Advanced Data Management (CSCI 640/490)

Data Wrangling

Dr. David Koop

Data Processing Systems

data size

[G. Szárnyas, 2024]

DuckDB is In-Process, OLAP DBMS

In-process

Client-server

Transactional

Analytical

[G. Szárnyas, 2024]

DuckDB Characteristics

- Columnar Data Storage: Compare with row-based, compression
- Vectorized Execution Engine: Optimized for CPU Cache Locality
- End-to-end Query Optimization: Expression rewriting, Join Ordering, Subquery Flattening, Filter/Projection Pushdown
- Automatic Parallelism: Scanners, Aggregations, Joins
- Data Compression: Linked with Columnar Data
- Beyond Memory Execution: Supports data that does not fit into memory, graceful degradation

Columnar Storage & Vectorized Execution

[G. Szárnyas, 2024]

Zonemaps

- Zonemaps are min/max indices
- Exist for each column in each row group

row group 1

row group 2

date	id	type	station
June 1	5	Sprinter	Schiphol
June 1	6	Sprinter	Utrecht
June 1	7	Intercity	Utrecht
June 2	8	Intercity	Ams C

min	June 1	5	Intercity	Ams C	
max	June 2	8	Sprinter	Utrecht	

[G. Szárnyas, 2024]

DuckDB Supported Formats and Protocols

More DuckDB Characteristics

- Portable: Written in C++11, Inlined Dependencies, APIs for most languages
- Open Source: MIT License, Built on Open Standards
- Limitations:
 - Concurrency Control uses MVCC and WAL but not good for OLTP-heavy workloads
 - Execution: single-node, not distributed execution, scales to large nodes

Chicago Food Inspections Exploration

- Using Pandas
- Using DuckDB
- Using Polars

Courselets

- Deeper dive into the functionality for each of polars, DuckDB, and pandas
- Contain interactive examples as well as exercises
- Opportunity to provide feedback

Assignment 2

- Assignment 1 Questions with polars, DuckDB, and pandas
- CS 640 students do all, CS 490 do polars & DuckDB (pandas is EC)
- Can work by framework or by query
- Most questions can be answered with a single statement... but that statement can take a while to write
 - Read documentation
 - Check hints

- What is data?
 - Types
 - Semantics
- How is data structured?
 - Tables (Data Frames)
 - Databases
 - Data Cubes
- What formats is data stored in?
- Raw versus derived data

What is this data?

R011	42ND STREET & 8TH AVENUE	00228985	00008471	00000441	00001455	00000134	00033341	00071255
R170	14TH STREET-UNION SQUARE	00224603	00011051	00000827	00003026	00000660	00089367	00199841
R046	42ND STREET & GRAND CENTRAL	00207758	00007908	00000323	00001183	00003001	00040759	00096613

- Semantics: real-world meaning of the data
- Type: structural or mathematical interpretation
- Both often require metadata
 - Sometimes we can infer some of this information
 - Line between data and metadata isn't always clear

