
Advanced Data Management (CSCI 640/490)

Data Wrangling

Dr. David Koop

D. Koop, CSCI 640/490, Fall 2025

Spectrum of data processing systems

data size

Data Processing Systems

2

[G. Szárnyas, 2024]
D. Koop, CSCI 640/490, Fall 2025

https://duckdb.org/media/duckdb-crunching-data-anywhere-from-laptops-to-servers/

Database systems

Transactional Analytical

Client–server

In-process

DuckDB is In-Process, OLAP DBMS

3

[G. Szárnyas, 2024]
D. Koop, CSCI 640/490, Fall 2025

https://duckdb.org/media/duckdb-crunching-data-anywhere-from-laptops-to-servers/

DuckDB Characteristics
• Columnar Data Storage: Compare with row-based, compression
• Vectorized Execution Engine: Optimized for CPU Cache Locality
• End-to-end Query Optimization: Expression rewriting, Join Ordering,

Subquery Flattening, Filter/Projection Pushdown
• Automatic Parallelism: Scanners, Aggregations, Joins
• Data Compression: Linked with Columnar Data
• Beyond Memory Execution: Supports data that does not fit into memory,

graceful degradation

4

[P. Holanda, 2023]
D. Koop, CSCI 640/490, Fall 2025

https://archive.fosdem.org/2023/schedule/event/python_duckdb/

vectorized execution
date id type station

column-at-a-time executiontuple-at-a-time execution

column-based storagerow-based storage

Execution

date id type station date id type station

date id type station date id type station

Columnar Storage & Vectorized Execution

5

[G. Szárnyas, 2024]
D. Koop, CSCI 640/490, Fall 2025

https://duckdb.org/media/duckdb-crunching-data-anywhere-from-laptops-to-servers/

 min

 max

date id type station

Indexing: Zonemaps

Zonemaps (min-max indexes) are created for each column in each row group

1 Intercity
2 Sprinter
3 ICE Intl
4 Intercity

date id type station
May 30
May 30
May 31
May 31

5 Sprinter
6 Sprinter
7 Intercity
8 Intercity

June 1
June 1
June 1
June 2

Ams C
Utrecht
Ams C

Schiphol

Schiphol
Utrecht
Utrecht
Ams C

 min

 max

1 ICE Intl

4 Sprinter

May 30

May 31

Ams C

Utrecht

5 Intercity

8 Sprinter

June 1

June 2

Ams C

Utrecht

row group 1 row group 2

Zonemaps
• Zonemaps are min/max indices
• Exist for each column in each row group

6

[G. Szárnyas, 2024]
D. Koop, CSCI 640/490, Fall 2025

https://duckdb.org/media/duckdb-crunching-data-anywhere-from-laptops-to-servers/

Supported formats and protocols

s3://http(s):// azure://

Postgre-
SQL

SQLite

MySQL

JSON

Parquet

CSV

Iceberg

Delta

DuckDB Supported Formats and Protocols

7

[G. Szárnyas, 2024]
D. Koop, CSCI 640/490, Fall 2025

https://duckdb.org/media/duckdb-crunching-data-anywhere-from-laptops-to-servers/

More DuckDB Characteristics
• Portable: Written in C++11, Inlined Dependencies, APIs for most languages
• Open Source: MIT License, Built on Open Standards
• Limitations:
- Concurrency Control uses MVCC and WAL but not good for OLTP-heavy

workloads
- Execution: single-node, not distributed execution, scales to large nodes

8D. Koop, CSCI 640/490, Fall 2025

Chicago Food Inspections Exploration
• Using Pandas
• Using DuckDB
• Using Polars

9D. Koop, CSCI 640/490, Fall 2025

Courselets
• Deeper dive into the functionality for each of polars, DuckDB, and pandas
• Contain interactive examples as well as exercises
• Opportunity to provide feedback

10D. Koop, CSCI 640/490, Fall 2025

Assignment 2
• Assignment 1 Questions with polars, DuckDB, and pandas
• CS 640 students do all, CS 490 do polars & DuckDB (pandas is EC)
• Can work by framework or by query
• Most questions can be answered with a single statement… but that

statement can take a while to write
- Read documentation
- Check hints

11D. Koop, CSCI 640/490, Fall 2025

https://faculty.cs.niu.edu/~dakoop/cs640-2025fa/assignment2.html

12

Data

D. Koop, CSCI 640/490, Fall 2025

Data
• What is data?
- Types
- Semantics

• How is data structured?
- Tables (Data Frames)
- Databases
- Data Cubes

• What formats is data stored in?
• Raw versus derived data

13D. Koop, CSCI 640/490, Fall 2025

Data
• What is this data?

• Semantics: real-world meaning of the data
• Type: structural or mathematical interpretation
• Both often require metadata
- Sometimes we can infer some of this information
- Line between data and metadata isn’t always clear

14D. Koop, CSCI 640/490, Fall 2025

Data

15D. Koop, CSCI 640/490, Fall 2025

Tables

Attributes (columns)

Items
(rows)

Cell containing value

Networks

Link

Node
(item)

Trees

Fields (Continuous)

Attributes (columns)

Value in cell

Cell

Multidimensional Table

Value in cell

Grid of positions

Geometry (Spatial)

Position

Dataset TypesDataset Types

16

[Munzner (ill. Maguire), 2014]
D. Koop, CSCI 640/490, Fall 2025

Data Terminology
• Items
- An item is an individual discrete entity
- e.g., a row in a table

• Attributes
- An attribute is some specific property that can be measured, observed, or

logged
- a.k.a. variable, (data) dimension
- e.g., a column in a table

17D. Koop, CSCI 640/490, Fall 2025

Fieldattribute

item
cell

Tables

18D. Koop, CSCI 640/490, Fall 2025

Attribute Semantics
Keys vs. Values (Tables) or Independent vs. Dependent (Fields)

