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Arrays
• Usually a fixed size—lists are meant to change size 
• Are mutable—tuples are not 
• Store only one type of data—lists and tuples can store anything 
• Are faster to access and manipulate than lists or tuples 
• Can be multidimensional: 
- Can have list of lists or tuple of tuples but no guarantee on shape 
- Multidimensional arrays are rectangles, cubes, etc.
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Speed Benefits
• Compare random number generation in pure Python versus numpy 
• Python: 

- import random 
%timeit rolls_list = [random.randrange(1,7)  
                      for i in range(0, 60_000)] 

• With NumPy: 
- %timeit rolls_array = np.random.randint(1, 7, 60_000) 

• Significant speedup (80x+)
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Operations
• a = np.array([1,2,3]) 
b = np.array([6,4,3]) 

• (Array, Array) Operations (Element-wise) 
- Addition, Subtraction, Multiplication 
- a + b # array([7, 6, 6]) 

• (Scalar, Array) Operations (Broadcasting): 
- Addition, Subtraction, Multiplication, Division, Exponentiation 
- a ** 2 # array([1, 4, 9]) 

- b + 3 # array([9, 7, 6])
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Slicing
• 1D: Similar to lists 

- arr1 = np.array([6, 7, 8, 0, 1]) 

- arr1[2:5] # np.array([8,0,1]), sort of 

• Can mutate original array: 
- arr1[2:5] = 3 # supports assignment 

- arr1 # the original array changed 

• Slicing returns views (copy the array if original array shouldn't change) 
- arr1[2:5] # a view 

- arr1[2:5].copy() # a new array
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Slicing
• 2D+: comma separated indices as shorthand: 

- arr2 = np.array([[1.5,2,3,4],[5,6,7,8]]) 

- a[1:3,1:3] 

- a[1:3,:] # works like in single-dimensional lists 

• Can combine index and slice in different dimensions 
- a[1,:] # gives a row 

- a[:,1] # gives a column
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Formalizing Dataframes
• Combines parts of matrices, databases, and spreadsheets 
• Ordered rows (unlike databases) 
• Types can be inferred at runtime, not the same across all columns 
• Lots of "intuitive" functions (600+)
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Convenience

Flexible

Versatility

Entire query at once

Strict schema

SFW or bust

Incremental + inspection 

Mixed types, R/C and 
data/metadata equiv.

600+ functions

Differences between Databases & Dataframes
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Table 1: Features of the compared dataframe libraries.

Pandas PySpark Modin Polars CuDF Vaex DataTable
Multithreading ↭ ↭ ↭ ↭ ↭

GPU acceleration ↭
Resource optimization ↭ ↭ ↭ ↭ ↭ ↭

Lazy evaluation ↭ ↭
Deploy on cluster ↭ ↭
Native language Python Scala Python Rust C/C++ C/Python C++/Python

Licence 3-Clause BSD Apache 2.0 Apache 2.0 MIT Apache 2.0 MIT Mozilla Public 2.0
Other requirements SparkContext Ray/Dask CUDA
Considered version 2.2.1 3.5.1 0.29.0 0.20.23 24.04.01 4.17.0 1.1.0

• Deploy on cluster : enabling the distribution of dataframe
processing across a cluster of machines, leveraging parallel
computing (as stated in Section 1, we aim to consider this
dimension in future work).

For each dataframe library, Table 1 lists which of these features
it implements, along with information about its implementation
and the version considered here.
PySpark [6] is the Python API for Apache Spark, which is pri-
marily implemented in Scala.

PySpark DataFrame is a type of Dataset (i.e., a distributed col-
lection of data) organized into named columns, resembling a rela-
tional table and supporting relational operators [9]. PySpark also
supports lazy evaluation, relying on the Catalyst optimizer [11]
and a disk spillover mechanism that automatically o!oads data
from RAM to disk when memory limits are reached [10]. This
allows PySpark to process datasets that exceed the machine’s
physical memory capacity. While Spark owes its popularity to
the capability of processing large-scale datasets on a cluster of
machines, standalone (i.e., single-machine) mode is not only sup-
ported, but also surprisingly fast in multiple scenarios, as shown
in Section 4.

