tion than traditional methods, effectively adapting to diverse
data patterns and types of errors. While interpretability
can vary, their effectiveness is often superior to traditional
approaches. This is evident in methods like Raha [47] and
HoloClean [53], which leverage sophisticated signals and
complex relationships to achieve better performance.

1.1.3 DL

In this study, DL-based methods typically employ more
complex models compared to ML methods, such as deep
neural networks like GANs [54–56], DAEs [57, 58], GNNs
[59, 60] and LLMs [61–63]. For example, GAIN [54] is a

deep learning imputation model, that combines generative
modeling with adversarial training to impute missing values.
It employs a generator and a discriminator, with hint vec-
tors guiding the discriminator to focus on imputation qual-
ity. DPLAN [64] uses an adapted deep Q network (DQN)
designed for error detection. This model learns known errors
through automatic interactions while actively exploring
potential errors in unlabeled data to continuously refine the
understanding of unknown errors. LLMClean [62] lever-
ages the powerful modeling and generalization capabilities
of large language models (LLMs). By automatically gen-
erating context models from real-world data, it eliminates
the need for additional meta-information. The approach
enhances data cleaning through dataset classification, model
extraction or mapping, and the creation of context models.
However, it is inevitable that such complex frameworks or
models demand larger datasets for training and consume
substantial computational resources and time [65], result-
ing in high costs and low efficiency. Furthermore, as they
typically only provide the results of data cleaning without
offering explanations for the decisions made, these AI-based
methods often lack interpretability [66].

1.2 Use Cases

Considering different strengths and weaknesses of tradi-
tional and AI methods, the data cleaning choice should
consider specific applications. To provide a reference, we
analyze specific application scenarios of traditional and AI
methods respectively below.

1.2.1 Applications of Traditional Methods

As shown in Fig. 3, consider a medical dataset that records
information of tumor patients, including the treatment plans
adopted and the current survival status of patients. Doctors
formulate treatment plans based on patients’ physiological
characteristics (such as gender and age) and relevant physio-
logical indicators of the tumor. These plans may yield differ-
ent outcomes, and data cleaning methods can organize these
related relationships to complete the repair and fill-in of the
medical dataset. For example, the tumor size of Patient 2 is
a typical decimal point error. Although both traditional and
AI methods may correct 105 to 1.05, traditional methods can
provide a specific derivation process and offer a reasonable

Fig. 2 Traditional versus AI
data cleaning methods

https://link.springer.com/article/10.1007/s41019-024-00266-7

Data Repair using LLMs (RetClean)
• Non-retrieval based: Send tuple to LLMs and identify tuple(s) and column(s)

to be fixed
• Retrieval-based:
- Indexer: Get top-k relevant tuples from a database/data lake
- Reranker: Rank relevance using ColBERT/CrossBERT
- Reasoner: Determine, using LLM, which tuple and value to use for fix
- Reasoner keeps track of lineage

10

[Naeem et al., 2024]
D. Koop, CSCI 640/490, Fall 2025

https://www.vldb.org/pvldb/vol17/p4421-eltabakh.pdf

Figure 1: An Overview of RetClean.

data lake that could potentially help the cleaning task. Then, we
utilize the selected LLM to make inferences about which value to
use along with its source tuple–providing a better explainability
compared to Scenario 1.

Scenario 3: Retrieval-based data cleaning with local models
(e.g., Dolly-v2-3B and LLaMA-7B). For both Scenarios 1 and
2, one legitimate concern when using externally hosted models
is data privacy. However, locally deployable models, which are
small-scale models that can be easily hosted by any organization
in a variety of settings, including cloud-based environments or on-
premise servers, would be ideal if one is worried about data privacy.
Typically, they are around 3B to 13B parameter models. To this end,
we demonstrate the e!ectiveness of such small models, especially
when "ne-tuned for a given domain. The local model takes a pair
of tuples (i.e., a query tuple with a missing value and a retrieved
tuple), and then infers the missing value when possible.

RetClean is designed to seamlessly support the three above
scenarios. With its user-friendly GUI supporting di!erent con"gu-
rations, the VLDB audience can e!ortlessly experiment with the
system and explore each of the scenarios in detail.

2 SYSTEM ARCHITECTURE
Figure 1 shows the architecture of RetClean.
User Input. The user uploads a relational table and indicates which
column(s) contain the missing values to be "xed. The user can
optionally specify a subset of non-dirty pivot columns as relevant
to the cleaning task, i.e., these columns functionally determine the
values in the dirty column.