Flat

Multidimensional

Ta
bl

es

Fi
el

ds

Tables
• Data organized by rows & columns
- row ~ item (usually)
- column ~ attribute
- label ~ attribute name

• Key: identifies each item (row), usually unique
- Allows join of data from 2+ tables
- Compound key: key split among multiple

columns, e.g. (state, year) for population
• Multidimensional:
- Split compound key
- e.g. a data cube with (state, year)

19

[Munzner (ill. Maguire), 2014]
D. Koop, CSCI 640/490, Fall 2025

Attributes

Attribute Types

Ordering Direction

Categorical Ordered

Ordinal Quantitative

Sequential Diverging Cyclic

Attribute Types

20

[Munzner (ill. Maguire), 2014]
D. Koop, CSCI 640/490, Fall 2025

23
1 = Quantitative
2 = Nominal
3 = Ordinal

 quantitative
 ordinal
 categorical

Categorial, Ordinal, and Quantitative

21D. Koop, CSCI 640/490, Fall 2025

24
1 = Quantitative
2 = Nominal
3 = Ordinal

 quantitative
 ordinal
 categorical

Categorial, Ordinal, and Quantitative

22D. Koop, CSCI 640/490, Fall 2025

Attribute Types
• May be further specified for computational storage/processing
- Categorical: string, boolean, blood type
- Ordered: enumeration, t-shirt size
- Quantitative: integer, float, fixed decimal, datetime

• Sometimes, types can be inferred from the data
- e.g. numbers and none have decimal points → integer
- could be incorrect (data doesn't have floats, but could be)

23D. Koop, CSCI 640/490, Fall 2025

Attributes

Attribute Types

Ordering Direction

Categorical Ordered

Ordinal Quantitative

Sequential Diverging Cyclic

Ordering Direction

24

[Munzner (ill. Maguire), 2014]
D. Koop, CSCI 640/490, Fall 2025

Sequential and Diverging Data
• Sequential: homogenous range from a

minimum to a maximum
- Examples: Land elevations, ocean depths

• Diverging: can be deconstructed into two
sequences pointing in opposite directions
- Has a zero point (not necessary 0)
- Example: Map of both land elevation and

ocean depth

25

[Rogowitz & Treinish, 1998]
D. Koop, CSCI 640/490, Fall 2025

Sequential and Diverging Data
• Sequential: homogenous range from a

minimum to a maximum
- Examples: Land elevations, ocean depths

• Diverging: can be deconstructed into two
sequences pointing in opposite directions
- Has a zero point (not necessary 0)
- Example: Map of both land elevation and

ocean depth

25

[Rogowitz & Treinish, 1998]
D. Koop, CSCI 640/490, Fall 2025

Cyclic Data

26D. Koop, CSCI 640/490, Fall 2025

Cyclic Data

26D. Koop, CSCI 640/490, Fall 2025

Semantics
• The meaning of the data
• Example: 94023, 90210, 02747, 60115

27D. Koop, CSCI 640/490, Fall 2025

Semantics
• The meaning of the data
• Example: 94023, 90210, 02747, 60115
- Attendance at college football games?

27D. Koop, CSCI 640/490, Fall 2025

Semantics
• The meaning of the data
• Example: 94023, 90210, 02747, 60115
- Attendance at college football games?
- Salaries?

27D. Koop, CSCI 640/490, Fall 2025

Semantics
• The meaning of the data
• Example: 94023, 90210, 02747, 60115
- Attendance at college football games?
- Salaries?
- Zip codes?

• Cannot always infer based on what the data looks like
• Often require semantics to better understand data, column names help
• May also include rules about data: a zip code is part of an address that

uniquely identifies a residence
• Useful for asking good questions about the data

27D. Koop, CSCI 640/490, Fall 2025

Data Model vs. Conceptual Model
• Data Model: raw data that has a specific data type (e.g. floats):
- Temperature Example: [32.5, 54.0, -17.3] (floats)

• Conceptual Model: how we think about the data
- Includes semantics, reasoning
- Temperature Example:

• Quantitative: [32.50, 54.00, -17.30]

28

[via A. Lex, 2015]
D. Koop, CSCI 640/490, Fall 2025

Data Model vs. Conceptual Model
• Data Model: raw data that has a specific data type (e.g. floats):
- Temperature Example: [32.5, 54.0, -17.3] (floats)

• Conceptual Model: how we think about the data
- Includes semantics, reasoning
- Temperature Example:

• Quantitative: [32.50, 54.00, -17.30]
• Ordered: [warm, hot, cold]

28

[via A. Lex, 2015]
D. Koop, CSCI 640/490, Fall 2025

Data Model vs. Conceptual Model
• Data Model: raw data that has a specific data type (e.g. floats):
- Temperature Example: [32.5, 54.0, -17.3] (floats)

• Conceptual Model: how we think about the data
- Includes semantics, reasoning
- Temperature Example:

• Quantitative: [32.50, 54.00, -17.30]
• Ordered: [warm, hot, cold]
• Categorical: [not burned, burned, not burned]

28

[via A. Lex, 2015]
D. Koop, CSCI 640/490, Fall 2025

Derived Data

29D. Koop, CSCI 640/490, Fall 2025

Derived Data
• Often, data in its original form isn't as useful as we would like
• Examples: Data about a basketball team's games

29D. Koop, CSCI 640/490, Fall 2025

Derived Data
• Often, data in its original form isn't as useful as we would like
• Examples: Data about a basketball team's games
• Example 1: 1stHalfPoints, 2ndHalfPoints
- More useful to know total number of points
- Points = 1stHalfPoints + 2ndHalfPoints