PySpark supports two di"erent APIs: (i) Spark SQL, which
allows combining SQL queries with Spark programs to work with
structured data; (ii) Pandas on Spark (denoted as SparkPD and
previously known as Koalas [17]), which enables (by adding an
index to the conventional Spark dataframe) to distribute Pandas
workloads across multiple nodes without requiring modi#cations
to the original Pandas code for most API functions (→80%).
Modin [46] is a Python library that provides a parallel alterna-
tive to Pandas [57, 58]. Modin adopts the Pandas data format as
the default storage layer and employs a set of 15 core operators
to simplify Pandas functions and build its own Pandas-like API.
When core operators cannot handle a function, it switches to
the default to Pandas mode (a"ecting performance due to com-
munication costs and Pandas single-threaded nature), reverting
to a partitioned Modin dataframe after completion. It also im-
plements opportunistic evaluation [88], enabling execution based
on interactions, and facilitates incremental query construction
through intermediate dataframe results. Modin is designed to
dynamically switch between di"erent partition schemes (row-
based, column-based, or block-based) depending on the operation.
Each partition is then processed independently by the execution
engine: Dask or Ray (we consider both solutions, denoted as
ModinD andModinR, respectively).

Dask [16] is a Python library for distributed computing, which
allows working with large distributed Pandas dataframes [75].
It is designed to e$ciently extend memory capacity using disk
space, making it suitable for systems with limited memory, and

its scheduler provides %exibility to the execution. While we also
considered the inclusion of Dask as an independent library, we
do not report its results since we found it to perform better in
combination withModin (as Dask is not well suitable for a single
machine) and it only covers→55% of the PandasAPI (whileModin
covers →90%) [47].

Ray [72] is a general-purpose framework for parallelizing
Python code, using an in-memory distributed storage system and
Apache Arrow [3] (a language-independent columnar memory
format, recently adopted even by Pandas [52]) as data format [49].
UnlikeDask, Ray does not have built-in primitives for partitioned
data. While the two engines serve di"erent use cases, their pri-
mary goal is similar: optimizing resource usage by changing how
data is stored and Python code is executed.

Polars [64] is a Python library written in Rust and built on top
of arrow2, the Rust implementation of the Arrow format. The
adoption of Arrow as the underlying data structure provides Po-
larswith e$cient data processing capabilities, optimized through
parallel execution, cache-e$cient algorithms, and e$cient usage
of resources.

Polars does not use an index, but each row is indexed by its
integer position in the table. Further, it has developed its own
Domain Speci#c Language (DSL) for transforming data, whose
core components are Expressions and Contexts. Expressions facil-
itate concise and e$cient data transformations, while Contexts
categorize evaluations into three main types: #ltering, group-
ing/aggregation, and selection. Polars optimizes queries through
early #lters and projection pushdown. Moreover, it supports both
eager and lazy evaluation. The lazy strategy allows to run queries
in a streaming manner: instead of processing the entire data at
once, they can run in batches, lightening the load on memory
and CPU, hence allowing to process bigger datasets (even larger
than memory) in a faster manner.

CuDF [50] is a component of the NVIDIA RAPIDS framework.
Written inC/C++ andCUDA (hence only compatiblewithNVIDIA
GPUs), it o"ers a Pandas-like API to run general-purpose data
science pipelines on GPUs, leveraging their computational power
for accelerating data processing.

CuDF is built on top of Arrow and leverages parallelization to
execute operations on di"erent parts of columns simultaneously
across all available GPU cores. Note that CuDF uses a single GPU,
while Dask-CuDF can be used for multi-GPU parallel computing.
Thus, it can perform e$cient and high-performance computa-
tions, although it does not provide any optimization strategy for
the execution of the pipelines.