Take the following con"guration as an example (refer to the 3𝐿𝑀
column in “health.csv” table in Figure 1):

1 table = !health.csv!
2 dirty_column = !Gender!
3 relevant_columns = ['Name','Age']
4 value = 'NULL'
5 is_local_model = False # use ChatGPT

Listing 1: Not retrieval-based con!guration

Here, the user wants to impute the missing values (indicated by
value = NULL) in the Gender column. The Name and Age columns
are identi"ed as the pivot columns. Assuming that these columns are
not highly sensitive, the user asks RetClean to use a public model
(e.g., GPT or Gemini) to perform the missing value imputation task.

Another example of a con"guration is (refer to the 4𝑁𝑂 column
in “health.csv” table):

1 table = !health.csv!
2 dirty_column = !BT! # BT is blood type
3 relevant_columns = ALL
4 value = 'NULL'
5 datalake = !/Users/hosp_tables/! # A folder of CSV files
6 is_local_model = True

Listing 2: Retrieval-based con!guration

Here, the user wants to impute the missing values in the Blood
Type (BT) column. Such details are most probably not available as
world knowledge, but could be available in a local data lake, e.g., a
hospital database. Therefore, the user opts for and speci"es the use
of a data lake. The local mode #ag is set to True, which indicates
the use of the custom local LLM, possibly for privacy concerns.
Non-retrieval based data cleaning. RetClean employs a tuple-
by-tuple cleaning approach. In the case the user opts for non-
retrieval-based methods (e.g., cleaning 𝐿1 and 𝐿4 in column Gender),
RetClean reads one tuple at a time and passes it to the selected
LLM in the Reasoner module. In this case, retrieval-related mod-
ules (i.e., the Indexer and Reranker) are bypassed. The LLM, based
the knowledge it learned from its training data, suggests values for
imputation for 𝐿1 and 𝐿4, as depicted in the output of Figure 1.
Retrieval-based data cleaning. If the user opts for a retrieval-
based method, RetClean will index all tuples in the speci"ed data
lake. The Tuple-Based Indexer module supports both a syn-
tactic and semantic index. The syntactic index is implemented
in Elasticsearch and use the default BM25 for similarity search.
The semantic search is performed using a vector database, namely
Qdrant (https://github.com/qdrant/qdrant). We also use LlamaIndex
(https://www.llamaindex.ai/) to easily connect these indexes to the
LLM, either local or on the cloud. Then, given a dirty tuple (e.g., 𝐿2

4422

Data Repair using LLMs (RetClean)

11

[Naeem et al., 2024]
D. Koop, CSCI 640/490, Fall 2025

https://www.vldb.org/pvldb/vol17/p4421-eltabakh.pdf

Relational Data Imputation with Graph Neural Networks
Riccardo Cappuzzo

EURECOM
France

cappuzzo@eurecom.fr

Saravanan
Thirumuruganathan

QCRI, HBKU
Qatar

sthirumuruganathan@hbku.edu.qa

Paolo Papotti
EURECOM
France

papotti@eurecom.fr

ABSTRACT
Performing data analysis over incomplete data produces biased re-
sults and sub-par performance. Imputation over relational datasets
that contain both categorical and continuous variables is chal-
lenging. The challenges are accentuated when the missingness
proportion of dataset is high, wherein a large fraction of the
relation contain missing values, or if missing values occur in mul-
tiple attributes of a single tuple. In this paper, we propose GRIMP,
a novel approach for imputation that tackles these challenges.
GRIMP achieves high imputation accuracy through a combina-
tion of three novel ideas. First, it represents relational data as a
heterogeneous graph, encoding sophisticated relationships be-
tween tuples, attributes and cell values. Second, it uses graph
representation learning based on message passing to combine
and aggregate the representations from appropriate neighbor-
hoods. This allows GRIMP to leverage information from other
cell values of the same tuple and that of similar tuples for im-
putation. Finally, it uses a self-supervised multi-task learning
paradigm for training imputation models. In other words, GRIMP
does not need any explicit training data as it uses the existing
relational data, even when it has missing values. GRIMP trains an
imputation model for each attribute using a two-stage approach
consisting of a task agnostic section, where the parameters are
shared across all attributes, and an attribute speci!c imputation
model. Experiments over ten datasets and seven baselines show
that GRIMP performs accurate imputation and provides new
insights about the limitations of data imputation systems.

