
Advanced Data Management (CSCI 640/490)

Review

Dr. David Koop

D. Koop, CSCI 640/490, Spring 2023

DATA

INDEX

ALGORITHMS

DATA SYSTEMS

Systems can be seen as a collection of many data structures and algorithms.

Data systems rely on algorithms

2

[S. Idreos, 2019]
D. Koop, CSCI 640/490, Spring 2023

https://stratos.seas.harvard.edu/files/stratos/files/learnedselfdesignedsystemssigmod2019tutorialpart1.pdf

2018

sp
ee

d COMPUTE

DATA MOVEMENT

register = this room

disk = Pluto
memory = nearby city

Jim Gray, Turing Award 1998

caches = this city

As time goes by, data structures become ever more critical for data driven applications.

Data structures define performance

3

[S. Idreos, 2019]
D. Koop, CSCI 640/490, Spring 2023

https://stratos.seas.harvard.edu/files/stratos/files/learnedselfdesignedsystemssigmod2019tutorialpart1.pdf

Read
Update

Memory

@EDBT16

M
em
ory

Re
ad

Up
da
te
no perfect structure

amplification

Every data structure design is simply a point in the design space of possible solutions. There is no perfect design. Every design balances the fundamental tradeoffs of
Read, Update, and Memory amplification. For example, Read amplification is defined as the excess data an algorithm needs to read on top of the data it wants to read.
Typically a data structure would have some kind of metadata or navigation data that help locate the actual data, e.g., the internal nodes of a B-tree. Reading this
navigation data is an excess cost, adding to read amplification. Creating a data structure without any navigation data would suffer update or even more read
amplification. For example, we could choose to not have any structure in the data at all. Then every query would have to touch all the data. The other extreme would be
to sort all data which effectively provides an implicit structure. But then updates get expensive. Overall, there is no perfect design.

Tradeoffs in each structure

4

[S. Idreos, 2019]
D. Koop, CSCI 640/490, Spring 2023

https://stratos.seas.harvard.edu/files/stratos/files/learnedselfdesignedsystemssigmod2019tutorialpart1.pdf

STORAGE LAYOUTS

INDEXING

INDEX RECOMENDATIONS

KNOB TUNING

OPTIMIZER

PLAN

H20, NODBCRACKING INDEX ADVISORS
DBA

GUY LOHMANMID-FLIGHT ReOpt

th
e “

tra
dit

ion
al”

 st
ac

k

(no
 M

L,
no

 sy
nth

es
is)

Many efforts in the field have been motivated by the vision of generating tailored systems for a specific scenario. In fact, even traditional databases are architected with
this vision in mind. A generic database system can optimize a plan on the fly to match the query needs, it can choose from different storage and indexing options, etc.
This is how generic database systems can be used in a wealth of applications! And then recent research has tried to push the boundaries of tailored designs be
rethinking parts of the stack of a database system.

"Traditional" Database Research

5

[S. Idreos, 2019]
D. Koop, CSCI 640/490, Spring 2023

https://stratos.seas.harvard.edu/files/stratos/files/learnedselfdesignedsystemssigmod2019tutorialpart1.pdf

Fundamental
Building Blocks

Sorting

B-TreeHash-
Map

Scheduling

Join

Priority
Queue

Bloom
Filter

CachingRange
Filter

Learned Data Structures and Algorithms

6D. Koop, CSCI 640/490, Spring 2023

http://people.csail.mit.edu/kraska/pub/sigmod19tutorialpart2.pdf

A-
B

B-
C

C-
G …

AA-
AL

AL-
AK

AK-
AP … BA-

BE
BI-
BL

BL-
BR … … …

….

… … … … …. … …. …
….….

… … … … …. … …. … … … … … …. … …. …

Key
(e.g., spoon #1)

B-Tree

7

Key
(e.g., spoon #1)

Model

[T. Kraska, 2019]
D. Koop, CSCI 640/490, Spring 2023

http://people.csail.mit.edu/kraska/pub/sigmod19tutorialpart2.pdf

How To Build Models To Predict the Location

#O
rd

er
s

Date

Frequency Distribution

Date

Cumulative Distribution
Function (CDF)

0

1

Pr
ob

ab
ili

ty
P(X<2017-11-27) * N

… …

id
da

te
fir

st
_n

am
e

la
st

_n
am

e
em

ai
l

ad
dr

es
s

zi
p

st
at

e
cr

ed
it_

ca
rd

_n
b

am
ou

nt
10

00
20

17
-0

1-
01

Ho
ba

rt
Sp

ra
ck

lin
hs

pr
ac

kl
in

0@
da

ily
m

ot
io

n.
co

m
20

56
5

Hi
gh

 C
ro

ss
in

g
Pl

az
a

56
37

2
M

in
ne

so
ta

44
05

-6
97

5-
72

85
-5

16
0

61
1.

00
$

10
01

20
17

-0
1-

02
Bi

lly
e

Bi
nn

io
n

bb
in

ni
on

1@
12

3-
re

g.
co

.u
k

36
98

 U
ph

am
 P

oi
nt

20
26

0
Di

st
ric

t o
f C

ol
um

bi
a

35
33

-7
15

0-
77

28
-9

85
0

24
4.

00
$

10
02

20
17

-0
1-

02
Jo

ha
nn

Br
oc

kl
ey

jb
ro

ck
le

y2
@

bi
zj

ou
rn

al
s.

co
m

23
84

4
Ar

tis
an

 P
la

ce
98

51
6

W
as

hi
ng

to
n

67
59

7-
11

93
-7

98
5-

51
00

23
3.

00
$

10
03

20
17

-0
1-

03
Ar

tie
M

ac
M

en
am

ina
m

ac
m

en
am

in
3@

ha
o1

23
.c

om
62

76
 T

ob
an

 T
ra

il
78

75
9

Te
xa

s
35

37
-4

82
9-

61
34

-5
00

0
21

0.
00

$
10

04
20

17
-0

1-
03

De
lil

ah
O

'C
ur

rig
an

do
cu

rr
ig

an
4@

ch
ro

n.
co

m
86

01
6

N
ew

 C
as

tle
 A

ve
nu

e
72

19
9

Ar
ka

ns
as

35
55

-2
01

7-
22

26
-5

78
0

28
6.

00
$

10
05

20
17

-0
1-

04
G

re
tt

a
W

ill
gw

ill
5@

ye
lp

.c
om

0
Do

tt
ie

 C
irc

le
68

52
4

N
eb

ra
sk

a
50

38
44

-1
98

4-
20

85
-5

00
0

87
0.

00
$

10
06

20
17

-0
1-

04
G

or
do

n
Ki

rs
op

p
gk

irs
op

p6
@

ut
ex

as
.e

du
64

06
0

Sc
ot

t P
ar

k
20

37
0

Di
st

ric
t o

f C
ol

um
bi

a
63

33
32

-1
89

5-
24

14
-5

00
0

68
7.

00
$

10
07

20
17

-0
1-

05
Be

nd
ic

k
Fa

gg
bf

ag
g7

@
ar

m
y.

m
il

94
 F

lo
re

nc
e

Hi
ll

45
44

0
O

hi
o

35
28

-9
67

3-
18

15
-8

42
0

73
3.

00
$

10
08

20
17

-0
1-

05
Di

m
itr

y
Bo

ye
t

db
oy

et
8@

sa
ku

ra
.n

e.
jp

35
88

6
G

ol
f P

la
za

30
06

6
G

eo
rg

ia
35

76
-6

99
1-

40
41

-3
17

0
38

2.
00

$
10

09
20

17
-0

1-
06

Ai
ls

un
Be

in
ke

ab
ei

nk
e9

@
si

.e
du

1
Ba

de
au

 P
la

ce
46

29
5

In
di

an
a

56
02

2-
20

11
-8

07
2-

14
00

85
4.

00
$

10
10

20
17

-0
1-

07
Lo

u
Ha

llo
w

s
lh

al
lo

w
sa

@
th

eg
ua

rd
ia

n.
co

m
1

Tw
in

 P
in

es
 Ju

nc
tio

n
91

12
5

Ca
lif

or
ni

a
56

02
-2

36
4-

40
79

-0
25

0
15

0.
00

$
10

11
20

17
-0

1-
09

Ti
ff

an
i

M
at

he
w

tm
at

he
w

b@
se

at
tle

tim
es

.c
om

04
56

 M
ea

do
w

 V
al

e
La

ne
75

26
0

Te
xa

s
63

87
-6

94
3-

89
10

-4
58

0
31

3.
00

$
10

12
20

17
-0

1-
09

Pe
rl

Br
id

ie
pb

rid
ie

c@
hu

bp
ag

es
.c

om
07

 B
lu

es
te

m
 Ju

nc
tio

n
33

12
4

Fl
or

id
a

35
39

-8
66

2-
23

97
-5

88
0

55
8.

00
$

10
13

20
17

-0
1-

09
Ro

sa
be

lle
Bl

as
ik

rb
la

si
kd

@
de

lic
io

us
.c

om
7

Fa
irf

ie
ld

 P
as

s
79

69
9

Te
xa

s
56

02
-2

29
7-

65
99

-8
56

0
94

1.
00

$
10

14
20

17
-0

1-
10

M
eg

gi
Be

la
m

y
m

be
la

m
ye

@
as

k.
co

m
09

95
 M

an
uf

ac
tu

re
rs

 S
tr

ee
t

10
17

0
N

ew
 Y

or
k

35
57

-5
09

4-
74

05
-8

34
0

87
5.

00
$

10
15

20
17

-0
1-

10
Ta

di
o

Ba
ld

er
st

on
tb

al
de

rs
to

nf
@

ap
ac

he
.o

rg
80

 N
ov

ic
k

Ro
ad

75
26

0
Te

xa
s

60
48

5-
37

28
-7

11
9-

93
00

95
4.

00
$

10
16

20
17

-0
1-

11
G

ia
ni

na
O

xt
eb

y
go

xt
eb

yg
@

go
og

le
.p

l
72

67
4

Fu
lle

r A
ve

nu
e

89
50

5
N

ev
ad

a
4-

04
15

-9
26

8-
23

97
23

9.
00

$
10

17
20

17
-0

1-
12

Br
en

da
n

Do
od

y
bd

oo
dy

h@
cr

ai
gs

lis
t.o

rg
87

41
4

G
ol

de
n

Le
af

 S
tr

ee
t

11
48

0
N

ew
 Y

or
k

20
1-

63
48

-4
12

1-
13

14
30

8.
00

$
10

18
20

17
-0

1-
13

Co
nw

ay
Co

om
bs

cc
oo

m
bs

i@
bl

og
ge

r.c
om

28
10

 O
ak

rid
ge

 P
ar

k
32

85
9

Fl
or

id
a

35
29

-1
51

4-
03

57
-9

12
0

60
.0

0
$

10

19
20

17
-0

1-
14

G
er

m
ai

ne
Be

re
gb

er
ej

@
br

av
es

ite
s.

co
m

82
80

2
O

ak
rid

ge
 P

ar
k

20
04

1
Di

st
ric

t o
f C

ol
um

bi
a

67
09

61
-0

24
0-

40
54

-9
00

0
95

.0
0

$

10
20

20
17

-0
1-

15
Da

vi
de

To
lc

ha
rd

e
dt

ol
ch

ar
de

k@
re

dc
ro

ss
.o

rg
89

 C
on

tin
en

ta
l A

ve
nu

e
79

16
5

Te
xa

s
50

18
-7

74
8-

43
25

-9
51

0
13

7.
00

$
10

21
20

17
-0

1-
16

N
ig

el
Ar

th
ar

g
na

rt
ha

rg
l@

gi
zm

od
o.

co
m

31
 M

cb
rid

e
Po

in
t

22
30

1
Vi

rg
in

ia
56

02
25

-6
96

5-
28

70
-0

00
0

49
6.

