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Relational Algebra
• Definition: A procedural language consisting of a set of operations that take 

one or two relations as input and produce a new relation as their result.  
• Six basic operators 
- select: σ 
- project: ∏ 
- union: ∪ 
- set difference: –  
- Cartesian product: x 
- rename: ρ 

•
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Equivalent Queries
• Example: Find information about courses taught by instructors in the Physics 

department 
• Query 1: 

σdept_name=“Physics” (instructor instructor.ID = teaches.ID teaches) 
• Query 2 

(σdept_name=“Physics” (instructor)) instructor.ID = teaches.ID teaches 
• The order of joins is one focus of some of the work on query optimization

⋈ 

⋈ 
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Components of SQL
• Data Definition Language (DDL): the specification of information about 

relations, including schema, types, integrity constraints, indices, storage 
• Data Manipulation Language (DML): provides the ability to query 

information from the database and to insert tuples into, delete tuples from, 
and modify tuples in the database. 

• Integrity: the DDL includes commands for specifying integrity constraints. 
• View definition: The DDL includes commands for defining views. 
• Also: Transaction control, embedded and dynamic SQL, authorization
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Create Table
• An SQL relation is defined using the create table command: 

create table r (A1 D1, A2 D2, ..., An Dn, (C1), …, (Ck)) 
- r is the name of the relation 
- each Ai is an attribute name in the schema of relation r 
- Di is the data type of values in the domain of attribute Ai 

• Example: 
create table instructor( 
      ID            char(5), 
      name          varchar(20), 
      dept_name     varchar(20), 
      salary        numeric(8,2));
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Basic Query Structure 
• A typical SQL query has the form: 

select A1, A2, ..., An 
from r1, r2, ..., rm 
where P 

- Ai represents an attribute 
- ri represents a relation 
- P is a predicate. 

• The result of an SQL query is a relation
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Select
• The select clause lists the attributes desired in the result of a query 
- corresponds to the projection operation of the relational algebra 

• Example: Find the names of all instructors 
- select name 
from instructor; 

• Example: Find the department names of all instructors (no duplicates) 
- select distinct dept_name 
  from instructor; 

• Example: Find the monthly salary of each instructor 
- select ID, name, salary/12 as monthly_salary
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From & Where Clauses
• Find the names of all instructors who have 

taught some course and that course_id 
- select name, course_id 
from instructor, teaches 
where instructor.ID = teaches.ID  

• Find the names of all instructors in the Art 
department who have taught some course 
and the course_id 

- select name, course_id 
from instructor, teaches 
where instructor.ID = teaches.ID   
and instructor.dept_name = 'Art'
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Aggregate Functions
• Find the average salary of instructors in the Computer Science department  

- select avg (salary) 
from instructor 
where dept_name = 'Comp. Sci.'; 

• Find the total number of instructors who teach a course in the Spring 2018 
semester 

- select count(distinct ID) 
from teaches 
where semester = 'Spring' and year = 2018; 

• Find the number of tuples in the course relation 
- select count(*) 
from course;
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Group By
• Find the average salary of instructors in each department 

- select dept_name, avg(salary) as avg_salary 
from instructor 
group by dept_name;
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Deletion
• Delete all instructors: delete from instructor;  
• Delete all instructors from the Finance department 

- delete from instructor 
where dept_name= 'Finance’; 

• Delete all tuples in the instructor relation for those instructors associated with 
a department located in the Watson building 

- delete from instructor 
where dept_name in (select dept_name 
                      from department 
                      where building = 'Watson');
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Insertion
• Add a new tuple to course 

- insert into course 
  values ('CS-437', 'Database Systems', 'Comp. Sci.', 4); 

• or…  
- insert into course(course_id, title, dept_name, credits) 
  values ('CS-437', 'Database Systems', 'Comp. Sci.', 4); 

• Add a new tuple to student with tot_creds set to null 
- insert into student 
  values ('3003', 'Green', 'Finance', null);
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Updates
• Give a 5% salary raise to all instructors 