REMOTE	STATION	FF ▼	SEN/DIS	7-D AFAS UNL	D AFAS/RMF I	JOINT RR TKT	7-D UNL	30-D UNL
1 R011	42ND STREET & 8TH AVENUE	00228985	00008471	00000441	00001455	00000134	00033341	0007125
2 R170	14TH STREET-UNION SQUARE	00224603	00011051	00000827	00003026	00000660	00089367	0019984
3 R046	42ND STREET & GRAND CENTRAL	00207758	00007908	00000323	00001183	00003001	00040759	0009661
4 R012	34TH STREET & 8TH AVENUE	00188311	00006490	00000498	00001279	00003622	00035527	0006748
5 R293	34TH STREET - PENN STATION	00168768	00006155	00000523	00001065	00005031	00030645	00054370
6 R033	42ND STREET/TIMES SQUARE	00159382	00005945	00000378	00001205	00000690	00058931	0007864
7 R022	34TH STREET & 6TH AVENUE	00156008	00006276	00000487	00001543	00000712	00058910	0011046
8 R084	59TH STREET/COLUMBUS CIRCLE	00155262	00009484	00000589	00002071	00000542	00053397	0011396
9 R020	47-50 STREETS/ROCKEFELLER	00143500	00006402	00000384	00001159	00000723	00037978	0009074
10 R179	86TH STREET-LEXINGTON AVE	00142169	00010367	00000470	00001839	00000271	00050328	0012525
11 R023	34TH STREET & 6TH AVENUE	00134052	00005005	00000348	00001112	00000649	00031531	0007504
12 R029	PARK PLACE	00121614	00004311	00000287	00000931	00000792	00025404	0006536
13 R047	42ND STREET & GRAND CENTRAL	00100742	00004273	00000185	00000704	00001241	00022808	0006821
14 R031	34TH STREET & 7TH AVENUE	00095076	00003990	00000232	00000727	00001459	00024284	0003867
15 R017	LEXINGTON AVENUE	00094655	00004688	00000190	00000833	00000754	00020018	0005506
16 R175	8TH AVENUE-14TH STREET	00094313	00003907	00000286	00001144	00000256	00038272	0007466
17 R057	BARCLAYS CENTER	00093804	00004204	00000454	00001386	00001491	00039113	0006811
18 R138	WEST 4TH ST-WASHINGTON SO	00093562	00004677	00000251	00000965	00000127	00031628	0007445

Dataset Types

→ Tables

→ Networks

→ Fields (Continuous)

→ Geometry (Spatial)

→ Multidimensional Table

→ Trees

[Munzner (ill. Maguire), 2014]

Data Terminology

- Items
 - An item is an individual discrete entity
 - e.g., a row in a table
- Attributes
 - An **attribute** is some specific property that can be measured, observed, or logged
 - a.k.a. variable, (data) dimension
 - e.g., a column in a table

Tables

Α	В	С	S	Т	U
Order ID	Order Date	Order Priority	Product Container	Product Base Margin	Ship Date
3	10/14/06	5-Low	Large Box	0.8	10/21/06
6	2/21/08	4-Not Specified	Small Pack	0.55	2/22/08
32	7/16/07	2-High	Small Pack	0.79	7/17/07
32	7/16/07	2-High	Jumbo Box	•1	7/17/07
32	7/16/07	2-High	Medium Box	attribute	7/18/07
32	7/16/07	2-High	Medium Box	0.03	7/18/07
35	10/23/07	4-Not Specified	Wrap Bag	0.52	10/24/07
35	10/23/07	4-Not Specified	Small Box	0.58	10/25/07
36	11/3/07	1-Urgent	Small Box	0.55	11/3/07
65	3/18/07	1-Urgent	Small Pack	0.49	3/19/07
66	1/20/05	5-Low	Wrap Bag	0.56	1/20/05
69	litem 5	4-Not Specified	Small Pack	0.44	6/6/05
69	5	4-Not Specified	Wrap Bag	0.6	6/6/05
70	12/18/06	5-Low	Small Box	0.59	12/23/06
70	12/18/06	5-Low	Wrap Bag	0.82	12/23/06
96	4/17/05	2-High	Small Box	0.55	4/19/05
97	1/29/06	3-Medium	Small Box	0.38	1/30/06
129	11/19/08	5-Low	Small Box	0.37	11/28/08
130	5/8/08	2-High	Small Box	0.37	5/9/08
130	5/8/08	2-High	Medium Box	0.38	5/10/08
130	5/8/08	2-High	Small Box	0.6	5/11/08
132	6/11/06	3-Medium	Medium Box	0.6	6/12/06
132	6/11/06	3-Medium	Jumbo Box	0.69	6/14/06
134	5/1/08	4-Not Specified	Large Box	0.82	5/3/08
135	10/21/07	4-Not Specified	Small Pack	0.64	10/23/07
166	9/12/07	2-High	Small Box	0.55	9/14/07
193	8/8/06	1-Urgent	Medium Box	0.57	8/10/06
194	4/5/08	3-Medium	Wrap Bag	0.42	4/7/08