29D. Koop, CSCI 640/490, Fall 2025

Derived Data
• Often, data in its original form isn't as useful as we would like
• Examples: Data about a basketball team's games
• Example 1: 1stHalfPoints, 2ndHalfPoints
- More useful to know total number of points
- Points = 1stHalfPoints + 2ndHalfPoints

• Example 2: Points, OpponentPoints
- Want to have a column indicating win/loss
- Win = True if (Points > OpponentPoints) else False

29D. Koop, CSCI 640/490, Fall 2025

Derived Data
• Often, data in its original form isn't as useful as we would like
• Examples: Data about a basketball team's games
• Example 1: 1stHalfPoints, 2ndHalfPoints
- More useful to know total number of points
- Points = 1stHalfPoints + 2ndHalfPoints

• Example 2: Points, OpponentPoints
- Want to have a column indicating win/loss
- Win = True if (Points > OpponentPoints) else False

• Example 3: Points
- Want to have a column indicating how that point total ranks
- Rank = index in sorted list of all Point values

29D. Koop, CSCI 640/490, Fall 2025

30

What if data isn't correct/trustworthy/in the right format?

D. Koop, CSCI 640/490, Fall 2025

Dirty Data

31

[Flickr]
D. Koop, CSCI 640/490, Fall 2025

http://farm3.static.flickr.com/2558/3717487523_f197ac2fbf.jpg

Geolocation Errors
• Maxmind helps companies determine where users are located based on IP

address
• "How a quiet Kansas home wound up with 600 million IP addresses and a

world of trouble" [Washington Post, 2016]

32D. Koop, CSCI 640/490, Fall 2025

https://www.washingtonpost.com/news/morning-mix/wp/2016/08/10/lawsuit-how-a-quiet-kansas-home-wound-up-with-600-million-ip-addresses-and-a-world-of-trouble/

Numeric Outliers

Adapted from Joe Hellerstein’s 2012 CS 194 Guest Lecture

Numeric Outliers

33

[J. Hellerstein via J. Canny et al.]
D. Koop, CSCI 640/490, Fall 2025

https://bcourses.berkeley.edu/files/50707513/download?download_frd=1&verifier=njoObzWKAmeihDjqFN9EMrY0IRlDbUWy2mFegnXN

6F INDINGS

we got about the future of the data science,

the most salient takeaway was how excited our

respondents were about the evolution of the

field. They cited things in their own practice, how

they saw their jobs getting more interesting and

less repetitive, all while expressing a real and

broad enthusiasm about the value of the work in

their organization.

As data science becomes more commonplace and

simultaneously a bit demystified, we expect this

trend to continue as well. After all, last year’s

respondents were just as excited about their

work (about 79% were “satisfied” or better).

How a Data Scientist Spends Their Day

Here’s where the popular view of data scientists diverges pretty significantly from reality. Generally,

we think of data scientists building algorithms, exploring data, and doing predictive analysis. That’s

actually not what they spend most of their time doing, however.

As you can see from the chart above, 3 out of every 5 data scientists we surveyed actually spend the

most time cleaning and organizing data. You may have heard this referred to as “data wrangling” or

compared to digital janitor work. Everything from list verification to removing commas to debugging

databases–that time adds up and it adds up immensely. Messy data is by far the more time- consuming

aspect of the typical data scientist’s work flow. And nearly 60% said they simply spent too much

time doing it.

Data scientist job satisfaction

60%

19%

9%

4%
5%3%

 Building training sets: 3%

 Cleaning and organizing data: 60%

 Collecting data sets; 19%

 Mining data for patterns: 9%

 Refining algorithms: 4%

 Other: 5%

What data scientists spend the most time doing

4.0
5

4

3

2

1

35%

47%

12%

6%

1%

This takes a lot of time!

34

[CrowdFlower Data Science Report, 2016]
D. Koop, CSCI 640/490, Fall 2025

http://visit.crowdflower.com/rs/416-ZBE-142/images/CrowdFlower_DataScienceReport_2016.pdf

7F INDINGS

Why That’s a Problem

Simply put, data wrangling isn’t fun. It takes forever. In fact, a few years back, the New York Times

estimated that up to 80% of a data scientist’s time is spent doing this sort of work.

Here, it’s necessary to point out that data cleaning is incredibly important. You can’t do the sort of

work data scientists truly enjoy doing with messy data. It needs to be cleaned, labeled, and enriched

before you can trust the output.

The problem here is two fold. One: data scientists simply don’t like doing this kind of work, and,

as mentioned, this kind of work takes up most of their time. We asked our respondents what

was the least enjoyable part of their job.

They had this to say:

Note how those last two charts mirror each other. The things data scientists do most are the

things they enjoy least. Last year, we found that respondents far prefer doing the more creative,

interesting parts of their job, things like predictive analysis and mining data for patterns. That’s

where the real value comes. But again, you simply can’t do that work unless the data is properly

labeled. And nobody likes labeling data.

Do Data Scientists Have What They Need?

With a shortage of data scientists out there in the world, we wanted to find out if they thought

they were properly supported in their job. After all, when you need more data scientists, you’ll

often find a single person doing the work of several.

 Building training sets: 10%

 Cleaning and organizing data: 57%

 Collecting data sets: 21%

 Mining data for patterns: 3%

 Refining algorithms: 4%

 Other: 5%

57%

21%

10%

5%
4%3% What’s the least enjoyable part of data science?

