
Advanced Data Management (CSCI 640/490)

Data Cleaning 

Dr. David Koop

D. Koop, CSCI 640/490, Fall 2025



Three Ways to Present the Same Data

2

[H. Wickham, 2014]
D. Koop, CSCI 640/490, Fall 2025

Journal of Statistical Software 3

2.1. Data structure

Most statistical datasets are rectangular tables made up of rows and columns. The columns
are almost always labelled and the rows are sometimes labelled. Table 1 provides some data
about an imaginary experiment in a format commonly seen in the wild. The table has two
columns and three rows, and both rows and columns are labelled.

treatmenta treatmentb

John Smith — 2
Jane Doe 16 11
Mary Johnson 3 1

Table 1: Typical presentation dataset.

There are many ways to structure the same underlying data. Table 2 shows the same data
as Table 1, but the rows and columns have been transposed. The data is the same, but the
layout is di↵erent. Our vocabulary of rows and columns is simply not rich enough to describe
why the two tables represent the same data. In addition to appearance, we need a way to
describe the underlying semantics, or meaning, of the values displayed in table.

John Smith Jane Doe Mary Johnson

treatmenta — 16 3
treatmentb 2 11 1

Table 2: The same data as in Table 1 but structured di↵erently.

2.2. Data semantics

A dataset is a collection of values, usually either numbers (if quantitative) or strings (if
qualitative). Values are organised in two ways. Every value belongs to a variable and an
observation. A variable contains all values that measure the same underlying attribute (like
height, temperature, duration) across units. An observation contains all values measured on
the same unit (like a person, or a day, or a race) across attributes.

Table 3 reorganises Table 1 to make the values, variables and obserations more clear. The
dataset contains 18 values representing three variables and six observations. The variables
are:

1. person, with three possible values (John, Mary, and Jane).

2. treatment, with two possible values (a and b).

3. result, with five or six values depending on how you think of the missing value (-, 16,
3, 2, 11, 1).

The experimental design tells us more about the structure of the observations. In this exper-
iment, every combination of of person and treatment was measured, a completely crossed
design. The experimental design also determines whether or not missing values can be safely
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dropped. In this experiment, the missing value represents an observation that should have
been made, but wasn’t, so it’s important to keep it. Structural missing values, which represent
measurements that can’t be made (e.g., the count of pregnant males) can be safely removed.

name trt result

John Smith a —
Jane Doe a 16
Mary Johnson a 3
John Smith b 2
Jane Doe b 11
Mary Johnson b 1

Table 3: The same data as in Table 1 but with variables in columns and observations in rows.

For a given dataset, it’s usually easy to figure out what are observations and what are variables,
but it is surprisingly di�cult to precisely define variables and observations in general. For
example, if the columns in the Table 1 were height and weight we would have been happy
to call them variables. If the columns were height and width, it would be less clear cut, as
we might think of height and width as values of a dimension variable. If the columns were
home phone and work phone, we could treat these as two variables, but in a fraud detection
environment we might want variables phone number and number type because the use of one
phone number for multiple people might suggest fraud. A general rule of thumb is that it is
easier to describe functional relationships between variables (e.g., z is a linear combination
of x and y, density is the ratio of weight to volume) than between rows, and it is easier
to make comparisons between groups of observations (e.g., average of group a vs. average of
group b) than between groups of columns.

In a given analysis, there may be multiple levels of observation. For example, in a trial of new
allergy medication we might have three observational types: demographic data collected from
each person (age, sex, race), medical data collected from each person on each day (number
of sneezes, redness of eyes), and meterological data collected on each day (temperature,
pollen count).

2.3. Tidy data

Tidy data is a standard way of mapping the meaning of a dataset to its structure. A dataset is
messy or tidy depending on how rows, columns and tables are matched up with observations,
variables and types. In tidy data:

1. Each variable forms a column.

2. Each observation forms a row.

3. Each type of observational unit forms a table.

This is Codd’s 3rd normal form (Codd 1990), but with the constraints framed in statistical
language, and the focus put on a single dataset rather than the many connected datasets
common in relational databases. Messy data is any other other arrangement of the data.

Initial Data

Transpose

Tidy Data



Messy Dataset Problems
• Column headers are values, not variable names 
• Multiple variables are stored in one column 
• Variables are stored in both rows and columns 
• Multiple types of observational units are stored in the same table 
• A single observational unit is stored in multiple tables

3D. Koop, CSCI 640/490, Fall 2025



Journal of Statistical Software 11

id year month element d1 d2 d3 d4 d5 d6 d7 d8

MX17004 2010 1 tmax — — — — — — — —
MX17004 2010 1 tmin — — — — — — — —
MX17004 2010 2 tmax — 27.3 24.1 — — — — —
MX17004 2010 2 tmin — 14.4 14.4 — — — — —
MX17004 2010 3 tmax — — — — 32.1 — — —
MX17004 2010 3 tmin — — — — 14.2 — — —
MX17004 2010 4 tmax — — — — — — — —
MX17004 2010 4 tmin — — — — — — — —
MX17004 2010 5 tmax — — — — — — — —
MX17004 2010 5 tmin — — — — — — — —

Table 11: Original weather dataset. There is a column for each possible day in the month. Columns
d9 to d31 have been omitted to conserve space.

id date element value

MX17004 2010-01-30 tmax 27.8
MX17004 2010-01-30 tmin 14.5
MX17004 2010-02-02 tmax 27.3
MX17004 2010-02-02 tmin 14.4
MX17004 2010-02-03 tmax 24.1
MX17004 2010-02-03 tmin 14.4
MX17004 2010-02-11 tmax 29.7
MX17004 2010-02-11 tmin 13.4
MX17004 2010-02-23 tmax 29.9
MX17004 2010-02-23 tmin 10.7

(a) Molten data

id date tmax tmin

MX17004 2010-01-30 27.8 14.5
MX17004 2010-02-02 27.3 14.4
MX17004 2010-02-03 24.1 14.4
MX17004 2010-02-11 29.7 13.4
MX17004 2010-02-23 29.9 10.7
MX17004 2010-03-05 32.1 14.2
MX17004 2010-03-10 34.5 16.8
MX17004 2010-03-16 31.1 17.6
MX17004 2010-04-27 36.3 16.7
MX17004 2010-05-27 33.2 18.2

(b) Tidy data

Table 12: (a) Molten weather dataset. This is almost tidy, but instead of values, the element column
contains names of variables. Missing values are dropped to conserve space. (b) Tidy weather dataset.
Each row represents the meteorological measurements for a single day. There are two measured
variables, minimum (tmin) and maximum (tmax) temperature; all other variables are fixed.

Problem: Variables stored in both rows & columns
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Unpivot/Melt
• Many columns (wider) become two columns (longer):  

one with column name (variable), other with value
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import polars.selectors as cs
wdf_up = wdf.unpivot(cs.matches(r'^d\d+$'), index=['id','year','month','element'])

shape: (34_999, 6)

id year month element variable value

str i32 i32 str str f64

"MX000017004" 1955 4 "tmax" "d1" 31.0

"MX000017004" 1955 4 "tmin" "d1" 15.0

"MX000017004" 1955 5 "tmax" "d1" 31.0

"MX000017004" 1955 5 "tmin" "d1" 20.0

"MX000017004" 1955 6 "tmax" "d1" 30.0

… … … … … …

"MX000017004" 2011 2 "tmin" "d31" NaN

"MX000017004" 2011 3 "tmax" "d31" 36.5

"MX000017004" 2011 3 "tmin" "d31" 17.0

"MX000017004" 2011 4 "tmax" "d31" NaN

"MX000017004" 2011 4 "tmin" "d31" NaN

shape: (1_129, 35)

id year month element d1 d2 d3 d4 d5 d6 d7 d8

str i32 i32 str f64 f64 f64 f64 f64 f64 f64 f64

"MX000017004" 1955 4 "tmax" 31.0 31.0 31.0 32.0 33.0 32.0 32.0 33.0

"MX000017004" 1955 4 "tmin" 15.0 15.0 16.0 15.0 16.0 16.0 16.0 16.0

"MX000017004" 1955 5 "tmax" 31.0 31.0 31.0 30.0 30.0 30.0 31.0 31.0

"MX000017004" 1955 5 "tmin" 20.0 16.0 16.0 15.0 15.0 15.0 16.0 16.0

"MX000017004" 1955 6 "tmax" 30.0 29.0 28.0 27.0 28.0 26.0 23.0 27.0

… … … … … … … … … … … …

"MX000017004" 2011 2 "tmin" NaN NaN NaN NaN NaN NaN NaN NaN

"MX000017004" 2011 3 "tmax" NaN NaN NaN NaN 33.2 NaN NaN NaN

"MX000017004" 2011 3 "tmin" NaN NaN NaN NaN 14.8 NaN NaN NaN

"MX000017004" 2011 4 "tmax" NaN 35.0 NaN NaN NaN NaN NaN NaN

"MX000017004" 2011 4 "tmin" NaN 16.8 NaN NaN NaN NaN NaN NaN
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Pivot
• Inverse of unpivot: two columns (longer) become many columns (wider) 

one column becomes column names (variable), other becomes values
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wdf_p = wdf_up.pivot('element', index=['id','year','month','variable'], values=['value'])

shape: (17_515, 6)

id year month variable tmax tmin

str i32 i32 str f64 f64

"MX000017004" 1955 4 "d1" 31.0 15.0

"MX000017004" 1955 5 "d1" 31.0 20.0

"MX000017004" 1955 6 "d1" 30.0 16.0

"MX000017004" 1955 7 "d1" 27.0 15.0

"MX000017004" 1955 8 "d1" 23.0 14.0

… … … … … …

"MX000017004" 2010 12 "d31" NaN NaN

"MX000017004" 2011 1 "d31" NaN NaN

"MX000017004" 2011 2 "d31" NaN NaN

"MX000017004" 2011 3 "d31" 36.5 17.0

"MX000017004" 2011 4 "d31" NaN NaN

wdf_out = (wdf_p.with_columns(pl.date(pl.col('year'),pl.col('month'),pl.col('variable').str.slice(1).cast(pl.Int32)))
      .filter(pl.col('date').is_not_null())
      .select('id','date','tmin','tmax')
).sort('date')

import polars.selectors as cs
wdf_up = wdf.unpivot(cs.matches(r'^d\d+$'), index=['id','year','month','element'])

shape: (34_999, 6)
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str i32 i32 str str f64
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"MX000017004" 1955 5 "tmax" "d1" 31.0

"MX000017004" 1955 5 "tmin" "d1" 20.0

"MX000017004" 1955 6 "tmax" "d1" 30.0

… … … … … …

"MX000017004" 2011 2 "tmin" "d31" NaN

"MX000017004" 2011 3 "tmax" "d31" 36.5

"MX000017004" 2011 3 "tmin" "d31" 17.0
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"MX000017004" 1955 6 "tmax" 30.0 29.0 28.0 27.0 28.0 26.0 23.0 27.0

… … … … … … … … … … … …

"MX000017004" 2011 2 "tmin" NaN NaN NaN NaN NaN NaN NaN NaN

"MX000017004" 2011 3 "tmax" NaN NaN NaN NaN 33.2 NaN NaN NaN

"MX000017004" 2011 3 "tmin" NaN NaN NaN NaN 14.8 NaN NaN NaN

"MX000017004" 2011 4 "tmax" NaN 35.0 NaN NaN NaN NaN NaN NaN

"MX000017004" 2011 4 "tmin" NaN 16.8 NaN NaN NaN NaN NaN NaN
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… … … … … … … … … … … …

"MX000017004" 2011 2 "tmin" NaN NaN NaN NaN NaN NaN NaN NaN

"MX000017004" 2011 3 "tmax" NaN NaN NaN NaN 33.2 NaN NaN NaN

"MX000017004" 2011 3 "tmin" NaN NaN NaN NaN 14.8 NaN NaN NaN

"MX000017004" 2011 4 "tmax" NaN 35.0 NaN NaN NaN NaN NaN NaN

"MX000017004" 2011 4 "tmin" NaN 16.8 NaN NaN NaN NaN NaN NaN
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Fig. 1: Seven types of transformations to relationalize tables. (1) Pivot: Turns key-value pairs into a table, with keys as column
headers and their corresponding values as rows. (2) Transpose: Swaps the rows and columns of a table. (3) Subtitle: Move rows
of Subtitles as a new column. (4) Ffill: Copies the value from the cell above into any empty cell in a column. (5) Explode:
Splits cells that contain multiple entries into separate rows. (6) Stack: Combines homogeneous columns into one, Stacking rows
on top of each other. (7) Wide to long: Similar to Stack, but it splits complex homogeneous columns by different dimensions.

1) Single Large Prompt with Few-shot In-context Learning:

[Li et al.(2023)] use a single, large prompt and provide one
example for each of the seven operators, as demonstrated in the
example template in Figure 2. However, this prompt could be
challenging for LLMs to execute effectively: (1) The prompt
requires the LLM to generate a complete list for all seven
transformation operations in one go. This would be complex
because the LLM needs to not only comprehend each transfor-
mation operator and its parameters but also consider how each
step influences the parameters of subsequent transformations,
since earlier transformations can alter the column indices for
later ones. (2) Additionally, the prompt asks the LLM to
produce the output directly without allowing any reasoning
process. This complexity could be too overwhelming for
LLMs [Shi et al.(2023)], [Liu et al.(2023)].

2) Task Decomposition: To manage the complexity of the
task, we exploit the relationships among the transformation
operators. We observe that in real-world transformation pro-
cesses, like those in data wrangling tools [Integrate.io(2023)],
[Kandel et al.(2011)] and Kaggle [EHR(2023)], [End(2020)],
[Int(2021)], [Name(2019)], people often start with opera-
tors that modify the table structure that changes the en-
tire table shape. Following that, modifications are made to
columns or rows, and finally individual cells. Taking inspira-
tion from this, we decompose Problem 1 into a list of sub-
problems[Khot et al.(2022)], [Pourreza and Rafiei(2023)]:

Task: Predict transformation operators for table.
=========
Operator descriptions:
- {\it Stack}: collapse homogeneous cols into rows.
@param (int): start_idx:
zero-based starting column index of the column-group.
@param (int): end_idx:
zero-based ending column index of the column-group.
... (the rest 6 operators)
=========
OUTPUT the transformations and parameters in JSON. E.g.,
[{"operator": "{\it Ffill}", "end_idx": 1},
{"operator": "{\it Stack}", "start_idx": 1, "end_idx": 5}].
No explanation is needed.
=========
Here are some example inputs and outputs
## Input
|id|date|items|
|1|2021-01-01|apple, banana, orange|
|2|2022-12-12|banana, carrot|
## Output
[{"operator": "{\it Explode}", "column_idx": 2}]
... (the rest 6 operators)
=========
Your task:
## Input:
(input_table_parsed_string)

## Output:

Fig. 2: Single large prompt with few-shot in-context learning,
as used by previous work, could be overwhelming.

Types of Transformations
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FOOFAH: A Programming-By-Example System for
Synthesizing Data Transformation Program

Zhongjun Jin, Michael R. Anderson, Michael Cafarella, H. V. Jagadish
University of Michigan

Most real-world data is unstructured and must be transformed 
into a structured form to be used. Manual transformation (e.g., 
using Excel) requires too much user effort. Traditional 
transformation often requires good programming skills beyond 
most of the users. Data transformation tools, like Data 
Wranger [1], often require repetitive and tedious work and a 
depth of data transformation knowledge from the user. 
Our goal: minimize a user's effort and reduce the required 
background knowledge for data transformation tasks.

Motivation

Design of FOOFAH

Related Work

markjin@umich.edu w https://markjin1990.github.io  w SIGMOD 2017

Our Solution

Proposed Heuristic Function
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User Study

Our PBE technique prototype
FOOFAH:
1. can handle most test cases from

the benchmarks.
2. requires little user effort
3. generally efficient (low system

runtime)

Benchmark Tests

Tasks: 8 tasks from
benchmarks covering both
simple and complex tasks
Comparisons: Wrangler

• FOOFAH on average requires 60% less user effort than Wrangler
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observed distance
estimated distance

Intuition: Most data transformation operations can be seen as many 
cell-level transformation operations

Solution: Table Edit Distance as the heuristic function

Table Edit Distance (TED) Definition:
The cost of transforming Table T1 to Table T2 using the cell-level
operators Add/Remove/Move/Transform cell.

TED $%, $' = min,-,… ,	,0 ∈2 3-,	34
56789 :;
<

;=>
• P(T1, T2): Set of all “paths” transforming T1 to T2 using cell-level operators

Batching: a remedy for Table Edit Distance to scale down heuristic

Batch the geometrically-adjacent cell-level operations of the same type

8 Transform operations 2 “batched” Transform operations
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Programming-By-Example interaction model: User provides input-
output examples rather than demonstrating correct operations

Note:	Ideally,	Wrangler	should	be	able	
to	handle	same	tasks	as	FOOFAH

User Input:
• Sample from raw data
• Transformed view of the sample

Raw Data: 
• A grid of values, i.e., spreadsheets
• “Somewhat” structured - must have some 

regular structure or is automatically generated.

Transformations Targeted:
1. Layout transformation              2. String transformation
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Foofah Design: Programming by Example
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AutoSuggest: Mine Data Pipelines
• Crawl, reapply, and analyze data pipelines from Jupyter+pandas 
• Tasks: 
- Single-Operator Prediction: Given two tables and an operation, decide how 

to best apply the operation (what are the parameters) 
- Next-Operator Prediction: Given all operations performed so far, predict the 

next one
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notebooks. This is common because notebook authors of-
ten “hard-code” absolute paths of data �les in his/her local
environment, as shown below:
df = pd.read_csv(�D:\ my_project\titantic.csv�)

Such absolute paths are not valid in the GitHub repo or in
our local replay environment, and will thus fail. Our replay
system attempts to address missing data �les in a few ways:
(1) Given a �le path that we fail to load when executing a
notebook (e.g., D:\my_project\titantic.csv), we ignore
the path and search using the �le name (titantic.csv) in
the code repository, starting from the working directory;
(2) We look for URLs in comments and text cells adjacent to
the failed code cell, and attempt to download missing data
using the URLs extracted.
(3) Because many notebooks deal with data science chal-
lenges such as Kaggle [9], where the data sets are public
and may be hosted in online data repositories. We thus also
attempt to resolve missing data �les by programmatically
download using the Kaggle Dataset API [10] (e.g. command
kaggle datasets download -d titanic) to download
the missing dataset.
We are able to locate missing �les in most cases using a

combination of these methods.

3.3 Track Operator Sequences
In addition to instrumenting invocations of individual oper-
ators, we also keep track of the sequence of operations in
notebooks and reconstruct the data-�ow.

Speci�cally, we record input/output of 7 Pandas API calls
that take data-frames (tables) as parameters, or produce
data-frames as output. These are: concat, dropna, fillna,
groupby, melt, merge, and pivot. We record the unique
hash id of each data-frame, and trace input/output depen-
dencies between data-frames to construct data-�ow graphs
(even if dependencies are far apart in the notebook).

Figure 4 shows an example of the data-�ow graph for the
code snippet on the right. This code snippet �rst reads two
CSV �les into data-frames, before joining the two and saving
the result in psg. It then performs Pivot and GroupBy on psg
for exploratory data analysis. Figure 4 shows its correspond-
ing data-�ow graph we extract, where each node is a (ver-
sioned) data-frame variable, and each edge is an operation.
This allows us to construct operator sequences/pipelines, in
order to predict the “next operator”.

psg.v1 surv.v1

psg.v2

psg.v3 psg.v4

join join

pivot groupby

1 import pandas as pd
2
3 psg=pd.read_csv(‘passenger_data.csv’)
4 surv=pd.read_csv(‘survive.csv’)
5 psg=psg.merge(surv,on=‘PassengerId’,

how=‘left’)
6 psg.pivot(header=[‘Survived, Pclass’],

index=‘Sex’, aggrfunc=‘count’)
7 psg.groupby(‘Sex’,aggrfunc=‘count’)

Figure 4: Example code snippet and its data-�ow.

4 PREDICT SINGLE OPERATORS
Leveraging rich logs, we will �rst discuss “single-operator”
recommendations, using Join, GroupBy, Pivot and Unpivot as
example operators. Recommendation methods for additional
operators such as Normalize-Json can be found in a full
version of the paper.

Note that Join and GroupBy are relatively straightforward
as both can be modeled as simple feature-based machine-
learning. We start with the two nevertheless as they are
“building blocks” required for other operators.

Pivot and Unpivot are considerably more complex – we
formulate them as novel optimization problems and solve
them using custom-built algorithms.

4.1 Join Predictions

Figure 5: An example Join: The ground-truth is to join
using book-titles (in solid red boxes). Existing meth-
ods using heuristics tend to incorrectly pick columns
in dashed-boxes that have a higher value overlap.

Join is a widely-used operator that combines data from
multiple tables. Figure 5 shows an example taken from a real
notebook. The left table has a list of best-selling books, and
the right one has historical information about these books.
From our logs we observe that data scientists choose to left-
outer-join using “title” from the left and “title_on_list” from
the right (in solid boxes).

For Join we have two essential prediction tasks:
(1) Predict join columns: This is to decide which columns
should be used as join keys, which is a feature available
commercial systems (e.g., Figure 1), and has been studied
in the literature (e.g. [36, 56, 71, 83]).
(2) Predict join types: This predicts whether the join should
be inner/left-outer/right-outer/full-outer-join, etc. Since dif-
ferences between these choices can be subtle and not obvi-
ous to non-expert users, accurate predictions (with intuitive
explanations/visualization) would be bene�cial.
Join columnprediction.Given two tablesT andT 0, with

columns {C1, . . . ,Cn} 2 T and {C 0
1, . . . ,C

0
m} 2 T 0, our prob-

lem is to �nd two sets of columns (S , S 0) that are likely join
columns, with S ✓ T , S 0 ✓ T 0 and |S | = |S 0 | (note that this
can be single-column or multi-columns).

https://congyan.org/JupyterNotebooks.pdf


Pivot/Unpivot
• Pivot is hard to get right 
- Index 
- Header 
- Aggregation Function 
- Aggregation Columns 

• Use GroupBy Prediction 
• Look for NULLs and use affiinity 
• Affinity-Maximizing Pivot Table 
• Unpivot requires compatibility
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Figure 7: Example Pivot operation that creates two-dimensional Pivot-table (right) from an input table (left).

Figure 8: Example of a “bad” Pivot-table (with many
NULLs) that uses the same dimensions as Figure 7.

Figure 9: UI Wizard to create Pivot-table in Excel. It
requires users to drag suitable columns into 4 possi-
ble buckets (shown at bottom) to properly con�gure
Pivot, which typically takes many trials to get right.
Creating Pivot in other systems is similarly complex.
essentially predicting GroupBy columns (both are dimension
attributes); while predicting aggregation-column in Pivot
is the same as predicting Aggregation (both are measures).
E������ 2. Observe that the input table for Pivot in Fig-

ure 7 and the input table for GroupBy in Figure 6 are identical.
Furthermore, the candidate GroupBy columns in Figure 6
(�rst 5 columns) are all reasonable choices as index/header
in a Pivot table. Similarly, the candidate Aggregation columns
in Figure 6 (“Market Cap” and “Revenue”) are all valid choices
for aggregation-column in Pivot.
We therefore directly apply the GroupBy/Aggregation

prediction in Section 4.2, which would determine “Market
Cap” and “Revenue” in Figure 7 as aggregation-column,
and the rest as index/header. From here, users can pick
columns of interest for the desired Pivot. In Figure 7, users
would pick “Sector”, “Ticker”, “Company”, “Year” as relevant
dimensions, and “Revenue” as the aggregation-column.

Predict to Split Index vs. Header. From user-selected
dimension columns, our second prediction task is to auto-
matically identify a “good” placement of these columns by
splitting them into index vs. header, which is di�cult for
users and typically require multiple trial-and-errors.

E������ 3. Users have selected { Sector, Ticker, Company,
Year } from Figure 7 as desired dimension columns. Since

they can either be arranged as index (on the left of the result-
ing Pivot) or header (on the top), there are a total of 24 = 16
possible choices to Pivot. Many of these arrangements are,
however, not ideal.
Figure 8 shows one such example. Observe that since

{ Company, Ticker, Year } are selected as index, while { Sec-
tor } as header, it creates a large number of “NULL” entries
in the resulting Pivot-table, because of a strong dependency
between “Sector” and “Company”. Splitting the two columns
with one at the top and one to the left of the resulting Pivot
would create a large number of empty cells (with 20 indus-
tries in the table, roughly 95% of the entries in the resulting
Pivot is empty).
Similarly arranging “Company” and “Ticker” to di�erent

sides of Pivot is also undesirable as it creates even more
number of empty cells.

These bad Pivots are unlikely to be selected by data scien-
tists and in the data we collect.