Tables

Multidimensional

- Data organized by rows & columns
 - row ~ item (usually)
 - column ~ attribute
 - label ~ attribute name
- Key: identifies each item (row), usually unique
 - Allows join of data from 2+ tables
 - Compound key: key split among multiple columns, e.g. (state, year) for population
- Multidimensional:
 - Split compound key
 - e.g. a data cube with (state, year)

[Munzner (ill. Maguire), 2014]

Attribute Types

[Munzner (ill. Maguire), 2014]

Categorial, Ordinal, and Quantitative

Α	В	(C	S	Т	U
Order ID	Order Date	Order Priorit	ty	Product Container	Product Base Margin	Ship Date
3	10/14/06	5-Low		Large Box	0.8	10/21/06
6	2/21/08	4-Not Speci	fied	Small Pack	0.55	2/22/08
32	7/16/07	2-High		Small Pack	0.79	7/17/07
32	7/16/07	2-High		Jumbo Box	0.72	7/17/07
32	7/16/07	2-High		Medium Box	0.6	7/18/07
32	7/16/07	2-High		Medium Box	0.65	7/18/07
35	10/23/07	4-Not Speci	fied	Wrap Bag	0.52	10/24/07
35	10/23/07	4-Not Speci	fied	Small Box	0.58	10/25/07
36	11/3/07	1-Urgent		Small Box	0.55	11/3/07
65	3/18/07	1-Urgent		Small Pack	0.49	3/19/07
66	1/20/05	5-Low		Wrap Bag	0.56	1/20/05
69	6/4/05	4-Not Speci	fied	Cmall Dack	0.44	6/6/05
69	6/4/05	4-Not Spec	anar	ntitative	0.6	6/6/05
70	12/18/06	5-Low	quai	Ititative	0.59	12/23/06
70	12/18/06	5-Low	ordi	nal	0.82	12/23/06
96	4/17/05	2-High			0.55	4/19/05
97	1/29/06	3-Medium	cate	gorical	0.38	1/30/06
129	11/19/08	5-Low	cate	Sorreur	0.37	11/28/08
130	5/8/08	2-High		Small Box	0.37	5/9/08
130	5/8/08	2-High		Medium Box	0.38	5/10/08
130	5/8/08	2-High		Small Box	0.6	5/11/08
132	6/11/06	3-Medium		Medium Box	0.6	6/12/06
132	6/11/06	3-Medium		Jumbo Box	0.69	6/14/06
134	5/1/08	4-Not Speci	fied	Large Box	0.82	5/3/08
135	10/21/07	4-Not Speci	fied	Small Pack	0.64	10/23/07
166	9/12/07	2-High		Small Box	0.55	9/14/07
193	8/8/06	1-Urgent		Medium Box	0.57	8/10/06
194	4/5/08	3-Medium		Wrap Bag	0.42	4/7/08