…and it isn't the most fun thing to do

35

[CrowdFlower Data Science Report, 2016]
D. Koop, CSCI 640/490, Fall 2025

http://visit.crowdflower.com/rs/416-ZBE-142/images/CrowdFlower_DataScienceReport_2016.pdf

Dirty Data: Statistician's View
• Some process produces the data
• Want a model but have non-ideal samples:
- Distortion: some samples corrupted by a process
- Selection bias: likelihood of a sample depends on its value
- Left and right censorship: users come and go from scrutiny
- Dependence: samples are not independent (e.g. social networks)

• You can add/augment models for different problems, but cannot model
everything

• Trade-off between accuracy and simplicity

36

[J. Canny et al.]
D. Koop, CSCI 640/490, Fall 2025

https://bcourses.berkeley.edu/files/50707513/download?download_frd=1&verifier=njoObzWKAmeihDjqFN9EMrY0IRlDbUWy2mFegnXN

Dirty Data: Database Expert's View
• Got a dataset
• Some values are missing, corrupted, wrong, duplicated
• Results are absolute (relational model)
• Better answers come from improving the quality of values in the dataset

37

[J. Canny et al.]
D. Koop, CSCI 640/490, Fall 2025

https://bcourses.berkeley.edu/files/50707513/download?download_frd=1&verifier=njoObzWKAmeihDjqFN9EMrY0IRlDbUWy2mFegnXN

Dirty Data: Domain Expert's View
• Data doesn't look right
• Answer doesn't look right
• What happened?
• Domain experts carry an implicit model of the data they test against
• You don't always need to be a domain expert to do this
- Can a person run 50 miles an hour?
- Can a mountain on Earth be 50,000 feet above sea level?
- Use common sense

38

[J. Canny et al.]
D. Koop, CSCI 640/490, Fall 2025

https://bcourses.berkeley.edu/files/50707513/download?download_frd=1&verifier=njoObzWKAmeihDjqFN9EMrY0IRlDbUWy2mFegnXN

Dirty Data: Data Scientist's View
• Combination of the previous three views
• All of the views present problems with the data
• The goal may dictate the solutions:
- Median value: don't worry too much about crazy outliers
- Generally, aggregation is less susceptible by numeric errors
- Be careful, the data may be correct…

39

[J. Canny et al.]
D. Koop, CSCI 640/490, Fall 2025

https://bcourses.berkeley.edu/files/50707513/download?download_frd=1&verifier=njoObzWKAmeihDjqFN9EMrY0IRlDbUWy2mFegnXN

Be careful how you detect dirty data
• The appearance of a hole in the earth’s ozone layer over Antarctica, first

detected in 1976, was so unexpected that scientists didn’t pay attention to
what their instruments were telling them; they thought their instruments were
malfunctioning.
– National Center for Atmospheric Research

40

[Wikimedia]
D. Koop, CSCI 640/490, Fall 2025

https://commons.wikimedia.org/wiki/File:Agujero_en_la_capa_de_ozono_2008.jpg

Where does dirty data originate?
• Source data is bad, e.g. person entered it incorrectly
• Transformations corrupt the data, e.g. certain values processed incorrectly

due to a software bug
• Integration of different datasets causes problems
• Error propagation: one error is magnified

41

[J. Canny et al.]
D. Koop, CSCI 640/490, Fall 2025

https://bcourses.berkeley.edu/files/50707513/download?download_frd=1&verifier=njoObzWKAmeihDjqFN9EMrY0IRlDbUWy2mFegnXN

Types of Dirty Data Problems
• Separator Issues: e.g. CSV without respecting double quotes

- 12, 13, "Doe, John", 45

• Naming Conventions: NYC vs. New York
• Missing required fields, e.g. key
• Different representations: 2 vs. two
• Truncated data: "Janice Keihanaikukauakahihuliheekahaunaele"

becomes "Janice Keihanaikukauakahihuliheek" on Hawaii license
• Redundant records: may be exactly the same or have some overlap
• Formatting issues: 2017-11-07 vs. 07/11/2017 vs. 11/07/2017

42

[J. Canny et al.]
D. Koop, CSCI 640/490, Fall 2025

https://bcourses.berkeley.edu/files/50707513/download?download_frd=1&verifier=njoObzWKAmeihDjqFN9EMrY0IRlDbUWy2mFegnXN

Data Wrangling
• Data wrangling: transform raw data to a more meaningful format that can be

better analyzed
• Data cleaning: getting rid of inaccurate data
• Data transformations: changing the data from one representation to another
• Data reshaping: reorganizing the data
• Data merging: combining two datasets

43D. Koop, CSCI 640/490, Fall 2025

Data Cleaning

44D. Koop, CSCI 640/490, Fall 2025

Wrangler: Interactive Visual Specification of Data
Transformation Scripts

S. Kandel, A. Paepcke, J. Hellerstein, J. Heer

D. Koop, CSCI 640/490, Fall 2025

https://dsf.berkeley.edu/papers/chi11-wrangler.pdf
https://dsf.berkeley.edu/papers/chi11-wrangler.pdf

Wrangler
• Data cleaning takes a lot of time and human effort
• "Tedium is the message"
• Repeating this process on multiple data sets is even worse!
• Solution:
- interactive interface (mixed-initiative)
- transformation language with natural language "translations"
- suggestions + "programming by demonstration"

46D. Koop, CSCI 640/490, Fall 2025

47

Your Critique/Questions

D. Koop, CSCI 640/490, Fall 2025

Example Critique
• Summary: Wrangler tackles data wrangling tasks by combining a language

for specifying operations with an interface allowing users to specify the types
of changes they are interested; the system can then generate suggested
operations and demonstrates them on demand

• Critique: The suggestions may lead to states that a user cannot recover from
easily. Suppose a suggestion looks like it works well, but a user later realizes
was incorrect. They can backtrack, but it's often unclear where to and which
other path to take. In addition, a user has to have some idea of the
constructs of the language in order to edit parameters. Without a good idea
of the impact of the parameters, the work may become as tedious as manual
correction. Perhaps a more example-based strategy could help.