- update instructor 
set salary = salary * 1.05 

• Give a 5% salary raise to those instructors who earn less than 70000 
- update instructor 
set salary = salary * 1.05 
where salary < 70000; 

• Give a 5% salary raise to instructors whose salary is less than average 
- update instructor 
set salary = salary * 1.05 
where salary < (select avg(salary) from instructor);
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Joins
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Assignment 1
• Data analysis using python (and a few standard libraries) 
• Do not use pandas, polars, or database queries for this assignment! 
• Turn in a Jupyter notebook (.ipynb file) 
- You can download and edit a1.ipynb provided with the assignment 
- Upload the final notebook to Blackboard 
- Make sure your code runs from top to bottom!
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Arrays

What is the difference between an array and a list (or a tuple)? 
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Arrays
• Usually a fixed size—lists are meant to change size 
• Are mutable—tuples are not 
• Store only one type of data—lists and tuples can store anything 
• Are faster to access and manipulate than lists or tuples 
• Can be multidimensional: 
- Can have list of lists or tuple of tuples but no guarantee on shape 
- Multidimensional arrays are rectangles, cubes, etc.

17D. Koop, CSCI 640/490, Fall 2025



Why NumPy?
• Fast vectorized array operations for data munging and cleaning, subsetting 

and filtering, transformation, and any other kinds of computations  
• Common array algorithms like sorting, unique, and set operations  
• Efficient descriptive statistics and aggregating/summarizing data  
• Data alignment and relational data manipulations for merging and joining 

together heterogeneous data sets  
• Expressing conditional logic as array expressions instead of loops with if-
elif-else branches  

• Group-wise data manipulations (aggregation, transformation, function 
application).
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Creating arrays
• import numpy as np 

• data1 = [6, 7, 8, 0, 1] 
arr1 = np.array(data1) 

• data2 = [[1.5,2,3,4],[5,6,7,8]] 
arr2 = np.array(data2) 

• data3 = np.array([6, "abc", 3.57]) # !!! check !!! 

• Can check the type of an array in dtype property 
• Types:  

- arr1.dtype # dtype('int64') 

- arr3.dtype # dtype('<U21'), unicode plus # chars
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Types
• "But I thought Python wasn't stingy about types…" 
• numpy aims for speed 
• Able to do array arithmetic 
• int16, int32, int64, float32, float64, bool, object 
• Can specify type explicitly 

- arr1_float = np.array(data1, dtype='float64') 
• astype method allows you to convert between different types of arrays: 

arr = np.array([1, 2, 3, 4, 5]) 
arr.dtype 
float_arr = arr.astype(np.float64)
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In [36]: arr2.dtype
Out[36]: dtype('int32')

dtypes are a source of NumPy’s flexibility for interacting with data coming from other
systems. In most cases they provide a mapping directly onto an underlying disk or
memory representation, which makes it easy to read and write binary streams of data
to disk and also to connect to code written in a low-level language like C or Fortran.
The numerical dtypes are named the same way: a type name, like float or int, fol‐
lowed by a number indicating the number of bits per element. A standard double-
precision floating-point value (what’s used under the hood in Python’s float object)
takes up 8 bytes or 64 bits. Thus, this type is known in NumPy as float64. See
Table 4-2 for a full listing of NumPy’s supported data types.

Don’t worry about memorizing the NumPy dtypes, especially if
you’re a new user. It’s often only necessary to care about the general
kind of data you’re dealing with, whether floating point, complex,
integer, boolean, string, or general Python object. When you need
more control over how data are stored in memory and on disk,
especially large datasets, it is good to know that you have control
over the storage type.