1 INTRODUCTION
Missing data is one of the most common data quality issues.
Any analysis performed on the incomplete data would produce
biased estimates leading to poor decision making. It can also
a"ect the downstream applications, such as machine learning
(ML), by reducing the amount and quality of complete training
data. If the amount of missing data is minimal and the data is
missing completely at random (MCAR), then a natural, if wasteful
approach would be to ignore tuples with missing values during
the analysis. In practice, many real-world datasets might contain
too much missing data, or have systematic sources of missing
values: here, omitting “dirty” tuples would result in biased data
analysis.

Prior Work and their Limitations. There has been extensive
work on data imputation. Discriminative models such as random
forests or neighborhood methods often produce poor results in
the presence of systematically missing data as they produce bi-
ased estimates that a"ect interpolation based approaches [52].
An alternate approach is to use (deep) generative models such as

© 2024 Copyright held by the owner/author(s). Published in Proceedings of the
27th International Conference on Extending Database Technology (EDBT), 25th
March-28th March, 2024, ISBN 978-3-89318-094-3 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Gender State AreaCode Marital
Status Salary Rate

RI 401 S 15000

M 401 M 100000 9.5

M NH 603 M 85000 8.25

M HI M 7.5

Multiple missing
values in the

same row

Categorical attributes Numerical attributes

Lack of training
data

Mixed
attributes

Exploits
attribute

relationship

Exploits
tuple

relationship

Figure 1: Example of data imputation challenges (left) and
opportunities (right).

Generative Adversarial Networks (GANs) or denoising autoen-
coders to reconstruct missing values. These approaches make
assumptions about data distributions. When these assumptions
hold, they produce accurate imputation and better generalization.
However, exemplars of both these classes of techniques have
many limitations that minimize their e"ectiveness on relational
data.

First, most of the prior work cannot handle mixed datasets con-
taining both categorical and continuous attributes. Unfortunately,
most of the relational datasets fall into this category, as depicted
in Figure 1. A key challenge is that training a classi!er requires
multiple objectives, such as minimizing RMSE for continuous
data and cross-entropy for categorical data. This is especially
non-trivial for deep generative models, where poor training re-
sults in non-convergence or mode collapse [9, 52]. Second, many
imputation models require a clean data subset for training. This
might not always be possible when a large portion of the data
has missing values, thus resulting in relatively poor performance.
Third, popular approaches for multiple imputations (where a
tuple might have multiple attributes with missing values) such as
MissForest [46] or MICE [48] are iterative in nature. Speci!cally,
they train𝐿 separate models for imputing𝐿 attributes wherein
each model uses all attributes but one to impute the remaining
attribute. This process is iterated over all features to produce a
completely imputed dataset. A key issue with this approach is
that each of the𝐿 models learns the imputation without sharing
the commonalities. Finally, most of prior approaches do not take
global relationships into account for imputation. Discriminative
models are trained over individual tuples and used for imputing
on individual tuples. However, it is bene!cial to involve infor-
mation beyond the single tuple – such as other similar tuples or
meta-information such as functional dependencies that establish
relationships between multiple attributes.

Two recent approaches leverage di"erent kinds of information
to improve imputation performance. AimNet [52] leverages the
attention mechanism to learn the relationships between attributes,
such as State and AreaCode in Figure 1. GINN [45] uses a graph
convolutional layer within an autoencoder architecture. This
allows the model to leverage similar tuples, as depicted in Figure 1
for the imputation of Salary in the last tuple. However, both

Data Imputation Challenges

12

[R. Cappuzzo et al., 2024]
D. Koop, CSCI 640/490, Fall 2025

https://openproceedings.org/2024/conf/edbt/paper-62.pdf

REAL
JOBS IN
THE REAL
WORLD

TUESDAY, OCT. 7, 2025
Barsema Alumni & Visitors Center (Ballroom)

5:30–7:30 p.m.