48D. Koop, CSCI 640/490, Fall 2025

Previous Work: Potter's Wheel
• V. Raman and J. Hellerstein, 2001
• Defines structure extractions for identifying fields
• Defines transformations on the data
• Allows user interaction

49D. Koop, CSCI 640/490, Fall 2025

/** Enumerate all structures of domains ds1 . . . dsp

that can be used to match a value vi. */
void enumerate(vi , d1, . . . dp) {
Let vi be a string of characters w1 . . . wm

for all domains dmatching prefixw1 . . . wk of vi

do enumerate(wk+1 . . . wm , ds1 , . . . dsp)
– avoid structures beginning with domains

d′ that satisfy d′.isRedundantAfter(d)
prepend d to all structures enumerated above

}
Figure 4: Enumerating various structures for a set
of values

Example Column Value # Structures Final Structure Chosen
(Example erroneous values) Enumerated (Punc = Punctuation)
-60 5 Integer
UNITED, DELTA, AMERICAN etc. 5 IspellWord
SFO, LAX etc. (JFK to OAK) 12 AllCapsWord
1998/01/12 9 Int Punc(/) Int Punc(/) Int
M, Tu, Thu etc. 5 Capitalized Word
06:22 5 Int(len 2) Punc(:) Int(len 2)
12.8.15.147 (ferret03.webtop.com) 9 Double Punc(’.’) Double
”GET\b (\b) 5 Punc(”) IspellWord Punc(\)
/postmodern/lecs/xia/sld013.htm 4 ξ∗

HTTP 3 AllCapsWord(HTTP)
/1.0 6 Punc(/) Double(1.0)

Figure 5: Structures extracted for different kinds of columns, using the default
domains listed in Section 3.1. Structure parameterizations are given in parenthesis.

with values of constant length. Such parameterized struc-
tures are especially useful for automatically parsing the val-
ues in a column, when inferring Split transforms by example
(Section 4.3).
In addition, users can define domains that infer custom

parameterizations, using the updateStatsmethod. These do-
mains could use specialized algorithms to further refine the
structure of the sub-components that fall within their domain.
For example, the default Integer domain in Potter’s Wheel
computes the mean and standard deviation of its values and
uses these as parameters, to flag values that are more than 2
standard deviations away as potential anomalies. Likewise
a domain can accept all strings by default, but parameterize
itself by inferring a regular expression that matches the sub-
component values.
The description length for values using a structure often

reduces when the structure is parameterized. For the default
parameterizations of constant values and constant lengths it
is easy to adjust the formulas given in the previous section.
For custom parameterizations like the regular expression in-
ference discussed above, the user must define the cardinality
function based on the parameterization.

3.4 Example Structures Extracted
Consider the snapshot shown in Figure 1 containing flight
delay statistics. Figure 5 shows the structures extracted for
some of its column values, and also for some columns from a
web access log. We see that the dominant structure is chosen
even in the face of inconsistencies; thereby the system can
flag these structural inconsistencies as errors to the user, and
parse and apply suitable detection algorithms for other values
that match the structure.
Using these the system flags several discrepancies that we

had earlier added to the data. For example, the system flags
dates such as 19998/05/31 in the date column of Figure 1 as
anomalies because the Integer domain for the year column
parameterizes with a mean of 2043.5 and a standard devia-
tion of 909.2. It finds the poor mapping in the Source and
Destination columns of Figure 1 as structural anomalies.
Figure 5 also shows that a column of IP addresses with

values like 12.8.15.147 has its structure inferred as Dou-
ble.Double, rather than Integer.Integer.Integer.Integer. This
arises because Double is a more concise structure than
Integer.Integer. This could be avoided either by defin-

ing a Short domain for values less than 255 (to form
Short.Short.Short.Short), or even by allowing a parameter-
ization of the form Integer (len ≤ 3).
An interesting example of over-fitting is the choice of

IspellWord for flight carriers. Although most flight carrier
names occur in the ispell dictionary, some like TWA do not.
Still IspellWord is chosen because it is cheaper to encode
TWA explicitly with a ξ∗ structure than to encode all carri-
ers with the next best structure, AllCapsWord. The system
flags TWA as an anomaly – the user could choose to ignore
this, or specify a minimum Recall threshold to avoid over-
fitting. In any case, this example highlights the importance
of involving the user in the data cleaning process.
Figure 10 gives more examples of inferred structures.

4 Interactive Transformation
Having seen how Potter’s Wheel infers structures and iden-
tifies discrepancies, we turn our attention to its support for
interactive transformation. We want users to construct trans-
formations gradually, adjusting them based on continual
feedback. This breaks down into the following sub-goals:
Ease of specification: Transforms must be specifiable
through graphical operations rather than custom program-
ming. Moreover, in these operations, we want to avoid use
of regular-expressions or grammars and instead allow users
to specify transforms by example as far as possible.
Ease of interactive application: Once the user has specified
a transform, they must be given immediate feedback on the
results of its application so that they can correct it.
Undos and Data Lineage: Users must be able to easily undo
transforms after seeing their effect. In addition, the lineage
of errors must be clear – i.e., errors intrinsic to the data must
be differentiable from those resulting from other transforms.

4.1 Transforms supported in Potter’s Wheel
The transforms used in Potter’s Wheel are adapted from ex-
isting literature on transformation languages (e.g. [16, 7]).
We describe them briefly here before proceeding to discuss
their interactive application and graphical specification. Ta-
ble 1 gives formal definitions for these transforms. Addi-
tional illustrative examples and proofs of expressive power
are given in the full version of the paper [22].