00
$

10
22

20
17

-0
1-

17
Ri

ck
ar

d
Tr

en
ho

lm
rt

re
nh

ol
m

m
@

cb
sl

oc
al

.c
om

93
 H

oe
pk

er
 P

ar
kw

ay
70

59
3

Lo
ui

si
an

a
35

41
-5

24
1-

53
83

-9
97

0
76

0.
00

$
10

23
20

17
-0

1-
18

Ju
di

th
a

Dw
an

e
jd

w
an

en
@

vk
.c

om
79

14
 E

lio
t L

an
e

14
27

6
N

ew
 Y

or
k

54
56

-4
41

0-
09

14
-3

18
0

47
4.

00
$

10
24

20
17

-0
1-

19
Su

sa
n

Ild
en

si
ld

en
o@

ao
l.c

om
25

20
4

Hu
xl

ey
 R

oa
d

21
68

4
M

ar
yl

an
d

35
74

-8
58

6-
63

67
-9

92
0

83
.0

0
$

10

25
20

17
-0

1-
20

Ab
be

y
Tr

ig
gl

e
at

rig
gl

ep
@

go
og

le
.c

om
.a

u
47

 D
eb

ra
 P

as
s

74
18

4
O

kl
ah

om
a

35
38

-6
04

7-
63

15
-7

71
0

51
3.

00
$

10
26

20
17

-0
1-

21
Zs

az
sa

Du
ns

te
r

zd
un

st
er

q@
na

tu
re

.c
om

7
G

er
al

d
Al

le
y

40
57

6
Ke

nt
uc

ky
35

62
-0

32
5-

77
09

-3
49

0
95

2.
00

$
10

27
20

17
-0

1-
22

G
ra

nt
ha

m
Fr

ia
tt

gf
ria

tt
r@

se
at

tle
tim

es
.c

om
77

4
Pr

ai
rie

vi
ew

 C
irc

le
29

22
5

So
ut

h
Ca

ro
lin

a
35

71
-1

17
1-

94
76

-8
78

0
94

2.
00

$
10

28
20

17
-0

1-
22

Ro
ss

G
au

di
n

rg
au

di
ns

@
sa

m
su

ng
.c

om
31

02
 L

oe
pr

ic
h

Tr
ai

l
68

19
7

N
eb

ra
sk

a
51

08
-7

57
8-

46
65

-2
71

0
57

2.
00

$
10

29
20

17
-0

1-
22

Al
ui

no
Dr

ov
er

ad
ro

ve
rt

@
da

go
nd

es
ig

n.
co

m
27

17
 N

or
th

rid
ge

 A
ve

nu
e

72
19

9
Ar

ka
ns

as
67

09
99

-3
17

1-
88

48
-0

00
0

31
8.

00
$

10
30

20
17

-0
1-

23
Sh

ur
lo

ck
Br

ak
er

sb
ra

ke
ru

@
hu

ff
in

gt
on

po
st

.c
om

30
78

3
Je

nn
a

Al
le

y
80

94
5

Co
lo

ra
do

63
31

10
6-

18
94

-9
87

8-
00

00
16

6.
00

$
10

31
20

17
-0

1-
24

G
le

nd
a

G
oo

db
od

y
gg

oo
db

od
yv

@
ec

on
om

is
t.c

om
72

0
Pi

er
st

or
ff

 W
ay

75
22

N
ew

 Je
rs

ey
36

-0
59

3-
27

19
-1

68
4

41
2.

00
$

10
32

20
17

-0
1-

24
Ro

lli
n

Re
dd

ie
rr

ed
di

ew
@

tin
yp

ic
.c

om
09

 G
in

a
Pa

rk
65

81
0

M
is

so
ur

i
46

65
-9

18
8-

13
24

-1
04

0
38

3.
00

$
10

33
20

17
-0

1-
26

Do
rr

y
Je

nk
s

dj
en

ks
x@

vi
rg

in
ia

.e
du

1
Bu

tt
er

fie
ld

 R
oa

d
85

21
0

Ar
iz

on
a

35
78

-9
19

5-
02

97
-7

73
0

63
6.

00
$

10
34

20
17

-0
1-

26
Pa

tt
i

Em
by

pe
m

by
y@

w
ea

th
er

.c
om

26
 H

oa
rd

 D
riv

e
91

21
0

Ca
lif

or
ni

a
35

85
-8

24
3-

75
06

-2
47

0
95

7.
00

$
10

35
20

17
-0

1-
26

N
ic

ki
e

M
en

au
te

au
nm

en
au

te
au

z@
eb

ay
.c

om
03

5
De

re
k

Ju
nc

tio
n

92
11

0
Ca

lif
or

ni
a

35
80

-5
48

8-
84

43
-2

07
0

48
4.

00
$

10
36

20
17

-0
1-

28
Jo

n
Ka

ss
m

an
jk

as
sm

an
10

@
i2

i.j
p

21
71

 B
ue

na
 V

is
ta

 L
an

e
89

12
5

N
ev

ad
a

35
76

-7
35

8-
07

72
-1

38
0

64
.0

0
$

10

37
20

17
-0

1-
29

Pa
ns

y
Pe

lz
pp

el
z1

1@
w

eb
ed

en
.c

o.
uk

15
 B

ue
na

 V
is

ta
 C

irc
le

55
44

1
M

in
ne

so
ta

37
2-

30
19

-6
89

5-
31

27
49

8.
00

$
10

38
20

17
-0

1-
30

Te
dd

Ki
ng

sl
ey

tk
in

gs
le

y1
2@

ar
m

y.
m

il
65

 C
re

st
 L

in
e

Te
rr

ac
e

19
89

2
De

la
w

ar
e

63
34

47
-9

87
4-

06
06

-9
00

0
57

4.
00

$
10

39
20

17
-0

1-
30

Br
an

a
Ba

rn
ab

y
bb

ar
na

by
13

@
go

o.
ne

.jp
8

M
iff

lin
 W

ay
35

22
5

Al
ab

am
a

49
11

-0
89

9-
88

85
-2

97
0

29
6.

00
$

10
40

20
17

-0
1-

30
Al

ys
a

Kn
ig

ht
ly

ak
ni

gh
tly

14
@

sl
id

es
ha

re
.n

et
19

 T
al

is
m

an
 L

an
e

45
45

4
O

hi
o

67
71

-5
99

3-
87

03
-9

34
0

71
3.

00
$

10
41

20
17

-0
1-

31
Er

in
a

Em
m

ot
ee

m
m

ot
15

@
hi

bu
.c

om
4

M
on

um
en

t P
la

za
32

25
5

Fl
or

id
a

67
06

46
5-

44
18

-7
63

3-
00

00
99

7.
00

$
10

42
20

17
-0

1-
31

G
eo

rg
y

Lo
ck

et
gl

oc
ke

t1
6@

sa
ku

ra
.n

e.
jp

0
Hu

xl
ey

 P
ar

kw
ay

37
60

5
Te

nn
es

se
e

30
-5

66
1-

66
04

-8
36

7
28

5.
00

$
10

43
20

17
-0

2-
01

Ko
rd

ul
a

Do
bk

in
kd

ob
ki

n1
7@

pr
lo

g.
or

g
47

 G
ol

f V
ie

w
 P

oi
nt

94
12

1
Ca

lif
or

ni
a

30
-2

11
4-

09
22

-1
48

5
67

7.
00

$
10

44
20

17
-0

2-
01

Cl
ar

ie
Jo

ss
ko

w
itz

cj
os

sk
ow

itz
18

@
de

.v
u

1
Pa

rk
 M

ea
do

w
 L

an
e

39
23

6
M

is
si

ss
ip

pi
35

46
-0

31
5-

77
44

-3
99

0
36

3.
00

$
10

45
20

17
-0

2-
02

Re
ub

e
Ea

to
ck

re
at

oc
k1

9@
so

up
.io

5
Ru

sk
in

 P
ar

k
97

21
1

O
re

go
n

35
84

-2
99

7-
86

75
-0

28
0

50
5.

00
$

10
46

20
17

-0
2-

04
Jo

el
ly

n
Be

bi
s

jb
eb

is
1a

@
st

ud
io

pr
es

s.
co

m
68

43
0

Ri
dg

ew
ay

 P
ar

k
38

19
7

Te
nn

es
se

e
56

02
-2

26
1-

78
43

-1
31

0
91

7.
00

$
10

47
20

17
-0

2-
05

M
av

is
Fr

ig
ou

t
m

fr
ig

ou
t1

b@
ca

.g
ov

55
81

 M
on

ta
na

 S
tr

ee
t

80
91

0
Co

lo
ra

do
35

79
-6

42
5-

27
25

-3
15

0
78

1.
00

$
10

48
20

17
-0

2-
05

Sa
dy

e
Pr

ob
et

ts
sp

ro
be

tt
s1

c@
la

st
.fm

93
 D

uk
e

Av
en

ue
27

61
5

N
or

th
 C

ar
ol

in
a

35
30

-3
78

5-
57

39
-3

57
0

46
4.

00
$

10
49

20
17

-0
2-

06
Al

be
rt

o
De

ev
es

ad
ee

ve
s1

d@
us

tr
ea

m
.tv

39
34

1
Br

ic
ks

on
 P

ar
k

Pl
az

a
79

94
0

Te
xa

s
50

10
-1

24
8-

97
00

-6
87

0
90

1.
00

$
10

50
20

17
-0

2-
06

Te
rr

en
ce

M
is

se
nd

en
tm

is
se

nd
en

1e
@

bi
gl

ob
e.

ne
.jp

36
33

9
Ki

ns
m

an
 C

en
te

r
77

06
0

Te
xa

s
35

52
-8

78
8-

47
10

-8
91

0
96

6.
00

$
10

51
20

17
-0

2-
06

W
hi

tb
y

M
ow

sd
el

l
w

m
ow

sd
el

l1
f@

ife
ng

.c
om

62
35

 L
ot

he
vi

lle
 A

lle
y

93
59

1
Ca

lif
or

ni
a

35
46

-2
66

4-
89

37
-4

24
0

12
6.

00
$

10
52

20
17

-0
2-

07
Ev

er
ar

d
W

ed
lo

ck
ew

ed
lo

ck
1g

@
bl

ue
ho

st
.c

om
88

58
 B

ria
r C

re
st

 A
ve

nu
e

36
13

4
Al

ab
am

a
35

83
-3

94
8-

66
85

-7
24

0
92

3.
00

$
10

53
20

17
-0

2-
07

Ka
rle

e
Do

w
d

kd
ow

d1
h@

m
ai

l.r
u

30
74

 N
or

th
la

nd
 H

ill
15

25
5

Pe
nn

sy
lv

an
ia

35
89

-6
79

1-
19

14
-2

14
0

93
3.

00
$

10
54

20
17

-0
2-

08
Ly

ne
tt

N
ia

l
ln

ia
l1

i@
el

eg
an

tt
he

m
es

.c
om

84
5

W
el

ch
 Ju

nc
tio

n
20

55
1

Di
st

ric
t o

f C
ol

um
bi

a
35

79
-0

21
3-

72
87

-8
22

0
63

.0
0

$

10
55

20
17

-0
2-

08
Te

dm
an

Pl
ed

ge
tp

le
dg

e1
j@

su
n.

co
m

20
 K

en
si

ng
to

n
Pa

rk
w

ay
24

01
4

Vi
rg

in
ia

35
46

-6
88

7-
04

54
-7

18
0

24
2.

00
$

10
56

20
17

-0
2-

08
Ki

m
Ba

m
br

ic
k

kb
am

br
ic

k1
k@

in
de

pe
nd

en
t.c

o.
uk

4
To

w
ne

 A
ve

nu
e

84
17

0
U

ta
h

63
74

-6
91

7-
53

37
-0

77
0

51
5.

00
$

10
57

20
17

-0
2-

09
Ad

al
in

e
De

nh
ol

m
ad

en
ho

lm
1l

@
oa

kl
ey

.c
om

60
10

 B
ro

w
ni

ng
 P

ar
k

25
77

5
W

es
t V

irg
in

ia
35

86
-3

80
2-

36
92

-9
11

0
88

2.
00

$
10

58
20

17
-0

2-
10

Ba
si

le
Ca

ve
rh

ill
bc

av
er

hi
ll1

m
@

po
st

er
ou

s.
co

m
12

88
 R

ow
la

nd
 C

en
te

r
23

50
9

Vi
rg

in
ia

63
04

-0
27

7-
20

34
-3

63
0

31
7.