Dataframe Library Comparison
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Assignment 2
• Assignment 1 Questions with polars, DuckDB, and pandas 
• CS 640 students do all, CS 490 do polars & DuckDB (pandas is EC) 
• Can work by framework or by query 
• Most questions can be answered with a single statement… but that 

statement can take a while to write 
- Read documentation 
- Check hints
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pandas
• Contains high-level data structures and manipulation tools designed to make 

data analysis fast and easy in Python 
• Originally built on top of NumPy 
• Built with the following requirements: 
- Data structures with labeled axes (aligning data) 
- Support time series data 
- Do arithmetic operations that include metadata (labels) 
- Handle missing data 
- Add merge and relational operations
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polars
• Contains high-level data structures and manipulation tools designed to make 

data analysis "lightning" fast and easy in Python 
- Built using Apache Arrow 
- Written from scratch using Rust but with a Python API 
- Parallelized (uses multiple cores) 
- Intuitive API: "I came for the speed, but stayed for the syntax"
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Code Conventions
• Universal: 

- import pandas as pd 

- import polars as pl 

• Also used: 
- from pandas import Series, DataFrame 

- from polars import Series, DataFrame
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polars Series
• A one-dimensional data structure (with a type) 

- s = pl.Series([1,2,3]) 
• May also have a name 

- s = pl.Series('name',['a','b','c']) 

• Just like numpy arrays, a series has a dtype 
- s = pl.Series('name',[1,2,3],dtype=pl.Float64) 

• Indexing: 
- s[0] # 1.0
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pandas Series
• A one-dimensional array (with a type) 

- t = pd.Series([1,2,3]) 

• May also have a name: 
- t = pd.Series([1,2,3], name='num') 

• Just like numpy arrays, a series has a dtype 
- t = pd.Series([1,2,3], name='num', dtype='float') 

• Indexing: t[0] 

• …but a panads Series also has an index (polars does not)
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pandas Series and the Index
• pandas Series is a one-dimensional array (with a type) plus an index 
• Basically two arrays: t.values and t.index 

- obj.index # [0, 1, 2] 

• Can specify the index explicitly (could be strings) 
- t = pd.Series([1,2,3],['a','b','c']) 

• Kind of like fixed-length, ordered dictionary + can create from a dictionary 
- t = pd.Series({'a': 1, 'b': 2, 'c': 3}) 

• Indexing: 
- t['a'] 

- What about t[0]?
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polars Series Operations
• Can do binary operations with two Series 
• Just like numpy, between two Series, these are elementwise 

- pl.Series([1,2,3]) + pl.Series([1,2,3]) # pl.Series([2,4,6]) 

• Between a Series and a scalar, this is broadcast 
- pl.Series([1,2,3]) + 4 # pl.Series([5,6,7]) 

• Have to have the same number of elements 
- pl.Series([1,2,3]) + pl.Series([1,2,3,4]) # Error 

• Also works with non-numeric operations: 
- pl.Series(['a','b']) + pl.Series(['c','d'])
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pandas Series Operations
• Same as polars 

- pd.Series([1,2,3]) + pd.Series([1,2,3]) # pd.Series([2,4,6]) 

- pd.Series([1,2,3]) + 4 # pd.Series([5,6,7]) 
• …but with custom indexes, the operations align: 

- pd.Series([1,2,3],index=list('abc') + 
pd.Series([1,2,3],index=list('cba')  
# => pd.Series([4,4,4], index=['a','b','c'])
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When only passing a dict, the index in the resulting Series will have the dict’s keys in
sorted order.