Table 4-2. NumPy data types
Type Type code Description
int8, uint8 i1, u1 Signed and unsigned 8-bit (1 byte) integer types
int16, uint16 i2, u2 Signed and unsigned 16-bit integer types
int32, uint32 i4, u4 Signed and unsigned 32-bit integer types
int64, uint64 i8, u8 Signed and unsigned 64-bit integer types
float16 f2 Half-precision floating point
float32 f4 or f Standard single-precision floating point; compatible with C float
float64 f8 or d Standard double-precision floating point; compatible with C double and

Python float object
float128 f16 or g Extended-precision floating point
complex64,
complex128,
complex256

c8, c16, 
c32

Complex numbers represented by two 32, 64, or 128 floats, respectively

bool ? Boolean type storing True and False values
object O Python object type; a value can be any Python object
string_ S Fixed-length ASCII string type (1 byte per character); for example, to create a

string dtype with length 10, use 'S10'
unicode_ U Fixed-length Unicode type (number of bytes platform specific); same

specification semantics as string_ (e.g., 'U10')

4.1 The NumPy ndarray: A Multidimensional Array Object | 91

numpy data types (dtypes)
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Array Shape
• Our normal way of checking the size of a collection is… len 
• How does this work for arrays? 
• arr1 = np.array([1,2,3,6,9]) 
len(arr1) # 5 

• arr2 = np.array([[1.5,2,3,4],[5,6,7,8]]) 
len(arr2) # 2 

• All dimension lengths → shape: arr2.shape # (2,4) 
• Number of dimensions: arr2.ndim # 2 
• Can also reshape an array: 

- arr2.reshape(4,2) 

- arr2.reshape(-1,2) # what happens here?
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Array Programming
• Lists: 

- c = [] 
for i in range(len(a)): 
    c.append(a[i] + b[i]) 

• How to improve this?
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Array Programming
• Lists: 

- c = [] 
for i in range(len(a)): 
    c.append(a[i] + b[i]) 

- c = [aa + bb for aa, bb in zip(a,b)] 

• NumPy arrays:  
- c = a + b 

• More functional-style than imperative 
• Internal iteration instead of external
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Operations
• a = np.array([1,2,3]) 
b = np.array([6,4,3]) 

• (Array, Array) Operations (Element-wise) 
- Addition, Subtraction, Multiplication 
- a + b # array([7, 6, 6]) 

• (Scalar, Array) Operations (Broadcasting): 
- Addition, Subtraction, Multiplication, Division, Exponentiation 
- a ** 2 # array([1, 4, 9]) 

- b + 3 # array([9, 7, 6])

25D. Koop, CSCI 640/490, Fall 2025



More on Array Creation
• Zeros: np.zeros(10) 
• Ones: np.ones((4,5)) # shape 
• Empty: np.empty((2,2)) 
• _like versions: pass an existing array and matches shape with specified 

contents 
• Range: np.arange(15) # constructs an array, not iterator!
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Indexing
• Same as with lists plus shorthand for 2D+ 

- arr1 = np.array([6, 7, 8, 0, 1]) 

- arr1[1] 

- arr1[-1] 

• What about two dimensions? 
- arr2 = np.array([[1.5,2,3,4],[5,6,7,8]]) 

- arr[1][1] 

- arr[1,1] # shorthand
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Figure 4-1. Indexing elements in a NumPy array

In multidimensional arrays, if you omit later indices, the returned object will be a
lower dimensional ndarray consisting of all the data along the higher dimensions. So
in the 2 × 2 × 3 array arr3d:

In [76]: arr3d = np.array([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]])

In [77]: arr3d
Out[77]: 
array([[[ 1,  2,  3],
        [ 4,  5,  6]],
       [[ 7,  8,  9],
        [10, 11, 12]]])

arr3d[0] is a 2 × 3 array:
In [78]: arr3d[0]
Out[78]: 
array([[1, 2, 3],
       [4, 5, 6]])

Both scalar values and arrays can be assigned to arr3d[0]:
In [79]: old_values = arr3d[0].copy()

In [80]: arr3d[0] = 42

In [81]: arr3d
Out[81]: 
array([[[42, 42, 42],
        [42, 42, 42]],
       [[ 7,  8,  9],
        [10, 11, 12]]])

In [82]: arr3d[0] = old_values

96 | Chapter 4: NumPy Basics: Arrays and Vectorized Computation

2D Indexing
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Slicing
• 1D: Similar to lists 