00
$

10
59

20
17

-0
2-

10
De

rr
il

Ho
gs

de
n

dh
og

sd
en

1n
@

m
oz

ill
a.

co
m

07
85

2
Po

nd
 P

la
ce

12
25

5
N

ew
 Y

or
k

35
55

-8
67

1-
34

58
-7

86
0

19
1.

00
$

10
60

20
17

-0
2-

11
Cu

rt
ic

e
N

od
en

cn
od

en
1o

@
ye

llo
w

bo
ok

.c
om

7
Ra

ve
n

Ci
rc

le
30

03
3

G
eo

rg
ia

37
4-

28
85

-3
14

0-
60

71
38

4.
00

$
10

61
20

17
-0

2-
12

Ad
ia

na
Co

ck
in

g
ac

oc
ki

ng
1p

@
m

ai
l.r

u
51

 S
ur

re
y

Ce
nt

er
86

19
N

ew
 Je

rs
ey

35
66

-4
96

3-
49

56
-0

47
0

57
7.

00
$

10
62

20
17

-0
2-

13
Li

vv
y

G
ia

co
bo

ni
lg

ia
co

bo
ni

1q
@

bl
og

ta
lk

ra
di

o.
co

m
37

 L
ie

n
Te

rr
ac

e
61

61
4

Ill
in

oi
s

35
44

-7
23

5-
07

24
-9

80
0

74
1.

00
$

10
63

20
17

-0
2-

13
Bo

b
N

us
se

n
bn

us
se

n1
r@

to
ps

y.
co

m
71

36
 C

ar
be

rr
y

Ci
rc

le
33

61
0

Fl
or

id
a

49
11

-5
06

1-
69

03
-3

43
0

84
6.

00
$

10
64

20
17

-0
2-

14
Ad

rie
n

Cu
rt

oi
s

ac
ur

to
is

1s
@

ar
m

y.
m

il
94

6
Le

rd
ah

l C
ro

ss
in

g
77

09
0

Te
xa

s
35

57
-4

64
1-

43
87

-7
53

0
65

9.
00

$
10

65
20

17
-0

2-
14

Se
ph

ira
Co

rr
ad

i
sc

or
ra

di
1t

@
go

og
le

.c
n

75
4

Co
m

m
er

ci
al

 P
ar

k
81

00
5

Co
lo

ra
do

50
38

71
3-

13
28

-9
36

3-
00

00
34

2.
00

$
10

66
20

17
-0

2-
15

Dr
us

ill
a

Bl
ig

h
db

lig
h1

u@
fa

ce
bo

ok
.c

om
98

97
8

De
xt

er
 Ju

nc
tio

n
27

10
5

N
or

th
 C

ar
ol

in
a

37
4-

62
25

-4
97

8-
96

90
62

7.
00

$

20
17
-1
1-
27

20
17
-1
1-
27

20
17
-1
1-
27

20
17
-1
1-
28

20
17
-1
1-
28

Model to Predict Data's Location on Disk

8

[T. Kraska, 2019]
D. Koop, CSCI 640/490, Spring 2023

http://people.csail.mit.edu/kraska/pub/sigmod19tutorialpart2.pdf

Traditional model architectures
do not work

Frameworks are not designed
for nano-second execution

Overfitting can be good ML+System Co-Design

underfitting desired overfitting
desired

ChallengesChallenges

9

[T. Kraska, 2019]
D. Koop, CSCI 640/490, Spring 2023

http://people.csail.mit.edu/kraska/pub/sigmod19tutorialpart2.pdf

2-Stage RMI with Linear Model
pos0 = a0 + b0 * key
pos1 = m1[pos0].a + m1[pos0].b * key
record = local-search(key, pos1)

Model 1.1

Model 2.1 Model 2.2 Model 2.3

Model 3.1 Model 3.2 Model 3.3 Model 3.4

…

…
St

ag
e

1
St

ag
e

3
St

ag
e

2
Position

Key

Recursive-Model Index (RMI)Recursive Model Index (RMI)

10

[T. Kraska, 2019]
D. Koop, CSCI 640/490, Spring 2023

http://people.csail.mit.edu/kraska/pub/sigmod19tutorialpart2.pdf

No

Maybe
Yes

Is This Key In My Set?

Model

Maybe Yes

Sandwiched Bloom Filter

No

Maybe
No

Michael Mitzenmacher: A Model for Learned Bloom Filters and Optimizing by Sandwiching. NeurIPS 2018: 462-471

Sandwiched Bloom Filter

11

[M. Mitzenmacher, 2018 via T. Kraska, 2019]
D. Koop, CSCI 640/490, Spring 2023

http://people.csail.mit.edu/kraska/pub/sigmod19tutorialpart2.pdf

F

a

b
c

n
m
o

z

U
O
C
A
N
Z
B
M

a

b
c

n
m
o

z

(a) CDF Model Pre-Sorts (b) Compact & local sort

a
b
c
m
n
o
z

F

a

b
c

n
m
o

z

U
O
C
A
N
Z
B
M

a

b
c

n
m
o

z

(a) CDF Model Pre-Sorts (b) Compact & local sort

a
b
c
m
n
o
z

Sorting
Sorting

12

[T. Kraska, 2019]
D. Koop, CSCI 640/490, Spring 2023

http://people.csail.mit.edu/kraska/pub/sigmod19tutorialpart2.pdf

F

a

b
c

n
m
o

z

U
O
C
A
N
Z
B
M

a

b
c

n
m
o

z

(a) CDF Model Pre-Sorts (b) Compact & local sort

a
b
c
m
n
o
z

F

a

b
c

n
m
o

z

U
O
C
A
N
Z
B
M

a

b
c

n
m
o

z

(a) CDF Model Pre-Sorts (b) Compact & local sort

a
b
c
m
n
o
z

Sorting
Sorting

12

[T. Kraska, 2019]
D. Koop, CSCI 640/490, Spring 2023

Initial Results

6Y
RR

MR
K�
XMQ

I�
�W
IG

�

���

���

���

���

�1 ��1 ��1 ��1 ��1 ��1

WXH��WSVX 6EHM\�WSVX 8MQWSVX
0IEVRIH�7SVX��TVI�XVEMRIH
 0IEVRIH�7SVX

6Y
RR

MR
K�
XMQ

I�
�W
IG

�

���

���

���

���

�1 ��1 ��1 ��1 ��1 ��1

WXH��WSVX 6EHM\�WSVX 8MQWSVX
0IEVRIH�7SVX��TVI�XVEMRIH
 0IEVRIH�7SVX

32-bit ints; normal distribution (μ=0, σ=1e6) 128-bit ints; normal distribution (μ=0, σ=1e6)

http://people.csail.mit.edu/kraska/pub/sigmod19tutorialpart2.pdf

Hash-MapTree Sorting

Join

Range-FilterMulti-Dim Index

…..

Scheduling

Cache Policy

Bloom-Filter

Fundamental Algorithms & Data Structures

DNA-Search SQL Query
Optimizer

Nearest
Neighbor

Data
Cubes

More…

13

[T. Kraska, 2019]
D. Koop, CSCI 640/490, Spring 2023

http://people.csail.mit.edu/kraska/pub/sigmod19tutorialpart2.pdf

SQL
SQL
SQL

Parser

Q
u
e
ry

 O
p
ti
m

iz
e
r

Hint set 1

...

TCNN
Reward

Predictions

Execution Engine

ExperienceTraining

User provided

Query plan

External component

Bao

...

Hint set 2

Hint set 3

Figure 2: Bao system model

latency of the plan selected by Bao often greatly exceeds the addi-
tional optimization time. However, for very short running queries,
increased optimization time can be an issue, especially if the ap-
plication issues many such queries. Thus, Bao is ideally suited to
workloads that are tail-dominated (e.g., 80% of query processing
time is spent processing 20% of the queries) or contain many long-
running queries, although Bao’s architecture also allows users to
easily disable Bao for such short-running queries, or enable Bao
exclusively for problematic longer-running queries. Second, by us-
ing only a limited set of hints, Bao has a restricted action space,
and thus Bao is not always able to learn the best possible query
plan. Despite this restriction, in our experiments, Bao is still able to
signi�cantly outperform traditional optimizers while training and
adjusting to change orders-of-magnitudes faster than “unrestricted”
learned query optimizers, like Neo [51].

In summary, the key contributions of this paper are:
• We introduce Bao, a learned system for query optimization
that is capable of learning how to apply query hints on a
case-by-case basis.

• For the �rst time, we demonstrate a learned query optimiza-
tion system that outperforms both open source and com-
mercial systems in cost and latency, all while adapting to
changes in workload, data, and schema.

2 SYSTEM MODEL
On a high-level, Bao combines a tree convolution model [57], a
neural network operator that can recognize important patterns in
query plan trees [51], with Thompson sampling [74], a technique
for solving contextual multi-armed bandit problems. This unique
combination allows Bao to explore and exploit knowledge quickly.
The architecture of Bao is shown in Figure 2.
Generating = query plans: When a user submits a query, Bao
uses the underlying query optimizer to produce = query plans, one
for each set of hint. Many DBMSes [4–6] provide a wide range of
such hints. While some hints can be applied to a single relation or
predicate, Bao focuses only on query hints that are a boolean �ag
(e.g., disable loop join, force index usage). The sets of hints available
to Bao must be speci�ed upfront. Note that one set of hints could be
empty, that is, using the original optimizer without any restriction.
Estimating the run-time for each query plan:Afterwards, each
query plan is transformed into a vector tree (a tree where each node
is a feature vector). These vector trees are fed into Bao’s valuemodel,
a tree convolutional neural network [57], which predicts the quality
(e.g., execution time) of each plan. To reduce optimization time,
each of the = query plans can be generated and evaluated in parallel.

Selecting a query plan for execution: If we just wanted to exe-
cute the query plan with the best expected performance, we would
train a model in a standard supervised fashion and pick the query
plan with the best predicted performance. However, as our value
model might be wrong, we might not always pick the optimal plan,
and, as we never try alternative strategies, never learn when we are
wrong. To balance the exploration of new plans with the exploita-
tion of plans known to be fast, we use a technique called Thompson
sampling [74] (see Section 3). It is also possible to con�gure Bao
to explore a speci�c query o�ine and guarantee that only the best
plan is selected during query processing (see Section 4).

After a plan is selected by Bao, it is sent to a query execution
engine. Once the query execution is complete, the combination of
the selected query plan and the observed performance is added to
Bao’s experience. Periodically, this experience is used to retrain
the predictive model, creating a feedback loop. As a result, Bao’s
predictive model improves, and Bao more reliable picks the best set
of hints for each query.
Assumptions and Limitations Bao assumes that all hints result
in semantically equivalent query plans. Moreover, Bao always uses
the hints for the entire query plan: Bao cannot restrict features for
only a part of a query plan, e.g., to avoid a nested loop join between
table � and ⌫, while still allowing a nested loop for a join between
table ⇠ and ⇡ . While the Bao architecture, in principle, enables the
exploration of these sub-optimizations, such a �ne-grained action
space (the number of choices Bao has for each query) increases
optimization overhead signi�cantly. Letting = be the number of
hint sets and : be the number of relations in a query, by selecting
only a single hint set Bao has$ (=) choices per query. If Bao would
do these sub-optimizations, the size of the action space would be
$ (= ⇥ 2:) (= di�erent ways to join each subset of : relations, in the
case of a fully connected query graph). Since the size of the action
space is an important factor for determining the convergence time
of reinforcement learning algorithms [22], we opted for the smaller
action space in hopes of achieving quick convergence.

3 SELECTING QUERY HINTS
Here, we discuss Bao’s learning approach. We �rst de�ne Bao’s
optimization goal, and formalize it as a contextual multi-armed
bandit problem. Then, we apply Thompson sampling, a classical
technique used to solve such problems.

Bao models each hint set �(4C8 2 � in the family of hint sets �
as if it were its own query optimizer: a function mapping a query
@ 2 & to a query plan tree C 2) :

�(4C8 : & !)