In [22]: states = ['California', 'Ohio', 'Oregon', 'Texas']

In [23]: obj4 = Series(sdata, index=states)

In [24]: obj4
Out[24]: 
California      NaN
Ohio          35000
Oregon        16000
Texas         71000
dtype: float64

In this case, 3 values found in sdata were placed in the appropriate locations, but since
no value for 'California' was found, it appears as NaN (not a number) which is con-
sidered in pandas to mark missing or NA values. I will use the terms “missing” or “NA”
to refer to missing data. The isnull and notnull functions in pandas should be used to
detect missing data:

In [25]: pd.isnull(obj4)      In [26]: pd.notnull(obj4)
Out[25]:                      Out[26]:                 
California     True           California    False      
Ohio          False           Ohio           True      
Oregon        False           Oregon         True      
Texas         False           Texas          True      
dtype: bool                   dtype: bool 

Series also has these as instance methods:

In [27]: obj4.isnull()
Out[27]: 
California     True
Ohio          False
Oregon        False
Texas         False
dtype: bool

I discuss working with missing data in more detail later in this chapter.

A critical Series feature for many applications is that it automatically aligns differently-
indexed data in arithmetic operations:

In [28]: obj3          In [29]: obj4      
Out[28]:               Out[29]:           
Ohio      35000        California      NaN
Oregon    16000        Ohio          35000
Texas     71000        Oregon        16000
Utah       5000        Texas         71000
dtype: int64           dtype: float64     
                                          
In [30]: obj3 + obj4
Out[30]: 
California       NaN
Ohio           70000
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Oregon         32000
Texas         142000
Utah             NaN
dtype: float64

Data alignment features are addressed as a separate topic.

Both the Series object itself and its index have a name attribute, which integrates with
other key areas of pandas functionality:

In [31]: obj4.name = 'population'

In [32]: obj4.index.name = 'state'

In [33]: obj4
Out[33]: 
state
California      NaN
Ohio          35000
Oregon        16000
Texas         71000
Name: population, dtype: float64

A Series’s index can be altered in place by assignment:

In [34]: obj.index = ['Bob', 'Steve', 'Jeff', 'Ryan']

In [35]: obj
Out[35]: 
Bob      4
Steve    7
Jeff    -5
Ryan     3
dtype: int64

DataFrame
A DataFrame represents a tabular, spreadsheet-like data structure containing an or-
dered collection of columns, each of which can be a different value type (numeric,
string, boolean, etc.). The DataFrame has both a row and column index; it can be
thought of as a dict of Series (one for all sharing the same index). Compared with other
such DataFrame-like structures you may have used before (like R’s data.frame), row-
oriented and column-oriented operations in DataFrame are treated roughly symmet-
rically. Under the hood, the data is stored as one or more two-dimensional blocks rather
than a list, dict, or some other collection of one-dimensional arrays. The exact details
of DataFrame’s internals are far outside the scope of this book.

While DataFrame stores the data internally in a two-dimensional for-
mat, you can easily represent much higher-dimensional data in a tabular
format using hierarchical indexing, a subject of a later section and a key
ingredient in many of the more advanced data-handling features in pan-
das.
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pandas Series Operations 
• Missing labels lead to NaN (not a number) values 

• also have .add, .subtract, … that allow fill_value argument 
• obj3.add(obj4, fill_value=0)
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A DataFrame represents a tabular, spreadsheet-like data structure containing an or-
dered collection of columns, each of which can be a different value type (numeric,
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thought of as a dict of Series (one for all sharing the same index). Compared with other
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rically. Under the hood, the data is stored as one or more two-dimensional blocks rather
than a list, dict, or some other collection of one-dimensional arrays. The exact details
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mat, you can easily represent much higher-dimensional data in a tabular
format using hierarchical indexing, a subject of a later section and a key
ingredient in many of the more advanced data-handling features in pan-
das.
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DataFrame
• A collection of Series (uniquely named) 
- Similar to a table in a database 
- Similar to a sheet in a spreadsheet 

• df = DataFrame({'state': ['Ohio', 'Ohio', 'Ohio', 'Nevada'], 
                'year': [2000, 2001, 2002, 2001], 
                'pop': [1.5, 1.7, 3.6, 2.4]}) 

• In pandas: 
- Has an index shared with each series 
- Index is automatically assigned just as with a series but can be passed in as 

well via index kwarg
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Table 5-1. Possible data inputs to DataFrame constructor

Type Notes

2D ndarray A matrix of data, passing optional row and column labels

dict of arrays, lists, or tuples Each sequence becomes a column in the DataFrame. All sequences must be the same length.