- arr1 = np.array([6, 7, 8, 0, 1]) 

- arr1[2:5] # np.array([8,0,1]), sort of 

• Can mutate original array: 
- arr1[2:5] = 3 # supports assignment 

- arr1 # the original array changed 

• Slicing returns views (copy the array if original array shouldn't change) 
- arr1[2:5] # a view 

- arr1[2:5].copy() # a new array
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Slicing
• 2D+: comma separated indices as shorthand: 

- arr2 = np.array([[1.5,2,3,4],[5,6,7,8]]) 

- a[1:3,1:3] 

- a[1:3,:] # works like in single-dimensional lists 

• Can combine index and slice in different dimensions 
- a[1,:] # gives a row 

- a[:,1] # gives a column
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       [ 0.1913,  0.4544,  0.4519,  0.5535],
       [ 0.5994,  0.8174, -0.9297, -1.2564]])

Figure 4-2. Two-dimensional array slicing

Suppose each name corresponds to a row in the data array and we wanted to select all
the rows with corresponding name 'Bob'. Like arithmetic operations, comparisons
(such as ==) with arrays are also vectorized. Thus, comparing names with the string
'Bob' yields a boolean array:

In [87]: names == 'Bob'
Out[87]: array([ True, False, False, True, False, False, False], dtype=bool)

This boolean array can be passed when indexing the array:

In [88]: data[names == 'Bob']
Out[88]: 
array([[-0.048 ,  0.5433, -0.2349,  1.2792],
       [ 2.1452,  0.8799, -0.0523,  0.0672]])

The boolean array must be of the same length as the axis it’s indexing. You can even
mix and match boolean arrays with slices or integers (or sequences of integers, more
on this later):

In [89]: data[names == 'Bob', 2:]
Out[89]: 
array([[-0.2349,  1.2792],

86 | Chapter 4: NumPy Basics: Arrays and Vectorized Computation

2D Array Slicing
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Reshaping
• reshape: 

- arr2.reshape(4,2) # returns new view 

• resize: 
- arr2.resize(4,2) # no return, modifies arr2 in place 

• flatten:  
- arr2.flatten() # array([1.5,2.,3.,4.,5.,6.,7.,8.]) 

• ravel: 
- arr2.ravel() # array([1.5,2.,3.,4.,5.,6.,7.,8.]) 

• flatten and ravel look the same, but ravel is a view
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Boolean Indexing
• names == 'Bob' gives back booleans that represent the element-wise 

comparison with the array names 
• Boolean arrays can be used to index into another array: 

- data[names == 'Bob'] 

• Can even mix and match with integer slicing 
• Can do boolean operations (&, |) between arrays (just like addition, 

subtraction) 
- data[(names == 'Bob') | (names == 'Will')] 

• Note: or and and do not work with arrays 
• We can set values too!   data[data < 0] = 0
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Array Transformations
• Transpose 

- arr2.T # flip rows and columns 

• Stacking: take iterable of arrays and stack them horizontally/vertically  
- arrh1 = np.arange(3) 

- arrh2 = np.arange(3,6) 

- np.vstack([arrh1, arrh2]) 

- np.hstack([arr1.T, arr2.T]) # ???
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numpy Functions
• Unary: abs, sqrt, log, ceil, sin, cos, tan, arccos, arcsin, … 
• Binary: add, subtract, multiple, divide, … <, >, >=, <=, ==, != 
• Statistics: sum, mean, std, min, max, argmin, argmax 
• Boolean: any, all 
• Others: sort, unique 
• Linear Algebra (numpy.linalg) 
• Pseudorandom Number Generation (numpy.random)
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History of Dataframes
• Originally in Statistical Models in S, [J. M. Chambers & T. J. Hastie, 1992] 
• R, open-source alternative to S, developed in 2000 (with dataframes) 
• Pandas, 2009 
• Spark, 2010 (resilient distributed dataset [RDD], Dataset API) 
• Polars, 2020
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Formalizing Dataframes
• Combines parts of matrices, databases, and spreadsheets 
• Ordered rows (unlike databases) 
• Types can be inferred at runtime, not the same across all columns 
• Lots of "intuitive" functions (600+)
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Convenience

Flexible

Versatility

Entire query at once

Strict schema

SFW or bust

Incremental + inspection 

Mixed types, R/C and 
data/metadata equiv.