This function is realized by passing the query & and the selected
hint set �(4C8 to the underlying query optimizer. We refer to �(4C8
as this function for convenience. We assume that each query plan
tree C 2) is composed of an arbitrary number of operators drawn
from a known �nite set (i.e., that the trees may be arbitrarily large
but all of the distinct operator types are known ahead of time).

Bao also assumes a user-de�ned performance metric % , which
determines the quality of a query plan by executing it. For example,
% may measure the execution time of a query plan, or may measure
the number of disk operations performed by the plan.

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

1277

Query Optimization

14

[R. Marcus et al., 2021]
D. Koop, CSCI 640/490, Spring 2023

https://api.zotero.org/users/3604318/publications/items/6IHZS47B/file/view

Final Exam
• Wednesday, May 10, 8:00-9:50am, PM 253
• Similar format
• More comprehensive (questions from topics covered in Test 1 & 2)
• Will also have questions from graph/spatial/temporal data, provenance,

reproducibility, machine learning

15D. Koop, CSCI 640/490, Spring 2023

http://faculty.cs.niu.edu/~dakoop/cs640-2023sp/final.html

16

Questions?

D. Koop, CSCI 640/490, Spring 2023

17

Review

D. Koop, CSCI 640/490, Spring 2023

17

Review

D. Koop, CSCI 640/490, Spring 2023

What did we do this semester?

distributed environment; and support flexible and dynamic data structures. Data
acquisition is further detailed in this chapter.

Data Analysis is concerned with making the raw data acquired amenable to use in
decision-making as well as domain-specific usage. Data analysis involves explor-
ing, transforming, and modelling data with the goal of highlighting relevant data,
synthesising and extracting useful hidden information with high potential from a
business point of view. Related areas include data mining, business intelligence,
and machine learning. Chapter 4 covers data analysis.

Data Curation is the active management of data over its life cycle to ensure it
meets the necessary data quality requirements for its effective usage (Pennock
2007). Data curation processes can be categorised into different activities such as
content creation, selection, classification, transformation, validation, and preserva-
tion. Data curation is performed by expert curators that are responsible for improv-
ing the accessibility and quality of data. Data curators (also known as scientific
curators, or data annotators) hold the responsibility of ensuring that data are
trustworthy, discoverable, accessible, reusable, and fit their purpose. A key trend
for the curation of big data utilises community and crowd sourcing approaches
(Curry et al. 2010). Further analysis of data curation techniques for big data is
provided in Chap. 5.

Data Storage is the persistence and management of data in a scalable way that
satisfies the needs of applications that require fast access to the data. Relational
Database Management Systems (RDBMS) have been the main, and almost unique,
solution to the storage paradigm for nearly 40 years. However, the ACID
(Atomicity, Consistency, Isolation, and Durability) properties that guarantee data-
base transactions lack flexibility with regard to schema changes and the perfor-
mance and fault tolerance when data volumes and complexity grow, making them
unsuitable for big data scenarios. NoSQL technologies have been designed with the
scalability goal in mind and present a wide range of solutions based on alternative
data models. A more detailed discussion of data storage is provided in Chap. 6.

Data
Acquisition

Data
Analysis

Data
Curation

Data
Storage

Data
Usage

• Structured data
• Unstructured

data
• Event processing
• Sensor networks
• Protocols
• Real-time
• Data streams
• Multimodality

• Stream mining
• Semantic analysis
• Machine learning
• Information

extraction
• Linked Data
• Data discovery
• ‘Whole world’

semantics
• Ecosystems
• Community data

analysis
• Cross-sectorial

data analysis

• Data Quality
• Trust / Provenance
• Annotation
• Data validation
• Human-Data

Interaction
• Top-down/Bottom-

up
• Community / Crowd
• Human Computation
• Curation at scale
• Incentivisation
• Automation
• Interoperability

• In-Memory DBs
• NoSQL DBs
• NewSQLDBs
• Cloud storage
• Query Interfaces
• Scalability and

Performance
• Data Models
• Consistency,

Availability,
Partition-tolerance

• Security and
Privacy

• Standardization

• Decision support
• Prediction
• In-use analytics
• Simulation
• Exploration
• Visualisation
• Modeling
• Control
• Domain-specific

usage

Technical Working Groups

Fig. 3.1 The Big Data Value Chain as described within (Curry et al. 2014)

32 E. Curry
What's involved in dealing with data?

18

[Big Data Value Chain, Curry et al., 2014]
D. Koop, CSCI 640/490, Spring 2023

Python!
• Just assign expressions to variables, no typing

a = 12
a = "abc"
b = a + "de"

• Functions defined using def, called using parenthesis:
def hello(name1="Joe", name2="Jane"):
 print(f"Hello {name1} and {name2}")
hello(name2="Mary")

• Always indent blocks (if-else-elif, while, for, etc.):
 z = 20
 if x > 0:
 if y > 0:
 z = 100
 else:
 z = 10

19D. Koop, CSCI 640/490, Spring 2023

Python Containers
• List: [1,"abc",12.34]
• Tuple: (1, "abc", 12.34)
• Indexing/Slicing:

- x[0], x[:-1], x[1:2], x[::2]
• Set: {1, "abc", 12.34}
• Dictionary: {'x': 1, 'y': "abc", 'z': 12.34}
• Mutable vs. Immutable
• Stored by reference
• Iterators: objects that traverse containers, just know how to get next element
• You cannot index/slice an iterator (d.values()[-1] doesn't work)

20D. Koop, CSCI 640/490, Spring 2023

Comprehensions
• List Comprehensions:

- squares = [i**2 for i in range(10)]

• Dictionary Comprehensions:
- squares = {i: i**2 for i in range(10)}

• Set Comprehensions:
- squares = {i**2 for i in range(10)}

• Comprehensions allow filters:
- squares = [i**2 for i in range(10) if i % 2 == 0]

21D. Koop, CSCI 640/490, Spring 2023

JupyterLab
• An interactive, configurable programming

environment
• Supports many activities including notebooks
• Runs in your web browser
• Notebooks:
- Originally designed for Python
- Supports other languages, too
- Displays results (even interactive maps) inline
- You decide how to divide code into

executable cells
- Shift+Enter to execute a cell

22D. Koop, CSCI 640/490, Spring 2023

Relational Algebra
• Definition: A procedural language consisting of a set of operations that take

one or two relations as input and produce a new relation as their result.
• Six basic operators
- select: σ
- project: ∏
- union: ∪
- set difference: –
- Cartesian product: x
- rename: ρ

23

[A. Silberschatz et al.]
D. Koop, CSCI 640/490, Spring 2023

https://www.db-book.com/db6/slide-dir/

Components of SQL
• Data Definition Language (DDL): the specification of information about

relations, including schema, types, integrity constraints, indices, storage
• Data Manipulation Language (DML): provides the ability to query

information from the database and to insert tuples into, delete tuples from,
and modify tuples in the database.

• An SQL relation is defined using the create table command:
create table r (A1 D1, A2 D2, ..., An Dn, (C1), …, (Ck))

• A typical SQL query has the form:
select A1, A2, ..., An
from r1, r2, ..., rm
where P

24

[A. Silberschatz et al.]
D. Koop, CSCI 640/490, Spring 2023

- Ai is an attribute
- Di is the data type
- ri represents a relation
- P is a predicate

https://www.db-book.com/db6/slide-dir/

Figure 4-1. Indexing elements in a NumPy array

In multidimensional arrays, if you omit later indices, the returned object will be a
lower dimensional ndarray consisting of all the data along the higher dimensions. So
in the 2 × 2 × 3 array arr3d:

In [76]: arr3d = np.array([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]])

In [77]: arr3d
Out[77]:
array([[[1, 2, 3],
 [4, 5, 6]],
 [[7, 8, 9],
 [10, 11, 12]]])

arr3d[0] is a 2 × 3 array:
In [78]: arr3d[0]
Out[78]:
array([[1, 2, 3],
 [4, 5, 6]])

Both scalar values and arrays can be assigned to arr3d[0]:
In [79]: old_values = arr3d[0].copy()

In [80]: arr3d[0] = 42

In [81]: arr3d
Out[81]:
array([[[42, 42, 42],
 [42, 42, 42]],
 [[7, 8, 9],
 [10, 11, 12]]])

In [82]: arr3d[0] = old_values

96 | Chapter 4: NumPy Basics: Arrays and Vectorized Computation

NumPy arrays and slicing

25

 [0.1913, 0.4544, 0.4519, 0.5535],
 [0.5994, 0.8174, -0.9297, -1.2564]])

Figure 4-2. Two-dimensional array slicing

Suppose each name corresponds to a row in the data array and we wanted to select all
the rows with corresponding name 'Bob'. Like arithmetic operations, comparisons
(such as ==) with arrays are also vectorized. Thus, comparing names with the string
'Bob' yields a boolean array:

In [87]: names == 'Bob'
Out[87]: array([True, False, False, True, False, False, False], dtype=bool)

This boolean array can be passed when indexing the array:

In [88]: data[names == 'Bob']
Out[88]:
array([[-0.048 , 0.5433, -0.2349, 1.2792],
 [2.1452, 0.8799, -0.0523, 0.0672]])

The boolean array must be of the same length as the axis it’s indexing. You can even
mix and match boolean arrays with slices or integers (or sequences of integers, more
on this later):

In [89]: data[names == 'Bob', 2:]
Out[89]:
array([[-0.2349, 1.2792],

86 | Chapter 4: NumPy Basics: Arrays and Vectorized Computation

[W. McKinney, Python for Data Analysis]
D. Koop, CSCI 640/490, Spring 2023

Boolean Indexing
• names == 'Bob' gives back booleans that represent the element-wise

comparison with the array names
• Boolean arrays can be used to index into another array:

- data[names == 'Bob']

• Can even mix and match with integer slicing
• Can do boolean operations (&, |) between arrays (just like addition,

subtraction)
- data[(names == 'Bob') | (names == 'Will')]

• Note: or and and do not work with arrays
• We can set values too! data[data < 0] = 0

26D. Koop, CSCI 640/490, Spring 2023

Tables

Attributes (columns)

Items
(rows)

Cell containing value

Networks

Link

Node
(item)

Trees

Fields (Continuous)

Attributes (columns)

Value in cell

Cell

Multidimensional Table

Value in cell

Grid of positions

Geometry (Spatial)

Position

Dataset TypesWhat is Data?

27

[Munzner (ill. Maguire), 2014]
D. Koop, CSCI 640/490, Spring 2023

24
1 = Quantitative
2 = Nominal
3 = Ordinal

 quantitative
 ordinal
 categorical

Categorial, Ordinal, and Quantitative

28D. Koop, CSCI 640/490, Spring 2023

Pandas and Data Frames

• Data Frames are tables with many database-like operations
• Index shared across all columns
• Can select, project, merge (join), and more
• Read and write many file formats

29D. Koop, CSCI 640/490, Spring 2023

In [1]:

import pandas as pd

In []:

import numpy as np

In [2]:

read the dataset using pandas
df = pd.read_csv("Food_Inspections.csv")

In []:

look at the dataset, nice table formatting
df

In []:

just the beginning of the dataset
df.head()

In []:

number of records
len(df)

Out[2]:

Inspection ID DBA Name AKA Name License # Facility Type Risk Address City State Zip Inspection Date Inspection Type Results Violations Latitude Longitude Location

0 2356580 UNCOOKED LLC UNCOOKED LLC 2709319.0 NaN All 210 N CARPENTER ST CHICAGO IL 60607.0 01/13/2020 License Not Ready NaN 41.885945 -87.653462 (-87.65346178255953, 41.88594495760403)

1 2356551 MOJO 33 NORTH LASALLE LLC MOJO 33 NORTH LASALLE LLC 2689550.0 Restaurant Risk 1 (High) 33 N LA SALLE ST CHICAGO IL 60602.0 01/13/2020 License Re-Inspection Pass NaN 41.882798 -87.632242 (-87.63224208140493, 41.88279770704961)

2 2356492 LA BIZNAGA #2 LA BIZNAGA #2 2708992.0 NaN Risk 1 (High) 2949 W BELMONT AVE CHICAGO IL 60618.0 01/10/2020 License Not Ready NaN 41.939256 -87.702270 (-87.70226967930802, 41.939255926667535)

3 2356432 LAS TABLAS LAS TABLAS 1617900.0 Restaurant Risk 1 (High) 4920 W IRVING PARK RD CHICAGO IL 60641.0 01/09/2020 Canvass Pass 16. FOOD-CONTACT SURFACES: CLEANED & SANITIZED... 41.953486 -87.750732 (-87.75073172757178, 41.95348584271347)

4 2356423 GIORDANO'S OF BEVERLY GIORDANO'S OF BEVERLY 2074456.0 Restaurant Risk 1 (High) 9613 S WESTERN AVE CHICAGO IL 60643.0 01/09/2020 Canvass Pass 55. PHYSICAL FACILITIES INSTALLED, MAINTAINED ... 41.718683 -87.681848 (-87.68184758141176, 41.71868263931775)

...