We formulate the problem of splitting dimension columns
into index vs. header as an optimization problem. Speci�-
cally, given columns C = {Ci } that users select as dimensions
for the desired Pivot, we need to partition them into index
vs. header. This requires us to consider desirable factors
such as minimizing emptiness, which we will �rst quantify.
Speci�cally, given two columns Ci ,Cj , we model their

“a�nity score”, denoted by a(Ci ,Cj ), as the likelihood of
Ci ,Cj being on the same side of Pivot (both in index or
header), which can be seen as their conceptual “closeness”.
To do so, from a large number of Pivot-tables collected from
notebooks, we build a regression model to learn the a�nity
score between any pair of columns, using two features:
• Emptiness-reduction-ratio: This reduction ratio is de�ned
as | {u |u 2T (Ci )} | | {� |� 2T (Cj )} |

| {(u,�) |(u,�)2T (Ci ,Cj )} | , where T (C) denotes values in
column C 2 T . This ratio shows how much emptiness
we can “save” multiplicatively by arranging Ci and Cj
on the same side. For example, Figure 8 has 20 sectors
and 1000 companies, so the reduction-ratio for Sector and
Company is 20⇤1000

1000 = 20, which is signi�cant. However
the reduction-ratio between Year and Sector is 3⇤20

60 = 1,
indicating no saving. Attributes with higher reduction-
ratio should ideally be arranged on the same side to reduce
emptiness of the resulting Pivot.

• Column-position-di�erence: This is the relative di�erence of
positions betweenCi andCj inT . What we observe is that
columns that are close to each other in T are more likely
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• Emptiness-reduction-ratio: This reduction ratio is de�ned
as | {u |u 2T (Ci )} | | {� |� 2T (Cj )} |

| {(u,�) |(u,�)2T (Ci ,Cj )} | , where T (C) denotes values in
column C 2 T . This ratio shows how much emptiness
we can “save” multiplicatively by arranging Ci and Cj
on the same side. For example, Figure 8 has 20 sectors
and 1000 companies, so the reduction-ratio for Sector and
Company is 20⇤1000

1000 = 20, which is signi�cant. However
the reduction-ratio between Year and Sector is 3⇤20

60 = 1,
indicating no saving. Attributes with higher reduction-
ratio should ideally be arranged on the same side to reduce
emptiness of the resulting Pivot.

• Column-position-di�erence: This is the relative di�erence of
positions betweenCi andCj inT . What we observe is that
columns that are close to each other in T are more likely

https://congyan.org/JupyterNotebooks.pdf


AutoTables
• Problem: 
- Non-relational tables are common but hard to query 
- Non-relational tables are hard to "relationalize" (aka tidy) 

• Steps: 
1. Identify structural issues 
2. Map the visual pattern to an operator 
3. Parameterize the operator correctly 
4. Potentially add more operators (go back to 1 or 2) 

• Solution: Use LLMs to relationalize tables
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Figure 5: Architecture overview of A!"#$T%&’()
Also note that although we show synthesized programs using

our DSL syntax, the resulting programs can be easily translated into
di!erent target languages, such as Python Pandas or R, which can
then be directly invoked. We should also note that two syntactically
di!erent programs 𝐿1 and 𝐿2 may be semantically equivalent,
which can be veri"ed under a set of algebraic rules. 2

4 AUTO$TABLES: LEARN-TO-SYNTHESIZE
We now describe our proposed A!"#$T%&’() system, which learns
to synthesize transformations. We will start with an architecture
overview before we delve into individual components.

4.1 Architecture overview
We represent our overall architecture in Figure 5. The system op-
erates in two modes, with the upper-half of the "gure showing
the o#ine training-time pipeline, and the lower-half showing the
online inference-time steps.

At o#ine training time, A!"#$T%&’() uses three main compo-
nents: (1) A “training data generation” component that consumes
large collections of relational tables 𝑀, to produce (example, la-
bel) pairs; (2) An “input-only synthesis” module that learns-to-
synthesize using the training data, and (3) An “input-output re-
ranking” module that holistically considers both the input table
and the output table (produced from the synthesized program), to
"nd the most likely program.

The online inference-time part closely follows the o#ine steps,
where we directly invoke the two models trained o#ine (the last
two blue boxes shown in the "gure).When given an input table from
users, we pass the table through our input-only synthesis model,
to identify top-𝑁 candidate programs, which are then re-ranked by
the input-output model for "nal predictions.

We now describe these three modules in turn below.

4.2 Self-supervised training data generation
As discussed earlier, the examples in Figure 1 demonstrate that
there are clear patterns in the input tables that we can exploit
(e.g., repeating column-groups and row-groups) to predict required
transformations for a given table. Note that these patterns are
“visual” in nature, which can likely be captured by computer-vision-
like algorithms.3

The challenge however, is that unlike computer vision tasks that
typically have large amounts of training data (e.g., ImageNet [31])

2For example, pivot is equivalent to transpose followed by wide-to-long, and wide-to-
long is equivalent to stack-split-pivot. Furthermore, the order of$ll and stack/wide-
to-long can be swapped, as long as they operate on disjoint subsets of columns, etc. In
our synthesis, we consider synthesized programs that are semantically equivalent to
the ground-truth program also correct.
3Like computer vision problems such as object detection where hand-crafted heuristics
are hard to write, the row/column-level patterns existing in our tables are also hard to
write with heuristics, which makes a learning-based method necessary.

Figure 6: Leverage inverse operators to generate training data.
In order to learn-to-synthesize operator𝑂 , we can start from
any relational table𝑀, apply its inverse operator𝑂→1 to obtain
𝑂→1 (𝑀). Given 𝑃 = 𝑂→1 (𝑀) as an input table, we know𝑂 must
be its ground-truth transformation, because 𝑂 (𝑂→1 (𝑀)) = 𝑀.

in the form of (image, label) pairs, in our synthesis task, there is no
existing labeled data that we can leverage. Labeling tables manually
from scratch are likely too expensive to scale.

Leverage inverse operators. To overcome the lack of data, we
propose a novel self-supervision framework leveraging the inverse
functional-relationships between operators, to automatically gen-
erate large amounts of training data without using humans labels.

Figure 6 shows the overall idea of this approach. For each op-
erator 𝑂 in our DSL that we want to learn-to-synthesize, we can
"nd its inverse operator (or construct a sequence of steps that are
functionally equivalent to its inverse), denoted by 𝑂→1. For exam-
ple, in the "gure we can see that the inverse of “transpose” is
“transpose”, the inverse of “stack” is “unstack”, while the inverse
of “wide-to-long” can be constructed as a sequence of 3 steps
(“stack” followed by “split” followed by “pivot”).

The signi"cance of the inverse operators, is that it allows us
to automatically generate training examples. Speci"cally, to build
a training example for operator 𝑂 (e.g., “stack”), we can sample
any relational table 𝑀, and apply the inverse of 𝑂 , or 𝑂→1 (e.g.,
“unstack”), to generate a non-relational table 𝑃 = 𝑂→1 (𝑀). For
our task, given 𝑃 as input, we know 𝑂 must be its ground-truth
transformation, since by de"nition 𝑂 (𝑃 ) = 𝑂 (𝑂→1 (𝑀)) = 𝑀, and 𝑀
is known to be relational. This thus allows us to generate (𝑃 ,𝑂) as
an (example, label) pair, which can be used for training.

Furthermore, we can easily produce such training examples at
scale, by sampling: (1) di!erent relational tables 𝑀; (2) di!erent
operators 𝑂 ; and (3) di!erent parameters associated with each 𝑂 ,
therefore addressing our lack of data problem in A!"#$T%&’().

The overall steps of the data generation process are shown in
Algorithm 1, where Line 2, Line 3, Line 6 correspond to the sampling
of operators (𝑂), tables (𝑀), and parameters (𝑄), respectively, that
together creates diverse training examples. We note that in Line 4,
we perform an additional “data augmentation” step to create even
more diversity in training, which we explain below.

Data Augmentation. Data augmentation [50] is a popular tech-
nique in computer vision and related "elds, to enhance training
data and improve model robustness. For example, in computer
vision tasks, it is observed that training using additional data gen-
erated from randomly %ipped/rotated/cropped images, can lead
to improved model performance (because an image that contains

AutoTables Architecture
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Test 1
• Wednesday, October 8, 12:30-1:45pm in PM 103 
• In-Class, paper/pen & pencil 
• Covers material through this week 
• Format: 
- Multiple Choice 
- Free Response 
- One extra 2-sided page for CSCI 640 Students 

• Info will be on the course webpage
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Assignment 3
• Upcoming, won't be due until after the first test
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Data Cleaning Types
• How can statistical techniques improve efficiency or reliability of data 

cleaning? (Data Cleaning with Statistics)  
- Example: Trifacta 

• How how can we improve the reliability of statistical analytics with data 
cleaning? (Data Cleaning for Statistics)  

- Example: SampleClean 

16

[D. Haas et al., 2016]
D. Koop, CSCI 640/490, Fall 2025



Misconceptions about Data Cleaning
• Surveyed Technology Professionals 
• The end goal of data cleaning is clean data 
- "We typically clean our data until the desired analytics works without error." 

• Data cleaning is a sequential operation  
- "[It’s an] iterative process, where I assess biggest problem, devise a fix, re-

evaluate. It is dirty work." 
• Data cleaning is performed by one person 
- "There are often long back and forths with senior data scientists, devs, and 

the business units that provided the data on data quality."

17
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Misconceptions about Data Cleaning
• Data quality is easy to evaluate 
- "I wish there were a more rigorous way to do this but we look at the models 

and guess if the data are correct" 
- "Other than common sense we do not have a procedure to do this" 
- "Usually [a data error] is only caught weeks later after someone notices."

18
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Data Cleaning
• Three key tasks: 
- Error Detection: Identify potentially erroneous values within the data 
- Data Repairing: Resolve conflicts and duplicates 
- Data Imputation: Fill in missing values 

• These tasks are not unrelated

19

[J. Zhu et al., 2024]
D. Koop, CSCI 640/490, Fall 2025

https://link.springer.com/article/10.1007/s41019-024-00266-7


148 J. Zhu et al.

this survey, we focus on three primary data cleaning tasks, 
i.e., error detection, data repairing and data imputation, to 
handle erroneous and missing values. Figure 1 provides an 
overview of these three tasks, with the relationship between 
them. Error detection aims to identify potentially errone-
ous values within the relational data, which can be further 
repaired by data repairing methods to avoid over-repair and 
information loss. Data repairing can assist in resolving con-
flicts and duplicates, thereby improving data quality and pro-
viding high-quality information for imputing missing data. 
Additionally, data imputation benefits both error detection 
and data repairing tasks. By accurately imputing incomplete 
cells, more available data can be obtained, thereby enhanc-
ing the signals required for the other two tasks. In a word, 
these three data cleaning tasks complement each other and 
have been extensively studied in existing works.

In the early research for data cleaning tasks, traditional 
methods are extensively studied, because of their interpret-
ability and efficiency. However, since they may be limited by 
fundamental assumptions and the inability to model complex 
data relationships, with the rapid development of artificial 
intelligence (AI), various AI-based methods are designed 
to improve data quality. Although AI-based techniques can 
leverage sophisticated signal design and powerful learning 
capabilities to model complex relationships, yet they often 
lack interpretability and performance guarantees, demand-
ing substantial computational resources and time costs. This 
shows that these traditional methods and AI-based tech-
niques own different advantages and disadvantages, which 
inspires us to conduct a comprehensive survey of them in 
this study.

1.1  Traditional versus AI

As shown in Fig. 2, we analyze and compare traditional 
methods and AI methods mainly in five dimensions. To 

further highlight the differences and advantages of AI-based 
methods, we categorize methods utilizing deep neural net-
works as deep learning (DL) based, while the remaining 
methods are classified as machine learning (ML) based. In 
general, AI-based methods exhibit stronger modeling capa-
bilities, resulting in superior effectiveness but lower effi-
ciency, with higher computation and time costs. On the other 
hand, traditional methods spend lower costs providing the 
interpretable data cleaning results but lacking generaliza-
tion ability according to specific assumptions. Specifically, 
ML-based methods occupy a middle ground in terms of cost, 
interpretability, and efficiency. They are not as low-cost and 
efficient as traditional methods nor as high-cost and low-
efficiency as deep learning methods. ML-based methods 
excel in generalization and effectiveness, offering robust 
solutions across various applications while maintaining a 
degree of interpretability. This makes ML-based methods 
advantageous in scenarios where a balance between perfor-
mance and interpretability is crucial. DL-based methods, 
while the most costly and having the lowest interpretability 
and efficiency, excel in generalization and effectiveness. DL-
based methods can handle complex data patterns and large 
datasets, significantly enhancing model accuracy and predic-
tive power. However, the high computational demands and 
lower interpretability limit its use in applications requiring 
real-time decision-making and high transparency.

1.1.1  Traditional

Traditional methods can generally be summarized into sev-
eral categories, such as statistical [28–32], cluster [33–37], 
and constraint [38–43], according to the used signals.1 
For instance, cluster-based error detection methods, like 
DBSCAN [33], often utilize the density signal among data 
points to delineate clusters and subsequently detect errors. 
Constraint-based repair methods, like Holistic [39], leverage 
denial constraints and a conflict hypergraph to ascertain the 
minimum alterations necessary for repairs. Since both the 
clustering process and its outcomes, along with the samples 
that violate constraints, are observable, the results of error 
detection are readily interpretable. Meanwhile, statistical-
based imputation methods, like mean/median imputation 
[44], involve directly filling missing values based on the 
mean/median value of observations, requiring low com-
putational resources, resulting in low cost and high time 
efficiency. However, traditional methods may be tailored 
to specific quality issues, thus making certain fundamental 
assumptions. For instance, the mean/median imputer method 
presupposes those data following the missing completely at 
random pattern, when imputed values may introduce errors 
and be susceptible to outliers [45]. Moreover, due to the 

Fig. 1  Overview of three data cleaning tasks for erroneous and miss-
ing values

1 Please see the detailed discussion in Sects. 2-4.

Data Cleaning Overview
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classify and describe three main parts of this work and ana-
lyze the relationship among them.

The remainder of this manuscript is organized as follows. 
In Sects. 2, 3 and 4, we survey representative traditional and 
AI approaches of three main relational data cleaning tasks, 
i.e., error detection, data repairing and data imputation. 
Then we analyze current challenges and open issues in data 
cleaning, and discuss possible directions for future studies 
in Sect. 5. Finally, Sect. 6 concludes this survey.

2  Error Detection

In this section, we first introduce the terminology used in 
this study and formalize the error detection problem. Then 
we compare and analyze the characteristics and applicable 
scenarios of existing error detection methods, by summariz-
ing them into different categories.

Consider a relational instance I = {t1, t2,… , tn} over the 
schema R = {A1,A2,… ,Ak} . Each tuple ti  I is a collection 
of cells {ti[A1], ti[A2],… , ti[Am]} , where ti[Aj] denotes the 
value of attribute Aj in tuple ti.

Problem 1 Given a relational instance I  over schema R. 
The error detection problem is to find all the erroneous cells 
ti[Aj] in I .

As shown in Fig. 5, we generally categorize error detec-
tion methods into six types: statistical-based, constraint-
based, cluster-based, outlier-based, ML-based, and DL-
based, and summarize whether the models require labeled 
erroneous values. The dataset types in Fig. 5 include char-
acter, numerical, and mixed (which combines both charac-
ter and numerical data). Besides, n represents the number 
of tuples in relational data, and m represents the number 
of attributes. For some methods, the time consumption is 
not filled in because the original paper does not provide 
this information or only gives the complexity of certain 

operations, making it difficult to express in terms of n and 
m. It can be observed that all the traditional methods (based 
on statistical, cluster or outlier) are unsupervised, but AI 
techniques may require varying degrees of error labels with 
supervised or weakly supervised learning. It is also observed 
that DL-based error detection methods often focus on han-
dling numerical data. Compared to time efficiency, these 
methods prioritize model performance, which is why they 
typically do not analyze time complexity in detail.

For error detection, the primary distinction among dif-
ferent methods (such as cluster-based, constraint-based, 
ML-based, DL-based, etc.) arises from their definitions 
of “error”. If an error is defined as a significant deviation 
of specific data from other data, methods based on statis-
tical, clustering, or outlier detection techniques are used. 
If the error is defined as a violation of certain constraints, 
the corresponding constraints are applied to detect errors. If 
the constraints are not provided as input, they must first be 
learned or discovered from the data. For machine learning 
or deep learning methods, the patterns and features of errors 
need to be learned further to be identified. In this task, the 
process concludes once errors are identified (Fig. 6).

Fig. 5  Summary of error detec-
tion methods

Start

Find errors

Discover 
constraints

No

Statistical technology/
Clustering/

Outlier detection

What kind of data is
considered an error?

Different from 
other data Violate

constraints

Fixed constraints

Employ
constraints

Training

Need learning

End

Yes

Predicting

Fig. 6  The general process of error detection methods

Error Detection
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as optimization objectives for evaluating repair results 
(Fig. 8).

As a statistical framework, ERACER [29] integrates 
inference and cleaning tasks. Its core technology is based 
on belief propagation and relational dependency networks. 
Unlike individually cleaning tuples, ERACER propagates 
inference throughout the entire database using the graphi-
cal structure of the data, overcoming the limitations of 
Bayesian network modeling. Thus, it can collaboratively 
perform filling and repairing tasks. In contrast, SCARE 
[30] uses a naive Bayesian model as its statistical model, 
avoiding the need for expensive domain experts to design 
Bayesian networks like ERACER does. It relies on hori-
zontal data partitioning mechanisms to predict possible 
update sets and predicts multiple updates for individual 
records based on local views on each data partition. 
Finally, it combines local predictions to obtain accurate 
final predictions.

Similar to outlier-based error detection Subspace [82], 
QFix [93] serves as a complement to existing techniques. 
The difference is that its primary goal is not error identi-
fication within the data, but rather analyzing query histo-
ries to determine how errors entered the database and thus 
pinpointing the root causes of errors to provide reasonable 
minimum repairing results. In contrast, SrFn [94] does not 
rely on the traditional minimum repair principle but aims 
to maximize the likelihood of repaired data. It is specifi-
cally designed to address the issue of misplaced attribute 
values in data records by swapping intra-tuple attribute 
values and determining the optimal repair solution based 
on the similarity of repaired tuples to their neighboring 
tuples.

Compared to those error detection methods based on 
statistical, statistical-based data repairing approaches are 
designed more complex. This complexity arises from the 
inherent difficulty of fixing issues compared to simply 
detecting errors. These more intricate intermediate processes 
also contribute to enhancing the model’s interpretability to 
some extent. However, this has not entirely addressed the 
issue of traditional methods lacking in generalizability due 
to being designed for specific scenarios.

3.2  Knowledge-Based

Knowledge-based data repairing methods typically introduce 
external knowledge bases during the process of data clean-
ing to augment the available information in models or sys-
tems. For example, DRs [95] establishes semantic connec-
tions between relational data and knowledge bases, utilizing 
extensive information from knowledge bases to identify and 
correct errors in relational databases. The positive seman-
tics of relationships explain how attribute values should be 
associated in correct tuples, while the negative semantics 
indicate how erroneous attribute values should be connected 
with other correct attribute values within the same tuple. In 
this way, DRs can label correct values in tuples and detect 
and repair errors by matching negative semantics. On the 
other hand, knowledge base and crowd-driven data clean-
ing systems, such as KATARA [96], combine the power 
of knowledge bases and crowdsourcing. They identify and 
validate patterns between tabular data and knowledge bases, 
aligning them to generate top-k possible repairs for errors.

Fig. 8  The general process of 
data-repairing methods Start

Find errors

No

Connect 
knowledge 

base with data

Violate
constraints

Employ
constraints

Training

Need learning

End
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Predicting

Fixed
constraints?

Fusion results
Learning 
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Use 
knowledge base?

What kind of data is
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4.1  Statistcal-Based

Early imputation methods mostly combine existing statis-
tical indicators and techniques. For instance, the statistics 
imputer [117] utilizes the zero (resp. mean or median) value 

of the corresponding attribute to impute missing values. 
GMC-GA [31] simply uses the mode value to fill categori-
cal data and the mean value to impute numerical data. Sam-
ple [118] randomly selects samples from existing observa-
tions for imputation, suitable for large datasets with a low 

Fig. 9  Summary of data impu-
tation methods

Fig. 10  Fig. 10: The general 
process of data-imputation 
methods
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Single-Source Problems

Schema Level
(Lack of integrity
constraints, poor
schema design)

Instance Level
(Data entry errors)

Multi-Source Problems

Schema Level Instance Level

Data Quality Problems

- Naming conflicts
- Structural conflicts
…

- Inconsistent aggregating
- Inconsistent timing 
…

(Heterogeneous
data models and
schema designs)

(Overlapping,
contradicting and
inconsistent data)

- Uniqueness
- Referential integrity
…

- Misspellings
- Redundancy/duplicates
- Contradictory values
…

Figure 2. Classification of data quality problems in data sources

2.1 Single-source problems
The data quality of a source largely depends on the degree to which it is governed by schema and integrity
constraints controlling permissable data values.  For sources without schema, such as files, there are few
restrictions on what data can be entered and stored, giving rise to a high probability of errors and
inconsistencies. Database systems, on the other hand, enforce restrictions of a specific data model (e.g., the
relational approach requires simple attribute values, referential integrity, etc.) as well as application-specific
integrity constraints. Schema-related data quality problems thus occur because of the lack of appropriate
model-specific or application-specific integrity constraints, e.g., due to data model limitations or poor
schema design, or because only a few integrity constraints were defined to limit the overhead for integrity
control. Instance-specific problems relate to errors and inconsistencies that cannot be prevented at the
schema level (e.g., misspellings).

Scope/Problem Dirty Data Reasons/Remarks
Attribute Illegal values bdate=30.13.70 values outside of domain range
Record Violated attribute

dependencies
age=22, bdate=12.02.70 age = (current date – birth date)

should hold
Record
type

Uniqueness
violation

emp1=(name=”John Smith”, SSN=”123456”)
emp2=(name=”Peter Miller”, SSN=”123456”)

uniqueness  for SSN (social security
number) violated

Source Referential
integrity violation

emp=(name=”John Smith”, deptno=127) referenced department (127) not defined

Table 1. Examples for single-source problems at schema level (violated integrity constraints)
For both schema- and instance-level problems we can differentiate different problem scopes: attribute (field),
record, record type and source; examples for the various cases are shown in Tables 1 and 2. Note that
uniqueness constraints specified at the schema level do not prevent duplicated instances, e.g., if information
on the same real world entity is entered twice with different attribute values (see example in Table 2).

Scope/Problem Dirty Data Reasons/Remarks
Missing values phone=9999-999999 unavailable values during data entry

(dummy values or null)
Misspellings city=”Liipzig” usually typos, phonetic errors
Cryptic values,
Abbreviations

experience=”B”;
occupation=”DB Prog.”

Embedded values name=”J. Smith 12.02.70 New York” multiple values entered in one attribute
(e.g. in a free-form field)

Attribute

Misfielded values city=”Germany”
Record Violated attribute

dependencies
city=”Redmond”, zip=77777 city and zip code should correspond

Word
transpositions

name1= “J. Smith”, name2=”Miller P.” usually in a free-form field

Duplicated records emp1=(name=”John Smith”,...);
emp2=(name=”J. Smith”,...)

same employee represented twice due to
some data entry errors

Record
type

Contradicting
records

emp1=(name=”John Smith”, bdate=12.02.70);
emp2=(name=”John Smith”, bdate=12.12.70)

the same real world entity is described by
different values

Source Wrong references emp=(name=”John Smith”, deptno=17) referenced department (17) is defined but
wrong

Table 2. Examples for single-source problems at instance level

Classifying Data Quality Problems
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Figure 2. Classification of data quality problems in data sources

2.1 Single-source problems
The data quality of a source largely depends on the degree to which it is governed by schema and integrity
constraints controlling permissable data values.  For sources without schema, such as files, there are few
restrictions on what data can be entered and stored, giving rise to a high probability of errors and
inconsistencies. Database systems, on the other hand, enforce restrictions of a specific data model (e.g., the
relational approach requires simple attribute values, referential integrity, etc.) as well as application-specific
integrity constraints. Schema-related data quality problems thus occur because of the lack of appropriate
model-specific or application-specific integrity constraints, e.g., due to data model limitations or poor
schema design, or because only a few integrity constraints were defined to limit the overhead for integrity
control. Instance-specific problems relate to errors and inconsistencies that cannot be prevented at the
schema level (e.g., misspellings).

Scope/Problem Dirty Data Reasons/Remarks
Attribute Illegal values bdate=30.13.70 values outside of domain range
Record Violated attribute

dependencies
age=22, bdate=12.02.70 age = (current date – birth date)

should hold
Record
type

Uniqueness
violation

emp1=(name=”John Smith”, SSN=”123456”)
emp2=(name=”Peter Miller”, SSN=”123456”)

uniqueness  for SSN (social security
number) violated

Source Referential
integrity violation

emp=(name=”John Smith”, deptno=127) referenced department (127) not defined

Table 1. Examples for single-source problems at schema level (violated integrity constraints)
For both schema- and instance-level problems we can differentiate different problem scopes: attribute (field),
record, record type and source; examples for the various cases are shown in Tables 1 and 2. Note that
uniqueness constraints specified at the schema level do not prevent duplicated instances, e.g., if information
on the same real world entity is entered twice with different attribute values (see example in Table 2).

Scope/Problem Dirty Data Reasons/Remarks
Missing values phone=9999-999999 unavailable values during data entry

(dummy values or null)
Misspellings city=”Liipzig” usually typos, phonetic errors
Cryptic values,
Abbreviations

experience=”B”;
occupation=”DB Prog.”