NumPy structured/record array Treated as the “dict of arrays” case

dict of Series Each value becomes a column. Indexes from each Series are unioned together to form the
result’s row index if no explicit index is passed.

dict of dicts Each inner dict becomes a column. Keys are unioned to form the row index as in the “dict of
Series” case.

list of dicts or Series Each item becomes a row in the DataFrame. Union of dict keys or Series indexes become the
DataFrame’s column labels

List of lists or tuples Treated as the “2D ndarray” case

Another DataFrame The DataFrame’s indexes are used unless different ones are passed

NumPy MaskedArray Like the “2D ndarray” case except masked values become NA/missing in the DataFrame result

Index Objects
pandas’s Index objects are responsible for holding the axis labels and other metadata
(like the axis name or names). Any array or other sequence of labels used when con-
structing a Series or DataFrame is internally converted to an Index:

In [67]: obj = Series(range(3), index=['a', 'b', 'c'])

In [68]: index = obj.index

In [69]: index
Out[69]: Index([u'a', u'b', u'c'], dtype='object')

In [70]: index[1:]
Out[70]: Index([u'b', u'c'], dtype='object')

Index objects are immutable and thus can’t be modified by the user:

In [71]: index[1] = 'd'
---------------------------------------------------------------------------
TypeError                                 Traceback (most recent call last)
<ipython-input-71-676fdeb26a68> in <module>()
----> 1 index[1] = 'd'
/home/phillip/miniconda3/envs/conda2/lib/python2.7/site-packages/pandas/core/
base.pyc in _disabled(self, *args, **kwargs)
    177         """This method will not function because object is immutable."""
    178         raise TypeError("'%s' does not support mutable operations." %
--> 179                         self.__class__)
    180 
    181     __setitem__ = __setslice__ = __delitem__ = __delslice__ = _disabled
TypeError: '<class 'pandas.core.index.Index'>' does not support mutable operations.

116 | Chapter 5: Getting Started with pandas

pandas DataFrame Constructor Inputs
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DataFrame Columns
• Access: 
- polars: df['state'] 
- pandas: dfa['state'] or dfa.state (doesn't always work!) 

• Modification: 
- polars: df.with_columns(pl.Series('state', 
                          ['Ohio','Ohio','Texas','Nevada')) 

- pandas: df.assign(state=['Ohio','Ohio','Texas','Nevada']) 
- Both create new data frames 
- pandas: df['state'] = ['Ohio','Ohio','Texas','Nevada'] 
- This mutates the dataframe but causes problems so avoid it!
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DataFrame Multiple Columns
• polars:  

- df.select('state','year') 

• pandas:  
- df[['state','year']] 

- Not a new operator! It is a subscript where the argument is a list
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DataFrame Indexing and Slicing
• polars:  

- df[0], df[0:1] # equivalent, data frame with single row 
• pandas:  

- dfa[0] # error 
- dfa.loc[0] # a Series! 
- dfa[0:2] # a data frame with two rows 

• pandas with an index (dfi = dfa.set_index('state')) 
- dfi['Texas'], dfi['Ohio'] # a Series, a DataFrame! 
- dfi.loc['Ohio':'Texas'] # inclusive slice! 
- dfi.iloc[0:2] # not inclusive!
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pandas DataFrame Indexing and Slicing
• Same as with NumPy arrays but can use index labels 
• Slicing with labels: NumPy is exclusive, Pandas is inclusive! 

- s = Series(np.arange(4)) 
s[0:2] # gives two values like numpy 

- s = Series(np.arange(4), index=['a', 'b', 'c', 'd']) 
s['a':'c'] # gives three values, not two! 