199687 112321 PANDA EXPRESS #236 PANDA EXPRESS #236 1801495.0 Restaurant Risk 1 (High) 77 W JACKSON BLVD CHICAGO IL 60604.0 02/18/2010 Suspected Food Poisoning Pass 33. FOOD AND NON-FOOD CONTACT EQUIPMENT UTENSI... 41.878041 -87.630493 (-87.63049344911161, 41.87804100375637)

199688 74300 KENNYS RIBS & CHICKEN UNCLE JOE'S 81030.0 Restaurant Risk 1 (High) 1453 E HYDE PARK BLVD CHICAGO IL 60615.0 02/08/2010 Complaint Pass 30. FOOD IN ORIGINAL CONTAINER, PROPERLY LABEL... 41.802338 -87.589676 (-87.58967573279067, 41.80233814333551)

199689 70314 Cafe Marbella Cafe Marbella 2016764.0 Restaurant Risk 1 (High) 5527-5531 N Milwaukee AVE CHICAGO IL 60630.0 01/28/2010 License Re-Inspection Pass NaN 41.982350 -87.773660 (-87.77365984476519, 41.982350141069084)

199690 78309 WALGREENS # 07876 WALGREENS # 07876 2004292.0 Grocery Store Risk 3 (Low) 7544 S STONY ISLAND AVE CHICAGO IL 60649.0 02/18/2010 TASK FORCE LIQUOR 1474 Pass NaN 41.757396 -87.586251 (-87.58625101198423, 41.7573962131662)

199691 150209 YSABEL'S FILIPINO CUISINE YSABEL'S GRILL ASIAN CUISINE 2013419.0 Restaurant Risk 1 (High) 4908 W Irving Park RD CHICAGO IL 60641.0 01/12/2010 License Re-Inspection Pass NaN 41.953485 -87.750248 (-87.750248227467, 41.953485015058135)

199692 rows × 17 columns

6F INDINGS

we got about the future of the data science,

the most salient takeaway was how excited our

respondents were about the evolution of the

field. They cited things in their own practice, how

they saw their jobs getting more interesting and

less repetitive, all while expressing a real and

broad enthusiasm about the value of the work in

their organization.

As data science becomes more commonplace and

simultaneously a bit demystified, we expect this

trend to continue as well. After all, last year’s

respondents were just as excited about their

work (about 79% were “satisfied” or better).

How a Data Scientist Spends Their Day

Here’s where the popular view of data scientists diverges pretty significantly from reality. Generally,

we think of data scientists building algorithms, exploring data, and doing predictive analysis. That’s

actually not what they spend most of their time doing, however.

As you can see from the chart above, 3 out of every 5 data scientists we surveyed actually spend the

most time cleaning and organizing data. You may have heard this referred to as “data wrangling” or

compared to digital janitor work. Everything from list verification to removing commas to debugging

databases–that time adds up and it adds up immensely. Messy data is by far the more time- consuming

aspect of the typical data scientist’s work flow. And nearly 60% said they simply spent too much

time doing it.

Data scientist job satisfaction

60%

19%

9%

4%
5%3%

 Building training sets: 3%

 Cleaning and organizing data: 60%

 Collecting data sets; 19%

 Mining data for patterns: 9%

 Refining algorithms: 4%

 Other: 5%

What data scientists spend the most time doing

4.0
5

4

3

2

1

35%

47%

12%

6%

1%

How do data scientists spend their time?

30

[CrowdFlower Data Science Report, 2016]
D. Koop, CSCI 640/490, Spring 2023

http://visit.crowdflower.com/rs/416-ZBE-142/images/CrowdFlower_DataScienceReport_2016.pdf

Data Wrangling
• Automated Transformation Suggestions
• Editable Natural Language Explanations

• Visual Transformation Previews
• Transformation History

31

[S. Kandel et al., 2011]
D. Koop, CSCI 640/490, Spring 2023

intended to enhance analysts’ ability to review and refine
transformation steps. Textual annotations enable communi-
cation of analyst intent. Wrangler also couples verification
(run in the background as data is transformed) with visual-
ization to help users discover data quality issues.

Basic Interactions
The Wrangler interface supports six basic interactions within
the data table. Users can select rows, select columns, click
bars in the data quality meter, select text within a cell, edit
data values within the table (for mass editing [14, 19]), and
assign column names, data types or semantic roles. Users
can also choose transforms from the menu or refine sugges-
tions by editing transform descriptions as described below.

Automated Transformation Suggestions
As a user interacts with data, Wrangler generates a list of
suggested transforms. In some cases the set of possible sug-
gestions is large (in the hundreds), but we wish to show only
a relevant handful to avoid overload. Instead of enumerat-
ing the entire suggestion space, users can prune and reorder
the space in three ways. First, users can provide more exam-
ples to disambiguate input to the inference engine. Providing
examples is especially effective for text selections needed
for splitting, extraction, and reformatting; two or three well-
chosen examples typically suffice. Second, users can filter
the space of transforms by selecting an operator from the
transform menu. Third, users can edit a transform by alter-
ing the parameters of a transform to a desired state.

Wrangler does not immediately execute a selected sugges-
tion. Instead, Wrangler makes it the current working trans-
form. The user can edit this transform directly; as a user edits
parameters, the suggestion space updates to reflect these ed-
its. Also, a user can instead interact with the table to generate
new suggestions that use the working transform as context.

Natural Language Descriptions
To aid apprehension of suggested transforms, Wrangler gen-
erates short natural language descriptions of the transform
type and parameters. These descriptions are editable, with
parameters presented as bold hyperlinks (Fig. 8). Clicking
a link reveals an in-place editor appropriate to the parameter
(Fig. 8b). Enumerable variables (such as the direction of a
fill) are mapped to drop-down menus while free-form text
parameters are mapped to text editors with autocomplete.

We designed these descriptions to be concise; default param-
eters that are not critical to understanding may be omitted.
For example, the unless between parameter for split opera-
tions indicates regions of text to ignore while splitting. In
most cases, this parameter is left undefined and including it
would bloat the description. To edit hidden parameters, users
can click the expansion arrow to the left of the description,
revealing an editor with entries for all possible parameters.

We also sought to make parameters within descriptions read-
able by non-experts. For instance, we translate regular ex-
pressions into natural language via pattern substitution (e.g.,
(\d+) to ‘number’). This translation can make some descrip-
tions less concise but increases readability. Translation is

Figure 8. Editable Natural Language Descriptions. (a) An example of

an editable description; highlighted text indicates editable parameters.

(b) Clicking on a parameter reveals an in-place editor. (c) After editing,

the description may update to include new parameters. In this case, a

new window size parameter is displayed for the moving average.

only performed with regular expressions generated by the
Wrangler inference engine. If a user types in a custom ex-
pression, Wrangler will reflect their input.

Visual Transformation Previews
Wrangler uses visual previews to enable users to quickly
evaluate the effect of a transform. For most transforms, Wran-
gler displays these previews in the source data, and not as
a separate visualization (e.g., side-by-side before and after
views). In-place previews provide a visual economy that
serves a number of goals. First, displaying two versions of
a table inherently forces both versions to be small, which
is particularly frustrating when the differences are sparse.
Second, presenting in-place modifications draws user atten-
tion to the effect of the transformation in its original context,
without requiring a shift in focus across multiple tables. As
we discuss next, in-place previews better afford direct ma-
nipulation for users to revise the current transform.

Wrangler maps transforms to at least one of five preview
classes: selection, deletion, update, column and table. In
defining these mappings, we attempted to convey a trans-
form’s effect with minimum displacement of the original
data. This stability allows users to continue interacting with
the original data, e.g., to provide new selection examples.

Selection previews highlight relevant regions of text in all
affected cells (Fig. 3). Deletion previews color to-be-deleted
cells in red (Fig. 2). Update previews overwrite values in a
column and indicate differences with yellow highlights (Fig.
4). Column previews display new derived columns, e.g., as
results from an extract operation (Fig. 3). We show a side-
by-side display of versions when previewing fold and unfold
transforms. These alter the structure of the table to such an
extent that the best preview is to show another table (Fig.
6, 9). These table previews use color highlights to match
input data to their new locations in the output table. Some
transforms map to multiple classes; e.g., extract transforms
use both selection and column previews.

When possible, previews also indicate where the user can
modify the transform through either direct manipulation or
description refinement. Highlighting selected text or cells
works well for certain transformations. For example, by

DataWrangler

ExportImport

Split data repeatedly on
newline into rows

Split split repeatedly on
","

Promote row 0 to header

Delete rows 0,1

Fill row 0 by copying
values from the left

Transform Script

Text

Split

Cut

Columns

Fill

Drop

Rows

Delete

Fill

Promote

Table

Fold

Unfold

Clear

split split1 split2 split3 split4

0 2004 2004 2004 2003
1 STATE Participation Rate 2004 Mean SAT I Verbal Mean SAT I Math Participation Rate 2003
2 New York 87 497 510 82
3 Connecticut 85 515 515 84
4 Massachusetts 85 518 523 82
5 New Jersey 83 501 514 85
6 New Hampshire 80 522 521 75
7 D.C. 77 489 476 77
8 Maine 76 505 501 70
9 Pennsylvania 74 501 502 73

10 Delaware 73 500 499 73
11 Georgia 73 494 493 66

split fold fold1 value

0 New York 2004 Participation Rate 2004
1 New York 2004 Mean SAT I Verbal
2 New York 2004 Mean SAT I Math
3 New York 2003 Participation Rate 2003
4 New York 2003 Mean SAT I Verbal
5 New York 2003 Mean SAT I Math
6 Connecticut 2004 Participation Rate 2004
7 Connecticut 2004 Mean SAT I Verbal
8 Connecticut 2004 Mean SAT I Math
9 Connecticut 2003 Participation Rate 2003

10 Connecticut 2003 Mean SAT I Verbal
11 Connecticut 2003 Mean SAT I Math

87
497
510
82
496
510
85
515
515
84
512
514

Figure 9. Visual preview of a fold operation. For transforms that rear-

range table layout, Wrangler previews the output table and uses color

highlights to show the correspondence of values across table states.

highlighting the text selected by a regular expression in each
cell, users can determine which examples they need to fix.
For reshape transforms, Wrangler highlights the input data
in the same color as the corresponding output in the sec-
ondary table. For instance, in a fold operation, data values
that will become keys are colored to match the keys in the
output table (Fig. 9). Wrangler also highlights the param-
eters in the transform description using the same colors as
those generated in previews (Fig. 3–6). The consistent use
of colors allows users to associate clauses in a description
with their effects in the table.

Transformation Histories and Export
As successive transforms are applied, Wrangler adds their
descriptions to an interactive transformation history viewer.
Users can edit individual transform descriptions and selec-
tively enable and disable prior transforms. Upon changes,
Wrangler runs the edited script and updates the data table.
Toggling or editing a transform may result in downstream er-
rors; Wrangler highlights broken transforms in red and pro-
vides an error message to aid debugging.