Embedded values name=”J. Smith 12.02.70 New York” multiple values entered in one attribute
(e.g. in a free-form field)

Attribute

Misfielded values city=”Germany”
Record Violated attribute

dependencies
city=”Redmond”, zip=77777 city and zip code should correspond

Word
transpositions

name1= “J. Smith”, name2=”Miller P.” usually in a free-form field

Duplicated records emp1=(name=”John Smith”,...);
emp2=(name=”J. Smith”,...)

same employee represented twice due to
some data entry errors

Record
type

Contradicting
records

emp1=(name=”John Smith”, bdate=12.02.70);
emp2=(name=”John Smith”, bdate=12.12.70)

the same real world entity is described by
different values

Source Wrong references emp=(name=”John Smith”, deptno=17) referenced department (17) is defined but
wrong

Table 2. Examples for single-source problems at instance level

Single-Source Schema Problems
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Single-Source Problems

Schema Level
(Lack of integrity
constraints, poor
schema design)

Instance Level
(Data entry errors)

Multi-Source Problems

Schema Level Instance Level

Data Quality Problems

- Naming conflicts
- Structural conflicts
…

- Inconsistent aggregating
- Inconsistent timing 
…

(Heterogeneous
data models and
schema designs)

(Overlapping,
contradicting and
inconsistent data)

- Uniqueness
- Referential integrity
…

- Misspellings
- Redundancy/duplicates
- Contradictory values
…

Figure 2. Classification of data quality problems in data sources

2.1 Single-source problems
The data quality of a source largely depends on the degree to which it is governed by schema and integrity
constraints controlling permissable data values.  For sources without schema, such as files, there are few
restrictions on what data can be entered and stored, giving rise to a high probability of errors and
inconsistencies. Database systems, on the other hand, enforce restrictions of a specific data model (e.g., the
relational approach requires simple attribute values, referential integrity, etc.) as well as application-specific
integrity constraints. Schema-related data quality problems thus occur because of the lack of appropriate
model-specific or application-specific integrity constraints, e.g., due to data model limitations or poor
schema design, or because only a few integrity constraints were defined to limit the overhead for integrity
control. Instance-specific problems relate to errors and inconsistencies that cannot be prevented at the
schema level (e.g., misspellings).

Scope/Problem Dirty Data Reasons/Remarks
Attribute Illegal values bdate=30.13.70 values outside of domain range
Record Violated attribute

dependencies
age=22, bdate=12.02.70 age = (current date – birth date)

should hold
Record
type

Uniqueness
violation

emp1=(name=”John Smith”, SSN=”123456”)
emp2=(name=”Peter Miller”, SSN=”123456”)

uniqueness  for SSN (social security
number) violated

Source Referential
integrity violation

emp=(name=”John Smith”, deptno=127) referenced department (127) not defined

Table 1. Examples for single-source problems at schema level (violated integrity constraints)
For both schema- and instance-level problems we can differentiate different problem scopes: attribute (field),
record, record type and source; examples for the various cases are shown in Tables 1 and 2. Note that
uniqueness constraints specified at the schema level do not prevent duplicated instances, e.g., if information
on the same real world entity is entered twice with different attribute values (see example in Table 2).

Scope/Problem Dirty Data Reasons/Remarks
Missing values phone=9999-999999 unavailable values during data entry

(dummy values or null)
Misspellings city=”Liipzig” usually typos, phonetic errors
Cryptic values,
Abbreviations

experience=”B”;
occupation=”DB Prog.”

Embedded values name=”J. Smith 12.02.70 New York” multiple values entered in one attribute
(e.g. in a free-form field)

Attribute

Misfielded values city=”Germany”
Record Violated attribute

dependencies
city=”Redmond”, zip=77777 city and zip code should correspond

Word
transpositions

name1= “J. Smith”, name2=”Miller P.” usually in a free-form field

Duplicated records emp1=(name=”John Smith”,...);
emp2=(name=”J. Smith”,...)

same employee represented twice due to
some data entry errors

Record
type

Contradicting
records

emp1=(name=”John Smith”, bdate=12.02.70);
emp2=(name=”John Smith”, bdate=12.12.70)

the same real world entity is described by
different values

Source Wrong references emp=(name=”John Smith”, deptno=17) referenced department (17) is defined but
wrong

Table 2. Examples for single-source problems at instance level

Single-Source Instance Problems
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Given that cleaning data sources is an expensive process, preventing dirty data to be entered is obviously an
important step to reduce the cleaning problem. This requires an appropriate design of the database schema
and integrity constraints as well as of data entry applications. Also, the discovery of data cleaning rules
during warehouse design can suggest improvements to the constraints enforced by existing schemas.

2.2 Multi-source problems
The problems present in single sources are aggravated when multiple sources need to be integrated. Each
source may contain dirty data and the data in the sources may be represented differently, overlap or
contradict. This is because the sources are typically developed, deployed and maintained independently to
serve specific needs. This results in a large degree of heterogeneity w.r.t. data management systems, data
models, schema designs and the actual data.
At the schema level, data model and schema design differences are to be addressed by the steps of schema
translation and schema integration, respectively. The main problems w.r.t. schema design are naming and
structural conflicts [2][24][17]. Naming conflicts arise when the same name is used for different objects
(homonyms) or different names are used for the same object (synonyms). Structural conflicts occur in many
variations and refer to different representations of the same object in different sources, e.g., attribute vs. table
representation, different component structure, different data types, different integrity constraints, etc.
In addition to schema-level conflicts, many conflicts appear only at the instance level (data conflicts). All
problems from the single-source case can occur with different representations in different sources (e.g.,
duplicated records, contradicting records,…). Furthermore, even when there are the same attribute names and
data types, there may be different value representations (e.g., for marital status) or different interpretation of
the values (e.g., measurement units Dollar vs. Euro) across sources. Moreover, information in the sources
may be provided at different aggregation levels (e.g., sales per product vs. sales per product group) or refer
to different points in time (e.g. current sales as of yesterday for source 1 vs. as of last week for source 2).
A main problem for cleaning data from multiple sources is to identify overlapping data, in particular
matching records referring to the same real-world entity (e.g., customer). This problem is also referred to as
the object identity problem [11], duplicate elimination or the merge/purge problem [15]. Frequently, the
information is only partially redundant and the sources may complement each other by providing additional
information about an entity. Thus duplicate information should be purged out and complementing
information should be consolidated and merged in order to achieve a consistent view of real world entities.
Customer (source 1)
CID Name Street City Sex
 11 Kristen Smith 2 Hurley Pl South Fork, MN 48503 0
 24 Christian Smith Hurley St 2 S Fork MN 1
Client (source 2)
Cno LastName FirstName Gender Address Phone/Fax
24 Smith Christoph M 23 Harley St, Chicago

IL, 60633-2394
333-222-6542 /
333-222-6599

493 Smith Kris L. F 2 Hurley Place, South
Fork MN, 48503-5998

444-555-6666

Customers (integrated target with cleaned data)
No LName FName Gender Street City State ZIP Phone Fax CID Cno
1 Smith Kristen L. F 2 Hurley

Place
South
Fork

MN 48503-
5998

444-555-
6666

11 493

2 Smith Christian M 2 Hurley
Place

South
Fork

MN 48503-
5998

24

3 Smith Christoph M 23 Harley
Street

Chicago IL 60633-
2394

333-222-
6542

333-222-
6599

24

Figure 3. Examples of multi-source problems at schema and instance level

The two sources in the example of Fig. 3 are both in relational format but exhibit schema and data conflicts.
At the schema level, there are name conflicts (synonyms Customer/Client, Cid/Cno, Sex/Gender) and
structural conflicts (different representations for names and addresses). At the instance level, we note that
there are different gender representations (“0”/”1” vs. “F”/”M”) and presumably a duplicate record (Kristen
Smith). The latter observation also reveals that while Cid/Cno are both source-specific identifiers, their
contents are not comparable between the sources; different numbers (11/493) may refer to the same person
while different persons can have the same number (24). Solving these problems requires both schema
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SampleClean (and Variants)
• Dirty Data? 
- Missing Values 
- Duplicate Values 
- Incorrect Values 
- Inconsistent Values 

• Estimate query results using a sample of the data 
• Two ideas: 
- Direct Estimate 
- Correction
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2. QUERY PROCESSING ON DIRTY DATA

Like other SAQP systems, our main focus is on aggregate
numerical queries (avg, sum, count, var, geomean, product)
of the form:

SELECT f(attrs) FROM table
WHERE predicate
GROUP BY attrs

When running the aggregate queries on large and dirty
datasets, there may be two separate sources of errors that
a↵ect result quality. (1) Sampling error: since data is large,
we may execute queries on a sample of the data to reduce
query times. (2) Data error: since real-world data is dirty,
queries on the dirty data also lead to inaccurate query re-
sults.

In this section, we first precisely characterize sampling and
data errors, and then present our SampleClean framework to
deal with these two types of errors. Throughout the section,
we will refer to the following example query on a dataset of
academic publications:

SELECT AVG(citation_count) FROM papers
GROUP BY pub_year

which finds the average number of citations of the publica-
tions published every year.

2.1 Sampling Error

There are many di↵erent ways to sample data; a data
sample could be either created online during the query
time [14,32,47,57] or built o✏ine from past query work-
loads [2,3,5,11]. Consider our example citation query. A
uniform random-sampling scheme randomly selects a set of
papers from papers such that every paper has an equal
probability of selection. To answer queries with a highly
selective predicate or a group-by clause, prior works em-
ploy stratified-sampling [1,3,32], which performs a uniform
random sampling scheme in each group, to guarantee that
every group has a large enough sample size to estimate a
good result. The approaches presented in this paper can
support both uniformly random samples and stratified sam-
ples. However, for simplicity, we present our analysis with
uniform samples.

Answering queries on a sample has an inherent uncer-
tainty since a di↵erent sample may yield a di↵erent result.
Quantifying this uncertainty has been extensively studied
in statistics [43]. Due to this uncertainty, we return confi-
dence intervals in addition to results. For example, given
a confidence probability (e.g., 95%), we can apply results
from sampling statistics to estimate the average number of
citations along with a confidence interval (e.g. ±10), which
means that the estimated average number is within ±10 of
the actual value with 95% probability. The confidence in-
terval quantifies the uncertainty introduced by sampling the
data.

2.2 Data Error

In this work, we focus on three types of data errors: value
error, condition error, and duplication error. We use our ex-
ample query to illustrate how these errors can a↵ect results.

Value error: When an error occurs in the aggregation at-
tributes of the query (i.e. citation_count), it will lead to an
incorrect aggregate result. For example, consider the dirty
data in Figure 1(a). The first paper t1 involves value error
since its citation count should be 144 instead of 18.

Condition error: When an error occurs in the predicate or
group-by attribute of the query (i.e. pub_year), there may

(a) Dirty Data

YFilter()(ICDE 2982002t10000
... .........

6871997Online(Aggr.t7

1569

1

106

cita%on
_count

18

107

298

CrowdERt6 2012

DataSpace 2008t5
t4 Aqua

YFilter Feb,(2002t3
t2 TinyDB 2005

11t1 CrowdDB

pub_year%tleid

1

2

2

#dup

1

1
1

3

(b) Cleaned Sample

6871997Online(Aggr.t7

1569

34

106

cita%on
_count

144

107

298

CrowdERt6 2012

DataSpace 2008t5
1999t4 Aqua

YFilter 2002t3
t2 TinyDB 2005

2011t1 CrowdDB

pub_year%tleid

Figure 1: An example of dirty data and cleaned
sample (Shaded cells denote dirty values, and their
cleaned values are in bold font).

be some tuples that are falsely added into or excluded from
a group, leading to an incorrect result. In Figure 1(a), the
first paper t1 also has condition error since it was published
in the year 2011 rather than 11.

Duplication error: If data contains duplicate tuples (e.g.,
di↵erent representations of the same paper), the aggregate
result will also be a↵ected. This type of error commonly
happens when the data is integrated from multiple sources.
For instance, in Figure 1(a), the third paper t3 has duplica-
tion error as it refers to the same paper as t10000.

While data cleaning can fix the data errors, cleaning the
entire data is usually time consuming, often requiring user
confirmation or crowdsourcing. For this reason, we have
developed the SampleClean framework.

2.3 SampleClean Framework

Figure 2 illustrates all of the components of our frame-
work. SampleClean first creates a random sample of dirty
data, and then applies a data-cleaning technique to clean
the sample. After cleaning the sample, SampleClean uses
the cleaned sample to answer aggregate queries. Sample-
Clean gives results that are unbiased which means in expec-
tation the estimates are equal to the query results if the
entire dataset was cleaned by the data-cleaning technique.
The SampleClean framework is independent of how sam-

ples are cleaned, and in this paper, we consider data cleaning
as a user-provided module. Specifically, for each tuple in the
sample, the cleaning module corrects the attribute values of
the tuple, and estimates the number of duplicates for the
tuple from the dirty data. For example, consider a sample,
S = {t1, t2, · · · , t7} of the dirty data in Figure 1(a). Fig-
ure 1(b) shows the corresponding cleaned sample. For the
first paper t1, we correct pub_year from 11 to 2011, correct
citation_count from 18 to 144, and identify two duplicate
papers (including t1 itself) in the dirty data.

2.3.1 Cleaning Value and Condition Errors
To reduce value errors and condition errors, the data-

cleaning technique only needs to clean attribute values in
the sample, and we can apply a variety of recently proposed
data cleaning techniques to achieve this. For example, out-
lier detection [31,35] and rule-based approaches [17,23] have
been proposed to solve this problem. In addition, Fan et
al. [24] proposed editing rules, master data and user con-
firmation to correct attribute values, and they proved that
their approaches can always obtain perfect cleaning results.
There are also some data-cleaning tools [19,46] that can fa-
cilitate users to clean data based on their domain knowledge.
For example, OpenRefine [46] allows users to define facets
on a per attribute basis, and helps them to quickly identify
incorrect attribute values via faceted search.

2.3.2 Identifying Duplicates
The SampleClean framework defines the duplicate factor

for a tuple as the number of times the tuple appears in the

Dirty and Cleaned Data
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Two Sources of Error
• Approximate Query Processing (AQP): Don't process the entire dataset, but 

use samples to get an approximate result 
• Now add dirty data 
• Two sources of error:
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describes SampleClean, View Cleaning, and ActiveClean respectively. Section 7 reviews the related work in
this field. In Section 8, we highlight some of the open problems and future directions of the SampleClean
project. Finally, we conclude in Section 9.

2 Background and Main Ideas

This section describes the key idea of SampleClean, namely, that data cleaning can be integrated with approx-
imate query processing leading to bounded approximations of clean query results for a fraction of the cleaning
cost.

2.1 Traditional Approximate Query Processing

A number of approximation schemes have been proposed including using Sampling, Wavelets, Sketching, and
Hashing (see Cormode et al. for a survey [16]). This article focuses on Sampling-based approximations and
we will use the term AQP to refer to such systems (e.g., BlinkDB[6]). Sampling-based approximate query
processing is a powerful technique that allows for fast approximate results on large datasets. It has been well
studied in the database community since the 1990s [27, 5, 36, 35], and methods such as BlinkDB [6] have drawn
renewed attention in recent big data research. An important aspect of this work is confidence intervals, as many
types of aggregates can be bounded with techniques such as concentration inequalities (e.g., Hoeffding bounds),
large-deviation inequalities (e.g., Central Limit Theorem), or empirically (e.g., Bootstrap). Suppose, there is a
relation R and a uniform sample S. AQP applies a query Q to S (possibly with some scaling c) to return an
estimate:

Q(R) ≈ est = c ·Q(S)

Traditionally, AQP sacrifices accuracy due to sampling for improved query latency. However in AQP, the
bounds on est assume that the only source of error is approximation error introduced by sampling, however, the
data itself may contain errors which could also affect query results. When the data itself is erroneous, a query
result on the full data–let alone a sample, will be incorrect. The main argument for SampleClean is that when
data errors significantly affect query results, sampling can be combined with data cleaning to actually improve
accuracy. This leads to a counter-intuitive result where it is possible that a query on a cleaned sample of data is
more accurate than a query on the entire dirty data.

2.2 Approximate Query Processing on Dirty Data

2.2.1 Two Sources of Errors: Sampling Error and Data Error

If R is dirty, then there is a true relation Rclean.
Q(Rclean) ̸= Q(R) ≈ est = c ·Q(S)

The error in est has two components: error due to sampling ϵs and error due to the difference with the cleaned
relation ϵc = Q(Rclean)−Q(R):

| Q(Rclean)− est |≤ ϵs + ϵc
While they are both forms of query result error, ϵs and ϵc are very different quantities. ϵs is a random

variable due to the sampling, and different samples would result in different realizations of ϵs. As a random
variable introduced by sampling, ϵs can be bounded by a variety of techniques as a function of the sample size.
On the other hand, ϵc is deterministic, and by definition is an unknown quantity until all the data is cleaned.
Thus, the bounds returned by a typical AQP framework on dirty data would neglect ϵc.

It is possible that Rclean ̸= R but ϵc = 0. Consider a sum query on the relation R(a), where a is a
numerical attribute. If half of the rows in R are corrupted with +1 and the other half are corrupted with−1, then
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Figure 2: The SampleClean framework.

entire table. To determine it, one way would be to estimate
its value from the sample. However, both analytical proofs
and empirical tests have shown that this method can lead to
highly inaccurate query results [10]. Therefore, in our pa-
per, we determine the duplication factor from the complete
relation.

It is important to note, however, that compared to full
cleaning, we only need to determine the duplication factor
for those tuples in the sample. As with other uses of sam-
pling, this can result in significant cost savings in duplicate
detection. In the following, we will describe how to apply ex-
isting deduplication techniques to compute the duplication
factor, and explain why it is cheaper to determine the du-
plication factor for a sample of the data, even though doing
so requires access to the complete relation.

Duplicate detection (also known as entity resolution) aims
to identify di↵erent tuples that refer to the same real-world
entity. This problem has been extensively studied for several
decades [22]. Most deduplication approaches consist of two
phases:

1. Blocking. Due to the large (quadratic) cost of all-

pair comparisons, data is partitioned into a number

of blocks, and duplicates are considered only within a

block. For instance, if we partition papers based on

conference_name, then only the papers that are pub-

lished in the same conference will be checked for dupli-

cates;

2. Matching. To decide whether two tuples are duplicates

or not, existing techniques typically model this problem

as a classification problem, and train a classifier to la-

bel each tuple pair as duplicate or non-duplicate [9].

In some recent research (and also at many compa-

nies) crowdsourcing is used to get humans to match

tuples [20,54].

A recent survey on duplicate detection has argued that the
matching phase is typically much more expensive than the
blocking phase [13]. For instance, an evaluation of the popu-
lar duplicate detection technique [9] shows that the matching
phase takes on the order of minutes for a dataset of thou-
sands of tuples [39]. This is especially true in the context of
crowdsourced matching where each comparison is performed
by a crowd worker costing both time and money. Sample-
Clean reduces the number of comparisons in the matching
phase, as we only have to match each tuple in the sample
with the others in its block. For example, if we sample 1% of
the table, then we can reduce the matching cost by a factor
of 100.

2.3.3 Result Estimation
After cleaning a sample, SampleClean uses the cleaned

sample to estimate the result of aggregate queries. Simi-
lar to existing SAQP systems, we can estimate query results
directly from the cleaned sample. However, due to data er-
ror, result estimation can be very challenging. For example,

consider the avg(citation_count) query in previous section.
Assume that the data has duplication errors and that papers
with a higher citation count tend to have more duplicates.
The greater the number of duplicates, the higher probability
a paper is sampled, and thus the cleaned sample may con-
tain more highly cited papers, leading to an over-estimated
citation count. We formalize these issues and propose the
RawSC approach to address them in Section 3.
Another quantity of interest is how much the dirty data

di↵ers from the cleaned data. We can estimate the mean
di↵erence based on comparing the dirty and cleaned sam-
ple, and then correct a query result on the dirty data with
this estimate. We describe this alternative approach, called
NormalizedSC, and compare its performance with RawSC
in Section 4.

SampleClean v.s. SAQP: SAQP assumes perfectly clean
data while SampleClean relaxes this assumption and makes
cleaning feasible. In RawSC, we take a sample of data, ap-
ply a data cleaning technique, and then estimate the result.
The result estimation is similar to SAQP, however, we re-
quire a few additional scaling factors related to the clean-
ing. On the other hand, NormalizedSC is quite di↵erent
from typical SAQP frameworks. NormalizedSC estimates
the average di↵erence between the dirty and cleaned data,
and this is only possible in systems that couple data clean-
ing and sampling. What is surprising about SampleClean
is that sampling a relatively small population of the overall
data makes it feasible to manually or algorithmically clean
the sample, and experiments confirm that this cleaning of-
ten more than compensates for the error introduced by the
sampling.

2.3.4 Example: SampleClean with OpenRefine
In this section, we will walk through an example imple-

mentation of SampleClean using OpenRefine [46] to clean
the data. Consider our example dirty dataset of publica-
tions in Figure 1(a). First, the user creates a sample of data
(e.g., 100 records) and loads this sample into the OpenRefine
spreadsheet interface. The user can use the tool to detect
data errors such as missing attributes, and fill in the cor-
rect values (e.g., from another data source or based on prior
domain expertise). Next, for deduplication, the system will
propose potential matches for each publication in the sam-
ple based on a blocking technique and the user can accept
or reject these matches. Finally, the clean sample with the
deduplication information is loaded back into the dataset.
In this example, sampling reduces the data cleaning e↵ort
for the user. The user needs to inspect only 100 records in-
stead of the entire dataset, and has no more than 100 sets
of potential duplicates to manually check.
To query this clean sample, we need to apply Sample-

Clean’s result estimation to ensure that the estimate remains
unbiased after cleaning since some records may have been
corrected, or marked as duplicates. In the rest of the paper,
we discuss the details of how to ensure unbiased estimates,
and how large the sample needs to be to get a result of
acceptable quality.

3. RawSC ESTIMATION

In this section, we present the RawSC estimation ap-
proach. RawSC takes a sample of data as input, applies
a data cleaning technique to the sample, runs an aggregate
query directly on the clean sample, and returns a result with
a confidence interval.

3.1 Sample Estimates

We will first introduce the estimation setting without data
errors and explain some results about estimates from sam-

SampleClean Framework
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Types of Direct Estimation Errors
• Attribute Errors: 
- value of one attribute is wrong 
- affect a single row 
- does not affect sampling 

• Duplication Errors 
- same items appear multiple times 
- those items are over-represented 
- count up duplicates and divide the influence
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3.3 Direct Estimation with Data Errors

We are actually interested in estimating an aggregate query on Rclean. However, since we do not have the clean
data, we cannot directly sample from Rclean. We must draw our sample from the dirty data R and then clean
the sample. Running an aggregate query on the cleaned sample is not equivalent to computing the query result
on a sample directly drawn from the clean data. Consider the case where data is duplicated, sampling from the
dirty data leads to an over representation of the duplicated data in the sample. Even if cleaning is subsequently
applied it does not change the fact that the sample is not uniform; and thus, the estimation method without errors
presented before does not apply. Our goal is to define a new function φclean(·), an analog to φ(·), that corrects
attribute values and re-scales to ensures that the estimate remains unbiased.

3.3.1 Attribute Errors

Attribute errors affect an individual row and thus do not change the sampling statistics. Consequently, if we
apply the φ(·) to the corrected tuple, we still preserve the uniform sampling properties of the sample S. In other
words, the probability that a given tuple is sampled is not changed by the cleaning, thus we define φclean(t) as:

φclean(t) = φ (Correct(t)) .

Note that the φ(·) for an avg query is dependent on the parameter kpred. If we correct values in the predicate
attributes, we need to recompute kpred in the cleaned sample.

3.3.2 Duplication Errors

The duplicated data is more likely to be sampled and thus be over-represented in the estimate of the mean. We
can address this with a weighted mean to reduce the effects of this over-representation. Furthermore, we can
incorporate this weighting into φclean(·). Specifically, if a tuple r is duplicated m = Numdup(r) times, then
it is m times more likely to be sampled, and we should down weight it with a 1

m factor compared to the other
tuples in the sample. We formalize this intuition with the following lemma (proved in [45]):

Lemma 1: Let R be a population with duplicated tuples. Let S ⊆ R be a uniform sample of size k. For each
ri ∈ S, let mi denote its number of duplicates in R. (1) For sum and count queries, applying φclean(ri) =
φ(ri)
mi

yields an unbiased estimate; (2) For an avg query, the result has to be scaled by the duplication rate d = k
k′ ,

where k′ =
∑

i
1
mi

, so using φclean(ri) = d · φ(ri)
mi

yields an unbiased estimate.

These results follow directly from importance sampling [32], where expected values can be estimated with
respect to one probability measure, and corrected to reflect the expectation with respect to another.

3.3.3 Summary and Algorithm

In Table 1, we describe the transformation φclean(·). Using this function, we formulate the direct estimation
procedure:

1. Given a sample S and an aggregation function f(·)
2. Apply φclean(·) to each ti ∈ S and call the resulting set φclean(S)
3. Calculate the mean µc, and the variance σ2

c of φclean(S)

4. Return µc ± λ
√

σ2
c

K
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Table 1: φclean(·) for count, sum, and avg. Note that N is the total size of dirty data (including duplicates).