Potter's Wheel: Structure Extraction

50

[V. Raman and J. Hellerstein, 2001]
D. Koop, CSCI 640/490, Fall 2025

Transform Definition
Format φ(R, i, f) = {(a1, . . . , ai−1, ai+1, . . . , an, f(ai)) | (a1, . . . , an) ∈ R}
Add α(R, x) = {(a1, . . . , an, x) | (a1, . . . , an) ∈ R}
Drop π(R, i) = {(a1, . . . , ai−1, ai+1, . . . , an) | (a1, . . . , an) ∈ R}
Copy κ((a1, . . . , an), i) = {(a1, . . . , an, ai) | (a1, . . . , an) ∈ R}
Merge µ((a1, . . . , an), i, j, glue) = {(a1, . . . , ai−1, ai+1, . . . , aj−1, aj+1, . . . , an, ai ⊕ glue⊕ aj) | (a1, . . . , an) ∈ R}
Split ω((a1, . . . , an), i, splitter) = {(a1, . . . , ai−1, ai+1, . . . , an, left(ai, splitter), right(ai, splitter)) | (a1, . . . , an) ∈ R}
Divide δ((a1, . . . , an), i, pred) = {(a1, . . . , ai−1, ai+1, . . . , an, ai, null) | (a1, . . . , an) ∈ R ∧ pred(ai)} ∪

{(a1, . . . , ai−1, ai+1, . . . , an, null, ai) | (a1, . . . , an) ∈ R ∧ ¬pred(ai)}
Fold λ(R, i1, i2, . . . ik) = {(a1, . . . , ai1−1, ai1+1, . . . , ai2−1, ai2+1, . . . , aik−1, aik+1, . . . , an, ail) |

(a1, . . . , an) ∈ R ∧ 1 ≤ l ≤ k}
Select σ(R, pred) = {(a1, . . . , an) | (a1, . . . , an) ∈ R ∧ pred((a1, . . . , an))}

Notation: R is a relation with n columns. i, j are column indices and ai represents the value of a column in a row. x and glue are
values. f is a function mapping values to values. x ⊕ y concatenates x and y. splitter is a position in a string or a regular expression,
left(x, splitter) is the left part of x after splitting by splitter. pred is a function returning a boolean.

Table 1: Definitions of the various transforms. Unfold is defined in the full paper [22].

2 Merges

Format
'(.*), (.*)' to '\2 \1'

Stewart,Bob

Dole,Jerry
Davis

Marsh

Anna

Joan

Stewart
Anna Davis

Dole
Joan Marsh
Jerry

Bob Bob

Jerry

Stewart

Dole
Anna

Joan

Davis

Marsh

Split at ' '

Anna

Joan

Davis

Marsh

Bob Stewart

Jerry Dole

Figure 6: Using Format, Merge and Split to clean name for-
mat differences
Value Translation
The Format transform applies a function to every value in
a column. We provide built-in functions for common oper-
ations like regular-expression based substitutions and arith-
metic operations, but also allow user defined functions. Col-
umn and table names can be demoted into column values us-
ing special characters in regular expressions; these are useful
in conjunction with the Fold transform described below.
One-to-one Mappings of Rows
One-to-one transforms are column operations that transform
individual rows. As illustrated in Figures 6 and 7, they can
be used to unify data collected from different sources.
TheMerge transform concatenates values in two columns,

optionally interposing a constant (the delimiter) in the mid-
dle, to form a single new column. Split splits a column into
two or more parts, and is used typically to parse a value into
its constituent parts. The split positions are often difficult
to specify if the data is not well structured. We allow split-
ting by specifying character positions, regular expressions,
or by interactively performing splits on example values (Sec-
tion 4.3).

Drop, Copy, and Add allow users to drop or copy a col-
umn, or add a new column. Occasionally, logically different
values (maybe from multiple sources) are bunched into the
same column, and we want to transform only some of them.
Divide conditionally divides a column, sending values into
one of two new columns based on a predicate.
Many-to-Many Mappings of Rows
Many-to-Many transforms help to tackle higher-order
schematic heterogeneities [18] where information is stored

partly in data values, and partly in the schema, as shown in
Figure 8. Fold ”flattens” tables by converting one row into
multiple rows, folding a set of columns together into one col-
umn and replicating the rest. Conversely Unfold ”unflattens”
tables; it takes two columns, collects rows that have the same
values for all the other columns, and unfolds the two chosen
columns. Values in one column are used as column names to
align the values in the other column. Figures 8 and 9 show
an example with student grades where the subject names are
demoted into the row via Format, grades are Folded together,
and then Split to separate the subject from the grade. Fold
and UnFold are adapted from the restructuring operators of
SchemaSQL [16], and are discussed in more detail in the
full paper [22].
Power of Transforms: As we prove in the full paper [22],
these transforms can be used to perform all one-to-many row
mappings of rows. Fold andUnfold can also be used to f latten
tables, converting them to a form where column and table
names are all literals and do not have data values. For a for-
mal definition of (un)flattening and an analysis of the power
of Fold and Unfold, see [16].