Wrangler scripts also support lightweight text annotations.
Analysts can use annotations to document their rationale for
a particular transform and may help future users better un-
derstand data provenance. To annotate a transform, users can
click the edit icon next to the desired transform and write
their annotation in the resulting text editor. Users can view
an annotation by mousing over the same edit icon. These
annotations appear as comments in code-generated scripts.
Users can export both generated scripts and transformed data;
clicking the Export button in the transform history invokes
export options. Analysts can later run saved or exported
scripts on new data sources, modifying the script as needed.

TYPES, ROLES, AND VERIFICATION
It is often difficult to discover data quality issues and there-
fore difficult to address them by constructing the appropri-
ate transform. Wrangler aids discovery of data quality issues
through the use of data types and semantic roles.

As users transform data, Wrangler attempts to infer the data
type and semantic role for each column. Wrangler applies
validation functions to a sample of a column’s data to infer

these types, assigning the type that validates for over half of
the non-missing values. When multiple types satisfy this cri-
teria, Wrangler assigns the more specific one (e.g., integer is
more specific than double). Wrangler infers semantic roles
analogously. An icon in the column header indicates the se-
mantic role of the column, or the underlying data type if no
role has been assigned. Clicking the icon reveals a menu
with which users can manually assign a type or role.

Above each column is a data quality meter: a divided bar
chart that indicates the proportion of values in the column
that verify completely. Values that parse successfully are in-
dicated in green; values that match the type but do not match
the role (e.g., a 6 digit zip code) are shown in yellow; those
that do not match the type (e.g., ‘One’ does not parse as an
integer) are shown in red; and missing data are shown in
gray. Clicking a bar generates suggested transforms for that
category. For instance, clicking the missing values bar will
suggest transforms to fill in missing values or delete those
rows. Clicking the fails role bar will suggest transforms such
as a similarity join on misspelled country names.

THE WRANGLER INFERENCE ENGINE
We now present the design of the Wrangler inference engine,
which is responsible for generating a ranked list of suggested
transforms. Inputs to the engine consist of user interactions;
the current working transform; data descriptions such as col-
umn data types, semantic roles, and summary statistics; and
a corpus of historical usage statistics. Transform sugges-
tion proceeds in three phases: inferring transform parame-
ters from user interactions, generating candidate transforms
from inferred parameters, and finally ranking the results.

Usage Corpus and Transform Equivalence
To generate and rank transforms, Wrangler’s inference en-
gine relies on a corpus of usage statistics. The corpus con-
sists of frequency counts of transform descriptors and initi-
ating interactions. We built our initial corpus by wrangling
our collection of gathered data sets. The corpus updates over
time as more analysts use Wrangler.

For any given transform, we are unlikely to find an exact
match in the corpus. For instance, an analyst may perform
a fold operation over a combination of columns and rows
that does not appear in the corpus. In order to get useful
transform frequencies, we define a relaxed matching routine:
two transforms are considered equivalent in our corpus if (a)
they have an identical transform type (e.g., extract or fold)
and (b) they have equivalent parameters as defined below.

Wrangler transforms accept four basic types of parameters:
row, column or text selections and enumerables. We treat
two row selections as equivalent if they both (a) contain fil-
tering conditions (either index- or predicate-based) or (b)
match all rows in a table. Column selections are equivalent
if they refer to columns with the same data type or semantic
role. We based this rule on the observation that transforms
that operate on identical data types are more likely to be
similar. Text selections are equivalent if both (a) are index-
based selections or (b) contain regular expressions. We con-

Figure 2: TDE transformation for date-time. (Left): user provides two desired output examples in column-D,
for the input data in column-C. (Right): After clicking on the “Get Transformation” button, TDE synthesizes
programs consistent with the given examples, and return them as a ranked list within a few seconds. Hovering
over the first program (using System.DateTime.Parse) gives a preview of all results (shaded in green).

Figure 3: (Left): transformation for names. The first three values in column-D are provided as output
examples. The desired first-names and last-names are marked in bold for ease of reading. A composed
program using library CSharpNameParser from GitHub is returned. (Right): transformations for addresses.
The first two values are provided as output examples to produce city, state, and zip-code. Note that some of
these info are missing from the input. A program invoking Bing Maps API is returned as the top result.

entered. For instance, in the first column dates are rep-
resented in many di↵erent formats. In the second column,
some customer names have first-name followed by last-name,
while others are last-name followed by comma, then first-
name, with various salutations (Mr., Dr., etc.) and su�xes
(II, Jr., etc.). Phone numbers are also inconsistent, with
various international calling codes (+1) and extensions (ext
2001), etc. Addresses in the last column are also not clean,
often with missing state and zip-code information.

This data in Figure 1 is clearly not ready for analysis
yet – an analyst wanting to figure out which day-of-the-
week has the most sales, for instance, cannot find it out
by executing a SQL query: the date column needs to be
transformed to day-of-the-week first, which however is non-
trivial even for programmers. Similarly the analyst may
want to analyze sales by area-code (which can be extracted
from phone-numbers), or by zip-code (from addresses), both
of which again require non-trivial data transformations.

In a separate scenario, suppose one would like identified
possible duplicate customer records in Figure 1, by first stan-
dardizing customer names into a format with only last and
first names (e.g., both the first two records will convert into
“Doe, John”). This again requires complex transformations.

Data transformation is clearly di�cult. However, our ob-
servation is that these domain-specific transformation prob-
lems like name parsing and address standardization are re-
ally not new – for decades developers have built custom
code libraries to solve them in a variety of domains, and
shared their code in places like GitHub. In a recent crawl,
we obtained over 1.8M functions extracted from code li-
braries crawled from GitHub, and over 2M code snippets
from StackOverflow, some of which specifically written to
handle data transformations in a variety of domains.

Transform-Data-by-Example. The overarching goal of
the project is to build a search engine for end-users to eas-
ily reuse code for transformations from existing sources.
Specifically, we adopt the by-example paradigm and build a
production-quality system called Transform-Data-by-Example
(TDE). The front-end of TDE is an Excel add-in, currently
in beta and available from O�ce Store [7]. From the Excel
add-in, users can find transformations by providing a few in-
put/output examples. In Figure 2(left), a user provides two
output examples to specify the desired output. Once she
clicks on the “Get Suggestions” button, the front-end talks
to the TDE back-end service running on Microsoft Azure
cloud, which searches over thousands of indexed functions,
to on-the-fly synthesize new programs consistent with all
examples. In the right part of Figure 2, a ranked list of pro-
grams are returned based on program complexity. The top-
ranked program uses the System.DateTime.Parse() func-
tion from the .Net system library to generate correct output
for all input. Figure 3 shows additional examples for trans-
forming names and addresses using the data in Figure 1.
TDE has a number of unique features, which we believe

are important first steps towards realizing self-service data
transformation.
• Search-by-Example. TDE works like a search engine, which
allows end-users to search transformations by just a few ex-
amples, a paradigm known as program-by-example (PBE) [23]
that was also used by FlashFill [16] for data transformation
with much success. Compared to existing PBE systems such
as FlashFill that compose a small number of string primi-
tives predefined in a Domain Specific Language (DSL), TDE
synthesizes programs from a much larger search space (tens
of thousands of functions). We develop novel algorithms to
make it possible at an interactive speed.

1166

TDE: Transform Data by Example

32

[Y. He et al., 2018]
D. Koop, CSCI 640/490, Spring 2023

Transform by Pattern: Automating Unify/Repair
• Auto-Unify

• Auto-Repair

33D. Koop, CSCI 640/490, Spring 2023

(a) EN-Wiki: Dates (b) EN-Wiki: Currency values (c) EN-

wiki:time

(d) EN-Wiki: Date

(e) ZH-Wiki: Units (f) ZH-Wiki: Ordinals (g) ZH-Wiki: Date (h) JA-Wiki: Year

(i) JA-Wiki: Date (j) ES-Wiki: Numbers (k) ES-Wiki: Numbers (l) ES-Wiki: Date

Figure 3: Auto-Repair: Real quality issues (in red boxes) from Wikipedia tables that are fixable by TBP programs. Note
that the examples span di�erent languages (English, Chinese, Japanese, Spanish, etc.)

2. SYSTEM ARCHITECTURE
Figure 6 gives a high-level overview of the architecture

of our system. There are three main components, which
are all o�ine processing steps. The first component takes a
large corpus of tables (e.g., web tables or enterprise spread-
sheets), find related tables, link/join records across tables
(like shown in Figure 4 and Figure 5), to produce paired
columns (C, CÕ) like in Table 2 (Section 3).

The second component uses paired columns (C, CÕ) as if
they are input/output columns in a transformation task, and
invokes TBE to find possible transformation T consistent
with all examples in (C, CÕ). If TBE synthesizes such a T ,
the (C, CÕ, T) triple is populated in Table 2 (Section 4).

In the last stage, we analyze (C, CÕ, T) triples in Table 2
in a global manner, in order to identify TBP programs that
are both commonly-used and highly-accurate. We formulate
an automated approach to harvest such programs, as well
as a human-curated variant that can leverage human labels
e�ectively (Section 5).

We now discuss each component in turn.

3. PAIR COLUMNS WITH LINKED ROWS
In this section, we discuss the first part of our system,

which takes a large collection of tables T as input, and pro-

duces pairs of columns that are linked row-by-row. In this
section, we discuss 3 di�erent ways to achieve this in turn,
using a corpus of over 100M web tables [18]6

3.1 Pair Columns by Search Engine
Our first approach leverages search engines, utilizing the

observation that pages returned for the same keyword query
often contain related tables. We perform 3 steps here: pair-
ing tables, linking rows, and pairing columns.

Pairing tables. We take the query-logs of a commercial
search engine, and first use a production classifier [18] to
select queries known as “table-intent queries” [18], which are
data-seeking queries such as “list of us presidents”, “list
of national parks”, “list of chemical elements”, etc. We
obtain a total of 16M table-intent queries, denoted by Q.

For each query q œ Q, we retrieve all web tables in the
top-20 pages returned by the search engine, denoted by Tq,
which contains tables related to query q. For example, ta-
bles in Figure 4 are all retrieved for the query “list of us
presidents”. We can then pair such tables in Tq to produce
table-pairs PQ = {(T, T Õ)|T œ Tq, T Õ œ Tq, T ”= T Õ, q œ Q}.

Linking rows. Recall that in order to utilize TBE to
generate programs, we need paired input/output examples.
6Similar web-table data sets are publicly available in [2, 8].

2371

Figure 2: Two tables R and S with schema (time-stamps,
phone-number, geo-coordinates). Integrating the two would
require values to be reformatted using transformations.

invokes the TBE feature, and enters two output examples
(1997-01-12 and 1997-02-02) in the “Custom” column on the
right, to demonstrates a desired transformation. In response
to user input, the system synthesizes a transformation pro-
gram consistent with the two given input/output examples,
which is shown at the top of the figure (this program invokes
a total of 7 functions, including Text.Combine, Date.ToText,
etc.). Furthermore, a preview of remaining output values
is shown in gray (beneath user-provided examples), which
helps users to verify the correctness of the suggested trans-
formation.

Transform-by-Pattern (TBP). The by-example TBE
paradigm is clearly an excellent fit for Excel-like spread-
sheet environments. As we will see below, however, in other
settings it may not be as easy to invoke TBE, for it can
be hard for users to identify columns requiring transforma-
tions, and then provide paired input/output examples. We
in this work propose an alternative Transform-by-Pattern
(TBP) paradigm to complement the TBE approach, which
can proactively suggest relevant transformations based only
on input/output data patterns (with no paired examples).

More concretely, each TBP program is a triple (Ps, Pt,
T), where Ps and Pt are data “patterns” (e.g., in regex)
describing the source and target column, for which the cor-
responding program T is applicable.

Table 1 shows a list of example TBP programs (we will
discuss how to harvest them in detail). Each row here is a
TBP program that consists of a triple (Ps, Pt, T). For the
TBP program labeled as TBP-1 in the first row, its source
pattern Ps is: “<letter>{3}. <digit>{2}, <digit>{4}” and
target pattern Pt is: “<digit>{4}-<digit>{2}-<digit>{2}”.
Note that these two patterns can be used to describe the
example TBE case shown in Figure 1; the corresponding
transformation program (shown at the top of Figure 1) can
be “memorized” in the last column T of Table 1 (omitted in
the table in the interest of space).