600+ functions

Differences between Databases & Dataframes
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Table 1: Features of the compared dataframe libraries.

Pandas PySpark Modin Polars CuDF Vaex DataTable
Multithreading ↭ ↭ ↭ ↭ ↭

GPU acceleration ↭
Resource optimization ↭ ↭ ↭ ↭ ↭ ↭

Lazy evaluation ↭ ↭
Deploy on cluster ↭ ↭
Native language Python Scala Python Rust C/C++ C/Python C++/Python

Licence 3-Clause BSD Apache 2.0 Apache 2.0 MIT Apache 2.0 MIT Mozilla Public 2.0
Other requirements SparkContext Ray/Dask CUDA
Considered version 2.2.1 3.5.1 0.29.0 0.20.23 24.04.01 4.17.0 1.1.0

• Deploy on cluster : enabling the distribution of dataframe
processing across a cluster of machines, leveraging parallel
computing (as stated in Section 1, we aim to consider this
dimension in future work).

For each dataframe library, Table 1 lists which of these features
it implements, along with information about its implementation
and the version considered here.
PySpark [6] is the Python API for Apache Spark, which is pri-
marily implemented in Scala.

PySpark DataFrame is a type of Dataset (i.e., a distributed col-
lection of data) organized into named columns, resembling a rela-
tional table and supporting relational operators [9]. PySpark also
supports lazy evaluation, relying on the Catalyst optimizer [11]
and a disk spillover mechanism that automatically o!oads data
from RAM to disk when memory limits are reached [10]. This
allows PySpark to process datasets that exceed the machine’s
physical memory capacity. While Spark owes its popularity to
the capability of processing large-scale datasets on a cluster of
machines, standalone (i.e., single-machine) mode is not only sup-
ported, but also surprisingly fast in multiple scenarios, as shown
in Section 4.

PySpark supports two di"erent APIs: (i) Spark SQL, which
allows combining SQL queries with Spark programs to work with
structured data; (ii) Pandas on Spark (denoted as SparkPD and
previously known as Koalas [17]), which enables (by adding an
index to the conventional Spark dataframe) to distribute Pandas
workloads across multiple nodes without requiring modi#cations
to the original Pandas code for most API functions (→80%).
Modin [46] is a Python library that provides a parallel alterna-
tive to Pandas [57, 58]. Modin adopts the Pandas data format as
the default storage layer and employs a set of 15 core operators
to simplify Pandas functions and build its own Pandas-like API.
When core operators cannot handle a function, it switches to
the default to Pandas mode (a"ecting performance due to com-
munication costs and Pandas single-threaded nature), reverting
to a partitioned Modin dataframe after completion. It also im-
plements opportunistic evaluation [88], enabling execution based
on interactions, and facilitates incremental query construction
through intermediate dataframe results. Modin is designed to
dynamically switch between di"erent partition schemes (row-
based, column-based, or block-based) depending on the operation.
Each partition is then processed independently by the execution
engine: Dask or Ray (we consider both solutions, denoted as
ModinD andModinR, respectively).

Dask [16] is a Python library for distributed computing, which
allows working with large distributed Pandas dataframes [75].
It is designed to e$ciently extend memory capacity using disk
space, making it suitable for systems with limited memory, and

its scheduler provides %exibility to the execution. While we also
considered the inclusion of Dask as an independent library, we
do not report its results since we found it to perform better in
combination withModin (as Dask is not well suitable for a single
machine) and it only covers→55% of the PandasAPI (whileModin
covers →90%) [47].

Ray [72] is a general-purpose framework for parallelizing
Python code, using an in-memory distributed storage system and
Apache Arrow [3] (a language-independent columnar memory
format, recently adopted even by Pandas [52]) as data format [49].
UnlikeDask, Ray does not have built-in primitives for partitioned
data. While the two engines serve di"erent use cases, their pri-
mary goal is similar: optimizing resource usage by changing how
data is stored and Python code is executed.