Categorial, Ordinal, and Quantitative

Α	В		С	S	Т	U
Order ID	Order Date	Order Priori	ty	Product Container	Product Base Margin	Ship Date
3	10/14/06	5-Low		Large Box	0.8	10/21/06
6	2/21/08	4-Not Speci	ified	Small Pack	0.55	2/22/08
32	7/16/07	2-High		Small Pack	0.79	7/17/07
32	7/16/07	2-High		Jumbo Box	0.72	7/17/07
32	7/16/07	2-High		Medium Box	0.6	7/18/07
32	7/16/07	2-High		Medium Box	0.65	7/18/07
35	10/23/07	4-Not Speci	ified	Wrap Bag	0.52	10/24/07
35	10/23/07	4-Not Speci	ified	Small Box	0.58	10/25/07
36	11/3/07	1-Urgent		Small Box	0.55	11/3/07
65	3/18/07	1-Urgent		Small Pack	0.49	3/19/07
66	1/20/05	5-Low		Wrap Bag	0.56	1/20/05
69	6/4/05	4-Not Spec	fied	Small Pack	0.44	6/6/05
69	6/4/05	4-Not Spec	anar	ntitative	0.6	6/6/05
70	12/18/06	5-Low	quai	Illialive	0.59	12/23/06
70	12/18/06	5-Low	ordi	nal	0.82	12/23/06
96	4/17/05	2-High	or ar	IIAI	0.55	4/19/05
97	1/29/06	3-Medium	cate	gorical	0.38	1/30/06
129	11/19/08	5-Low	cate	Sorrear	0.37	11/28/08
130	5/8/08	2-High		Small Box	0.37	5/9/08
130	5/8/08	2-High		Medium Box	0.38	5/10/08
130	5/8/08	2-High		Small Box	0.6	5/11/08
132	6/11/06	3-Medium		Medium Box	0.6	6/12/06
132	6/11/06	3-Medium		Jumbo Box	0.69	6/14/06
134	5/1/08	4-Not Speci	ified	Large Box	0.82	5/3/08
135	10/21/07	4-Not Speci	ified	Small Pack	0.64	10/23/07
166	9/12/07	2-High		Small Box	0.55	9/14/07
193	8/8/06	1-Urgent		Medium Box	0.57	8/10/06
194		3-Medium		Wrap Bag	0.42	

Attribute Types

- May be further specified for computational storage/processing
 - Categorical: string, boolean, blood type
 - Ordered: enumeration, t-shirt size
 - Quantitative: integer, float, fixed decimal, datetime
- Sometimes, types can be inferred from the data
 - e.g. numbers and none have decimal points → integer
 - could be incorrect (data doesn't have floats, but could be)

Ordering Direction

[Munzner (ill. Maguire), 2014]

Sequential and Diverging Data

- Sequential: homogenous range from a minimum to a maximum
 - Examples: Land elevations, ocean depths
- Diverging: can be deconstructed into two sequences pointing in opposite directions
 - Has a zero point (not necessary 0)
 - Example: Map of both land elevation and ocean depth

[Rogowitz & Treinish, 1998]

Sequential and Diverging Data

- Sequential: homogenous range from a minimum to a maximum
 - Examples: Land elevations, ocean depths
- Diverging: can be deconstructed into two sequences pointing in opposite directions
 - Has a **zero point** (not necessary 0)
 - Example: Map of both land elevation and ocean depth

[Rogowitz & Treinish, 1998]

Cyclic Data

Cyclic Data

- The meaning of the data
- Example: 94023, 90210, 02747, 60115

- The meaning of the data
- Example: 94023, 90210, 02747, 60115
 - Attendance at college football games?

- The meaning of the data
- Example: 94023, 90210, 02747, 60115
 - Attendance at college football games?
 - Salaries?

- The meaning of the data
- Example: 94023, 90210, 02747, 60115
 - Attendance at college football games?
 - Salaries?
 - Zip codes?
- Cannot always infer based on what the data looks like
- Often require semantics to better understand data, column names help
- May also include rules about data: a zip code is part of an address that uniquely identifies a residence
- Useful for asking good questions about the data

Data Model vs. Conceptual Model

- Data Model: raw data that has a specific data type (e.g. floats):
 - Temperature Example: [32.5, 54.0, -17.3] (floats)
- Conceptual Model: how we think about the data
 - Includes semantics, reasoning
 - Temperature Example:
 - Quantitative: [32.50, 54.00, -17.30]

Data Model vs. Conceptual Model

- Data Model: raw data that has a specific data type (e.g. floats):
 - Temperature Example: [32.5, 54.0, -17.3] (floats)
- Conceptual Model: how we think about the data
 - Includes semantics, reasoning
 - Temperature Example:
 - Quantitative: [32.50, 54.00, -17.30]
 - Ordered: [warm, hot, cold]