4.2 Interactive Application of Transforms
We want to apply the transforms on tuples incrementally, as
they stream in, so that the effects of transforms can be imme-
diately shown on tuples visible on the screen of the UI. It also
lets the system pipeline discrepancy detection on the results
of the transforms, thereby giving the interactivity advantages
described in the introduction.
Among the transforms discussed above, all the one-to-one

transforms as well as the Fold transform are functions on a
single row. Hence they are easy to apply incrementally.
However Unfold operates on a set of rows with match-

ing values. Since this could potentially involve scanning the
entire data, we do not allow Unfold to be specified graphi-
cally. For displaying records on the screen we can avoid this
problem by not showing a complete row but instead show-
ing more and more columns as distinct values are found, and
filling data values in these columns as the corresponding in-
put rows are read. Such progressive column addition in the
spreadsheet interface could confuse the user; hence we plan
to implement an abstraction interface where all newly cre-
ated columns are shown as one rolled up column. When

Potter's Wheel: Transforms

51

[V. Raman and J. Hellerstein, 2001]
D. Koop, CSCI 640/490, Fall 2025

Transform Definition
Format φ(R, i, f) = {(a1, . . . , ai−1, ai+1, . . . , an, f(ai)) | (a1, . . . , an) ∈ R}
Add α(R, x) = {(a1, . . . , an, x) | (a1, . . . , an) ∈ R}
Drop π(R, i) = {(a1, . . . , ai−1, ai+1, . . . , an) | (a1, . . . , an) ∈ R}
Copy κ((a1, . . . , an), i) = {(a1, . . . , an, ai) | (a1, . . . , an) ∈ R}
Merge µ((a1, . . . , an), i, j, glue) = {(a1, . . . , ai−1, ai+1, . . . , aj−1, aj+1, . . . , an, ai ⊕ glue⊕ aj) | (a1, . . . , an) ∈ R}
Split ω((a1, . . . , an), i, splitter) = {(a1, . . . , ai−1, ai+1, . . . , an, left(ai, splitter), right(ai, splitter)) | (a1, . . . , an) ∈ R}
Divide δ((a1, . . . , an), i, pred) = {(a1, . . . , ai−1, ai+1, . . . , an, ai, null) | (a1, . . . , an) ∈ R ∧ pred(ai)} ∪

{(a1, . . . , ai−1, ai+1, . . . , an, null, ai) | (a1, . . . , an) ∈ R ∧ ¬pred(ai)}
Fold λ(R, i1, i2, . . . ik) = {(a1, . . . , ai1−1, ai1+1, . . . , ai2−1, ai2+1, . . . , aik−1, aik+1, . . . , an, ail) |

(a1, . . . , an) ∈ R ∧ 1 ≤ l ≤ k}
Select σ(R, pred) = {(a1, . . . , an) | (a1, . . . , an) ∈ R ∧ pred((a1, . . . , an))}

Notation: R is a relation with n columns. i, j are column indices and ai represents the value of a column in a row. x and glue are
values. f is a function mapping values to values. x ⊕ y concatenates x and y. splitter is a position in a string or a regular expression,
left(x, splitter) is the left part of x after splitting by splitter. pred is a function returning a boolean.

Table 1: Definitions of the various transforms. Unfold is defined in the full paper [22].

2 Merges

Format
'(.*), (.*)' to '\2 \1'

Stewart,Bob

Dole,Jerry
Davis

Marsh

Anna

Joan

Stewart
Anna Davis

Dole
Joan Marsh
Jerry

Bob Bob

Jerry

Stewart

Dole
Anna

Joan

Davis

Marsh

Split at ' '

Anna

Joan

Davis

Marsh

Bob Stewart

Jerry Dole

Figure 6: Using Format, Merge and Split to clean name for-
mat differences
Value Translation
The Format transform applies a function to every value in
a column. We provide built-in functions for common oper-
ations like regular-expression based substitutions and arith-
metic operations, but also allow user defined functions. Col-
umn and table names can be demoted into column values us-
ing special characters in regular expressions; these are useful
in conjunction with the Fold transform described below.
One-to-one Mappings of Rows
One-to-one transforms are column operations that transform
individual rows. As illustrated in Figures 6 and 7, they can
be used to unify data collected from different sources.
TheMerge transform concatenates values in two columns,

optionally interposing a constant (the delimiter) in the mid-
dle, to form a single new column. Split splits a column into
two or more parts, and is used typically to parse a value into
its constituent parts. The split positions are often difficult
to specify if the data is not well structured. We allow split-
ting by specifying character positions, regular expressions,
or by interactively performing splits on example values (Sec-
tion 4.3).

Drop, Copy, and Add allow users to drop or copy a col-
umn, or add a new column. Occasionally, logically different
values (maybe from multiple sources) are bunched into the
same column, and we want to transform only some of them.
Divide conditionally divides a column, sending values into
one of two new columns based on a predicate.
Many-to-Many Mappings of Rows
Many-to-Many transforms help to tackle higher-order
schematic heterogeneities [18] where information is stored

partly in data values, and partly in the schema, as shown in
Figure 8. Fold ”flattens” tables by converting one row into
multiple rows, folding a set of columns together into one col-
umn and replicating the rest. Conversely Unfold ”unflattens”
tables; it takes two columns, collects rows that have the same
values for all the other columns, and unfolds the two chosen
columns. Values in one column are used as column names to
align the values in the other column. Figures 8 and 9 show
an example with student grades where the subject names are
demoted into the row via Format, grades are Folded together,
and then Split to separate the subject from the grade. Fold
and UnFold are adapted from the restructuring operators of
SchemaSQL [16], and are discussed in more detail in the
full paper [22].
Power of Transforms: As we prove in the full paper [22],
these transforms can be used to perform all one-to-many row
mappings of rows. Fold andUnfold can also be used to f latten
tables, converting them to a form where column and table
names are all literals and do not have data values. For a for-
mal definition of (un)flattening and an analysis of the power
of Fold and Unfold, see [16].