In the following, we use two concrete applications, Auto-
Unify and Auto-Repair, to demonstrate that such TBP pro-
grams can enable scenarios complementary to TBE. We em-
phasize that TBP is not meant to replace the general-purpose
TBE, especially in spreadsheet settings where users can eas-
ily identify target output and enter examples.

TBP for “Auto-Unify”. Data transformation is of-
ten required in applications like ETL and data integration,
where data of di�erent formats from multiple sources need
to be unified and standardized.

Figure 2 shows two example tables denoted by R and S,

both containing telemetry data of the form: (time-stamp,
cellular-device-numbers, geo-coordinates). As is often the
case in the real world, R and S are formatted di�erently
(e.g., the telemetry may be generated by di�erent types of
devices, or di�erent versions of programs), and need to be
integrated, which is a common task in ETL [26, 44].

Today, data engineers need to first identify such issues like
in Figure 2 (a time-consuming task when there are many
such feeds and columns). They would then write ad-hoc
transformation scripts, in order to unify each pair of incom-
patible data columns.

We argue that armed with a repository of TBP programs
like in Table 1, the task of identifying and addressing afore-
mentioned issues can be partially automated. Specifically,
given that R-timestamp and S-timestamp need to be merged,
based on the patterns of values in these two columns, we can
suggest TBP-1 in Table 1 to be used, because its source pat-
tern Ps = “<letter>{3}. <digit>{2}, <digit>{4}” and tar-
get pattern Pt = “<digit>{4}-<digit>{2}-<digit>{2}” match
with R-timestamp and S-timestamp, respectively. This allows
us to proactively suggest the corresponding T to perform
this transformation.

Similarly, the patterns Ps and Pt in TBP-2 and TBP-3 from
Table 1 would match with column-pairs (S-phone, R-phone)
and (S-coordinates, R-coordinates) in Figure 2, respectively,
suggesting two additional transformations that can be per-
formed. It should be noted that TBE typically requires
paired examples and would not apply here.

TBP for “Auto-Repair”. As an additional example
application, we show that TBP can also help to identify and
fix inconsistent data values in tables. Figure 3 shows real
data quality issues in Wikipedia tables that are identified
and fixed by TBP programs produced in this work.

For instance, in Figure 3(a), using TBP we can detect
that values in the Date column have two distinct patterns:
“<digit>{4}-<digit>{2}-<digit>{2}” (e.g., “1997-06-04”) as
well as “<letter>+ <digit>{2}, <digit>{4}” (“January 12,
1997”). Since these two patterns match with Ps and Pt of
a TBP program in Table 1, it likely indicates data inconsis-
tency. With TBP, we could bring these two groups of values
to users attention, and propose fixes by applying the cor-
responding T (e.g., transforming “1997-06-04” to “June 4,
1997”).

We note that the TBP framework is general and applies
to diverse types of transformations, including data in dif-
ferent languages (e.g., Spanish, Chinese, etc.), and data in
di�erent domains (e.g., chemical, financial, etc.). For exam-
ple, some of the cases in Figure 3 require transformations in
languages other than English, such as Figure 3(e) (fixable
by TBP-15), and Figure 3(l) (fixable by TBP-16), etc. These
are all real TBP programs harvested from di�erent table
corpora (e.g., Wikipedia tables in di�erent languages). Our
evaluation suggests that these TBP programs can detect and
fix thousands of real issues across di�erent languages.

For non-technical users working on spreadsheet data (e.g.,
in Microsoft Excel or Tableau), TBP makes it possible to au-
tomatically flag and repair a subclass of data format issues.
We note that TBP once again complements traditional TBE
approaches, which would require explicit paired-examples in
order to suggest transformations.

In short, TBP can program a rich class of transformations,
creating opportunities to simplify data transformation in ap-
plications such as Auto-Repair and Auto-Unify.

2369

Figure 4: An example group of 6 web tables on US presidents, extracted from top-ranked documents for query “list of us
presidents”. Note that the same date-of-birth information is being represented in 6 di�erent formats, which can be used as
input/output examples for TBE to learn common TBP transformations.

Figure 5: An example group of 4 Wikipedia tables in di�erent languages (clockwise: English, Chinese, German, Spanish)
that we can link at a row-level (using Wiki inter-language links for pages with the same content). Note that the “date-in-o�ce”
is being represented in di�erent languages across 4 tables, providing examples to learn such transformations.

Figure 6: System Architecture: Learn TBP Programs.

So for a given pair (T, T Õ) œ PQ, we additionally need to
find row-level “links” between T and T Õ (e.g., the first row
of T1 in Figure 4 corresponds to the first row of T2, etc.).

In an ideal setting, such row-level links can be obtained by
equi-joins on key-columns. However, in practice equi-joins
typically fail, because values are often coded/formatted dif-
ferently between tables in the wild – e.g., names of presidents
are formatted di�erently as shown in Figure 4.

To account for syntactic variations in the key-columns, we
leverage an existing “auto-join” system [68]7 to automati-
cally identify join relationships. Specifically, given (T, T Õ) œ
PQ, we take two left-most non-numeric columns from T and

7
A variant of this system is publicly available in Azure ML Data

Prep: https://docs.microsoft.com/en-us/python/api/azureml-dataprep/azureml.dataprep.

api.builders.joinbuilder

T Õ (which likely include key columns), and invoke the “auto-
join” system to find possible joins.

Example 1. For T1, T2 in Figure 4, we use [68] to au-
tomatically infer a join-program J , which performs the fol-
lowing operations on the “Name” column of T1: (1) splitting
names like “Washington, George” by comma (producing an
array with two elements like [“Washington”, “George”]); (2)
concatenating the second element with the first element us-
ing a space (producing values like “George Washington”).

Note that applying J on the “Name” column in T1 produces
values like {“George Washington”, “John Adams”, . . . }, which
precisely match the key values in T2, such that an “equi-
join” can now be performed to link the two tables together.
We consider this J to be reliable, as most rows can be joined
1:1 using J .

The auto-join approach allows us to link rows together
between other table-pairs in Figure 4 similarly. We find this
approach produces substantially more links than equi-join,
which are also more accurate than fuzzy-join (because it
uses precise transformations). More details of this step can

2372

TBP: Learning from Tables

34D. Koop, CSCI 640/490, Spring 2023

Figure 4: An example group of 6 web tables on US presidents, extracted from top-ranked documents for query “list of us
presidents”. Note that the same date-of-birth information is being represented in 6 di�erent formats, which can be used as
input/output examples for TBE to learn common TBP transformations.

Figure 5: An example group of 4 Wikipedia tables in di�erent languages (clockwise: English, Chinese, German, Spanish)
that we can link at a row-level (using Wiki inter-language links for pages with the same content). Note that the “date-in-o�ce”
is being represented in di�erent languages across 4 tables, providing examples to learn such transformations.

Figure 6: System Architecture: Learn TBP Programs.

So for a given pair (T, T Õ) œ PQ, we additionally need to
find row-level “links” between T and T Õ (e.g., the first row
of T1 in Figure 4 corresponds to the first row of T2, etc.).

In an ideal setting, such row-level links can be obtained by
equi-joins on key-columns. However, in practice equi-joins
typically fail, because values are often coded/formatted dif-
ferently between tables in the wild – e.g., names of presidents
are formatted di�erently as shown in Figure 4.

To account for syntactic variations in the key-columns, we
leverage an existing “auto-join” system [68]7 to automati-
cally identify join relationships. Specifically, given (T, T Õ) œ
PQ, we take two left-most non-numeric columns from T and

7
A variant of this system is publicly available in Azure ML Data

Prep: https://docs.microsoft.com/en-us/python/api/azureml-dataprep/azureml.dataprep.

api.builders.joinbuilder

T Õ (which likely include key columns), and invoke the “auto-
join” system to find possible joins.

Example 1. For T1, T2 in Figure 4, we use [68] to au-
tomatically infer a join-program J , which performs the fol-
lowing operations on the “Name” column of T1: (1) splitting
names like “Washington, George” by comma (producing an
array with two elements like [“Washington”, “George”]); (2)
concatenating the second element with the first element us-
ing a space (producing values like “George Washington”).

Note that applying J on the “Name” column in T1 produces
values like {“George Washington”, “John Adams”, . . . }, which
precisely match the key values in T2, such that an “equi-
join” can now be performed to link the two tables together.
We consider this J to be reliable, as most rows can be joined
1:1 using J .

The auto-join approach allows us to link rows together
between other table-pairs in Figure 4 similarly. We find this
approach produces substantially more links than equi-join,
which are also more accurate than fuzzy-join (because it
uses precise transformations). More details of this step can

2372

Tidy Data

35

[H. Wickham, 2014]
D. Koop, CSCI 640/490, Spring 2023

Journal of Statistical Software 3

2.1. Data structure

Most statistical datasets are rectangular tables made up of rows and columns. The columns
are almost always labelled and the rows are sometimes labelled. Table 1 provides some data
about an imaginary experiment in a format commonly seen in the wild. The table has two
columns and three rows, and both rows and columns are labelled.

treatmenta treatmentb

John Smith — 2
Jane Doe 16 11
Mary Johnson 3 1

Table 1: Typical presentation dataset.

There are many ways to structure the same underlying data. Table 2 shows the same data
as Table 1, but the rows and columns have been transposed. The data is the same, but the
layout is di↵erent. Our vocabulary of rows and columns is simply not rich enough to describe
why the two tables represent the same data. In addition to appearance, we need a way to
describe the underlying semantics, or meaning, of the values displayed in table.

John Smith Jane Doe Mary Johnson

treatmenta — 16 3
treatmentb 2 11 1

Table 2: The same data as in Table 1 but structured di↵erently.

2.2. Data semantics

A dataset is a collection of values, usually either numbers (if quantitative) or strings (if
qualitative). Values are organised in two ways. Every value belongs to a variable and an
observation. A variable contains all values that measure the same underlying attribute (like
height, temperature, duration) across units. An observation contains all values measured on
the same unit (like a person, or a day, or a race) across attributes.

Table 3 reorganises Table 1 to make the values, variables and obserations more clear. The
dataset contains 18 values representing three variables and six observations. The variables
are:

1. person, with three possible values (John, Mary, and Jane).

2. treatment, with two possible values (a and b).

3. result, with five or six values depending on how you think of the missing value (-, 16,
3, 2, 11, 1).

The experimental design tells us more about the structure of the observations. In this exper-
iment, every combination of of person and treatment was measured, a completely crossed
design. The experimental design also determines whether or not missing values can be safely

Journal of Statistical Software 3

2.1. Data structure

Most statistical datasets are rectangular tables made up of rows and columns. The columns
are almost always labelled and the rows are sometimes labelled. Table 1 provides some data
about an imaginary experiment in a format commonly seen in the wild. The table has two
columns and three rows, and both rows and columns are labelled.

treatmenta treatmentb

John Smith — 2
Jane Doe 16 11
Mary Johnson 3 1

Table 1: Typical presentation dataset.

There are many ways to structure the same underlying data. Table 2 shows the same data
as Table 1, but the rows and columns have been transposed. The data is the same, but the
layout is di↵erent. Our vocabulary of rows and columns is simply not rich enough to describe
why the two tables represent the same data. In addition to appearance, we need a way to
describe the underlying semantics, or meaning, of the values displayed in table.

John Smith Jane Doe Mary Johnson

treatmenta — 16 3
treatmentb 2 11 1

Table 2: The same data as in Table 1 but structured di↵erently.

2.2. Data semantics

A dataset is a collection of values, usually either numbers (if quantitative) or strings (if
qualitative). Values are organised in two ways. Every value belongs to a variable and an
observation. A variable contains all values that measure the same underlying attribute (like
height, temperature, duration) across units. An observation contains all values measured on
the same unit (like a person, or a day, or a race) across attributes.

Table 3 reorganises Table 1 to make the values, variables and obserations more clear. The
dataset contains 18 values representing three variables and six observations. The variables
are:

1. person, with three possible values (John, Mary, and Jane).