Query φclean(·)
count Predicate(Correct(r)) ·N · 1

Numdup(r)

sum Predicate(Correct(r)) ·N · Correct(r)[a]Numdup(r)

avg Predicate(Correct(t)) · dk
kpred

· Correct(r)[a]Numdup(r)

3.4 Correction with Data Errors

Due to data errors, the result of the aggregation function f on the dirty population R differs from the true result
f(R) = f(Rclean) + ϵ. We derived a function φclean(·) for the direct estimation. We contrasted this function
with φ(·) which does not clean the data. Therefore, we can write:

f(R) =
1

N

∑

r∈R
φ(r) f(Rclean) =

1

N

∑

r∈R
φclean(t)

If we solve for ϵ, we find that:

ϵ =
1

N

∑

r∈R

(
φ(r)− φclean(r)

)

In other words, for every tuple r, we calculate how much φclean(r) changes φ(r). For a sample S, we can
construct the set of differences between the two functions:

Q = {φ(r1)− φclean(r1),φ(r2)− φclean(r2), · · · , φ(rK)− φclean(rK)}
The mean difference is an unbiased estimate of ϵ, the difference between f(R) and f(Rclean). We can subtract
this estimate from an existing aggregation of data to get an estimate of f(Rclean).

We derive the correction estimation procedure, which corrects an aggregation result:

1. Given a sample S and an aggregation function f(·)

2. Apply φ(·) and φclean(·) to each ri ∈ S and call the set of differences Q(S).

3. Calculate the mean µq, and the variance σq of Q(S)

4. Return (f(R)− µq)± λ
√

σ2
q

k

3.5 Analysis

Direct Estimate vs. Correction: In terms of the confidence intervals, we can analyze how direct estimation
compares to correction for a fixed sample size k. Direct estimation gives an estimate that is proportional to
the variance of the clean sample view: σ2

c
k . Correction gives and estimate proportional to the variance of the

differences before and after cleaning: σ2
q

k . σ2
q can be rewritten as
σ2
c + σ2

q − 2cov(S, Sclean)

cov(S, Sclean) is the covariance between the the variables φ(r) and φclean(r). Therefore, a correction will have
less variance when:

σ2
S ≤ 2cov(S, Sclean) (11)

If there are no errors Sclean = S and then cov(S, Sclean) = σ2
c clearly satisfying the condition. Generally,

if errors are small (i.e., the cleaned data is highly correlated with the dirty data) corrections will give higher
accuracy. In practice, we can run both the correction and the direct estimate and take the one with a narrower
confidence interval:

error2 ≤ O(
min{σ2

c ,σ
2
q}

k
) (12)
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Name Dirty Clean Pred % Dup
Rakesh Agarwal 353 211 18.13% 1.28

Jeffery Ullman 460 255 05.00% 1.65
Michael Franklin 560 173 65.09% 1.13

Figure 2: We can return the correct ranking with 95% probability after cleaning only 210 total samples. To
achieve a correct ranking with 99% probability, we require 326 samples to be cleaned.

Selectivity: Let p be the selectivity of the query and k be the sample size; that is, a fraction p records from the
relation satisfy the predicate. For these queries, we can model selectivity as a reduction of effective sample size
k · p making the estimate variance: O( 1

k∗p). Thus, the confidence interval’s size is scaled up by 1√
p . Just like

there is a tradeoff between accuracy and maintenance cost, for a fixed accuracy, there is also a tradeoff between
answering more selective queries and maintenance cost.

3.6 Results: Ranking Academic Authors

Microsoft maintains a public database of academic publications4. The errors in this dataset are primarily du-
plicated publications and mis-attributed publications. We selected publications from three database researchers:
Jeffrey Ullman, Michael Franklin, and Rakesh Agarwal. To clean a sample of publications, we first manually
removed the mis-attributions in the sample. Then, we applied the technique used in [44] to identify potential
duplicates for all of publications in our sample, and manually examined the potential matches. For illustration
purpose, we cleaned the entire dataset, and showed the cleaning results in Figure 2.

This table shows the difference between the reported number of publications (Dirty) and the number of
publications after our cleaning (Clean). We also diagnosed the errors and recorded the duplication ratio (Dup)
and the percentage of mis-attributed papers (Pred). Both Rakesh Agarwal and Michael Franklin had a large
number of mis-attributed papers due to other authors with the same name (64 and 402 respectively). Jeffery
Ullman had a comparatively larger number of duplicated papers (182).

If we were interested in ranking the authors, the dirty data would give us the wrong result. In Figure 2, we
plot the probability of a correct ranking as a function of number of cleaned records with SampleClean. We show
how we can return the correct ranking with 95% probability after cleaning only 210 total samples. To achieve
a correct ranking with 99% probability, we require 326 samples to be cleaned. In comparison, AllDirty always
returns an incorrect ranking. SampleClean provides a flexible way to achieve a desired confidence on decision
based on dirty data queries.

4 View Cleaning: Stale Views are Dirty Data [30]

Suppose the relation R is in fact a derived relation V of an underlying dirty database D. We explored how we
can efficiently apply a data cleaning operation to a sample of V . This extension has an important application in
approximate Materialized View maintenance, where we model a stale Materialized View as dirty data, and the
maintenance procedure as cleaning.

4http://academic.research.microsoft.com (Accessed Nov. 3, 2013)
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Figure 1: Comparison of the convergence
of the methods on two TPC-H datasets of
6M tuples with simulated errors 50% error
and 5% error. On the dataset with larger
errors, the direct estimate gives a narrower
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Q(Rclean) = Q(R). The interesting problem is when there are systematic errors[43] i.e., | ϵc |> 0. In other
words, the corruption that is correlated with the data, e.g., where every record is corrupted with a +1.

2.2.2 Key Idea I: Direct Estimate vs. Correction

The key quantity of interest is ϵc, and to be able to bound a query result on dirty data, requires that ϵc is 0 or
bound ϵc.

Direct Estimate: This technique is a direct extension of AQP to handle data cleaning. A set of k rows is
sampled uniformly at random from the dirty relation R resulting in a sample S. Data cleaning is applied to the
sample S resulting in Sclean. Data cleaning and sampling may change the statistical and scaling properties of
the query Q, so Q may have to be re-written to a query Q̂. Q̂ is applied to the sample Sclean and the result
is returned. There are a couple of important points to note about this techniques. First, as in AQP, the direct
estimate only processes a sample of data. Next, since it processes a cleaned sample of data, at no point is there
a dependence on the dirty data. As we will show later in the article, the direct estimate returns a result whose
accuracy is independent of the magnitude or rate of data error. One way to think about this technique is that it
ensures ϵc = 0 within the sample.

Correction: The direct estimate suffers a subtle drawback. Suppose, there are relatively few errors in the data.
The errors introduced by sampling may dominate any error reductions due to data cleaning. As an alternative,
we can try to estimate ϵc. A set of k rows is sampled uniformly at random from the dirty relation R resulting in
a sample S. Data cleaning is applied to the sample S resulting in Sclean. The difference in applying Q̂ to S and
Q̂ to Sclean gives an estimate of ϵc. The interpretation of this estimate is a correction to the query result on the
full dirty data. In contrast to the direct estimate, this technique requires processing the entire dirty data (but only
cleaning a sample). However, as we will later show, if errors are rare this technique gives significantly improved
accuracy over the direct estimates.

2.2.3 Key Idea II: Sampling to Improve Accuracy

Figure 1 plots error as a function of the cleaned sample size on a corrupted TPCH dataset for a direct estimate,
correction, and AllDirty (query on the full dirty data). In both cases, there is a break-even point (in terms of
number of cleaned samples) when the data cleaning has mitigated more data error than the approximation error
introduced by sampling. After this point, SampleClean improves query accuracy in comparison to AllDirty.
When errors are relatively rare (5% corruption rate), the correction is more accurate. When errors are more
significant (50% corruption rate), the direct estimate is more accurate. Note that the direct estimate returns
results of the same accuracy regardless of the corruption rate.
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Notes
• Duplicate Problem 
• Focuses on aggregate measures 
• How do we actually clean the data?
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ML Data Cleaning Operations

39D. Koop, CSCI 640/490, Fall 2025

Data cleaning activity Data error type
Feature cleaning Incorrect feature values
Label cleaning Incorrect label values
Entity matching Duplicate records
Outlier detection Out-of-distribution records

Imputation Missing values
Holistic data cleaning More than one error type at the same time



Figure 4: (a) Systematic corruption in one variable can lead to a shifted model. (b) Mixed dirty and clean data
results in a less accurate model than no cleaning. (c) Small samples of only clean data can result in similarly
inaccurate models.

5.2 Problem Setup

This work focuses on a class of well analyzed predictive analytics problems; ones that can be expressed as the
minimization of convex loss functions. Examples includes all generalized linear models (including linear and
logistic regression), all variants of support vector machines, and in fact, avg and median are also special cases.

Formally, for labeled training examples {(xi, yi)}Ni=1, the problem is to find a vector of model parameters θ
by minimizing a loss function φ over all training examples:

θ∗ = argmin
θ

N∑

i=1

φ(xi, yi, θ)

Where φ is a convex function in θ. Without loss of generality, we will include regularization as part of the loss
function i.e., φ(xi, yi, θ) includes r(θ).

Definition 4 (Convex Data Analytics): A convex data analytics problem is specified by a set of features X ,
corresponding set of labels Y , and a parametrized loss function φ that is convex in its parameter θ. The result is
a model θ that minimizes the sum of losses over all features and labels.

ActiveClean Problem: Let R be a dirty relation, F (r) !→ (x, y) be a featurization that maps a record r ∈ R to
a feature vector x and label y, φ be a convex regularized loss, and C(r) !→ rclean be a cleaning technique that
maps a record to its cleaned value. Given these inputs, the ActiveClean problem is to return a reliable estimate
θ̂ of the clean model for any limit k on the number of times the data cleaning C(·) can be applied.

Reliable precisely means that the expected error in this estimate (i.e., L2 difference w.r.t a model trained
on a fully cleaned dataset) is bounded above by a monotonically decreasing function in k and a monotonically
decreasing function of the error of the dirty model. In other words, more cleaning implies more accuracy, and
less initial error implies faster convergence.

5.3 Model Updates

The main insight of this work is that, in Convex Data Analytics, sampling is naturally part of the query pro-
cessing. Mini-batch stochastic gradient descent (SGD) is an algorithm for finding the optimal value given the
convex loss and data. In mini-batch SGD, random subsets of data are selected at each iteration and the average
gradient is computed for every batch. Instead of calculating the average gradient for the batch w.r.t to the dirty
data, we apply data cleaning at that point–inheriting the convergence bounds from batch SGD. It is well known
that even for an arbitrary initialization SGD makes significant progress in less than one epoch (a pass through
the entire dataset) [10]. Furthermore in this setting, the dirty model can be much more accurate than an arbitrary
initialization; leading to highly accurate models without processing the entire data.
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ActiveClean
• Given dirty data and a mapping from the data to a feature vector and label, 

we want a reliable estimate of the clean model 
- reliable = bounded estimate 

• Solution: Use stochastic gradient descent (uses sampling!)
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Machine Learning and Data Cleaning
• Data cleaning important for machine learning 
- Filter dirty Data 
- Make learning robust to noise (early stopping?) 

• …but machine learning can also help data cleaning 
- No need for rules, just learn 
- Can include lots of features like statistical properties, integrity constraints 
- What about explainability?
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HoloClean
• A holistic data cleaning framework that combines qualitative methods with 

quantitative methods: 
- Qualitative: use integrity constraints or external data sources 
- Quantitative: use statistics of the data 

• Driven by probabilistic inference. Users only need to provide a dataset to be 
cleaned and describe high-level domain specific signals. 

• Can scale to large real-world dirty datasets and perform automatic repairs 
with high accuracy
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Figure 1: A variety of signals can be used for data cleaning: integrity constraints, external dictionaries, and quantitative statistics of
the input dataset. Using each signal in isolation can lead to repairs that do not fix all errors or even introduce new errors.

limited coverage of external resources or these methods may not be
applicable as for many domains a knowledge base may not exist.

Finally, data repairing methods that are based on statistical anal-
ysis [39, 49], leverage quantitative statistics of the input dataset,
e.g., co-occurrences of attribute values, and use those for cleaning.
These techniques overlook integrity constraints. Figure 1(G) shows
such a repair. As shown the “DBAName” and “City” fields of tuple
t4 are updated as their original values correspond to outliers with
respect to other tuples in the dataset. However, this repair does not
have sufficient information to fix the zip code of tuples t2 and t3.

In our example, if we combine repairs that are based on different
signals, we can repair all errors in the input dataset correctly. If
we combine the zip code and city repairs from Figure 1(F) with the
DBAName repair from Figure 1(G) we can repair all inaccuracies
in the input dataset. Nonetheless, combining heterogeneous signals
can be challenging. This is not only because each type of signal is
associated with different operations over the input data (e.g., in-
tegrity constraints require reasoning about the satisfiability of con-
straints while external information requires efficient matching pro-
cedures) but different signals may suggest conflicting repairs. For
instance, if we naively combine the repairs in Figure 1 we end up
with conflicts on the zip code of tuples t2 and t3. The repairs in
Figure 1(E) and (G) assign value “60609” while the repair in Fig-
ure 1(F) assigns value “60608”. This raises the main question we
answer in this paper: How can we combine all aforementioned sig-
nals in a single unified data cleaning framework, and which signals
are useful for repairing different records in an input dataset?

Our Approach. We introduce HoloClean, the first data cleaning
system that unifies integrity constraints, external data, and quanti-
tative statistics, to repair errors in structured data sets. Instead of
considering each signal in isolation, we use all available signals
to suggest data repairs. We consider the input dataset as a noisy
version of a hidden clean dataset and treat each signal as evidence
on the correctness of different records in that dataset. To combine
different signals, we rely on probability theory as it allows us to
reason about inconsistencies across those.

HoloClean automatically generates a probabilistic model [35]
whose random variables capture the uncertainty over records in the
input dataset. Signals are converted to features of the graphical
model and are used to describe the distribution characterizing the
input dataset. To repair errors, HoloClean uses statistical learning
and probabilistic inference over the generated model.

HoloClean exhibits significant improvements over state-of-the-
art data cleaning methods: we show that across multiple datasets

HoloClean finds repairs with an average precision of ⇠ 90% and
an average recall of ⇠ 76%, obtaining an average F1-score im-
provement of more than 2⇥ against state-of-the-art data repairing
methods. Specifically, we find that combining all signals yields an
F1-score improvement of 2.7⇥ against methods that only use in-
tegrity constraints, an improvement of 2.81⇥ against methods that
only leverage external information, and an improvement of 2.29⇥
against methods that only use quantitative statistics.

Technical Challenges. Probabilistic models provide a means for
unifying all signals. However, it is unclear that inference scales
to large data repairing instances. Probabilistic inference involves
two tasks: (i) grounding, which enumerates all possible interac-
tions between correlated random variables to materialize a factor
graph that represents the joint distribution over all variables, and
(ii) inference where the goal is to compute the marginal probability
for every random variable. These tasks are standard but non-trivial:

(1) Integrity constraints that span multiple attributes can cause com-
binatorial explosion problems. Grounding the interactions due to
integrity constraints requires considering all value combinations
that attributes of erroneous tuples can take. If attributes are al-
lowed to obtain values from large domains, inference can become
intractable. For example, we consider repairing the smallest dataset
in our experiments, which contains 1,000 tuples, and allow attributes
in erroneous tuples to obtain any value from the set of consistent as-
signments present in the dataset. Inference over the resulting proba-
bilistic model does not terminate after an entire day. Thus, we need
mechanisms that limit the possible value assignments for records
that need to be repaired by HoloClean’s probabilistic model.

(2) Integrity constraints introduce correlations between pairs of ran-
dom variables associated with tuples in the input dataset. Enumer-
ating these interactions during grounding results in factor graphs
of quadratic size in the number of tuples. For example, in our ex-
periments we consider a dataset with more than two million tuples.
Enforcing the integrity constraints over all pairs of tuples, yields a
factor graph with more than four trillion interactions across random
variables. Thus, we need to avoid evaluating integrity constraints
for pairs of tuples that cannot result in violations.

(3) Finally, probabilistic inference is #P-complete in the presence
of complex correlations, such as hard constraints. Thus, approxi-
mate inference techniques such as Gibbs sampling are required. In
the presence of complex correlations, Gibbs sampling is known to
require an exponential number of samples in the number of random
variables to mix [45], i.e., reach a stationary distribution. Neverthe-
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Figure 1: A variety of signals can be used for data cleaning: integrity constraints, external dictionaries, and quantitative statistics of
the input dataset. Using each signal in isolation can lead to repairs that do not fix all errors or even introduce new errors.

limited coverage of external resources or these methods may not be
applicable as for many domains a knowledge base may not exist.

Finally, data repairing methods that are based on statistical anal-
ysis [39, 49], leverage quantitative statistics of the input dataset,
e.g., co-occurrences of attribute values, and use those for cleaning.
These techniques overlook integrity constraints. Figure 1(G) shows
such a repair. As shown the “DBAName” and “City” fields of tuple
t4 are updated as their original values correspond to outliers with
respect to other tuples in the dataset. However, this repair does not
have sufficient information to fix the zip code of tuples t2 and t3.

In our example, if we combine repairs that are based on different
signals, we can repair all errors in the input dataset correctly. If
we combine the zip code and city repairs from Figure 1(F) with the
DBAName repair from Figure 1(G) we can repair all inaccuracies
in the input dataset. Nonetheless, combining heterogeneous signals
can be challenging. This is not only because each type of signal is
associated with different operations over the input data (e.g., in-
tegrity constraints require reasoning about the satisfiability of con-
straints while external information requires efficient matching pro-
cedures) but different signals may suggest conflicting repairs. For
instance, if we naively combine the repairs in Figure 1 we end up
with conflicts on the zip code of tuples t2 and t3. The repairs in
Figure 1(E) and (G) assign value “60609” while the repair in Fig-
ure 1(F) assigns value “60608”. This raises the main question we
answer in this paper: How can we combine all aforementioned sig-
nals in a single unified data cleaning framework, and which signals
are useful for repairing different records in an input dataset?

Our Approach. We introduce HoloClean, the first data cleaning
system that unifies integrity constraints, external data, and quanti-
tative statistics, to repair errors in structured data sets. Instead of
considering each signal in isolation, we use all available signals
to suggest data repairs. We consider the input dataset as a noisy
version of a hidden clean dataset and treat each signal as evidence
on the correctness of different records in that dataset. To combine
different signals, we rely on probability theory as it allows us to
reason about inconsistencies across those.

HoloClean automatically generates a probabilistic model [35]
whose random variables capture the uncertainty over records in the
input dataset. Signals are converted to features of the graphical
model and are used to describe the distribution characterizing the
input dataset. To repair errors, HoloClean uses statistical learning
and probabilistic inference over the generated model.

HoloClean exhibits significant improvements over state-of-the-
art data cleaning methods: we show that across multiple datasets

HoloClean finds repairs with an average precision of ⇠ 90% and
an average recall of ⇠ 76%, obtaining an average F1-score im-
provement of more than 2⇥ against state-of-the-art data repairing
methods. Specifically, we find that combining all signals yields an
F1-score improvement of 2.7⇥ against methods that only use in-
tegrity constraints, an improvement of 2.81⇥ against methods that
only leverage external information, and an improvement of 2.29⇥
against methods that only use quantitative statistics.

Technical Challenges. Probabilistic models provide a means for
unifying all signals. However, it is unclear that inference scales
to large data repairing instances. Probabilistic inference involves
two tasks: (i) grounding, which enumerates all possible interac-
tions between correlated random variables to materialize a factor
graph that represents the joint distribution over all variables, and
(ii) inference where the goal is to compute the marginal probability
for every random variable. These tasks are standard but non-trivial:

(1) Integrity constraints that span multiple attributes can cause com-
binatorial explosion problems. Grounding the interactions due to
integrity constraints requires considering all value combinations
that attributes of erroneous tuples can take. If attributes are al-
lowed to obtain values from large domains, inference can become
intractable. For example, we consider repairing the smallest dataset
in our experiments, which contains 1,000 tuples, and allow attributes
in erroneous tuples to obtain any value from the set of consistent as-
signments present in the dataset. Inference over the resulting proba-
bilistic model does not terminate after an entire day. Thus, we need
mechanisms that limit the possible value assignments for records
that need to be repaired by HoloClean’s probabilistic model.

(2) Integrity constraints introduce correlations between pairs of ran-
dom variables associated with tuples in the input dataset. Enumer-
ating these interactions during grounding results in factor graphs
of quadratic size in the number of tuples. For example, in our ex-
periments we consider a dataset with more than two million tuples.
Enforcing the integrity constraints over all pairs of tuples, yields a
factor graph with more than four trillion interactions across random
variables. Thus, we need to avoid evaluating integrity constraints
for pairs of tuples that cannot result in violations.

(3) Finally, probabilistic inference is #P-complete in the presence
of complex correlations, such as hard constraints. Thus, approxi-
mate inference techniques such as Gibbs sampling are required. In
the presence of complex correlations, Gibbs sampling is known to
require an exponential number of samples in the number of random
variables to mix [45], i.e., reach a stationary distribution. Neverthe-
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Figure 1: A variety of signals can be used for data cleaning: integrity constraints, external dictionaries, and quantitative statistics of
the input dataset. Using each signal in isolation can lead to repairs that do not fix all errors or even introduce new errors.

limited coverage of external resources or these methods may not be
applicable as for many domains a knowledge base may not exist.

Finally, data repairing methods that are based on statistical anal-
ysis [39, 49], leverage quantitative statistics of the input dataset,
e.g., co-occurrences of attribute values, and use those for cleaning.
These techniques overlook integrity constraints. Figure 1(G) shows
such a repair. As shown the “DBAName” and “City” fields of tuple
t4 are updated as their original values correspond to outliers with
respect to other tuples in the dataset. However, this repair does not
have sufficient information to fix the zip code of tuples t2 and t3.

In our example, if we combine repairs that are based on different
signals, we can repair all errors in the input dataset correctly. If
we combine the zip code and city repairs from Figure 1(F) with the
DBAName repair from Figure 1(G) we can repair all inaccuracies
in the input dataset. Nonetheless, combining heterogeneous signals
can be challenging. This is not only because each type of signal is
associated with different operations over the input data (e.g., in-
tegrity constraints require reasoning about the satisfiability of con-
straints while external information requires efficient matching pro-
cedures) but different signals may suggest conflicting repairs. For
instance, if we naively combine the repairs in Figure 1 we end up
with conflicts on the zip code of tuples t2 and t3. The repairs in
Figure 1(E) and (G) assign value “60609” while the repair in Fig-
ure 1(F) assigns value “60608”. This raises the main question we
answer in this paper: How can we combine all aforementioned sig-
nals in a single unified data cleaning framework, and which signals
are useful for repairing different records in an input dataset?

Our Approach. We introduce HoloClean, the first data cleaning
system that unifies integrity constraints, external data, and quanti-
tative statistics, to repair errors in structured data sets. Instead of
considering each signal in isolation, we use all available signals
to suggest data repairs. We consider the input dataset as a noisy
version of a hidden clean dataset and treat each signal as evidence
on the correctness of different records in that dataset. To combine
different signals, we rely on probability theory as it allows us to
reason about inconsistencies across those.

HoloClean automatically generates a probabilistic model [35]
whose random variables capture the uncertainty over records in the
input dataset. Signals are converted to features of the graphical
model and are used to describe the distribution characterizing the
input dataset. To repair errors, HoloClean uses statistical learning
and probabilistic inference over the generated model.

HoloClean exhibits significant improvements over state-of-the-
art data cleaning methods: we show that across multiple datasets

HoloClean finds repairs with an average precision of ⇠ 90% and
an average recall of ⇠ 76%, obtaining an average F1-score im-
provement of more than 2⇥ against state-of-the-art data repairing
methods. Specifically, we find that combining all signals yields an
F1-score improvement of 2.7⇥ against methods that only use in-
tegrity constraints, an improvement of 2.81⇥ against methods that
only leverage external information, and an improvement of 2.29⇥
against methods that only use quantitative statistics.

Technical Challenges. Probabilistic models provide a means for
unifying all signals. However, it is unclear that inference scales
to large data repairing instances. Probabilistic inference involves
two tasks: (i) grounding, which enumerates all possible interac-
tions between correlated random variables to materialize a factor
graph that represents the joint distribution over all variables, and
(ii) inference where the goal is to compute the marginal probability
for every random variable. These tasks are standard but non-trivial:

(1) Integrity constraints that span multiple attributes can cause com-
binatorial explosion problems. Grounding the interactions due to
integrity constraints requires considering all value combinations
that attributes of erroneous tuples can take. If attributes are al-
lowed to obtain values from large domains, inference can become
intractable. For example, we consider repairing the smallest dataset
in our experiments, which contains 1,000 tuples, and allow attributes
in erroneous tuples to obtain any value from the set of consistent as-
signments present in the dataset. Inference over the resulting proba-
bilistic model does not terminate after an entire day. Thus, we need
mechanisms that limit the possible value assignments for records
that need to be repaired by HoloClean’s probabilistic model.

(2) Integrity constraints introduce correlations between pairs of ran-
dom variables associated with tuples in the input dataset. Enumer-
ating these interactions during grounding results in factor graphs
of quadratic size in the number of tuples. For example, in our ex-
periments we consider a dataset with more than two million tuples.
Enforcing the integrity constraints over all pairs of tuples, yields a
factor graph with more than four trillion interactions across random
variables. Thus, we need to avoid evaluating integrity constraints
for pairs of tuples that cannot result in violations.