[via A. Lex, 2015] Northern Illinois University

Data Model vs. Conceptual Model

- Data Model: raw data that has a specific data type (e.g. floats):
 - Temperature Example: [32.5, 54.0, -17.3] (floats)
- Conceptual Model: how we think about the data
 - Includes semantics, reasoning
 - Temperature Example:
 - Quantitative: [32.50, 54.00, -17.30]
 - Ordered: [warm, hot, cold]
 - Categorical: [not burned, burned, not burned]

[via A. Lex, 2015]

Derived Data

- Often, data in its original form isn't as useful as we would like
- Examples: Data about a basketball team's games

- Often, data in its original form isn't as useful as we would like
- Examples: Data about a basketball team's games
- Example 1: 1stHalfPoints, 2ndHalfPoints
 - More useful to know total number of points
 - Points = 1stHalfPoints + 2ndHalfPoints

- Often, data in its original form isn't as useful as we would like
- Examples: Data about a basketball team's games
- Example 1: 1stHalfPoints, 2ndHalfPoints
 - More useful to know total number of points
 - Points = 1stHalfPoints + 2ndHalfPoints
- Example 2: Points, OpponentPoints
 - Want to have a column indicating win/loss
 - Win = True if (Points > OpponentPoints) else False

- Often, data in its original form isn't as useful as we would like
- Examples: Data about a basketball team's games
- Example 1: 1stHalfPoints, 2ndHalfPoints
 - More useful to know total number of points
 - Points = 1stHalfPoints + 2ndHalfPoints
- Example 2: Points, OpponentPoints
 - Want to have a column indicating win/loss
 - Win = True if (Points > OpponentPoints) else False
- Example 3: Points
 - Want to have a column indicating how that point total ranks
 - Rank = index in sorted list of all Point values

What if data isn't correct/trustworthy/in the right format?

Dirty Data

Geolocation Errors

- Maxmind helps companies determine where users are located based on IP address
- "How a quiet Kansas home wound up with 600 million IP addresses and a world of trouble" [Washington Post, 2016]

Numeric Outliers

12 | 13 | 14 | 21 | 22 | 26 | 33 | 35 | 36 | 37 | 39 | 42 | 45 | 47 | 54 | 57 | 61 | 68 | 450

ages of employees (US)

[J. Hellerstein via J. Canny et al.]

This takes a lot of time!

What data scientists spend the most time doing

- Building training sets: 3%
- Cleaning and organizing data: 60%
- Collecting data sets; 19%
- Mining data for patterns: 9%
- Refining algorithms: 4%
- Other: 5%

[CrowdFlower Data Science Report, 2016]

...and it isn't the most fun thing to do

What's the least enjoyable part of data science?

- Building training sets: 10%
- Cleaning and organizing data: 57%
- Collecting data sets: 21%
- Mining data for patterns: 3%
- Refining algorithms: 4%
- Other: 5%

[CrowdFlower Data Science Report, 2016]

Dirty Data: Statistician's View

- Some process produces the data
- Want a model but have non-ideal samples:
 - Distortion: some samples corrupted by a process
 - Selection bias: likelihood of a sample depends on its value
 - Left and right censorship: users come and go from scrutiny
 - Dependence: samples are not independent (e.g. social networks)
- You can add/augment models for different problems, but cannot model everything
- Trade-off between accuracy and simplicity

[J. Canny et al.]

Dirty Data: Database Expert's View

- Got a dataset
- Some values are missing, corrupted, wrong, duplicated
- Results are absolute (relational model)
- Better answers come from improving the quality of values in the dataset

Dirty Data: Domain Expert's View

- Data doesn't look right
- Answer doesn't look right
- What happened?
- Domain experts carry an implicit model of the data they test against
- You don't always need to be a domain expert to do this
 - Can a person run 50 miles an hour?
 - Can a mountain on Earth be 50,000 feet above sea level?
 - Use common sense

[J. Canny et al.] Northern Illinois University

Dirty Data: Data Scientist's View

- Combination of the previous three views
- All of the views present problems with the data
- The goal may dictate the solutions:
 - Median value: don't worry too much about crazy outliers
 - Generally, aggregation is less susceptible by numeric errors
 - Be careful, the data may be correct...