Polars [64] is a Python library written in Rust and built on top
of arrow2, the Rust implementation of the Arrow format. The
adoption of Arrow as the underlying data structure provides Po-
larswith e$cient data processing capabilities, optimized through
parallel execution, cache-e$cient algorithms, and e$cient usage
of resources.

Polars does not use an index, but each row is indexed by its
integer position in the table. Further, it has developed its own
Domain Speci#c Language (DSL) for transforming data, whose
core components are Expressions and Contexts. Expressions facil-
itate concise and e$cient data transformations, while Contexts
categorize evaluations into three main types: #ltering, group-
ing/aggregation, and selection. Polars optimizes queries through
early #lters and projection pushdown. Moreover, it supports both
eager and lazy evaluation. The lazy strategy allows to run queries
in a streaming manner: instead of processing the entire data at
once, they can run in batches, lightening the load on memory
and CPU, hence allowing to process bigger datasets (even larger
than memory) in a faster manner.

CuDF [50] is a component of the NVIDIA RAPIDS framework.
Written inC/C++ andCUDA (hence only compatiblewithNVIDIA
GPUs), it o"ers a Pandas-like API to run general-purpose data
science pipelines on GPUs, leveraging their computational power
for accelerating data processing.

CuDF is built on top of Arrow and leverages parallelization to
execute operations on di"erent parts of columns simultaneously
across all available GPU cores. Note that CuDF uses a single GPU,
while Dask-CuDF can be used for multi-GPU parallel computing.
Thus, it can perform e$cient and high-performance computa-
tions, although it does not provide any optimization strategy for
the execution of the pipelines.

Dataframe Library Comparison
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Table 3: Compatibility of dataframe libraries with Pandas API. (↭↭) fully matches Pandas interface; (↭) di!erent interface;
(→) missing from the API, but implemented by us to the best of our e!orts.

Preparator SparkPD SparkSQL Modin Polars CuDF Vaex DataTable

I/O load dataframe (read) ↭↭ ↭ ↭↭ ↭↭ ↭↭ ↭ ↭
output dataframe (write) ↭↭ ↭ ↭↭ ↭ ↭↭ ↭ ↭↭

EDA

locate missing values (isna) ↭↭ → ↭↭ ↭ ↭↭ → ↭
locate outliers (outlier) ↭↭ ↭ ↭↭ ↭↭ ↭↭ ↭ →

search by pattern (srchptn) ↭↭ ↭ ↭↭ ↭↭ ↭↭ ↭↭ ↭↭
sort values (sort) ↭↭ ↭↭ ↭↭ ↭↭ ↭↭ ↭↭ ↭↭

get columns list (getcols) ↭↭ ↭↭ ↭↭ ↭↭ ↭↭ ↭ ↭
get columns types (dtypes) ↭↭ ↭↭ ↭↭ ↭↭ ↭↭ ↭↭ ↭

get dataframe statistics (stats) ↭↭ ↭↭ ↭↭ ↭↭ ↭↭ ↭↭ →
query columns (query) ↭↭ ↭ ↭↭ ↭↭ ↭↭ ↭ →

DT

cast columns types (cast) ↭↭ ↭ ↭↭ ↭ ↭↭ ↭↭ →
delete columns (drop) ↭↭ ↭↭ ↭↭ ↭↭ ↭↭ → →

rename columns (rename) ↭↭ → ↭↭ ↭↭ ↭↭ ↭↭ →
pivot table (pivot) ↭↭ ↭ ↭↭ ↭ ↭↭ → →

calculate column using expressions (calccol) ↭↭ → ↭↭ ↭↭ → ↭↭ →
join dataframes (join) ↭↭ → ↭↭ ↭ ↭↭ → →

one hot encoding (onehot) ↭↭ → ↭↭ ↭↭ ↭↭ ↭ →
categorical encoding (catenc) ↭↭ ↭ ↭↭ ↭ ↭↭ ↭ →