(3) Finally, probabilistic inference is #P-complete in the presence
of complex correlations, such as hard constraints. Thus, approxi-
mate inference techniques such as Gibbs sampling are required. In
the presence of complex correlations, Gibbs sampling is known to
require an exponential number of samples in the number of random
variables to mix [45], i.e., reach a stationary distribution. Neverthe-
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Figure 1: A variety of signals can be used for data cleaning: integrity constraints, external dictionaries, and quantitative statistics of
the input dataset. Using each signal in isolation can lead to repairs that do not fix all errors or even introduce new errors.

limited coverage of external resources or these methods may not be
applicable as for many domains a knowledge base may not exist.

Finally, data repairing methods that are based on statistical anal-
ysis [39, 49], leverage quantitative statistics of the input dataset,
e.g., co-occurrences of attribute values, and use those for cleaning.
These techniques overlook integrity constraints. Figure 1(G) shows
such a repair. As shown the “DBAName” and “City” fields of tuple
t4 are updated as their original values correspond to outliers with
respect to other tuples in the dataset. However, this repair does not
have sufficient information to fix the zip code of tuples t2 and t3.

In our example, if we combine repairs that are based on different
signals, we can repair all errors in the input dataset correctly. If
we combine the zip code and city repairs from Figure 1(F) with the
DBAName repair from Figure 1(G) we can repair all inaccuracies
in the input dataset. Nonetheless, combining heterogeneous signals
can be challenging. This is not only because each type of signal is
associated with different operations over the input data (e.g., in-
tegrity constraints require reasoning about the satisfiability of con-
straints while external information requires efficient matching pro-
cedures) but different signals may suggest conflicting repairs. For
instance, if we naively combine the repairs in Figure 1 we end up
with conflicts on the zip code of tuples t2 and t3. The repairs in
Figure 1(E) and (G) assign value “60609” while the repair in Fig-
ure 1(F) assigns value “60608”. This raises the main question we
answer in this paper: How can we combine all aforementioned sig-
nals in a single unified data cleaning framework, and which signals
are useful for repairing different records in an input dataset?

Our Approach. We introduce HoloClean, the first data cleaning
system that unifies integrity constraints, external data, and quanti-
tative statistics, to repair errors in structured data sets. Instead of
considering each signal in isolation, we use all available signals
to suggest data repairs. We consider the input dataset as a noisy
version of a hidden clean dataset and treat each signal as evidence
on the correctness of different records in that dataset. To combine
different signals, we rely on probability theory as it allows us to
reason about inconsistencies across those.

HoloClean automatically generates a probabilistic model [35]
whose random variables capture the uncertainty over records in the
input dataset. Signals are converted to features of the graphical
model and are used to describe the distribution characterizing the
input dataset. To repair errors, HoloClean uses statistical learning
and probabilistic inference over the generated model.

HoloClean exhibits significant improvements over state-of-the-
art data cleaning methods: we show that across multiple datasets

HoloClean finds repairs with an average precision of ⇠ 90% and
an average recall of ⇠ 76%, obtaining an average F1-score im-
provement of more than 2⇥ against state-of-the-art data repairing
methods. Specifically, we find that combining all signals yields an
F1-score improvement of 2.7⇥ against methods that only use in-
tegrity constraints, an improvement of 2.81⇥ against methods that
only leverage external information, and an improvement of 2.29⇥
against methods that only use quantitative statistics.

Technical Challenges. Probabilistic models provide a means for
unifying all signals. However, it is unclear that inference scales
to large data repairing instances. Probabilistic inference involves
two tasks: (i) grounding, which enumerates all possible interac-
tions between correlated random variables to materialize a factor
graph that represents the joint distribution over all variables, and
(ii) inference where the goal is to compute the marginal probability
for every random variable. These tasks are standard but non-trivial:

(1) Integrity constraints that span multiple attributes can cause com-
binatorial explosion problems. Grounding the interactions due to
integrity constraints requires considering all value combinations
that attributes of erroneous tuples can take. If attributes are al-
lowed to obtain values from large domains, inference can become
intractable. For example, we consider repairing the smallest dataset
in our experiments, which contains 1,000 tuples, and allow attributes
in erroneous tuples to obtain any value from the set of consistent as-
signments present in the dataset. Inference over the resulting proba-
bilistic model does not terminate after an entire day. Thus, we need
mechanisms that limit the possible value assignments for records
that need to be repaired by HoloClean’s probabilistic model.

(2) Integrity constraints introduce correlations between pairs of ran-
dom variables associated with tuples in the input dataset. Enumer-
ating these interactions during grounding results in factor graphs
of quadratic size in the number of tuples. For example, in our ex-
periments we consider a dataset with more than two million tuples.
Enforcing the integrity constraints over all pairs of tuples, yields a
factor graph with more than four trillion interactions across random
variables. Thus, we need to avoid evaluating integrity constraints
for pairs of tuples that cannot result in violations.

(3) Finally, probabilistic inference is #P-complete in the presence
of complex correlations, such as hard constraints. Thus, approxi-
mate inference techniques such as Gibbs sampling are required. In
the presence of complex correlations, Gibbs sampling is known to
require an exponential number of samples in the number of random
variables to mix [45], i.e., reach a stationary distribution. Neverthe-
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Figure 1: A variety of signals can be used for data cleaning: integrity constraints, external dictionaries, and quantitative statistics of
the input dataset. Using each signal in isolation can lead to repairs that do not fix all errors or even introduce new errors.

limited coverage of external resources or these methods may not be
applicable as for many domains a knowledge base may not exist.

Finally, data repairing methods that are based on statistical anal-
ysis [39, 49], leverage quantitative statistics of the input dataset,
e.g., co-occurrences of attribute values, and use those for cleaning.
These techniques overlook integrity constraints. Figure 1(G) shows
such a repair. As shown the “DBAName” and “City” fields of tuple
t4 are updated as their original values correspond to outliers with
respect to other tuples in the dataset. However, this repair does not
have sufficient information to fix the zip code of tuples t2 and t3.

In our example, if we combine repairs that are based on different
signals, we can repair all errors in the input dataset correctly. If
we combine the zip code and city repairs from Figure 1(F) with the
DBAName repair from Figure 1(G) we can repair all inaccuracies
in the input dataset. Nonetheless, combining heterogeneous signals
can be challenging. This is not only because each type of signal is
associated with different operations over the input data (e.g., in-
tegrity constraints require reasoning about the satisfiability of con-
straints while external information requires efficient matching pro-
cedures) but different signals may suggest conflicting repairs. For
instance, if we naively combine the repairs in Figure 1 we end up
with conflicts on the zip code of tuples t2 and t3. The repairs in
Figure 1(E) and (G) assign value “60609” while the repair in Fig-
ure 1(F) assigns value “60608”. This raises the main question we
answer in this paper: How can we combine all aforementioned sig-
nals in a single unified data cleaning framework, and which signals
are useful for repairing different records in an input dataset?

Our Approach. We introduce HoloClean, the first data cleaning
system that unifies integrity constraints, external data, and quanti-
tative statistics, to repair errors in structured data sets. Instead of
considering each signal in isolation, we use all available signals
to suggest data repairs. We consider the input dataset as a noisy
version of a hidden clean dataset and treat each signal as evidence
on the correctness of different records in that dataset. To combine
different signals, we rely on probability theory as it allows us to
reason about inconsistencies across those.

HoloClean automatically generates a probabilistic model [35]
whose random variables capture the uncertainty over records in the
input dataset. Signals are converted to features of the graphical
model and are used to describe the distribution characterizing the
input dataset. To repair errors, HoloClean uses statistical learning
and probabilistic inference over the generated model.

HoloClean exhibits significant improvements over state-of-the-
art data cleaning methods: we show that across multiple datasets

HoloClean finds repairs with an average precision of ⇠ 90% and
an average recall of ⇠ 76%, obtaining an average F1-score im-
provement of more than 2⇥ against state-of-the-art data repairing
methods. Specifically, we find that combining all signals yields an
F1-score improvement of 2.7⇥ against methods that only use in-
tegrity constraints, an improvement of 2.81⇥ against methods that
only leverage external information, and an improvement of 2.29⇥
against methods that only use quantitative statistics.

Technical Challenges. Probabilistic models provide a means for
unifying all signals. However, it is unclear that inference scales
to large data repairing instances. Probabilistic inference involves
two tasks: (i) grounding, which enumerates all possible interac-
tions between correlated random variables to materialize a factor
graph that represents the joint distribution over all variables, and
(ii) inference where the goal is to compute the marginal probability
for every random variable. These tasks are standard but non-trivial:

(1) Integrity constraints that span multiple attributes can cause com-
binatorial explosion problems. Grounding the interactions due to
integrity constraints requires considering all value combinations
that attributes of erroneous tuples can take. If attributes are al-
lowed to obtain values from large domains, inference can become
intractable. For example, we consider repairing the smallest dataset
in our experiments, which contains 1,000 tuples, and allow attributes
in erroneous tuples to obtain any value from the set of consistent as-
signments present in the dataset. Inference over the resulting proba-
bilistic model does not terminate after an entire day. Thus, we need
mechanisms that limit the possible value assignments for records
that need to be repaired by HoloClean’s probabilistic model.

(2) Integrity constraints introduce correlations between pairs of ran-
dom variables associated with tuples in the input dataset. Enumer-
ating these interactions during grounding results in factor graphs
of quadratic size in the number of tuples. For example, in our ex-
periments we consider a dataset with more than two million tuples.
Enforcing the integrity constraints over all pairs of tuples, yields a
factor graph with more than four trillion interactions across random
variables. Thus, we need to avoid evaluating integrity constraints
for pairs of tuples that cannot result in violations.

(3) Finally, probabilistic inference is #P-complete in the presence
of complex correlations, such as hard constraints. Thus, approxi-
mate inference techniques such as Gibbs sampling are required. In
the presence of complex correlations, Gibbs sampling is known to
require an exponential number of samples in the number of random
variables to mix [45], i.e., reach a stationary distribution. Neverthe-
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Figure 1: A variety of signals can be used for data cleaning: integrity constraints, external dictionaries, and quantitative statistics of
the input dataset. Using each signal in isolation can lead to repairs that do not fix all errors or even introduce new errors.

limited coverage of external resources or these methods may not be
applicable as for many domains a knowledge base may not exist.

Finally, data repairing methods that are based on statistical anal-
ysis [39, 49], leverage quantitative statistics of the input dataset,
e.g., co-occurrences of attribute values, and use those for cleaning.
These techniques overlook integrity constraints. Figure 1(G) shows
such a repair. As shown the “DBAName” and “City” fields of tuple
t4 are updated as their original values correspond to outliers with
respect to other tuples in the dataset. However, this repair does not
have sufficient information to fix the zip code of tuples t2 and t3.

In our example, if we combine repairs that are based on different
signals, we can repair all errors in the input dataset correctly. If
we combine the zip code and city repairs from Figure 1(F) with the
DBAName repair from Figure 1(G) we can repair all inaccuracies
in the input dataset. Nonetheless, combining heterogeneous signals
can be challenging. This is not only because each type of signal is
associated with different operations over the input data (e.g., in-
tegrity constraints require reasoning about the satisfiability of con-
straints while external information requires efficient matching pro-
cedures) but different signals may suggest conflicting repairs. For
instance, if we naively combine the repairs in Figure 1 we end up
with conflicts on the zip code of tuples t2 and t3. The repairs in
Figure 1(E) and (G) assign value “60609” while the repair in Fig-
ure 1(F) assigns value “60608”. This raises the main question we
answer in this paper: How can we combine all aforementioned sig-
nals in a single unified data cleaning framework, and which signals
are useful for repairing different records in an input dataset?

Our Approach. We introduce HoloClean, the first data cleaning
system that unifies integrity constraints, external data, and quanti-
tative statistics, to repair errors in structured data sets. Instead of
considering each signal in isolation, we use all available signals
to suggest data repairs. We consider the input dataset as a noisy
version of a hidden clean dataset and treat each signal as evidence
on the correctness of different records in that dataset. To combine
different signals, we rely on probability theory as it allows us to
reason about inconsistencies across those.

HoloClean automatically generates a probabilistic model [35]
whose random variables capture the uncertainty over records in the
input dataset. Signals are converted to features of the graphical
model and are used to describe the distribution characterizing the
input dataset. To repair errors, HoloClean uses statistical learning
and probabilistic inference over the generated model.

HoloClean exhibits significant improvements over state-of-the-
art data cleaning methods: we show that across multiple datasets

HoloClean finds repairs with an average precision of ⇠ 90% and
an average recall of ⇠ 76%, obtaining an average F1-score im-
provement of more than 2⇥ against state-of-the-art data repairing
methods. Specifically, we find that combining all signals yields an
F1-score improvement of 2.7⇥ against methods that only use in-
tegrity constraints, an improvement of 2.81⇥ against methods that
only leverage external information, and an improvement of 2.29⇥
against methods that only use quantitative statistics.

Technical Challenges. Probabilistic models provide a means for
unifying all signals. However, it is unclear that inference scales
to large data repairing instances. Probabilistic inference involves
two tasks: (i) grounding, which enumerates all possible interac-
tions between correlated random variables to materialize a factor
graph that represents the joint distribution over all variables, and
(ii) inference where the goal is to compute the marginal probability
for every random variable. These tasks are standard but non-trivial:

(1) Integrity constraints that span multiple attributes can cause com-
binatorial explosion problems. Grounding the interactions due to
integrity constraints requires considering all value combinations
that attributes of erroneous tuples can take. If attributes are al-
lowed to obtain values from large domains, inference can become
intractable. For example, we consider repairing the smallest dataset
in our experiments, which contains 1,000 tuples, and allow attributes
in erroneous tuples to obtain any value from the set of consistent as-
signments present in the dataset. Inference over the resulting proba-
bilistic model does not terminate after an entire day. Thus, we need
mechanisms that limit the possible value assignments for records
that need to be repaired by HoloClean’s probabilistic model.

(2) Integrity constraints introduce correlations between pairs of ran-
dom variables associated with tuples in the input dataset. Enumer-
ating these interactions during grounding results in factor graphs
of quadratic size in the number of tuples. For example, in our ex-
periments we consider a dataset with more than two million tuples.
Enforcing the integrity constraints over all pairs of tuples, yields a
factor graph with more than four trillion interactions across random
variables. Thus, we need to avoid evaluating integrity constraints
for pairs of tuples that cannot result in violations.

(3) Finally, probabilistic inference is #P-complete in the presence
of complex correlations, such as hard constraints. Thus, approxi-
mate inference techniques such as Gibbs sampling are required. In
the presence of complex correlations, Gibbs sampling is known to
require an exponential number of samples in the number of random
variables to mix [45], i.e., reach a stationary distribution. Neverthe-

1191

Example: Fixing via External Matches

46

2806 W 
Cermak Rd Chicago 60623IL

Ext_Zip

60610

60608

60611259 E Erie ST ILChicago

ILChicago1208 N Wells  
ST

Chicago3465 S Morgan 
ST IL

Ext_StateExt_CityExt_Address

(D) External Information 
(Address listings in Chicago)

(E) Repair using Minimality w.r.t FDs

t2

t4

t1

t3

DBAName

John Veliotis Sr.

Johnnyo’s

John Veliotis Sr.

John Veliotis Sr.

Zip

60609

60609

60608

60609

3465 S 
Morgan ST ILJohnnyo’s Cicago

Johnnyo’s 3465 S 
Morgan ST ILChicago

Johnnyo’s ILChicago3465 S 
Morgan ST

Chicago3465 S 
Morgan STJohnnyo’s IL

StateCityAddressAKAName

(G) Repair that leverages Quantitative Statistics

t2

t4

t1

t3

DBAName

John Veliotis Sr.

John Veliotis Sr.

John Veliotis Sr.

John Veliotis Sr.

Zip

60609

60608

60608

60609

3465 S 
Morgan ST ILJohnnyo’s Chicago

Johnnyo’s 3465 S 
Morgan ST ILChicago

Johnnyo’s ILChicago3465 S 
Morgan ST

Chicago3465 S 
Morgan STJohnnyo’s IL

StateCityAddressAKAName

(F) Repair using Matching Dependencies

t2

t4

t1

t3

DBAName

John Veliotis Sr.

Johnnyo’s

John Veliotis Sr.

John Veliotis Sr.

Zip

60608

60608

60608

60608

3465 S 
Morgan ST ILJohnnyo’s Chicago

Johnnyo’s 3465 S 
Morgan ST ILChicago

Johnnyo’s ILChicago3465 S 
Morgan ST

Chicago3465 S 
Morgan STJohnnyo’s IL

StateCityAddressAKAName

(A) Input Database External Information 
(Chicago food inspections)

t2

t4

t1

t3

DBAName

John Veliotis Sr.

Johnnyo’s

John Veliotis Sr.

John Veliotis Sr.

Zip

60609

60608

60608

60609

3465 S 
Morgan ST ILJohnnyo’s Cicago

Johnnyo’s 3465 S 
Morgan ST ILChicago

Johnnyo’s ILChicago3465 S 
Morgan ST

Chicago3465 S 
Morgan STJohnnyo’s IL

StateCityAddressAKAName

Conflicts
due to c2

Conflict due to c2Does not obey
data distribution

c1: DBAName � Zip

c2: Zip � City, State

c3: City, State, Address � Zip

(B) Functional Dependencies

(C) Matching Dependencies
m1: Zip = Ext Zip � City = Ext City

m2: Zip = Ext Zip � State = Ext State

m3: City = Ext City � State = Ext State�
� Address = Ext Address � Zip = Ext Zip

Figure 1: A variety of signals can be used for data cleaning: integrity constraints, external dictionaries, and quantitative statistics of
the input dataset. Using each signal in isolation can lead to repairs that do not fix all errors or even introduce new errors.

limited coverage of external resources or these methods may not be
applicable as for many domains a knowledge base may not exist.

Finally, data repairing methods that are based on statistical anal-
ysis [39, 49], leverage quantitative statistics of the input dataset,
e.g., co-occurrences of attribute values, and use those for cleaning.
These techniques overlook integrity constraints. Figure 1(G) shows
such a repair. As shown the “DBAName” and “City” fields of tuple
t4 are updated as their original values correspond to outliers with
respect to other tuples in the dataset. However, this repair does not
have sufficient information to fix the zip code of tuples t2 and t3.

In our example, if we combine repairs that are based on different
signals, we can repair all errors in the input dataset correctly. If
we combine the zip code and city repairs from Figure 1(F) with the
DBAName repair from Figure 1(G) we can repair all inaccuracies
in the input dataset. Nonetheless, combining heterogeneous signals
can be challenging. This is not only because each type of signal is
associated with different operations over the input data (e.g., in-
tegrity constraints require reasoning about the satisfiability of con-
straints while external information requires efficient matching pro-
cedures) but different signals may suggest conflicting repairs. For
instance, if we naively combine the repairs in Figure 1 we end up
with conflicts on the zip code of tuples t2 and t3. The repairs in
Figure 1(E) and (G) assign value “60609” while the repair in Fig-
ure 1(F) assigns value “60608”. This raises the main question we
answer in this paper: How can we combine all aforementioned sig-
nals in a single unified data cleaning framework, and which signals
are useful for repairing different records in an input dataset?

Our Approach. We introduce HoloClean, the first data cleaning
system that unifies integrity constraints, external data, and quanti-
tative statistics, to repair errors in structured data sets. Instead of
considering each signal in isolation, we use all available signals
to suggest data repairs. We consider the input dataset as a noisy
version of a hidden clean dataset and treat each signal as evidence
on the correctness of different records in that dataset. To combine
different signals, we rely on probability theory as it allows us to
reason about inconsistencies across those.

HoloClean automatically generates a probabilistic model [35]
whose random variables capture the uncertainty over records in the
input dataset. Signals are converted to features of the graphical
model and are used to describe the distribution characterizing the
input dataset. To repair errors, HoloClean uses statistical learning
and probabilistic inference over the generated model.

HoloClean exhibits significant improvements over state-of-the-
art data cleaning methods: we show that across multiple datasets

HoloClean finds repairs with an average precision of ⇠ 90% and
an average recall of ⇠ 76%, obtaining an average F1-score im-
provement of more than 2⇥ against state-of-the-art data repairing
methods. Specifically, we find that combining all signals yields an
F1-score improvement of 2.7⇥ against methods that only use in-
tegrity constraints, an improvement of 2.81⇥ against methods that
only leverage external information, and an improvement of 2.29⇥
against methods that only use quantitative statistics.

Technical Challenges. Probabilistic models provide a means for
unifying all signals. However, it is unclear that inference scales
to large data repairing instances. Probabilistic inference involves
two tasks: (i) grounding, which enumerates all possible interac-
tions between correlated random variables to materialize a factor
graph that represents the joint distribution over all variables, and
(ii) inference where the goal is to compute the marginal probability
for every random variable. These tasks are standard but non-trivial:

(1) Integrity constraints that span multiple attributes can cause com-
binatorial explosion problems. Grounding the interactions due to
integrity constraints requires considering all value combinations
that attributes of erroneous tuples can take. If attributes are al-
lowed to obtain values from large domains, inference can become
intractable. For example, we consider repairing the smallest dataset
in our experiments, which contains 1,000 tuples, and allow attributes
in erroneous tuples to obtain any value from the set of consistent as-
signments present in the dataset. Inference over the resulting proba-
bilistic model does not terminate after an entire day. Thus, we need
mechanisms that limit the possible value assignments for records
that need to be repaired by HoloClean’s probabilistic model.

(2) Integrity constraints introduce correlations between pairs of ran-
dom variables associated with tuples in the input dataset. Enumer-
ating these interactions during grounding results in factor graphs
of quadratic size in the number of tuples. For example, in our ex-
periments we consider a dataset with more than two million tuples.
Enforcing the integrity constraints over all pairs of tuples, yields a
factor graph with more than four trillion interactions across random
variables. Thus, we need to avoid evaluating integrity constraints
for pairs of tuples that cannot result in violations.

(3) Finally, probabilistic inference is #P-complete in the presence
of complex correlations, such as hard constraints. Thus, approxi-
mate inference techniques such as Gibbs sampling are required. In
the presence of complex correlations, Gibbs sampling is known to
require an exponential number of samples in the number of random
variables to mix [45], i.e., reach a stationary distribution. Neverthe-
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Figure 1: A variety of signals can be used for data cleaning: integrity constraints, external dictionaries, and quantitative statistics of
the input dataset. Using each signal in isolation can lead to repairs that do not fix all errors or even introduce new errors.

limited coverage of external resources or these methods may not be
applicable as for many domains a knowledge base may not exist.

Finally, data repairing methods that are based on statistical anal-
ysis [39, 49], leverage quantitative statistics of the input dataset,
e.g., co-occurrences of attribute values, and use those for cleaning.
These techniques overlook integrity constraints. Figure 1(G) shows
such a repair. As shown the “DBAName” and “City” fields of tuple
t4 are updated as their original values correspond to outliers with
respect to other tuples in the dataset. However, this repair does not
have sufficient information to fix the zip code of tuples t2 and t3.

In our example, if we combine repairs that are based on different
signals, we can repair all errors in the input dataset correctly. If
we combine the zip code and city repairs from Figure 1(F) with the
DBAName repair from Figure 1(G) we can repair all inaccuracies
in the input dataset. Nonetheless, combining heterogeneous signals
can be challenging. This is not only because each type of signal is
associated with different operations over the input data (e.g., in-
tegrity constraints require reasoning about the satisfiability of con-
straints while external information requires efficient matching pro-
cedures) but different signals may suggest conflicting repairs. For
instance, if we naively combine the repairs in Figure 1 we end up
with conflicts on the zip code of tuples t2 and t3. The repairs in
Figure 1(E) and (G) assign value “60609” while the repair in Fig-
ure 1(F) assigns value “60608”. This raises the main question we
answer in this paper: How can we combine all aforementioned sig-
nals in a single unified data cleaning framework, and which signals
are useful for repairing different records in an input dataset?

Our Approach. We introduce HoloClean, the first data cleaning
system that unifies integrity constraints, external data, and quanti-
tative statistics, to repair errors in structured data sets. Instead of
considering each signal in isolation, we use all available signals
to suggest data repairs. We consider the input dataset as a noisy
version of a hidden clean dataset and treat each signal as evidence
on the correctness of different records in that dataset. To combine
different signals, we rely on probability theory as it allows us to
reason about inconsistencies across those.

HoloClean automatically generates a probabilistic model [35]
whose random variables capture the uncertainty over records in the
input dataset. Signals are converted to features of the graphical
model and are used to describe the distribution characterizing the
input dataset. To repair errors, HoloClean uses statistical learning
and probabilistic inference over the generated model.

HoloClean exhibits significant improvements over state-of-the-
art data cleaning methods: we show that across multiple datasets

HoloClean finds repairs with an average precision of ⇠ 90% and
an average recall of ⇠ 76%, obtaining an average F1-score im-
provement of more than 2⇥ against state-of-the-art data repairing
methods. Specifically, we find that combining all signals yields an
F1-score improvement of 2.7⇥ against methods that only use in-
tegrity constraints, an improvement of 2.81⇥ against methods that
only leverage external information, and an improvement of 2.29⇥
against methods that only use quantitative statistics.