• Obtaining data subsets 
- loc: get rows/cols by label 
- iloc: get rows/cols by position (integer index)
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DataFrame Filtering
• polars:  

- df['pop'] > 2 # boolean Series 

- df.filter(pl.col('pop') > 2) # subset of dataframe 

• pandas: 
- dfa['pop'] > 2 # boolean Series 

- dfa[dfa['pop'] > 2] # subset of dataframe 

- dfa.query('pop > 2') # subset of dataframe 

• Multiple criteria, use &, |, and ~; remember parentheses! 
- df.filter((pl.col('year') < 2002) & (pl.col('pop') > 2)) 

- dfa[(dfa['year'] < 2002) & (dfa['pop'] > 2)]
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pandas DataFrame
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pandas DataFrame
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pandas DataFrame
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Column: df['Island']

Cell: df.loc[341,'Species']

Missing Data

Row: df.loc[2]



polars DataFrame
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pandas Filtering
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df[df['Culmen Length (mm)'] > 40]
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polars Filtering
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df.filter(pl.col('Culmen Length (mm)') > 40)



polars Filtering
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Sorting
• polars: df.sort('pop') 
• pandas: dfa.sort_values('pop') 
• Can sort by multiple columns, too 
• pandas also has a sort_index method to sort by the index 

- dfa.sort_index()
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Statistics
• Many common statistical methods can be used (min, max, median, etc.) 
• describe: shortcut for easy stats!
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    one  two
a  1.40  NaN
b  8.50 -4.5
c   NaN  NaN
d  9.25 -5.8

Another type of method is neither a reduction nor an accumulation. describe is one
such example, producing multiple summary statistics in one shot:

In [204]: df.describe()
Out[204]: 
            one       two
count  3.000000  2.000000
mean   3.083333 -2.900000
std    3.493685  2.262742
min    0.750000 -4.500000
25%    1.075000 -3.700000
50%    1.400000 -2.900000
75%    4.250000 -2.100000
max    7.100000 -1.300000

On non-numeric data, describe produces alternate summary statistics:

In [205]: obj = Series(['a', 'a', 'b', 'c'] * 4)

In [206]: obj.describe()
Out[206]: 
count     16
unique     3
top        a
freq       8
dtype: object

See Table 5-10 for a full list of summary statistics and related methods.

Table 5-10. Descriptive and summary statistics

Method Description

count Number of non-NA values

describe Compute set of summary statistics for Series or each DataFrame column

min, max Compute minimum and maximum values

argmin, argmax Compute index locations (integers) at which minimum or maximum value obtained, respectively

idxmin, idxmax Compute index values at which minimum or maximum value obtained, respectively

quantile Compute sample quantile ranging from 0 to 1

sum Sum of values

mean Mean of values

median Arithmetic median (50% quantile) of values

mad Mean absolute deviation from mean value

var Sample variance of values

std Sample standard deviation of values
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Unique Values and Value Counts
• polars: unique() returns a Series/DataFrame with duplicates dropped 
• pandas is more complicated 
- Series unique() returns an array with only the unique values (no index) 

• s = Series(['c','a','d','a','a','b','b','c','c']) 
s.unique() # array(['c', 'a', 'd', 'b']) 

- Data Frame drop_duplicates returns a DataFrame with duplicates 
dropped 

• Also nunique()/n_unique() to count number of unique entries 
• value_counts returns a Series/DataFrame with index frequencies: 

- s.value_counts() # Series({'c': 3,'a': 3,'b': 2,'d': 1})
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Reading and Writing CSV Files
• polars 

- df = pl.read_csv(<fname>) 

- df.write_csv(<fname>) 

• pandas 
- dfa = pd.read_csv(<fname>) 

- dfa.to_csv(<fname>) 

• Many options available!
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Reading & Writing Data in Pandas
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Format 
Type

Data Description Reader Writer
text CSV read_csv to_csv
text Fixed-Width Text File read_fwf
text JSON read_json to_json
text HTML read_html to_html
text Local clipboard read_clipboard to_clipboard