Be careful how you detect dirty data

- The appearance of a hole in the earth's ozone layer over Antarctica, first detected in 1976, was so unexpected that scientists didn't pay attention to what their instruments were telling them; they thought their instruments were malfunctioning.
 - National Center for Atmospheric Research

[Wikimedia]

Where does dirty data originate?

- Source data is bad, e.g. person entered it incorrectly
- Transformations corrupt the data, e.g. certain values processed incorrectly due to a software bug
- Integration of different datasets causes problems
- Error propagation: one error is magnified

Types of Dirty Data Problems

- Separator Issues: e.g. CSV without respecting double quotes
 - 12, 13, "Doe, John", 45
- Naming Conventions: NYC vs. New York
- Missing required fields, e.g. key
- Different representations: 2 vs. two
- Truncated data: "Janice Keihanaikukauakahihuliheekahaunaele" becomes "Janice Keihanaikukauakahihuliheek" on Hawaii license
- Redundant records: may be exactly the same or have some overlap
- Formatting issues: 2017-11-07 vs. 07/11/2017 vs. 11/07/2017

[J. Canny et al.]

Data Wrangling

- Data wrangling: transform raw data to a more meaningful format that can be better analyzed
- Data cleaning: getting rid of inaccurate data
- Data transformations: changing the data from one representation to another
- Data reshaping: reorganizing the data
- Data merging: combining two datasets

Data Cleaning

Wrangler: Interactive Visual Specification of Data Transformation Scripts

S. Kandel, A. Paepcke, J. Hellerstein, J. Heer

Wrangler

- Data cleaning takes a lot of time and human effort
- "Tedium is the message"
- Repeating this process on multiple data sets is even worse!
- Solution:
 - interactive interface (mixed-initiative)
 - transformation language with natural language "translations"
 - suggestions + "programming by demonstration"

Your Critique/Questions

Example Critique

- Summary: Wrangler tackles data wrangling tasks by combining a language for specifying operations with an interface allowing users to specify the types of changes they are interested; the system can then generate suggested operations and demonstrates them on demand
- Critique: The suggestions may lead to states that a user cannot recover from easily. Suppose a suggestion looks like it works well, but a user later realizes was incorrect. They can backtrack, but it's often unclear where to and which other path to take. In addition, a user has to have some idea of the constructs of the language in order to edit parameters. Without a good idea of the impact of the parameters, the work may become as tedious as manual correction. Perhaps a more example-based strategy could help.

Previous Work: Potter's Wheel

- V. Raman and J. Hellerstein, 2001
- Defines structure extractions for identifying fields
- Defines transformations on the data
- Allows user interaction

Potter's Wheel: Structure Extraction

Example Column Value	# Structures	Final Structure Chosen
(Example erroneous values)	Enumerated	(Punc = Punctuation)
-60	5	Integer
UNITED, DELTA, AMERICAN etc.	5	IspellWord
SFO, LAX etc. (JFK to OAK)	12	AllCapsWord
1998/01/12	9	Int Punc(/) Int Punc(/) Int
M, Tu, Thu etc.	5	Capitalized Word
06:22	5	Int(len 2) Punc(:) Int(len 2)
12.8.15.147 (ferret03.webtop.com)	9	Double Punc('.') Double
"GET\b (\b)	5	Punc(") IspellWord Punc(\)
/postmodern/lecs/xia/sld013.htm	4	$\boldsymbol{\xi}^*$
HTTP	3	AllCapsWord(HTTP)
/1.0	6	Punc(/) Double(1.0)