Technical Challenges. Probabilistic models provide a means for
unifying all signals. However, it is unclear that inference scales
to large data repairing instances. Probabilistic inference involves
two tasks: (i) grounding, which enumerates all possible interac-
tions between correlated random variables to materialize a factor
graph that represents the joint distribution over all variables, and
(ii) inference where the goal is to compute the marginal probability
for every random variable. These tasks are standard but non-trivial:

(1) Integrity constraints that span multiple attributes can cause com-
binatorial explosion problems. Grounding the interactions due to
integrity constraints requires considering all value combinations
that attributes of erroneous tuples can take. If attributes are al-
lowed to obtain values from large domains, inference can become
intractable. For example, we consider repairing the smallest dataset
in our experiments, which contains 1,000 tuples, and allow attributes
in erroneous tuples to obtain any value from the set of consistent as-
signments present in the dataset. Inference over the resulting proba-
bilistic model does not terminate after an entire day. Thus, we need
mechanisms that limit the possible value assignments for records
that need to be repaired by HoloClean’s probabilistic model.

(2) Integrity constraints introduce correlations between pairs of ran-
dom variables associated with tuples in the input dataset. Enumer-
ating these interactions during grounding results in factor graphs
of quadratic size in the number of tuples. For example, in our ex-
periments we consider a dataset with more than two million tuples.
Enforcing the integrity constraints over all pairs of tuples, yields a
factor graph with more than four trillion interactions across random
variables. Thus, we need to avoid evaluating integrity constraints
for pairs of tuples that cannot result in violations.

(3) Finally, probabilistic inference is #P-complete in the presence
of complex correlations, such as hard constraints. Thus, approxi-
mate inference techniques such as Gibbs sampling are required. In
the presence of complex correlations, Gibbs sampling is known to
require an exponential number of samples in the number of random
variables to mix [45], i.e., reach a stationary distribution. Neverthe-
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Figure 1: A variety of signals can be used for data cleaning: integrity constraints, external dictionaries, and quantitative statistics of
the input dataset. Using each signal in isolation can lead to repairs that do not fix all errors or even introduce new errors.

limited coverage of external resources or these methods may not be
applicable as for many domains a knowledge base may not exist.

Finally, data repairing methods that are based on statistical anal-
ysis [39, 49], leverage quantitative statistics of the input dataset,
e.g., co-occurrences of attribute values, and use those for cleaning.
These techniques overlook integrity constraints. Figure 1(G) shows
such a repair. As shown the “DBAName” and “City” fields of tuple
t4 are updated as their original values correspond to outliers with
respect to other tuples in the dataset. However, this repair does not
have sufficient information to fix the zip code of tuples t2 and t3.

In our example, if we combine repairs that are based on different
signals, we can repair all errors in the input dataset correctly. If
we combine the zip code and city repairs from Figure 1(F) with the
DBAName repair from Figure 1(G) we can repair all inaccuracies
in the input dataset. Nonetheless, combining heterogeneous signals
can be challenging. This is not only because each type of signal is
associated with different operations over the input data (e.g., in-
tegrity constraints require reasoning about the satisfiability of con-
straints while external information requires efficient matching pro-
cedures) but different signals may suggest conflicting repairs. For
instance, if we naively combine the repairs in Figure 1 we end up
with conflicts on the zip code of tuples t2 and t3. The repairs in
Figure 1(E) and (G) assign value “60609” while the repair in Fig-
ure 1(F) assigns value “60608”. This raises the main question we
answer in this paper: How can we combine all aforementioned sig-
nals in a single unified data cleaning framework, and which signals
are useful for repairing different records in an input dataset?

Our Approach. We introduce HoloClean, the first data cleaning
system that unifies integrity constraints, external data, and quanti-
tative statistics, to repair errors in structured data sets. Instead of
considering each signal in isolation, we use all available signals
to suggest data repairs. We consider the input dataset as a noisy
version of a hidden clean dataset and treat each signal as evidence
on the correctness of different records in that dataset. To combine
different signals, we rely on probability theory as it allows us to
reason about inconsistencies across those.

HoloClean automatically generates a probabilistic model [35]
whose random variables capture the uncertainty over records in the
input dataset. Signals are converted to features of the graphical
model and are used to describe the distribution characterizing the
input dataset. To repair errors, HoloClean uses statistical learning
and probabilistic inference over the generated model.

HoloClean exhibits significant improvements over state-of-the-
art data cleaning methods: we show that across multiple datasets

HoloClean finds repairs with an average precision of ⇠ 90% and
an average recall of ⇠ 76%, obtaining an average F1-score im-
provement of more than 2⇥ against state-of-the-art data repairing
methods. Specifically, we find that combining all signals yields an
F1-score improvement of 2.7⇥ against methods that only use in-
tegrity constraints, an improvement of 2.81⇥ against methods that
only leverage external information, and an improvement of 2.29⇥
against methods that only use quantitative statistics.

Technical Challenges. Probabilistic models provide a means for
unifying all signals. However, it is unclear that inference scales
to large data repairing instances. Probabilistic inference involves
two tasks: (i) grounding, which enumerates all possible interac-
tions between correlated random variables to materialize a factor
graph that represents the joint distribution over all variables, and
(ii) inference where the goal is to compute the marginal probability
for every random variable. These tasks are standard but non-trivial:

(1) Integrity constraints that span multiple attributes can cause com-
binatorial explosion problems. Grounding the interactions due to
integrity constraints requires considering all value combinations
that attributes of erroneous tuples can take. If attributes are al-
lowed to obtain values from large domains, inference can become
intractable. For example, we consider repairing the smallest dataset
in our experiments, which contains 1,000 tuples, and allow attributes
in erroneous tuples to obtain any value from the set of consistent as-
signments present in the dataset. Inference over the resulting proba-
bilistic model does not terminate after an entire day. Thus, we need
mechanisms that limit the possible value assignments for records
that need to be repaired by HoloClean’s probabilistic model.

(2) Integrity constraints introduce correlations between pairs of ran-
dom variables associated with tuples in the input dataset. Enumer-
ating these interactions during grounding results in factor graphs
of quadratic size in the number of tuples. For example, in our ex-
periments we consider a dataset with more than two million tuples.
Enforcing the integrity constraints over all pairs of tuples, yields a
factor graph with more than four trillion interactions across random
variables. Thus, we need to avoid evaluating integrity constraints
for pairs of tuples that cannot result in violations.

(3) Finally, probabilistic inference is #P-complete in the presence
of complex correlations, such as hard constraints. Thus, approxi-
mate inference techniques such as Gibbs sampling are required. In
the presence of complex correlations, Gibbs sampling is known to
require an exponential number of samples in the number of random
variables to mix [45], i.e., reach a stationary distribution. Neverthe-
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Figure 1: A variety of signals can be used for data cleaning: integrity constraints, external dictionaries, and quantitative statistics of
the input dataset. Using each signal in isolation can lead to repairs that do not fix all errors or even introduce new errors.

limited coverage of external resources or these methods may not be
applicable as for many domains a knowledge base may not exist.

Finally, data repairing methods that are based on statistical anal-
ysis [39, 49], leverage quantitative statistics of the input dataset,
e.g., co-occurrences of attribute values, and use those for cleaning.
These techniques overlook integrity constraints. Figure 1(G) shows
such a repair. As shown the “DBAName” and “City” fields of tuple
t4 are updated as their original values correspond to outliers with
respect to other tuples in the dataset. However, this repair does not
have sufficient information to fix the zip code of tuples t2 and t3.

In our example, if we combine repairs that are based on different
signals, we can repair all errors in the input dataset correctly. If
we combine the zip code and city repairs from Figure 1(F) with the
DBAName repair from Figure 1(G) we can repair all inaccuracies
in the input dataset. Nonetheless, combining heterogeneous signals
can be challenging. This is not only because each type of signal is
associated with different operations over the input data (e.g., in-
tegrity constraints require reasoning about the satisfiability of con-
straints while external information requires efficient matching pro-
cedures) but different signals may suggest conflicting repairs. For
instance, if we naively combine the repairs in Figure 1 we end up
with conflicts on the zip code of tuples t2 and t3. The repairs in
Figure 1(E) and (G) assign value “60609” while the repair in Fig-
ure 1(F) assigns value “60608”. This raises the main question we
answer in this paper: How can we combine all aforementioned sig-
nals in a single unified data cleaning framework, and which signals
are useful for repairing different records in an input dataset?

Our Approach. We introduce HoloClean, the first data cleaning
system that unifies integrity constraints, external data, and quanti-
tative statistics, to repair errors in structured data sets. Instead of
considering each signal in isolation, we use all available signals
to suggest data repairs. We consider the input dataset as a noisy
version of a hidden clean dataset and treat each signal as evidence
on the correctness of different records in that dataset. To combine
different signals, we rely on probability theory as it allows us to
reason about inconsistencies across those.

HoloClean automatically generates a probabilistic model [35]
whose random variables capture the uncertainty over records in the
input dataset. Signals are converted to features of the graphical
model and are used to describe the distribution characterizing the
input dataset. To repair errors, HoloClean uses statistical learning
and probabilistic inference over the generated model.

HoloClean exhibits significant improvements over state-of-the-
art data cleaning methods: we show that across multiple datasets

HoloClean finds repairs with an average precision of ⇠ 90% and
an average recall of ⇠ 76%, obtaining an average F1-score im-
provement of more than 2⇥ against state-of-the-art data repairing
methods. Specifically, we find that combining all signals yields an
F1-score improvement of 2.7⇥ against methods that only use in-
tegrity constraints, an improvement of 2.81⇥ against methods that
only leverage external information, and an improvement of 2.29⇥
against methods that only use quantitative statistics.

Technical Challenges. Probabilistic models provide a means for
unifying all signals. However, it is unclear that inference scales
to large data repairing instances. Probabilistic inference involves
two tasks: (i) grounding, which enumerates all possible interac-
tions between correlated random variables to materialize a factor
graph that represents the joint distribution over all variables, and
(ii) inference where the goal is to compute the marginal probability
for every random variable. These tasks are standard but non-trivial:

(1) Integrity constraints that span multiple attributes can cause com-
binatorial explosion problems. Grounding the interactions due to
integrity constraints requires considering all value combinations
that attributes of erroneous tuples can take. If attributes are al-
lowed to obtain values from large domains, inference can become
intractable. For example, we consider repairing the smallest dataset
in our experiments, which contains 1,000 tuples, and allow attributes
in erroneous tuples to obtain any value from the set of consistent as-
signments present in the dataset. Inference over the resulting proba-
bilistic model does not terminate after an entire day. Thus, we need
mechanisms that limit the possible value assignments for records
that need to be repaired by HoloClean’s probabilistic model.

(2) Integrity constraints introduce correlations between pairs of ran-
dom variables associated with tuples in the input dataset. Enumer-
ating these interactions during grounding results in factor graphs
of quadratic size in the number of tuples. For example, in our ex-
periments we consider a dataset with more than two million tuples.
Enforcing the integrity constraints over all pairs of tuples, yields a
factor graph with more than four trillion interactions across random
variables. Thus, we need to avoid evaluating integrity constraints
for pairs of tuples that cannot result in violations.

(3) Finally, probabilistic inference is #P-complete in the presence
of complex correlations, such as hard constraints. Thus, approxi-
mate inference techniques such as Gibbs sampling are required. In
the presence of complex correlations, Gibbs sampling is known to
require an exponential number of samples in the number of random
variables to mix [45], i.e., reach a stationary distribution. Neverthe-
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Figure 1: A variety of signals can be used for data cleaning: integrity constraints, external dictionaries, and quantitative statistics of
the input dataset. Using each signal in isolation can lead to repairs that do not fix all errors or even introduce new errors.

limited coverage of external resources or these methods may not be
applicable as for many domains a knowledge base may not exist.

Finally, data repairing methods that are based on statistical anal-
ysis [39, 49], leverage quantitative statistics of the input dataset,
e.g., co-occurrences of attribute values, and use those for cleaning.
These techniques overlook integrity constraints. Figure 1(G) shows
such a repair. As shown the “DBAName” and “City” fields of tuple
t4 are updated as their original values correspond to outliers with
respect to other tuples in the dataset. However, this repair does not
have sufficient information to fix the zip code of tuples t2 and t3.

In our example, if we combine repairs that are based on different
signals, we can repair all errors in the input dataset correctly. If
we combine the zip code and city repairs from Figure 1(F) with the
DBAName repair from Figure 1(G) we can repair all inaccuracies
in the input dataset. Nonetheless, combining heterogeneous signals
can be challenging. This is not only because each type of signal is
associated with different operations over the input data (e.g., in-
tegrity constraints require reasoning about the satisfiability of con-
straints while external information requires efficient matching pro-
cedures) but different signals may suggest conflicting repairs. For
instance, if we naively combine the repairs in Figure 1 we end up
with conflicts on the zip code of tuples t2 and t3. The repairs in
Figure 1(E) and (G) assign value “60609” while the repair in Fig-
ure 1(F) assigns value “60608”. This raises the main question we
answer in this paper: How can we combine all aforementioned sig-
nals in a single unified data cleaning framework, and which signals
are useful for repairing different records in an input dataset?

Our Approach. We introduce HoloClean, the first data cleaning
system that unifies integrity constraints, external data, and quanti-
tative statistics, to repair errors in structured data sets. Instead of
considering each signal in isolation, we use all available signals
to suggest data repairs. We consider the input dataset as a noisy
version of a hidden clean dataset and treat each signal as evidence
on the correctness of different records in that dataset. To combine
different signals, we rely on probability theory as it allows us to
reason about inconsistencies across those.

HoloClean automatically generates a probabilistic model [35]
whose random variables capture the uncertainty over records in the
input dataset. Signals are converted to features of the graphical
model and are used to describe the distribution characterizing the
input dataset. To repair errors, HoloClean uses statistical learning
and probabilistic inference over the generated model.

HoloClean exhibits significant improvements over state-of-the-
art data cleaning methods: we show that across multiple datasets

HoloClean finds repairs with an average precision of ⇠ 90% and
an average recall of ⇠ 76%, obtaining an average F1-score im-
provement of more than 2⇥ against state-of-the-art data repairing
methods. Specifically, we find that combining all signals yields an
F1-score improvement of 2.7⇥ against methods that only use in-
tegrity constraints, an improvement of 2.81⇥ against methods that
only leverage external information, and an improvement of 2.29⇥
against methods that only use quantitative statistics.

Technical Challenges. Probabilistic models provide a means for
unifying all signals. However, it is unclear that inference scales
to large data repairing instances. Probabilistic inference involves
two tasks: (i) grounding, which enumerates all possible interac-
tions between correlated random variables to materialize a factor
graph that represents the joint distribution over all variables, and
(ii) inference where the goal is to compute the marginal probability
for every random variable. These tasks are standard but non-trivial:

(1) Integrity constraints that span multiple attributes can cause com-
binatorial explosion problems. Grounding the interactions due to
integrity constraints requires considering all value combinations
that attributes of erroneous tuples can take. If attributes are al-
lowed to obtain values from large domains, inference can become
intractable. For example, we consider repairing the smallest dataset
in our experiments, which contains 1,000 tuples, and allow attributes
in erroneous tuples to obtain any value from the set of consistent as-
signments present in the dataset. Inference over the resulting proba-
bilistic model does not terminate after an entire day. Thus, we need
mechanisms that limit the possible value assignments for records
that need to be repaired by HoloClean’s probabilistic model.

(2) Integrity constraints introduce correlations between pairs of ran-
dom variables associated with tuples in the input dataset. Enumer-
ating these interactions during grounding results in factor graphs
of quadratic size in the number of tuples. For example, in our ex-
periments we consider a dataset with more than two million tuples.
Enforcing the integrity constraints over all pairs of tuples, yields a
factor graph with more than four trillion interactions across random
variables. Thus, we need to avoid evaluating integrity constraints
for pairs of tuples that cannot result in violations.

(3) Finally, probabilistic inference is #P-complete in the presence
of complex correlations, such as hard constraints. Thus, approxi-
mate inference techniques such as Gibbs sampling are required. In
the presence of complex correlations, Gibbs sampling is known to
require an exponential number of samples in the number of random
variables to mix [45], i.e., reach a stationary distribution. Neverthe-
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explanation. For instance, considering Patient 2’s treatment 
plan selection of Option 1, 3 axillary lymph nodes, and the 
patient’s gender as female, a comprehensive judgment leads 
to this 1.05 repair result. Similarly, it may be a combination 
of a treatment plan of Option 1, a tumor size of 0.3, and 
female gender, resulting in an imputed value of 2 for axillary 
lymph nodes. However, for AI-based approaches, this pro-
cess is opaque without enough explanations for final results, 
making it hard to provide rational reasons for decision mak-
ing. In contrast, based on the inherent interpretability, tradi-
tional methods can furnish reasonable and accurate cleaning 
results, along with reasonable explanations, making them 
more suitable for scenarios requiring thorough explanations 
and high precision for decisions, such as medical scenes.

1.2.2  Applications of AI Techniques

As for the scene shown in Fig. 4, the dataset of gas compo-
nents contains a vast number of tuples. Some gases like CO 
and  C6H6 lack precise mathematical relationships, exhibit-
ing complex dependencies. These dependencies may vary 
significantly based on geographical location, climate, and 
other factors, leading to complex data quality issues and pos-
ing challenges for modeling. Traditional approaches might 
rely on distribution analysis, conflict graphs, or clustering 
to construct models. However, such models often have diffi-
culty effectively capturing the aforementioned complex rela-
tionships, resulting in imprecise cleaning results. AI-based 
methods, on the other hand, can leverage machine learning 
systems or deep neural network models that integrate mul-
tiple signals for data cleaning. These models have complex 
structures and strong generalization capabilities, enabling 
them to effectively capture various patterns and relationships 
among data. Therefore, they are better suited for complex 

application scenarios with diverse data quality issues and 
low efficiency and cost requirements.

1.3  Organization and Contributions

Data cleaning is an important and practical topic that is 
closely connected to AI areas. It is also a challenging topic 
and is becoming increasingly important given the recent 
trends in data science and big data analytics. Although there 
already exist a large body of traditional methods in the field 
of data cleaning, the rise of AI technology has injected 
new vitality into this domain. The goal of this survey is to 

Fig. 3  Data cleaning processes 
of traditional and AI methods 
over the medical dataset with 
erroneous and missing values

Fig. 4  Data cleaning processes of traditional and AI methods over the 
sensor dataset with various data quality issues
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• Traditional Methods are often efficient and interpretable 
• Deep Learning is expensive and hard to understand but can be more 

effective 
• Machine Learning provides a balance?

50

[J. Zhu et al., 2024]
D. Koop, CSCI 640/490, Fall 2025

149Relational Data Cleaning Meets Artificial Intelligence: A Survey  

complexity and diversity of data quality issues in real-world 
scenarios, traditional methods may fall short in accurately 
uncovering relationships between data, revealing shortcom-
ings in generalization. For example, DBSCAN assumes that 
data clusters should be composed of high-density regions, 
which should be separated by low-density regions, making 
it ineffective in handling clusters with uneven density [46].

1.1.2  ML

In contrast to traditional methods, ML-based cleaning meth-
ods usually rely on more sophisticated signals [47–50], often 
employing machine learning techniques or incorporating rel-
atively simple networks [51, 52, 52]. This enables them to 
model more complex relationships and achieve better effec-
tiveness in many scenarios compared to traditional methods. 
For example, the ML-based method, Raha [47], serves as 
a configuration-free error detection approach, generating a 
limited number of error detection algorithm configurations 
covering various types of data errors, thereby producing 
expressive feature vectors for each tuple value. HoloClean 
[53] integrates integrity constraints, external data, and quan-
titative statistical information to rectify errors within data. 
Besides, BoostClean [49] combines statistical and machine 
learning methods in a boost-clean architecture. As for meth-
ods like RNNI [51] and MLPI [52], they apply recurrent 
neural networks (RNN) and Multilayer Perceptrons (MLP), 
respectively, in data imputation. Due to the consideration of 
broader cleaning scenarios and the incorporation of various 
signals and techniques, ML-based methods typically incur a 
higher computational cost and are less efficient due to their 
complexity. They also generally provide better generaliza-
tion than traditional methods, effectively adapting to diverse 
data patterns and types of errors. While interpretability 
can vary, their effectiveness is often superior to traditional 
approaches. This is evident in methods like Raha [47] and 
HoloClean [53], which leverage sophisticated signals and 
complex relationships to achieve better performance.

1.1.3  DL

In this study, DL-based methods typically employ more 
complex models compared to ML methods, such as deep 
neural networks like GANs [54–56], DAEs [57, 58], GNNs 
[59, 60] and LLMs [61–63]. For example, GAIN [54] is a 

deep learning imputation model, that combines generative 
modeling with adversarial training to impute missing values. 
It employs a generator and a discriminator, with hint vec-
tors guiding the discriminator to focus on imputation qual-
ity. DPLAN [64] uses an adapted deep Q network (DQN) 
designed for error detection. This model learns known errors 
through automatic interactions while actively exploring 
potential errors in unlabeled data to continuously refine the 
understanding of unknown errors. LLMClean [62] lever-
ages the powerful modeling and generalization capabilities 
of large language models (LLMs). By automatically gen-
erating context models from real-world data, it eliminates 
the need for additional meta-information. The approach 
enhances data cleaning through dataset classification, model 
extraction or mapping, and the creation of context models. 
However, it is inevitable that such complex frameworks or 
models demand larger datasets for training and consume 
substantial computational resources and time [65], result-
ing in high costs and low efficiency. Furthermore, as they 
typically only provide the results of data cleaning without 
offering explanations for the decisions made, these AI-based 
methods often lack interpretability [66].

1.2  Use Cases

Considering different strengths and weaknesses of tradi-
tional and AI methods, the data cleaning choice should 
consider specific applications. To provide a reference, we 
analyze specific application scenarios of traditional and AI 
methods respectively below.

1.2.1  Applications of Traditional Methods

As shown in Fig. 3, consider a medical dataset that records 
information of tumor patients, including the treatment plans 
adopted and the current survival status of patients. Doctors 
formulate treatment plans based on patients’ physiological 
characteristics (such as gender and age) and relevant physio-
logical indicators of the tumor. These plans may yield differ-
ent outcomes, and data cleaning methods can organize these 
related relationships to complete the repair and fill-in of the 
medical dataset. For example, the tumor size of Patient 2 is 
a typical decimal point error. Although both traditional and 
AI methods may correct 105 to 1.05, traditional methods can 
provide a specific derivation process and offer a reasonable 

Fig. 2  Traditional versus AI 
data cleaning methods
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Figure 2: Illustration of Llama2 for batch-level anomaly detection before and after our fine-tuning strategy. With the same input prompt,
Llama2-70b (70-billion parameter version) makes factual mistakes–two false negatives (missing 5 and 10) and one false positive (incorrect
14). These results are obtained from https://www.llama2.ai. On the contrary, our fine-tuned 7-billion parameter (10x smaller than Llama2-
70b) Llama2-AD succeeds in discovering all anomalies.

serialize the ith data point.3 The data index i is necessary to
disambiguate repetitive data values. We approximate the data
value up to two decimal places in the serialization. Each se-
rialized data point is then concatenated as input to the LLMs.
We use Tin := +{T in

I }Ni=1 to denote the concatenation op-
eration where + represents concatenating each element in a
set.
Prompt Engineering. Besides the data input, we need to
inform the LLMs of the anomaly detection task. We use a
description text C :=“Abnormal data are different from the
majority. Which data are abnormal?” to characterize anoma-
lies and ask questions. The serialized data input and task
description together formulate the input to the LLMs, i.e.,
X := +{Tin, C}. Fig. 1 presents a serialization example
with five synthetic data.

With the input X , LLMs can respond to the anomaly de-
tection request. The response will include anomalous data
indices (the numeric data indices) by design. In most cases,
LLMs tend to generate diverse responses with long reasoning.
We further regularize the output format by delivering another
system message–“Only answer data indices.”–to the LLMs to
have easy-to-parse responses.4

Algorithm 1 LLM for batch-level anomaly detection

Require: LLM, D := {xi → RK}Ni=1
Initialize anomaly score for each row si = 0, i = 1, . . . , N
for each column k in D do

Set serialization Tin = “Data 1 is x1,k. Data 2 is x2,k.
... Data N is xN,k.”

Set prompt C = “Abnormal data differ from the major-
ity. Which data are abnormal?”

Get response Ŷk = LLM(Tin + C)
Update anomaly scores for all data points si = si +

[i → Ŷk].
end for

return anomaly scores si, i = 1, . . . , N

Anomaly detection as a text-to-text task. One can get
anomaly predictions for each feature dimension with the pro-

3Experimental performance is not sensitive to data names. We
also named data by “Row” instead of “Data” as if in a table where
columns correspond to features or data dimensions and rows index
data points. The experimental performance is similar.

4Use “Only answer row numbers” when data are named “Row.”

posed data serialization methods and the prompts. We now
introduce a simple method for aggregating the responses of
all feature dimensions and constructing anomaly scores for
each data point.

We propose to set the anomaly score of the ith data to be
the number of occurrences of data index i in all responses.
That is, suppose the response to the kth feature dimension is
Ŷk, then si =

∑K
k=1 [i → Ŷk]. The anomaly scores are use-

ful for performance evaluation and characterizing the degree
of abnormality. The full procedure is presented in Alg. 1.