MS Excel read_excel to_excel
binary OpenDocument read_excel
binary HDF5 Format read_hdf to_hdf
binary Feather Format read_feather to_feather
binary Parquet Format read_parquet to_parquet
binary ORC Format read_orc
binary Msgpack read_msgpack to_msgpack
binary Stata read_stata to_stata
binary SAS read_sas
binary SPSS read_spss
binary Python Pickle Format read_pickle to_pickle
SQL SQL read_sql to_sql
SQL Google BigQuery read_gbq to_gbq

https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html
https://en.wikipedia.org/wiki/Comma-separated_values
https://www.json.org/
https://en.wikipedia.org/wiki/HTML
https://en.wikipedia.org/wiki/Microsoft_Excel
http://www.opendocumentformat.org/
https://support.hdfgroup.org/HDF5/whatishdf5.html
https://github.com/wesm/feather
https://parquet.apache.org/
https://https//orc.apache.org/
https://msgpack.org/index.html
https://en.wikipedia.org/wiki/Stata
https://en.wikipedia.org/wiki/SAS_(software)
https://en.wikipedia.org/wiki/SPSS
https://docs.python.org/3/library/pickle.html
https://en.wikipedia.org/wiki/SQL
https://en.wikipedia.org/wiki/BigQuery


pandas read_csv
• Convenient method to read csv files 
• Lots of different options to help get data into the desired format 
• Basic: dfa = pd.read_csv(fname) 
• Parameters: 

- path: where to read the data from  
- sep (or delimiter): the delimiter (',', ' ', '\t', '\s+') 
- header: if None, no header 
- index_col: which column to use as the row index 
- names: list of header names (e.g. if the file has no header) 
- skiprows: number of list of lines to skip
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Writing CSV data with pandas
• Basic: dfa.to_csv(<fname>) 
• Change delimiter with sep kwarg: 

- dfa.to_csv('example.dsv', sep='|') 

• Change missing value representation 
- dfa.to_csv('example.dsv', na_rep='NULL') 

• Don't write row or column labels: 
- dfa.to_csv('example.csv', index=False, header=False) 

• Series may also be written to csv
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Missing Data
• polars: shows null 
• pandas: shows NaN (or NA or None depending on dtype) 
• Checking if missing: 
- polars: pl.col('pop').is_null(), .is_not_null() 
- pandas: dfa['pop'].isnull(), .notnull() 

• Drop missing data:  
- polars: pl.col('pop').drop_nulls(), pandas: dfa['pop'].dropna() 

• Filling in missing data: 
- polars: pl.col('pop').fill_null(), (forward, backward, max,…) 
- pandas: dfa['pop'].fillna(), now ffill(), bfill()
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Derived Data
• Create new columns from existing columns 
• pandas 

- dfa["CulmenRatio"] = dfa['CLength'] / dfa['CDepth'] # Mut! 

- dfa = dfa.assign(CulmenRatio= dfa['CLength'] / dfa['CDepth']) 
• polars 

- df.with_columns( 
       (df['CLength'] / df['CDepth']).alias('CulmenRatio')) 

• Note that operations are computed in a vectorized manner 
• Similarities to functional paradigm (map/filter):  
- specify the operation once, on entire column/frame  
- no loops
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pandas inplace
• Generally, when we modify a data frame, we reassign: 

- rdf = dfa.reset_index() 

- This is usually very efficient 
- Allows for method chaining 

• There are versions where you can do this "inplace" (try to avoid this) 
- dfa.reset_index(inplace=True) 

- This means no reassignment, but it isn't usually any faster nor better 
- Sometimes still creates a copy 
- Will likely be deprecated
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https://github.com/pandas-dev/pandas/issues/16529


Aggregation
• Descriptive statistics 

- df['Culmen Length (mm)'].mean() 

- .median() 

- .describe() 

- .count() 

- .min(), .max() 

• Also general methods 
- .sum() 

- .product()
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Chicago Food Inspections Exploration
• Using Polars 
• Using Pandas 
• Using DuckDB
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