Sponsored by the NIU Alumni Association (myniu.com) and Computer Science Alumni Network.
For questions, more information contact Dana King ’05 at dking1@niu.edu or 815-753-5421

N I U P A N E L D I S C U S S I O N G U E S T S P E A K E R S

A Panel
Discussion

 Nathan Lupstein ’16
B.S. Political Science –
College of Liberal Arts

and Sciences
University Recruiting Strategist,

Google

Curtis Baryla ’22
B.S. Operations Management

& Information Systems –
College of Business

Senior Consultant,
Booz Allen Hamilton

Jonathan Pollastrini ’20
B.S. Computer Science –

College of Liberal Arts
and Sciences

Software Development Engineer,
ALDI

MODERATOR: Maribeth Anderson ’78
B.S. Computer Science – College of Liberal Arts and Sciences

CSAN Panel: Real Jobs in the Real World
• Tuesday, Oct. 7, 5:30–7:30pm
• Provides an insight into jobs from

NIU alumni
• Food is Provided
• Sponsored by the Computer Science

Alumni Network and the NIU Alumni
Association

13D. Koop, CSCI 640/490, Fall 2025

Test 1
• This Wednesday, October 8, 12:30-1:45pm in PM 103
• In-Class, paper/pen & pencil
• Covers material through this week
• Format:
- Multiple Choice
- Free Response
- One extra 2-sided page for CSCI 640 Students

• Info will be on the course webpage

14D. Koop, CSCI 640/490, Fall 2025

https://faculty.cs.niu.edu/~dakoop/cs640-2025fa/test1.html

Assignment 3
• Clean the Ask a Manager Salary Survey Data
• Use polars to clean and transform data
• Will add a few more tasks or tasks using another tool

15D. Koop, CSCI 640/490, Fall 2025

https://faculty.cs.niu.edu/~dakoop/cs640-2025fa/assignemnt3.html

Outline
• Data Integration
• Data Matching (Entity Resolution)
• Data Fusion: Monday
• Data Fusion Techniques: Wednesday
- Integrating Conflicting Data: The Role of Source Dependence,

X. L. Dong et al., 2009
- Quiz at the beginning of class on Wednesday, Oct. 15

16D. Koop, CSCI 640/490, Fall 2025

http://www.lunadong.com/publication/dependence_vldb.pdf

Introduction to Data Integration

A. Doan, A. Halevy, and Z. Ives

D. Koop, CSCI 640/490, Fall 2025

http://research.cs.wisc.edu/dibook/slides/Chapter_1.ppt

Data Integration
select title, startTime
from Movie, Plays
where Movie.title=Plays.movie AND
 location=“New York” AND
 director=“Woody Allen”

Sources S1 and S3 are relevant, sources S4 and S5 are irrelevant, and
source S2 is relevant but possibly redundant.

18

[AH Doan et al., 2012]
D. Koop, CSCI 640/490, Fall 2025

Cinemas:
place, movie,

start

Reviews:
title, date

grade, review

Movies:
 name, actors,
director, genre

Cinemas in NYC:
cinema, title,

startTime

Cinemas in SF:
location, movie,

startingTime

Movie: Title, director, year, genre
Actors: title, actor
Plays: movie, location, startTime
Reviews: title, rating, description

S1 S2 S3 S4 S5

Data Integration & Data Matching
• Data Integration: focus on integrating data from different sources
• Data Matching (aka Entity Resolution aka Record Linkage):

want to know that two entities (often in different sources) are the same "real"
entity

19D. Koop, CSCI 640/490, Fall 2025

Record Linkage Motivation
• Often data from different sources need to be integrated and linked
- To allow data analyses that are impossible on individual databases
- To improve data quality
- To enrich data with additional information

• Lack of unique entity identifiers means that linking is often based on
personal information

• When databases are linked across organisations, maintaining privacy and
confidentiality is vital

• The linking of databases is challenged by data quality, database size, and
privacy concerns

20

[P. Christen , 2019]
D. Koop, CSCI 640/490, Fall 2025

http://users.cecs.anu.edu.au/~Peter.Christen/publications/christen2019csic-tutorial-slides.pdf

Motivating Example
• Preventing the outbreak of epidemics

requires monitoring of occurrences of
unusual patterns of symptoms,
ideally in real time

• Data from many different sources will
need to be collected (including travel
and immigration records; doctors,
emergency and hospital admissions;
drug purchases; social network and
location data; and possibly even
animal health data)

21

[P. Christen , 2019], image: [Pharexia, Wikipedia]
D. Koop, CSCI 640/490, Fall 2025

http://users.cecs.anu.edu.au/~Peter.Christen/publications/christen2019csic-tutorial-slides.pdf
https://commons.wikimedia.org/wiki/File:COVID-19_Outbreak_World_Map.svg

Record Linkage

P. Christen

D. Koop, CSCI 640/490, Fall 2025

http://users.cecs.anu.edu.au/~Peter.Christen/publications/christen2019csic-tutorial-slides.pdf