Prediction extraction from output. Automatically parsing
the LLM output and extracting the predicted anomalies facili-
tate model evaluations and improve the response-to-detection
speed. To get the predictions, we instruct the model to output
only anomalous data indices by sending a system message–
“Only answer data indices” However, research shows that the
capability of following instructions by LLMs differs to some
extent [Ouyang et al., 2022; Zhou et al., 2023]. In our exper-
iments, we observed that the fine-tuned LLMs (e.g., Mistral-
AD and Llama-AD used in the experiments) can faithfully
follow the same output format used during the fine-tuning
stage. GPT-3.5 and GPT-4 also follow the instructions well
and output succinct answers containing predicted data iden-
tifiers. So, we can extract the predictions automatically for
these models. See Supp. B.1 for script details.

The other models in our experiments, Llama-2 and Mis-
tral, oftentimes output redundant information besides pre-
dictions even though they are instructed to only output pre-
dictions. Redundant information makes it hard to pinpoint
the predictions without human involvement, complicating
the parsing process. To completely suppress redundant in-
formation, we manually modify the output token proba-
bilities at each generation step and require the generation
to follow a specific pattern. We use regular expressions
to specify the desired model output patterns with the Out-
lines library [Willard and Louf, 2023]5. We found that
grammar-correct formats with complete sentences are essen-
tial for generating high-quality predictions. So the regular ex-
pression in use is ((Data [0-9]+(, [0-9]+)* are
abnormal\.)|(All data are normal\.)) which
allows the model to predict abnormal data or to abstain from
predictions if all data seemingly comes from the same data-
generating process. Extracting integers from the formatted
output can be accomplished by the same automatic procedure

5https://outlines-dev.github.io/outlines/
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serialize the ith data point.3 The data index i is necessary to
disambiguate repetitive data values. We approximate the data
value up to two decimal places in the serialization. Each se-
rialized data point is then concatenated as input to the LLMs.
We use Tin := +{T in

I }Ni=1 to denote the concatenation op-
eration where + represents concatenating each element in a
set.
Prompt Engineering. Besides the data input, we need to
inform the LLMs of the anomaly detection task. We use a
description text C :=“Abnormal data are different from the
majority. Which data are abnormal?” to characterize anoma-
lies and ask questions. The serialized data input and task
description together formulate the input to the LLMs, i.e.,
X := +{Tin, C}. Fig. 1 presents a serialization example
with five synthetic data.

With the input X , LLMs can respond to the anomaly de-
tection request. The response will include anomalous data
indices (the numeric data indices) by design. In most cases,
LLMs tend to generate diverse responses with long reasoning.
We further regularize the output format by delivering another
system message–“Only answer data indices.”–to the LLMs to
have easy-to-parse responses.4

Algorithm 1 LLM for batch-level anomaly detection

Require: LLM, D := {xi → RK}Ni=1
Initialize anomaly score for each row si = 0, i = 1, . . . , N
for each column k in D do

Set serialization Tin = “Data 1 is x1,k. Data 2 is x2,k.
... Data N is xN,k.”

Set prompt C = “Abnormal data differ from the major-
ity. Which data are abnormal?”

Get response Ŷk = LLM(Tin + C)
Update anomaly scores for all data points si = si +

[i → Ŷk].
end for

return anomaly scores si, i = 1, . . . , N

Anomaly detection as a text-to-text task. One can get
anomaly predictions for each feature dimension with the pro-

3Experimental performance is not sensitive to data names. We
also named data by “Row” instead of “Data” as if in a table where
columns correspond to features or data dimensions and rows index
data points. The experimental performance is similar.

4Use “Only answer row numbers” when data are named “Row.”

posed data serialization methods and the prompts. We now
introduce a simple method for aggregating the responses of
all feature dimensions and constructing anomaly scores for
each data point.

We propose to set the anomaly score of the ith data to be
the number of occurrences of data index i in all responses.
That is, suppose the response to the kth feature dimension is
Ŷk, then si =

∑K
k=1 [i → Ŷk]. The anomaly scores are use-

ful for performance evaluation and characterizing the degree
of abnormality. The full procedure is presented in Alg. 1.

Prediction extraction from output. Automatically parsing
the LLM output and extracting the predicted anomalies facili-
tate model evaluations and improve the response-to-detection
speed. To get the predictions, we instruct the model to output
only anomalous data indices by sending a system message–
“Only answer data indices” However, research shows that the
capability of following instructions by LLMs differs to some
extent [Ouyang et al., 2022; Zhou et al., 2023]. In our exper-
iments, we observed that the fine-tuned LLMs (e.g., Mistral-
AD and Llama-AD used in the experiments) can faithfully
follow the same output format used during the fine-tuning
stage. GPT-3.5 and GPT-4 also follow the instructions well
and output succinct answers containing predicted data iden-
tifiers. So, we can extract the predictions automatically for
these models. See Supp. B.1 for script details.

The other models in our experiments, Llama-2 and Mis-
tral, oftentimes output redundant information besides pre-
dictions even though they are instructed to only output pre-
dictions. Redundant information makes it hard to pinpoint
the predictions without human involvement, complicating
the parsing process. To completely suppress redundant in-
formation, we manually modify the output token proba-
bilities at each generation step and require the generation
to follow a specific pattern. We use regular expressions
to specify the desired model output patterns with the Out-
lines library [Willard and Louf, 2023]5. We found that
grammar-correct formats with complete sentences are essen-
tial for generating high-quality predictions. So the regular ex-
pression in use is ((Data [0-9]+(, [0-9]+)* are
abnormal\.)|(All data are normal\.)) which
allows the model to predict abnormal data or to abstain from
predictions if all data seemingly comes from the same data-
generating process. Extracting integers from the formatted
output can be accomplished by the same automatic procedure

5https://outlines-dev.github.io/outlines/
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Table 1: AUROC results of batch-level anomaly detection on the ODDS benchmark. Different LLMs are evaluated. Specifically, we show
the performance of two LLMs (Llama2, Mistral) before and after finetuning. Proprietary LLMs (GPT-3.5 and GPT-4) are also compared.
Additional state-of-the-art transductive learning-based approaches, i.e., KNN and ECOD, are listed for comparisons. Note that KNN and
ECOD are not zero-shot batch-level methods.

Proposed Methods Baselines

GPT-3.5 GPT-4 Llama2 Llama2-AD Mistral Mistral-AD KNN ECOD

abalone 78.4±15.2 84.4±7.4 67.2±16.9 49.7±13.3 73.0±15.6 75.1±9.0 88.0±8.8 83.9±10.1
annthyroid 65.1±13.5 82.8±4.5 50.8±1.1 61.5±11.9 64.7±13.0 82.3±9.0 76.5±7.0 81.4±3.3
arrhythmia 73.1±1.6 75.9±3.5 47.2±0.1 58.7±4.9 55.2±2.7 61.0±4.8 69.6±5.2 66.3±6.7
breastw 63.1±34.4 98.7±0.5 50.4±2.4 74.3±2.6 62.7±4.6 93.6±2.0 97.5±1.0 99.0±0.3
cardio 83.3±2.5 87.1±1.4 45.5±3.6 71.7±10.5 68.4±18.5 71.7±1.5 92.5±0.4 95.8±1.2
ecoli 78.7±5.1 73.5±2.4 52.3±9.7 78.9±7.3 79.5±6.2 79.1±4.4 89.3±13.6 79.1±10.1
forest cover 82.5±11.2 85.9±8.1 53.9±5.5 58.1±25.2 68.7±24.3 52.4±18.8 48.5±18.9 83.3±3.4
glass 69.5±11.4 64.2±14.1 45.4±7.7 56.3±4.7 59.3±8.3 65.9±3.9 86.7±3.0 68.6±8.9
ionosphere 83.5±2.5 88.8±2.0 50.7±1.4 59.9±9.4 64.1±2.3 69.4±8.1 94.7±2.5 85.8±1.8
kdd 66.1±28.8 87.4±1.6 52.4±3.4 58.0±3.1 65.3±1.7 60.1±5.6 59.8±4.8 88.3±1.7
kddrev 58.5±16.8 72.8±5.1 53.3±4.7 60.7±12.6 56.8±9.0 50.2±14.1 45.0±1.2 74.4±5.3
letter 50.9±10.5 53.8±1.9 48.4±1.5 55.3±5.6 52.2±4.6 50.6±2.7 42.2±2.9 51.0±8.3
lympho 90.7±5.8 88.2±2.7 45.1±3.8 90.7±8.8 74.7±9.2 96.0±1.7 88.4±0.0 97.7±0.0
mammo 52.8±20.0 68.7±30.3 49.8±0.7 55.1±13.5 67.5±10.8 79.9±15.4 86.2±5.8 94.7±5.0
mnist 69.9±12.0 68.2±13.3 48.8±1.6 51.5±8.8 54.6±6.3 54.2±7.6 54.4±3.3 59.6±6.3
mulcross 86.9±8.8 88.6±5.8 51.4±2.0 59.0±9.8 60.9±7.2 75.3±8.8 11.1±15.7 95.4±1.2
musk 75.8±9.0 63.3±4.5 54.3±4.0 62.7±8.3 65.5±14.1 63.1±16.0 94.9±1.0 60.8±8.8
optdigits 39.5±2.6 35.6±19.5 58.5±12.7 41.1±9.0 55.8±5.7 39.5±9.6 24.5±15.5 29.9±14.0
pendigits 49.6±3.8 78.2±11.8 57.2±8.6 52.5±5.7 56.3±11.5 72.1±24.2 63.4±7.1 76.9±5.4
pima 55.9±6.5 59.6±2.4 46.0±0.8 51.6±1.5 55.0±4.1 61.4±1.4 70.9±3.5 60.2±4.4
satellite 58.4±8.8 62.7±4.9 51.0±0.9 58.0±6.9 58.4±8.6 68.3±2.4 71.1±2.1 60.9±6.1
satimage 90.5±9.1 86.0±13.4 53.1±7.0 70.8±9.2 71.7±8.0 97.1±2.1 94.0±7.5 80.3±19.1
seismic 67.9±2.4 68.2±3.3 53.6±3.7 58.4±18.3 57.9±6.8 70.1±4.0 70.5±2.9 69.2±6.2
shuttle 94.1±6.2 98.9±1.1 50.1±0.3 72.2±7.2 75.6±11.7 97.5±2.2 95.1±6.8 98.6±1.7
speech 51.2±23.4 44.9±34.3 55.0±9.3 37.9±19.9 40.5±18.4 47.8±7.7 54.7±31.1 61.7±25.1
thyroid 88.8±9.7 95.2±2.9 42.5±9.8 84.5±9.4 81.3±11.7 92.5±2.2 98.7±1.3 98.3±1.1
vertebral 57.9±3.0 51.6±11.4 48.8±3.9 48.2±4.5 54.1±5.7 45.3±2.6 34.6±2.3 44.0±3.3
vowels 40.9±8.1 65.9±3.1 51.9±6.3 51.4±19.1 47.3±3.5 52.5±5.2 96.1±3.9 62.6±14.3
wbc 79.2±5.6 93.4±2.2 48.2±4.8 61.3±5.4 68.5±7.3 88.6±8.2 93.7±2.0 91.9±2.3
wine 47.6±11.5 51.3±10.2 50.6±9.3 51.2±3.9 55.5±8.4 59.7±12.0 30.0±0.0 64.9±0.0

average 68.3±1.2 74.1±2.2 51.1±2.5 60.0±3.2 62.4±2.7 69.1±1.0 70.7±0.9 75.5±1.0

Specifically, we evaluate the popular GPT-3.5 and GPT-4.8
We also compare two open-source LLMs, Llama2 [Touvron
et al., 2023] and Mistral [Jiang et al., 2023], using the 7B
parameter version available at HuggingFace. We also include
the LLMs (Llama2-AD and Mistral-AD) fine-tuned using our
synthetic dataset and fine-tuning strategy. Lastly, we include
two transductive learning approaches, KNN [Ramaswamy et

al., 2000] and ECOD [Li et al., 2022], to demonstrate better
how LLMs-based methods stand against state-of-the-art ap-
proaches. See Supp. B for implementation details.

4.2 Implementation Details

We run all experiments three times with different random
seeds. All our experiments except GPT-3.5 and GPT-4 are
performed using an A6000 GPU with PyTorch. Llama-2 and
Mistral can fit into the GPU memory. The temperature and

8Specifically, we use api of gpt-3.5-turbo-1106 and gpt-4-1106-
preview.

top p generation hyperparameters are set as 0.75 and 0.9 for
Llama-2 and Mistral, respectively. On the other hand, for
GPT-3.5 and GPT-4, we use their default hyperparameter set-
tings and perform the experiments through their API.

We fine-tune Llama-2-7B and Mistral-7B using LoRA
parameter-efficient fine-tuning strategy [Hu et al., 2022] on
our synthetic datasets. We generate training and valida-
tion sets separately. The training set involves 5000 data
batches (2500 continuous data batches and 2500 discrete data
batches), while the validation set contains 400 data batches
(200 for continuous and 200 for discrete data). We finetune
Llama-2-7B for five epochs and Mistral-7B for two epochs
with the same learning rate 1e-3. All optimizations are con-
vergent on the validation set. The resulting models are named
Llama2-AD and Mistral-AD.

4.3 Results

Qualitative results. Accomplishing the anomaly detection
task requires LLMs to identify the low-density data of D. To

Table 1: AUROC results of batch-level anomaly detection on the ODDS benchmark. Different LLMs are evaluated. Specifically, we show
the performance of two LLMs (Llama2, Mistral) before and after finetuning. Proprietary LLMs (GPT-3.5 and GPT-4) are also compared.
Additional state-of-the-art transductive learning-based approaches, i.e., KNN and ECOD, are listed for comparisons. Note that KNN and
ECOD are not zero-shot batch-level methods.

Proposed Methods Baselines

GPT-3.5 GPT-4 Llama2 Llama2-AD Mistral Mistral-AD KNN ECOD

abalone 78.4±15.2 84.4±7.4 67.2±16.9 49.7±13.3 73.0±15.6 75.1±9.0 88.0±8.8 83.9±10.1
annthyroid 65.1±13.5 82.8±4.5 50.8±1.1 61.5±11.9 64.7±13.0 82.3±9.0 76.5±7.0 81.4±3.3
arrhythmia 73.1±1.6 75.9±3.5 47.2±0.1 58.7±4.9 55.2±2.7 61.0±4.8 69.6±5.2 66.3±6.7
breastw 63.1±34.4 98.7±0.5 50.4±2.4 74.3±2.6 62.7±4.6 93.6±2.0 97.5±1.0 99.0±0.3
cardio 83.3±2.5 87.1±1.4 45.5±3.6 71.7±10.5 68.4±18.5 71.7±1.5 92.5±0.4 95.8±1.2
ecoli 78.7±5.1 73.5±2.4 52.3±9.7 78.9±7.3 79.5±6.2 79.1±4.4 89.3±13.6 79.1±10.1
forest cover 82.5±11.2 85.9±8.1 53.9±5.5 58.1±25.2 68.7±24.3 52.4±18.8 48.5±18.9 83.3±3.4
glass 69.5±11.4 64.2±14.1 45.4±7.7 56.3±4.7 59.3±8.3 65.9±3.9 86.7±3.0 68.6±8.9
ionosphere 83.5±2.5 88.8±2.0 50.7±1.4 59.9±9.4 64.1±2.3 69.4±8.1 94.7±2.5 85.8±1.8
kdd 66.1±28.8 87.4±1.6 52.4±3.4 58.0±3.1 65.3±1.7 60.1±5.6 59.8±4.8 88.3±1.7
kddrev 58.5±16.8 72.8±5.1 53.3±4.7 60.7±12.6 56.8±9.0 50.2±14.1 45.0±1.2 74.4±5.3
letter 50.9±10.5 53.8±1.9 48.4±1.5 55.3±5.6 52.2±4.6 50.6±2.7 42.2±2.9 51.0±8.3
lympho 90.7±5.8 88.2±2.7 45.1±3.8 90.7±8.8 74.7±9.2 96.0±1.7 88.4±0.0 97.7±0.0
mammo 52.8±20.0 68.7±30.3 49.8±0.7 55.1±13.5 67.5±10.8 79.9±15.4 86.2±5.8 94.7±5.0
mnist 69.9±12.0 68.2±13.3 48.8±1.6 51.5±8.8 54.6±6.3 54.2±7.6 54.4±3.3 59.6±6.3
mulcross 86.9±8.8 88.6±5.8 51.4±2.0 59.0±9.8 60.9±7.2 75.3±8.8 11.1±15.7 95.4±1.2
musk 75.8±9.0 63.3±4.5 54.3±4.0 62.7±8.3 65.5±14.1 63.1±16.0 94.9±1.0 60.8±8.8
optdigits 39.5±2.6 35.6±19.5 58.5±12.7 41.1±9.0 55.8±5.7 39.5±9.6 24.5±15.5 29.9±14.0
pendigits 49.6±3.8 78.2±11.8 57.2±8.6 52.5±5.7 56.3±11.5 72.1±24.2 63.4±7.1 76.9±5.4
pima 55.9±6.5 59.6±2.4 46.0±0.8 51.6±1.5 55.0±4.1 61.4±1.4 70.9±3.5 60.2±4.4
satellite 58.4±8.8 62.7±4.9 51.0±0.9 58.0±6.9 58.4±8.6 68.3±2.4 71.1±2.1 60.9±6.1
satimage 90.5±9.1 86.0±13.4 53.1±7.0 70.8±9.2 71.7±8.0 97.1±2.1 94.0±7.5 80.3±19.1
seismic 67.9±2.4 68.2±3.3 53.6±3.7 58.4±18.3 57.9±6.8 70.1±4.0 70.5±2.9 69.2±6.2
shuttle 94.1±6.2 98.9±1.1 50.1±0.3 72.2±7.2 75.6±11.7 97.5±2.2 95.1±6.8 98.6±1.7
speech 51.2±23.4 44.9±34.3 55.0±9.3 37.9±19.9 40.5±18.4 47.8±7.7 54.7±31.1 61.7±25.1
thyroid 88.8±9.7 95.2±2.9 42.5±9.8 84.5±9.4 81.3±11.7 92.5±2.2 98.7±1.3 98.3±1.1
vertebral 57.9±3.0 51.6±11.4 48.8±3.9 48.2±4.5 54.1±5.7 45.3±2.6 34.6±2.3 44.0±3.3
vowels 40.9±8.1 65.9±3.1 51.9±6.3 51.4±19.1 47.3±3.5 52.5±5.2 96.1±3.9 62.6±14.3
wbc 79.2±5.6 93.4±2.2 48.2±4.8 61.3±5.4 68.5±7.3 88.6±8.2 93.7±2.0 91.9±2.3
wine 47.6±11.5 51.3±10.2 50.6±9.3 51.2±3.9 55.5±8.4 59.7±12.0 30.0±0.0 64.9±0.0

average 68.3±1.2 74.1±2.2 51.1±2.5 60.0±3.2 62.4±2.7 69.1±1.0 70.7±0.9 75.5±1.0

Specifically, we evaluate the popular GPT-3.5 and GPT-4.8
We also compare two open-source LLMs, Llama2 [Touvron
et al., 2023] and Mistral [Jiang et al., 2023], using the 7B
parameter version available at HuggingFace. We also include
the LLMs (Llama2-AD and Mistral-AD) fine-tuned using our
synthetic dataset and fine-tuning strategy. Lastly, we include
two transductive learning approaches, KNN [Ramaswamy et

al., 2000] and ECOD [Li et al., 2022], to demonstrate better
how LLMs-based methods stand against state-of-the-art ap-
proaches. See Supp. B for implementation details.

4.2 Implementation Details

We run all experiments three times with different random
seeds. All our experiments except GPT-3.5 and GPT-4 are
performed using an A6000 GPU with PyTorch. Llama-2 and
Mistral can fit into the GPU memory. The temperature and

8Specifically, we use api of gpt-3.5-turbo-1106 and gpt-4-1106-
preview.

top p generation hyperparameters are set as 0.75 and 0.9 for
Llama-2 and Mistral, respectively. On the other hand, for
GPT-3.5 and GPT-4, we use their default hyperparameter set-
tings and perform the experiments through their API.

We fine-tune Llama-2-7B and Mistral-7B using LoRA
parameter-efficient fine-tuning strategy [Hu et al., 2022] on
our synthetic datasets. We generate training and valida-
tion sets separately. The training set involves 5000 data
batches (2500 continuous data batches and 2500 discrete data
batches), while the validation set contains 400 data batches
(200 for continuous and 200 for discrete data). We finetune
Llama-2-7B for five epochs and Mistral-7B for two epochs
with the same learning rate 1e-3. All optimizations are con-
vergent on the validation set. The resulting models are named
Llama2-AD and Mistral-AD.

4.3 Results

Qualitative results. Accomplishing the anomaly detection
task requires LLMs to identify the low-density data of D. To
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• Ontology: set of concepts and categories in a subject area or domain that 
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• Use Ontological Functional Dependencies (OFDs) 
- Functional dependency from ontology (synonyms, inheritance) 
- Capture semantic relationships between attributes 
- Reduce the incidence of false positives 

• Use an automated context  
model to generate OFDs 

• Can run data repair after
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Table 1. Sample clinical trials.

id CC CTRY SYMP TEST DIAG MED
𝐿1 US USA joint pain CT osteoarthritis ibuprofen
𝐿2 IN India joint pain CT osteoarthritis NSAID
𝐿3 CA Canada joint pain CT osteoarthritis naproxen
𝐿4 IN Bharat nausea EEG migrane analgesic
𝐿5 US America nausea EEG migrane tylenol
𝐿6 US USA nausea EEG migrane acetaminophen
𝐿7 IN India chest pain X-ray hypertension morphine
𝐿8 US USA headache CT hypertension cartia
𝐿9 US USA headache MRI hypertension tiazac (ASA)
𝐿10 US America headache MRI hypertension tiazac
𝐿11 US USA headache CT hypertension tiazac (adizem)

Fig. 1. Medical drug ontology.

The above example demonstrates that real data contain domain-speci!c relationships beyond
syntactic equivalence or similarity. It also highlights two common relationships that occur between
two values𝐿 and 𝑀 : (1)𝐿 and 𝑀 are synonyms; and (2)𝐿 is-a 𝑀 denoting inheritance. These relationships
are often de!ned within domain-speci!c ontologies. Unfortunately, traditional FDs and their
extensions are unable to capture these relationships, and existing data cleaning approaches "ag
tuples containing synonymous and inheritance values as errors. This leads to an increased number
of reported “errors”, and a larger search space of data repairs to consider.
To address these shortcomings, our earlier work proposed a novel class of dependencies called

Ontology Functional Dependencies (OFDs) that capture synonyms and is-a relationships de!ned in
an ontology [6]. In this paper, we focus on synonyms, which are commonly used in practice, and
we study cleaning a relation and an ontology with respect to (w.r.t.) a set of synonym OFDs. What
makes OFDs interesting is the notion of senses, which determine how a dependency should be
interpreted for a given ontology; e.g., jaguar can be interpreted as an animal or as a vehicle, country
codes vary according to multiple standards (interpretations) such as the International Standards
Organization (ISO) vs. United Nations (UN). To make OFDs useful in practice, where data semantics
are often poorly documented and change, we propose an algorithm to discover OFDs.

OFDs serve as contextual data quality rules that enforce the semantics modeled in an ontology.
However, application requirements change, data evolve, and as new knowledge is generated,
inconsistencies arise between the data, OFDs, and ontologies. For example, the US Food and Drug
Administration (FDA) has a monthly approval cycle to certify new drugs. If downstream data
applications do not update their data and ontologies, this leads to stale and missing values in the
ontology, and inconsistencies w.r.t. the data and the OFDs [1]. Similarly, changes to the data may
be required to re-align the data to the OFDs and the ontology. Consider the following example.

E!"#$%& 1.2. Consider Table 1 with updated values (shown in blue) in 𝑁9[MED] and 𝑁11[MED]
to re!ect changes in a patient’s prescribed medication. Tuples (𝑁8 → 𝑁11) are now inconsistent w.r.t.
the previously de"ned 𝑂2. If we augment 𝑂2 with additional semantics, provided by a medication
ontology as shown in Figure 1, tuple 𝑁11 continues to be problematic since adizem is not de"ned in
the ontology, and is not equivalent to cartia nor tiazac. The updated value in 𝑁9[MED] to ASA leads
to an inconsistency since ASA is not semantically equivalent to cartia nor tiazac. We must "nd an
interpretation of the ontology, called a sense (denoted in bold in Figure 1), where the values {ASA,
cartia, tiazac, adizem} are all equivalent. Unfortunately, there is no sense in which all these values
are semantically equivalent. To resolve these violations, we can: (1) repair the ontology by adding the
value adizem and ASA under the FDA sense; or (2) update tuples (𝑁8 → 𝑁11) to either cartia or ASA under
the MoH sense. In both cases, there now exists a sense where all MED values in (𝑁8 → 𝑁11) are equivalent.

The above example demonstrates that there are multiple options to resolve violations, namely,
modifying the ontology or the data. We study the repair problem that re-aligns the data, depen-
dencies (OFDs), and an ontology via a minimal number of repairs to the data and to the ontology.
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human error and limited scalability as system complexities increase.
Moreover, ensuring consistency throughout the context model dur-
ing updates presents an additional layer of di!culty. Therefore, the
automation of this process is indispensable, not only to preserve
the precision and trustworthiness of the context models but also to
facilitate their scalability and "exibility amidst the swiftly changing
data landscapes.