Potter's Wheel: Transforms

Transform		Definition
Format	$\phi(R, i, f) =$	$\{(a_1,\ldots,a_{i-1},a_{i+1},\ldots,a_n,f(a_i)) \mid (a_1,\ldots,a_n) \in R\}$
Add	$\alpha(R,x)$	$\{(a_1,\ldots,a_n,x)\mid (a_1,\ldots,a_n)\in R\}$
Drop	$\pi(R,i)$	$\{(a_1,\ldots,a_{i-1},a_{i+1},\ldots,a_n)\mid (a_1,\ldots,a_n)\in R\}$
Copy	$\kappa((a_1,\ldots,a_n),i) =$	$\{(a_1,\ldots,a_n,a_i)\mid (a_1,\ldots,a_n)\in R\}$
Merge	$\mu((a_1,\ldots,a_n),i,j,\text{glue}) =$	$\{(a_1,\ldots,a_{i-1},a_{i+1},\ldots,a_{j-1},a_{j+1},\ldots,a_n,a_i\oplus glue\oplus a_j)\mid (a_1,\ldots,a_n)\in R\}$
Split	$\omega((a_1,\ldots,a_n),i,\text{splitter}) =$	$\{(a_1,\ldots,a_{i-1},a_{i+1},\ldots,a_n,\operatorname{left}(a_i,\operatorname{splitter}),\operatorname{right}(a_i,\operatorname{splitter}))\mid (a_1,\ldots,a_n)\in R\}$
Divide	$\delta((a_1,\ldots,a_n),i,\mathrm{pred}) =$	$\{(a_1,\ldots,a_{i-1},a_{i+1},\ldots,a_n,a_i,\operatorname{null})\mid (a_1,\ldots,a_n)\in R\wedge\operatorname{pred}(a_i)\}\ \cup$
		$\{(a_1, \ldots, a_{i-1}, a_{i+1}, \ldots, a_n, \text{ null}, a_i) \mid (a_1, \ldots, a_n) \in R \land \neg \text{pred}(a_i)\}$
Fold	$\lambda(R, i_1, i_2, \dots i_k) =$	$\{(a_1,\ldots,a_{i_1-1},a_{i_1+1},\ldots,a_{i_2-1},a_{i_2+1},\ldots,a_{i_k-1},a_{i_k+1},\ldots,a_n,a_{i_l})\mid$
		$(a_1,\ldots,a_n)\in R\wedge 1\leq l\leq k\}$
Select	$\sigma(R, \text{pred}) =$	$\{(a_1,\ldots,a_n)\mid (a_1,\ldots,a_n)\in R\wedge\operatorname{pred}((a_1,\ldots,a_n))\}$

Notation: R is a relation with n columns. i, j are column indices and a_i represents the value of a column in a row. x and glue are values. f is a function mapping values to values. $x \oplus y$ concatenates x and y. splitter is a position in a string or a regular expression, left(x, splitter) is the left part of x after splitting by splitter. pred is a function returning a boolean.

Potter's Wheel: Example

	Stewart, Bob	Fori
Anna Davis		'(.*), (.*)'
	Dole,Jerry	
Joan Marsh		

Format
'(.*), (.*)' to '\2\1'

		Bob Stewart
Anna	Davis	
>		Jerry Dole
Joan	Marsh	

Split at ' '

Bob	Stewart
Anna	Davis
Jerry	Dole
Joan	Marsh

2 Merges

		Bob	Stewart
Anna	Davis		
		Jerry	Dole
Joan	Marsh		

Potter's Wheel: Inferring Structure from Examples

Example Values Split By User (is user specified split position)	Inferred Structure	Comments
Taylor, Jane , \$52,072 Blair, John , \$73,238 Tony Smith , \$1,00,533	$(<\xi^*><$ ',' $Money>)$	Parsing is doable despite no good delimiter. A <i>regular expression</i> domain can infer a structure of \$[0-9,]* for last component.
MAA to SIN JFK to SFO LAX - ORD SEA / OAK	$(< len 3 identifier > < \xi^* > < len 3 identifier >)$	Parsing is possible despite multiple delimiters.
321 Blake #7 , Berkeley , CA 94720 719 MLK Road , Fremont , CA 95743	(<number <math="">\xi^* > < ',' word> <',' (2 letter word) (5 letter integer)>)</number>	Parsing is easy because of consistent delimiter.