4.2 Interactive Application of Transforms
We want to apply the transforms on tuples incrementally, as
they stream in, so that the effects of transforms can be imme-
diately shown on tuples visible on the screen of the UI. It also
lets the system pipeline discrepancy detection on the results
of the transforms, thereby giving the interactivity advantages
described in the introduction.
Among the transforms discussed above, all the one-to-one

transforms as well as the Fold transform are functions on a
single row. Hence they are easy to apply incrementally.
However Unfold operates on a set of rows with match-

ing values. Since this could potentially involve scanning the
entire data, we do not allow Unfold to be specified graphi-
cally. For displaying records on the screen we can avoid this
problem by not showing a complete row but instead show-
ing more and more columns as distinct values are found, and
filling data values in these columns as the corresponding in-
put rows are read. Such progressive column addition in the
spreadsheet interface could confuse the user; hence we plan
to implement an abstraction interface where all newly cre-
ated columns are shown as one rolled up column. When

Potter's Wheel: Example

52

[V. Raman and J. Hellerstein, 2001]
D. Koop, CSCI 640/490, Fall 2025

Example Values Split By User Inferred Structure Comments
(| is user specified split position)

Taylor, Jane |, $52,072
Blair, John |, $73,238
Tony Smith |, $1,00,533

(< ξ∗ > < ’,’ Money >)

Parsing is doable despite no good de-
limiter. A regular expression domain
can infer a structure of $[0-9,]* for
last component.

MAA |to| SIN
JFK |to| SFO
LAX |–| ORD
SEA |/| OAK

(<len 3 identifier> < ξ∗ >
< len 3 identifier>)

Parsing is possible despite multiple
delimiters.

321 Blake #7 |, Berkeley |, CA 94720
719 MLK Road |, Fremont |, CA 95743

(<number ξ∗ > < ’,’ word>
<’,’ (2 letter word) (5 letter integer)>)

Parsing is easy because of consistent
delimiter.

Figure 10: Parse structures inferred from various split-by-examples

ate substrings) of the example values using the structure. The
less specific structures need to be used only after the value
has been decomposed into much smaller substrings, and the
splitting is not too expensive on these.
To study the effect of parsing according to specificity

we ran DecSpecificity, LeftRight, and IncSpecificity on a few
structures. IncSpecificity is the exact opposite of DecSpeci-
ficity and considers structures starting with the least specific
one; it illustrates how crucial the choice of starting struc-
ture is. Figure 12 compares the throughput at which one can
split values using these methods. We see that DecSpecificity
performs much better than the others, with the improvement
being dramatic at splits involving many structures.

4.4 Undoing Transforms and Tracking Data Lineage
The ability to undo incorrect transforms is an important re-
quirement for interactive transformation. However, if the
specified transforms are directly applied on the input data,
many transforms (such as regular-expression-based substi-
tutions and some arithmetic expressions) cannot be undone
unambiguously – there exist no “compensating” transforms.
Undoing these requires “physical undo”, i.e., the system
has to maintain multiple versions of the (potentially large)
dataset.
Instead Potter’s Wheel never changes the actual data

records. It merely collects transforms as the user adds them,
and applies them only on the records displayed on the screen,
in essence showing a view using the transforms specified so
far. Undos are done “logically,” by removing the concerned
transform from the sequence and “redoing” the rest before
repainting the screen.
This approach also solves the ambiguous data lineage

problem of whether a discrepancy is due to an error in the
data or because of a poor transform. If the user wishes to
know the lineage of a particular discrepancy, the system only
needs to apply the transforms one after another, checking for
discrepancies after each transform.

5 Related Work
The commercial data cleaning process is based on ETL tools
and auditing tools, as described in the introduction. [6, 9]
give good descriptions of the process and some popular tools.
There is much literature on transformation languages, es-

pecially for performing higher-order operations on relational

data [1, 7, 16, 18]. Our horizontal transforms are very similar
to the restructuring operators of SchemaSQL [16]. However
our focus is on the ease of specification and incremental ap-
plication, and not merely on expressive power.
The research literature on finding discrepancies in data

has focused on two main things: general-purpose algorithms
for finding outliers in data (e.g. [3]), and algorithms for find-
ing approximate duplicates in data [13, 17, 10]. There has
also been some work on finding hidden dependencies in data
and correspondingly their violations [14]. Such general pur-
pose algorithms are useful as default algorithms for Potter’s
Wheel’s discrepancy detector. However we believe that in
many cases the discrepancies will be domain-specific, and
that data cleaning tools must handle these domains extensi-
bly.
A companion problem to data cleaning is the integration

of schemas from various data sources. We intend to extend
Potter’s Wheel with a system that handles interactive speci-
fication of schema mappings (such as Clio [19]).
Extracting structure from poorly structured data is in-

creasingly important for “wrapping” data from web pages,
and many tools exist in both the research and commercial
world (e.g. [2, 12, 8]). As discussed in Section 4.3, these
tools typically require users to specify regular expressions or
grammars; even these are often not sufficient to unambigu-
ously parse the data, so users have to write custom scripts.
There have also been some learning-based approaches for
automatic text wrapping and segmentation [15, 4]. We be-
lieve, however, that a semi-automatic, interactive approach
using a combination of graphical operations and statistical
methods is more powerful.
There has been some work in the machine learning litera-

ture [20, 5] and the database literature [11] on inferring reg-
ular expressions from a set of values. However as argued be-
fore, for detecting discrepancies it is important to infer struc-
tures in terms of generic user-defined domains, in a way that
is robust to structural data errors.

6 Conclusions and Future Work
Data cleaning and transformation are important tasks in
many contexts such as data warehousing and data integra-
tion. The current approaches to data cleaning are time-
consuming and frustrating due to long-running noninterac-
tive operations, poor coupling between analysis and trans-

Potter's Wheel: Inferring Structure from Examples

53

[V. Raman and J. Hellerstein, 2001]
D. Koop, CSCI 640/490, Fall 2025