Proposed Solution. In this paper, we introduce a novel method,
designated as LLMClean, which automatically generates context
models from real-world data without requiring supplementary
meta-information. LLMClean leverages the powerful capabilities
of Large Language Models (LLMs) to seamlessly adapt to dynamic
data patterns. Speci#cally, LLMClean includes several steps, includ-
ing the classi#cation of the dataset, the extraction or mapping of
models, and the #nal generation of the context model. Thanks to
the automatically generated OFDs, LLMClean facilitates a robust
data cleaning and analytical framework, addressing the challenges
posed by the vast and evolving nature of real-world data, e.g., IoT
datasets. Moreover, LLMClean introduces a set of dependencies,
namely Sensor Capability Dependencies and Device-Link Depen-
dencies, pivotal for the precise detection of errors. Our evaluation
shows that LLMClean not only mirrors the data cleaning e!cacy
of manually curated context models but does so with enhanced
e!ciency and scalability.

Summary of Contributions. The paper provides the following
contributions: (1) We introduce a novel three-stage architectural
framework to identify erroneous instances in tabular data. This
framework encompasses a comprehensive approach that combines
the power of LLM models, context models, and data-cleaning tools.
By leveraging this combined approach, our framework achieves
signi#cant improvements in both the e$ectiveness and e!ciency of
error detection compared to traditional tools, together with enhanc-
ing LLMClean’s ability to handle diverse and complex error patterns
present in tabular data. (2) We present an innovative method that
utilizes LLM models, such as Llama-2, GPT-3.5, and GPT-4, to au-
tonomously generate context models directly from real-world data.
(3) We propose an innovative prompt ensembling technique de-
signed to enhance the stability of LLM models. (4) We develop an
error detection tool that enforces a suite of OFD dependencies ex-
tracted from the automatically generated context models. (5) We
conduct extensive experimental evaluation, comparing the perfor-
mance of LLMClean against a range of baseline methods using three
real-world datasets from di$erent domains, including IoT, Industry
4.0, and healthcare. To the best of our knowledge, LLMClean is the
#rst method that e$ectively leverages LLM models to enhance data
cleaning tools through automatically generated context models.

Paper Structure. The remainder of this paper is structured as fol-
lows. Section 2 provides an overview of the LLMClean method, out-
lining its key elements. Section 3 introduces the proposed method
for automating the context model generation using LLM models.
Section 4 presents our prompt ensembling method to enhance the
stability of LLM models. In Section 5, we provide an overview of
the error detection method developed to enforce the extracted OFD
rules. Section 6 presents the experimental evaluation, including a
discussion of results on standardized datasets and comparisons to
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Figure 1: Architecture of LLMClean

baseline techniques. Section 7 reviews related work on traditional
data cleaning tools and distinguishes LLMClean’s novel formula-
tion. Finally, Section 8 concludes and discusses potential directions
for future extension.

2 OVERVIEW
In this section, we introduce the architecture of LLMClean together
with relevant preliminaries. Figure 1 shows that the input to the data
cleaning pipeline is a dirty dataset, which may contain a heteroge-
nous error pro#le, e.g., inaccuracies, inconsistencies, and missing
entries. The data-cleaning process starts by generating a context
model from this dirty dataset, which essentially maps out the crit-
ical relationships and attributes inherent within it. This model
lays the foundation for the cleaning process ahead. Following the
context model generation, LLMClean identi#es OFDs within the
model—key indicators that signal potential data irregularities. LLM-
Clean leverages these OFDs to validate the input data. Data that
pass this step are deemed valid, while the invalid data instances
are "agged for further processing. Such information about the data
being valid or not is later used as input to error correction tools,
such as Baran[12] and HoloClean[14], to generate repair candidates.

By focusing on the erroneous instances identi#ed by the OFDs,
the error correction tools can systematically rectify errors, signi#-
cantly boosting the dataset’s overall quality. This seamless integra-
tion of automated tools and critical evaluations within the pipeline
ensures the production of a dataset that is not only cleaner but also
prepared for more reliable applications in various domains. Before
delving into the automated generation of context models using
LLMs, it is crucial to establish a clear understanding of the various
types of OFD dependencies and how we categorize the input data
as either IoT data or non-IoT relational data.

2.1 OFD Dependencies
In general, OFDs represent a subset of Functional Dependencies
(FDs) derived from an underlying Ontology, which provides the
semantic framework necessary for establishing these dependencies.
Ontologies serve as a formal representation of knowledge within a
speci#c domain, providing a rich framework for de#ning the enti-
ties, relationships, and constraints that govern the data. This section
introduces seven distinct types of OFDs that LLMClean addresses,
including denial dependency, matching dependency, device-link

Error Detection using LLMs (LLMClean)
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(b) Hospital dataset
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(c) Context dataset

Figure 8: Accuracy of error detection comparing LLMClean to the baselines
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(b) Hospital dataset
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(c) Context dataset

Figure 9: Runtime of error detection comparing LLMClean to the baselines
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(b) Categorical IoT
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(c) Numerical Hospital
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(d) Categorical Hospital

Figure 10: Accuracy of error repair comparing LLMClean to the baselines

Figure 10a indicates that LLMClean consistently achieves the low-
est RMSE of 0.22 across numerical attributes, independent of the
repair mechanism employed. This performance is comparable to
the results of other tools, such as HoloClean, MVD, and Nadeef.

Focusing on the categorical attributes of the IoT dataset, as shown
in Figure 10b, the combination of LLMClean and Baran attains the

highest F1-score at 85%. This marginally surpasses the 84% F1-
score observed with ED2 and Baran, and signi!cantly outperforms
the 67% F1-score seen with MVD and Baran. For the numerical
attributes of the Hospital dataset, as depicted in Figure 10c, the
pairing of LLMClean with Baran again yields the most favorable
RMSE value (8.44E-05). It is important to note that the vertical axis
of this !gure is in a logarithmic scale to appropriately represent

LLMClean Error Detection Evaluation
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Data Repair using LLMs (RetClean)
• Non-retrieval based: Send tuple to LLMs and identify tuple(s) and column(s) 

to be fixed 
• Retrieval-based:  
- Indexer: Get top-k relevant tuples from a database/data lake 
- Reranker: Rank relevance using ColBERT/CrossBERT 
- Reasoner: Determine, using LLM, which tuple and value to use for fix 
- Reasoner keeps track of lineage
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Figure 1: An Overview of RetClean.

data lake that could potentially help the cleaning task. Then, we
utilize the selected LLM to make inferences about which value to
use along with its source tuple–providing a better explainability
compared to Scenario 1.

Scenario 3: Retrieval-based data cleaning with local models
(e.g., Dolly-v2-3B and LLaMA-7B). For both Scenarios 1 and
2, one legitimate concern when using externally hosted models
is data privacy. However, locally deployable models, which are
small-scale models that can be easily hosted by any organization
in a variety of settings, including cloud-based environments or on-
premise servers, would be ideal if one is worried about data privacy.
Typically, they are around 3B to 13B parameter models. To this end,
we demonstrate the e!ectiveness of such small models, especially
when "ne-tuned for a given domain. The local model takes a pair
of tuples (i.e., a query tuple with a missing value and a retrieved
tuple), and then infers the missing value when possible.

RetClean is designed to seamlessly support the three above
scenarios. With its user-friendly GUI supporting di!erent con"gu-
rations, the VLDB audience can e!ortlessly experiment with the
system and explore each of the scenarios in detail.

2 SYSTEM ARCHITECTURE
Figure 1 shows the architecture of RetClean.
User Input. The user uploads a relational table and indicates which
column(s) contain the missing values to be "xed. The user can
optionally specify a subset of non-dirty pivot columns as relevant
to the cleaning task, i.e., these columns functionally determine the
values in the dirty column.

Take the following con"guration as an example (refer to the 3𝐿𝑀
column in “health.csv” table in Figure 1):

1 table = !health.csv!
2 dirty_column = !Gender!
3 relevant_columns = ['Name','Age']
4 value = 'NULL'
5 is_local_model = False # use ChatGPT

Listing 1: Not retrieval-based con!guration

Here, the user wants to impute the missing values (indicated by
value = NULL) in the Gender column. The Name and Age columns
are identi"ed as the pivot columns. Assuming that these columns are
not highly sensitive, the user asks RetClean to use a public model
(e.g., GPT or Gemini) to perform the missing value imputation task.

Another example of a con"guration is (refer to the 4𝑁𝑂 column
in “health.csv” table):

1 table = !health.csv!
2 dirty_column = !BT! # BT is blood type
3 relevant_columns = ALL
4 value = 'NULL'
5 datalake = !/Users/hosp_tables/! # A folder of CSV files
6 is_local_model = True

Listing 2: Retrieval-based con!guration

Here, the user wants to impute the missing values in the Blood
Type (BT) column. Such details are most probably not available as
world knowledge, but could be available in a local data lake, e.g., a
hospital database. Therefore, the user opts for and speci"es the use
of a data lake. The local mode #ag is set to True, which indicates
the use of the custom local LLM, possibly for privacy concerns.
Non-retrieval based data cleaning. RetClean employs a tuple-
by-tuple cleaning approach. In the case the user opts for non-
retrieval-based methods (e.g., cleaning 𝐿1 and 𝐿4 in column Gender),
RetClean reads one tuple at a time and passes it to the selected
LLM in the Reasoner module. In this case, retrieval-related mod-
ules (i.e., the Indexer and Reranker) are bypassed. The LLM, based
the knowledge it learned from its training data, suggests values for
imputation for 𝐿1 and 𝐿4, as depicted in the output of Figure 1.
Retrieval-based data cleaning. If the user opts for a retrieval-
based method, RetClean will index all tuples in the speci"ed data
lake. The Tuple-Based Indexer module supports both a syn-
tactic and semantic index. The syntactic index is implemented
in Elasticsearch and use the default BM25 for similarity search.
The semantic search is performed using a vector database, namely
Qdrant (https://github.com/qdrant/qdrant). We also use LlamaIndex
(https://www.llamaindex.ai/) to easily connect these indexes to the
LLM, either local or on the cloud. Then, given a dirty tuple (e.g., 𝐿2

4422
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ABSTRACT
Performing data analysis over incomplete data produces biased re-
sults and sub-par performance. Imputation over relational datasets
that contain both categorical and continuous variables is chal-
lenging. The challenges are accentuated when the missingness
proportion of dataset is high, wherein a large fraction of the
relation contain missing values, or if missing values occur in mul-
tiple attributes of a single tuple. In this paper, we propose GRIMP,
a novel approach for imputation that tackles these challenges.
GRIMP achieves high imputation accuracy through a combina-
tion of three novel ideas. First, it represents relational data as a
heterogeneous graph, encoding sophisticated relationships be-
tween tuples, attributes and cell values. Second, it uses graph
representation learning based on message passing to combine
and aggregate the representations from appropriate neighbor-
hoods. This allows GRIMP to leverage information from other
cell values of the same tuple and that of similar tuples for im-
putation. Finally, it uses a self-supervised multi-task learning
paradigm for training imputation models. In other words, GRIMP
does not need any explicit training data as it uses the existing
relational data, even when it has missing values. GRIMP trains an
imputation model for each attribute using a two-stage approach
consisting of a task agnostic section, where the parameters are
shared across all attributes, and an attribute speci!c imputation
model. Experiments over ten datasets and seven baselines show
that GRIMP performs accurate imputation and provides new
insights about the limitations of data imputation systems.

1 INTRODUCTION
Missing data is one of the most common data quality issues.
Any analysis performed on the incomplete data would produce
biased estimates leading to poor decision making. It can also
a"ect the downstream applications, such as machine learning
(ML), by reducing the amount and quality of complete training
data. If the amount of missing data is minimal and the data is
missing completely at random (MCAR), then a natural, if wasteful
approach would be to ignore tuples with missing values during
the analysis. In practice, many real-world datasets might contain
too much missing data, or have systematic sources of missing
values: here, omitting “dirty” tuples would result in biased data
analysis.

Prior Work and their Limitations. There has been extensive
work on data imputation. Discriminative models such as random
forests or neighborhood methods often produce poor results in
the presence of systematically missing data as they produce bi-
ased estimates that a"ect interpolation based approaches [52].
An alternate approach is to use (deep) generative models such as

© 2024 Copyright held by the owner/author(s). Published in Proceedings of the
27th International Conference on Extending Database Technology (EDBT), 25th
March-28th March, 2024, ISBN 978-3-89318-094-3 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Gender State AreaCode Marital
Status Salary Rate

RI 401 S 15000

M 401 M 100000 9.5

M NH 603 M 85000 8.25

M HI M 7.5

Multiple missing
values in the 

same row

Categorical attributes Numerical attributes

Lack of training
data

Mixed  
attributes

Exploits
attribute

relationship

Exploits
tuple

relationship

Figure 1: Example of data imputation challenges (left) and
opportunities (right).

Generative Adversarial Networks (GANs) or denoising autoen-
coders to reconstruct missing values. These approaches make
assumptions about data distributions. When these assumptions
hold, they produce accurate imputation and better generalization.
However, exemplars of both these classes of techniques have
many limitations that minimize their e"ectiveness on relational
data.

First, most of the prior work cannot handle mixed datasets con-
taining both categorical and continuous attributes. Unfortunately,
most of the relational datasets fall into this category, as depicted
in Figure 1. A key challenge is that training a classi!er requires
multiple objectives, such as minimizing RMSE for continuous
data and cross-entropy for categorical data. This is especially
non-trivial for deep generative models, where poor training re-
sults in non-convergence or mode collapse [9, 52]. Second, many
imputation models require a clean data subset for training. This
might not always be possible when a large portion of the data
has missing values, thus resulting in relatively poor performance.
Third, popular approaches for multiple imputations (where a
tuple might have multiple attributes with missing values) such as
MissForest [46] or MICE [48] are iterative in nature. Speci!cally,
they train𝐿 separate models for imputing𝐿 attributes wherein
each model uses all attributes but one to impute the remaining
attribute. This process is iterated over all features to produce a
completely imputed dataset. A key issue with this approach is
that each of the𝐿 models learns the imputation without sharing
the commonalities. Finally, most of prior approaches do not take
global relationships into account for imputation. Discriminative
models are trained over individual tuples and used for imputing
on individual tuples. However, it is bene!cial to involve infor-
mation beyond the single tuple – such as other similar tuples or
meta-information such as functional dependencies that establish
relationships between multiple attributes.

Two recent approaches leverage di"erent kinds of information
to improve imputation performance. AimNet [52] leverages the
attention mechanism to learn the relationships between attributes,
such as State and AreaCode in Figure 1. GINN [45] uses a graph
convolutional layer within an autoencoder architecture. This
allows the model to leverage similar tuples, as depicted in Figure 1
for the imputation of Salary in the last tuple. However, both
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Figure 2: Overview of the GRIMP architecture. Given the dataset, its training samples and its graph are created and both are
fed to the multi-task model. The shared and the task-speci!c sections in this model are jointly learned at training time.
Every task emits imputation for missing values for a speci!c attribute.
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Figure 3: Record ID nodes and value nodes are color-coded.

GRIMP’s graph is a heterogeneous, quasi-bipartite graphwhich
encodes the table’s content and its structure. The graph has mul-
tiple node types to represent entities (tuples, and cells) and di!er-
ent edge types to represent relationships between them. Figure 3
shows a sample dataset on the left, together with the correspond-
ing graph. In the graph, each tuple is assigned a RID node (record
id nodes highlighted in green). Each unique value in the dataset
(belonging to all attributes) is assigned a cell node (shown in
grey). The RID and cell nodes are connected via a typed edge.
The edge type is de"ned by the attribute of the cell, with the
number of types being equal to the number of attributes in the
table. Typed edges are color coded according to the respective
attribute and are independent from the attribute labels. For ex-
ample, tuple R1 is connected to value ‘France’ (‘𝐿1’) via a yellow
edge with type ‘Country’ (‘B’). Following the literature [33, 53],
self-loops are added to the graph.

3 GRIMP
In this section, we introduce GRIMP (Graph embeddings for
Relational data IMPutation), a generic data imputation frame-
work.

3.1 System Architecture
An overview of GRIMP is illustrated in Figure 2.

Preprocessing. Given a input dirty (i.e., which includes missing
values) table D, GRIMP "rst runs a pre-processing step where
it builds the graph and the training corpus. In the graph con-
struction step (detailed in Section 3.2), GRIMP constructs a het-
erogeneous graph that encodes the table by generating a node
for every row and every value, with typed edges linking such
nodes. The training corpus is composed of copies of the table

tuples with synthetically injected missing values that are split by
attribute among the various tasks (Section 3.3).

Training. During the training procedure, GRIMP uses a GNN
[27, 33] to re"ne the pre-trained node features by leveraging the
structure of the graph. Given a node, its features are modi"ed by
combining themwith those of its neighbors. Correspondingly, the
features of the node’s neighbors are also modi"ed (Section 3.4).
The computed embeddings are forwarded to the multi-task [49,
57] component that is responsible for the data imputation. This
consists of two parts.

The "rst part uses hard-parameter sharing wherein the pa-
rameters of the GNN model are shared by all tasks. The second
part focuses on imputing individual attributes. This contains
“sub-models” whose weights are kept hidden from each other
(Section 3.5). In other words, the learned parameter values are
speci"c to the imputation of a given attribute. We dub these sub-
models “tasks” and create one such task for each table attribute.
Depending on the datatype, tasks are built as multi-class classi-
"ers, or as regressors. We implement an attention structure in the
tasks, which combines the vectors generated by the GNN with
attribute-level information. Each task has its own loss function,
depending on whether it is categorical or numerical, which is
aggregated with that of other tasks to "nd the overall loss of the
model (Section 3.6).

Imputation. After the training is complete, GRIMP performs
imputation on the dirty data by selecting the appropriate value
for the missing entries in the input table (Section 3.7).

3.2 Graph Construction
The "rst step is to construct a graph using the given dirty rela-
tional table D. The graph is created by iterating over the dirty
dataset row by row. A new node is added for each tuple and for
each unique value in the tuple. A typed edge connects the tuple
node to the value for that attribute. If a cell contains a missing
value, no edges are added to the graph and the empty cell is
ignored at this stage. Values that appear in multiple attributes
are disambiguated so that each occurrence is connected exclu-
sively to its attribute. If the same value 𝑀 occurs in two separate
attributes, the two occurrences are disambiguated by creating
two nodes for 𝑀 .

After graph creation, the node features are initialized. GRIMP
represents each node as a low dimensional vector that can be
used for various downstream tasks, including imputation. While

Data Imputation via Graph Learning
• Represent relational data as a 

heterogeneous graph 
- relationships between tuples, 

attributes, and values 
• Use graph representation learning 
• Self-supervised multi-task learning 
• Does not require explicit training 

data, uses given data with missing 
values
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GRIMP’s graph is a heterogeneous, quasi-bipartite graphwhich
encodes the table’s content and its structure. The graph has mul-
tiple node types to represent entities (tuples, and cells) and di!er-
ent edge types to represent relationships between them. Figure 3
shows a sample dataset on the left, together with the correspond-
ing graph. In the graph, each tuple is assigned a RID node (record
id nodes highlighted in green). Each unique value in the dataset
(belonging to all attributes) is assigned a cell node (shown in
grey). The RID and cell nodes are connected via a typed edge.
The edge type is de"ned by the attribute of the cell, with the
number of types being equal to the number of attributes in the
table. Typed edges are color coded according to the respective
attribute and are independent from the attribute labels. For ex-
ample, tuple R1 is connected to value ‘France’ (‘𝐿1’) via a yellow
edge with type ‘Country’ (‘B’). Following the literature [33, 53],
self-loops are added to the graph.

3 GRIMP
In this section, we introduce GRIMP (Graph embeddings for
Relational data IMPutation), a generic data imputation frame-
work.

3.1 System Architecture
An overview of GRIMP is illustrated in Figure 2.

Preprocessing. Given a input dirty (i.e., which includes missing
values) table D, GRIMP "rst runs a pre-processing step where
it builds the graph and the training corpus. In the graph con-
struction step (detailed in Section 3.2), GRIMP constructs a het-
erogeneous graph that encodes the table by generating a node
for every row and every value, with typed edges linking such
nodes. The training corpus is composed of copies of the table

tuples with synthetically injected missing values that are split by
attribute among the various tasks (Section 3.3).

Training. During the training procedure, GRIMP uses a GNN
[27, 33] to re"ne the pre-trained node features by leveraging the
structure of the graph. Given a node, its features are modi"ed by
combining themwith those of its neighbors. Correspondingly, the
features of the node’s neighbors are also modi"ed (Section 3.4).
The computed embeddings are forwarded to the multi-task [49,
57] component that is responsible for the data imputation. This
consists of two parts.

The "rst part uses hard-parameter sharing wherein the pa-
rameters of the GNN model are shared by all tasks. The second
part focuses on imputing individual attributes. This contains
“sub-models” whose weights are kept hidden from each other
(Section 3.5). In other words, the learned parameter values are
speci"c to the imputation of a given attribute. We dub these sub-
models “tasks” and create one such task for each table attribute.
Depending on the datatype, tasks are built as multi-class classi-
"ers, or as regressors. We implement an attention structure in the
tasks, which combines the vectors generated by the GNN with
attribute-level information. Each task has its own loss function,
depending on whether it is categorical or numerical, which is
aggregated with that of other tasks to "nd the overall loss of the
model (Section 3.6).

Imputation. After the training is complete, GRIMP performs
imputation on the dirty data by selecting the appropriate value
for the missing entries in the input table (Section 3.7).

3.2 Graph Construction
The "rst step is to construct a graph using the given dirty rela-
tional table D. The graph is created by iterating over the dirty
dataset row by row. A new node is added for each tuple and for
each unique value in the tuple. A typed edge connects the tuple
node to the value for that attribute. If a cell contains a missing
value, no edges are added to the graph and the empty cell is
ignored at this stage. Values that appear in multiple attributes
are disambiguated so that each occurrence is connected exclu-
sively to its attribute. If the same value 𝑀 occurs in two separate
attributes, the two occurrences are disambiguated by creating
two nodes for 𝑀 .

After graph creation, the node features are initialized. GRIMP
represents each node as a low dimensional vector that can be
used for various downstream tasks, including imputation. While

GRIMP Overview
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Abstract

Data cleaning is a time-consuming and error-
prone manual process even with modern work-
flow tools like OpenRefine. Here, we present
AutoDCWorkflow, an LLM-based pipeline for
automatically generating data-cleaning work-
flows. The pipeline takes a raw table coupled
with a data analysis purpose, and generates a
sequence of OpenRefine operations designed
to produce a minimal, clean table sufficient to
address the purpose. Six operations correspond
to common data quality issues including format
inconsistencies, type errors, and duplicates.

To evaluate AutoDCWorkflow, we create a
benchmark with metrics assessing answers,
data, and workflow quality for 142 purposes
using 96 tables across six topics. The evalu-
ation covers three key dimensions: (1) Pur-
pose Answer: can the cleaned table produce
a correct answer? (2) Column (Value): how
closely does it match the ground truth table? (3)
Workflow (Operations): to what extent does
the generated workflow resemble the human-
curated ground truth? Experiments show that
Llama 3.1, Mistral, and Gemma 2 significantly
enhance data quality, outperforming the base-
line across all metrics. Gemma 2-27B con-
sistently generates high-quality tables and an-
swers, while Gemma 2-9B excels in producing
workflows that resemble human-annotated ver-
sions.

1 Introduction

Data curation and cleaning are critical processes
that prepare raw data for analysis, ensuring high
quality and reliability (Chen et al., 2023). Im-
plementing a sequence of data operations in the
form of a data cleaning workflow improves data
quality, enabling downstream analyses and yield-
ing trustworthy results and actionable insights (Li
et al., 2021; Wilkinson et al., 2016; Parulian and

*Equal contribution
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Purpose

Data Quality
Report

Data Cleaning
Objectives

Data Cleaning
Workflow
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design of

LLM Agentgenerate
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Figure 1: In a purpose-driven data cleaning model, AutoDC-
Workflow leverages LLM agents to decide each reasoning step
and automatically generate a data cleaning workflow based
on a curator-defined analysis purpose and a provided dirty
dataset.

Ludäscher, 2022; McPhillips et al., 2019). To fa-
cilitate automation and reuse, tools like OpenRe-
fine (Guidry, 2020) and Trifacta (Kandel et al.,
2011) automatically capture reusable, executable
workflows that ensure consistent results when re-
applied to the same raw input.

Data cleaning should ensure data is fit-for-
purpose, with the analysis purpose guiding the
data quality report to identify relevant data qual-
ity issues (Wang and Strong, 1996; Pipino et al.,
2002). These issues determine data cleaning ob-
jectives, which define actionable constraints and
operations necessary to improve data quality. Con-
sequently, data cleaning objectives drive the design
of data cleaning workflows, as illustrated in Fig-
ure 1. Despite advancements, data scientists still
spend over 80% of their time on cleaning tasks due
to diverse domain requirements (Rezig et al., 2019).
Designing effective workflows often involves mul-
tiple rounds of selecting appropriate operations and
arguments to ensure accuracy (Stonebraker et al.,
2018). This process remains time-consuming and
error-prone, as it demands domain expertise and a
deep understanding of the dataset and its schema,
yet it is essential for auditing data analyses and
ensuring the quality of the resulting tables.
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