group dataframe (group) ↭↭ ↭ ↭↭ ↭↭ ↭↭ ↭↭ ↭↭

DC

change date & time format (chdate) ↭↭ ↭ ↭↭ → ↭↭ → →
delete empty and invalid rows (dropna) ↭↭ ↭ ↭↭ ↭ ↭↭ ↭↭ →

set content case (setcase) ↭↭ ↭ ↭↭ ↭ ↭↭ ↭↭ ↭↭
normalize numeric values (norm) ↭↭ ↭ ↭↭ ↭↭ ↭↭ ↭↭ →

deduplicate rows (dedup) ↭↭ ↭ ↭↭ ↭ ↭↭ → →
!ll empty cells (!llna) ↭↭ ↭ ↭↭ → ↭↭ ↭↭ →

replace values occurrences (replace) ↭↭ ↭ ↭↭ → ↭↭ ↭ →
edit & replace cell data (edit) ↭↭ → ↭↭ ↭ ↭↭ ↭↭ ↭↭

Dask engine was con!gured comparably, leading to the creation
of 8 workers and 48 threads for each execution.

To ensure accuracy and avoid warm-up overhead, the assess-
ment of execution time occurs once the system (e.g., JVM) has
completed its warm-up process. To assess the performance of the
libraries across machines with di"erent hardware speci!cations,
we simulated three distinct machine con!gurations, as detailed in
Table 4. Finally, we evaluated scalability on incremental samples
of Taxi and Patrol.

4 EVALUATION RESULTS
In this section, we report and analyze the results of the exten-
sive experimental evaluation of the presented dataframe libraries.
Our main goal is to provide data scientists and practitiones with
useful insights for supporting them in the selection of the best
solution for their data preparation tasks. Therefore, our compari-
son is designed to assess the performance of dataframe libraries
based on the operations to carry out (considering both the dis-
tinct preparators and the bene!ts introduced by lazy evaluation,
when supported), the size and the features of the dataset at hand,
and the con!guration of the machine on which the pipeline is
executed.

In particular, we organize our evaluation in multiple subsec-
tions, each designed to answer one of the following research
questions:

Q1. What is the performance of the dataframe libraries in
running data preparation pipelines on datasets of di"erent
size and features? (Section 4.1)

Q2. How does lazy evaluation impact on the performance of
the libraries that support it? (Section 4.2)

Q3. How do libraries scale by varying the size of the dataset
and the con!guration of the underlying machine (i.e.,
from laptop to server)? (Section 4.3)

Q4. How do libraries perform on the standard queries of the
TPC-H benchmark? (Section 4.4)

4.1 Evaluation on Data Preparation Pipelines

Summary—For EDA, Polars is generally the best performer.
For DT, if a GPU is available, CuDF generally outperforms
other libraries. For DC, Vaex achieves notable results on
the largest datasets. Finally, CuDF and Polars appear to be
the best choices to read and write CSV !les, respectively.

For each of the selected datasets (Athlete, Loan, Patrol, Taxi),
Figure 1 and Figure 2 show the average speedup over Pandas
achieved by its alternatives in the execution of the three data
preparation pipelines per dataset, focusing on the stages of EDA,
DT, and DC. In particular, Figure 1 considers each stage in its
entirety, allowing to perform lazy evaluation at the stage level
when supported, Figure 2 shows the performance separately for
each distinct preparator (i.e., we force the execution for each of
them). The I/O stage is considered separately in Figures 3 and 4.
The bars in Figure 1 and the markers in Figure 2 denote the
speedup achieved over Pandas (the red line), de!ned as follows:

speedup =
𝐿𝑀𝑁𝑂 ↑Pandas, prep/stage↓
𝐿𝑀𝑁𝑂 ↑lib, prep/stage↓

where 𝐿𝑀𝑁𝑂 ↑lib, prep/stage↓ is the time required by the library
lib to run the considered preparator/stage. Thus, a value above
(below) the red line denotes that the library outperforms (fall
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