2. treatment, with two possible values (a and b).

3. result, with five or six values depending on how you think of the missing value (-, 16,
3, 2, 11, 1).

The experimental design tells us more about the structure of the observations. In this exper-
iment, every combination of of person and treatment was measured, a completely crossed
design. The experimental design also determines whether or not missing values can be safely

4 Tidy Data

dropped. In this experiment, the missing value represents an observation that should have
been made, but wasn’t, so it’s important to keep it. Structural missing values, which represent
measurements that can’t be made (e.g., the count of pregnant males) can be safely removed.

name trt result

John Smith a —
Jane Doe a 16
Mary Johnson a 3
John Smith b 2
Jane Doe b 11
Mary Johnson b 1

Table 3: The same data as in Table 1 but with variables in columns and observations in rows.

For a given dataset, it’s usually easy to figure out what are observations and what are variables,
but it is surprisingly di�cult to precisely define variables and observations in general. For
example, if the columns in the Table 1 were height and weight we would have been happy
to call them variables. If the columns were height and width, it would be less clear cut, as
we might think of height and width as values of a dimension variable. If the columns were
home phone and work phone, we could treat these as two variables, but in a fraud detection
environment we might want variables phone number and number type because the use of one
phone number for multiple people might suggest fraud. A general rule of thumb is that it is
easier to describe functional relationships between variables (e.g., z is a linear combination
of x and y, density is the ratio of weight to volume) than between rows, and it is easier
to make comparisons between groups of observations (e.g., average of group a vs. average of
group b) than between groups of columns.

In a given analysis, there may be multiple levels of observation. For example, in a trial of new
allergy medication we might have three observational types: demographic data collected from
each person (age, sex, race), medical data collected from each person on each day (number
of sneezes, redness of eyes), and meterological data collected on each day (temperature,
pollen count).

2.3. Tidy data

Tidy data is a standard way of mapping the meaning of a dataset to its structure. A dataset is
messy or tidy depending on how rows, columns and tables are matched up with observations,
variables and types. In tidy data:

1. Each variable forms a column.

2. Each observation forms a row.

3. Each type of observational unit forms a table.

This is Codd’s 3rd normal form (Codd 1990), but with the constraints framed in statistical
language, and the focus put on a single dataset rather than the many connected datasets
common in relational databases. Messy data is any other other arrangement of the data.

Initial Data

Transpose

Tidy Data

AutoSuggest
• Automate "Complex" Data

Preparation steps
• Focus on frame transformations (not

per-cell transformations)
• Learn from Jupyter Notebooks
• Two Types of Predictions:
- Single-Operator Prediction
- Next-Operator Prediction

36

[C. Yan & Y. He]
D. Koop, CSCI 640/490, Spring 2023

Figure 7: Example Pivot operation that creates two-dimensional Pivot-table (right) from an input table (left).

Figure 8: Example of a “bad” Pivot-table (with many
NULLs) that uses the same dimensions as Figure 7.

Figure 9: UI Wizard to create Pivot-table in Excel. It
requires users to drag suitable columns into 4 possi-
ble buckets (shown at bottom) to properly con�gure
Pivot, which typically takes many trials to get right.
Creating Pivot in other systems is similarly complex.
essentially predicting GroupBy columns (both are dimension
attributes); while predicting aggregation-column in Pivot
is the same as predicting Aggregation (both are measures).
E������ 2. Observe that the input table for Pivot in Fig-

ure 7 and the input table for GroupBy in Figure 6 are identical.
Furthermore, the candidate GroupBy columns in Figure 6
(�rst 5 columns) are all reasonable choices as index/header
in a Pivot table. Similarly, the candidate Aggregation columns
in Figure 6 (“Market Cap” and “Revenue”) are all valid choices
for aggregation-column in Pivot.
We therefore directly apply the GroupBy/Aggregation

prediction in Section 4.2, which would determine “Market
Cap” and “Revenue” in Figure 7 as aggregation-column,
and the rest as index/header. From here, users can pick
columns of interest for the desired Pivot. In Figure 7, users
would pick “Sector”, “Ticker”, “Company”, “Year” as relevant
dimensions, and “Revenue” as the aggregation-column.

Predict to Split Index vs. Header. From user-selected
dimension columns, our second prediction task is to auto-
matically identify a “good” placement of these columns by
splitting them into index vs. header, which is di�cult for
users and typically require multiple trial-and-errors.

E������ 3. Users have selected { Sector, Ticker, Company,
Year } from Figure 7 as desired dimension columns. Since

they can either be arranged as index (on the left of the result-
ing Pivot) or header (on the top), there are a total of 24 = 16
possible choices to Pivot. Many of these arrangements are,
however, not ideal.
Figure 8 shows one such example. Observe that since

{ Company, Ticker, Year } are selected as index, while { Sec-
tor } as header, it creates a large number of “NULL” entries
in the resulting Pivot-table, because of a strong dependency
between “Sector” and “Company”. Splitting the two columns
with one at the top and one to the left of the resulting Pivot
would create a large number of empty cells (with 20 indus-
tries in the table, roughly 95% of the entries in the resulting
Pivot is empty).
Similarly arranging “Company” and “Ticker” to di�erent

sides of Pivot is also undesirable as it creates even more
number of empty cells.

These bad Pivots are unlikely to be selected by data scien-
tists and in the data we collect.

We formulate the problem of splitting dimension columns
into index vs. header as an optimization problem. Speci�-
cally, given columns C = {Ci } that users select as dimensions
for the desired Pivot, we need to partition them into index
vs. header. This requires us to consider desirable factors
such as minimizing emptiness, which we will �rst quantify.
Speci�cally, given two columns Ci ,Cj , we model their

“a�nity score”, denoted by a(Ci ,Cj), as the likelihood of
Ci ,Cj being on the same side of Pivot (both in index or
header), which can be seen as their conceptual “closeness”.
To do so, from a large number of Pivot-tables collected from
notebooks, we build a regression model to learn the a�nity
score between any pair of columns, using two features:
• Emptiness-reduction-ratio: This reduction ratio is de�ned
as | {u |u 2T (Ci)} | | {� |� 2T (Cj)} |

| {(u,�) |(u,�)2T (Ci ,Cj)} | , where T (C) denotes values in
column C 2 T . This ratio shows how much emptiness
we can “save” multiplicatively by arranging Ci and Cj
on the same side. For example, Figure 8 has 20 sectors
and 1000 companies, so the reduction-ratio for Sector and
Company is 20⇤1000

1000 = 20, which is signi�cant. However
the reduction-ratio between Year and Sector is 3⇤20

60 = 1,
indicating no saving. Attributes with higher reduction-
ratio should ideally be arranged on the same side to reduce
emptiness of the resulting Pivot.

• Column-position-di�erence: This is the relative di�erence of
positions betweenCi andCj inT . What we observe is that
columns that are close to each other in T are more likely

Figure 7: Example Pivot operation that creates two-dimensional Pivot-table (right) from an input table (left).

Figure 8: Example of a “bad” Pivot-table (with many
NULLs) that uses the same dimensions as Figure 7.

Figure 9: UI Wizard to create Pivot-table in Excel. It
requires users to drag suitable columns into 4 possi-
ble buckets (shown at bottom) to properly con�gure
Pivot, which typically takes many trials to get right.
Creating Pivot in other systems is similarly complex.
essentially predicting GroupBy columns (both are dimension
attributes); while predicting aggregation-column in Pivot
is the same as predicting Aggregation (both are measures).
E������ 2. Observe that the input table for Pivot in Fig-

ure 7 and the input table for GroupBy in Figure 6 are identical.
Furthermore, the candidate GroupBy columns in Figure 6
(�rst 5 columns) are all reasonable choices as index/header
in a Pivot table. Similarly, the candidate Aggregation columns
in Figure 6 (“Market Cap” and “Revenue”) are all valid choices
for aggregation-column in Pivot.
We therefore directly apply the GroupBy/Aggregation

prediction in Section 4.2, which would determine “Market
Cap” and “Revenue” in Figure 7 as aggregation-column,
and the rest as index/header. From here, users can pick
columns of interest for the desired Pivot. In Figure 7, users
would pick “Sector”, “Ticker”, “Company”, “Year” as relevant
dimensions, and “Revenue” as the aggregation-column.

Predict to Split Index vs. Header. From user-selected
dimension columns, our second prediction task is to auto-
matically identify a “good” placement of these columns by
splitting them into index vs. header, which is di�cult for
users and typically require multiple trial-and-errors.

E������ 3. Users have selected { Sector, Ticker, Company,
Year } from Figure 7 as desired dimension columns. Since

they can either be arranged as index (on the left of the result-
ing Pivot) or header (on the top), there are a total of 24 = 16
possible choices to Pivot. Many of these arrangements are,
however, not ideal.
Figure 8 shows one such example. Observe that since

{ Company, Ticker, Year } are selected as index, while { Sec-
tor } as header, it creates a large number of “NULL” entries
in the resulting Pivot-table, because of a strong dependency
between “Sector” and “Company”. Splitting the two columns
with one at the top and one to the left of the resulting Pivot
would create a large number of empty cells (with 20 indus-
tries in the table, roughly 95% of the entries in the resulting
Pivot is empty).
Similarly arranging “Company” and “Ticker” to di�erent

sides of Pivot is also undesirable as it creates even more
number of empty cells.

These bad Pivots are unlikely to be selected by data scien-
tists and in the data we collect.

We formulate the problem of splitting dimension columns
into index vs. header as an optimization problem. Speci�-
cally, given columns C = {Ci } that users select as dimensions
for the desired Pivot, we need to partition them into index
vs. header. This requires us to consider desirable factors
such as minimizing emptiness, which we will �rst quantify.
Speci�cally, given two columns Ci ,Cj , we model their

“a�nity score”, denoted by a(Ci ,Cj), as the likelihood of
Ci ,Cj being on the same side of Pivot (both in index or
header), which can be seen as their conceptual “closeness”.
To do so, from a large number of Pivot-tables collected from
notebooks, we build a regression model to learn the a�nity
score between any pair of columns, using two features:
• Emptiness-reduction-ratio: This reduction ratio is de�ned
as | {u |u 2T (Ci)} | | {� |� 2T (Cj)} |

| {(u,�) |(u,�)2T (Ci ,Cj)} | , where T (C) denotes values in
column C 2 T . This ratio shows how much emptiness
we can “save” multiplicatively by arranging Ci and Cj
on the same side. For example, Figure 8 has 20 sectors
and 1000 companies, so the reduction-ratio for Sector and
Company is 20⇤1000

1000 = 20, which is signi�cant. However
the reduction-ratio between Year and Sector is 3⇤20

60 = 1,
indicating no saving. Attributes with higher reduction-
ratio should ideally be arranged on the same side to reduce
emptiness of the resulting Pivot.

• Column-position-di�erence: This is the relative di�erence of
positions betweenCi andCj inT . What we observe is that
columns that are close to each other in T are more likely

Figure 7: Example Pivot operation that creates two-dimensional Pivot-table (right) from an input table (left).

Figure 8: Example of a “bad” Pivot-table (with many
NULLs) that uses the same dimensions as Figure 7.

Figure 9: UI Wizard to create Pivot-table in Excel. It
requires users to drag suitable columns into 4 possi-
ble buckets (shown at bottom) to properly con�gure
Pivot, which typically takes many trials to get right.
Creating Pivot in other systems is similarly complex.
essentially predicting GroupBy columns (both are dimension
attributes); while predicting aggregation-column in Pivot
is the same as predicting Aggregation (both are measures).
E������ 2. Observe that the input table for Pivot in Fig-

ure 7 and the input table for GroupBy in Figure 6 are identical.
Furthermore, the candidate GroupBy columns in Figure 6
(�rst 5 columns) are all reasonable choices as index/header
in a Pivot table. Similarly, the candidate Aggregation columns
in Figure 6 (“Market Cap” and “Revenue”) are all valid choices
for aggregation-column in Pivot.
We therefore directly apply the GroupBy/Aggregation

prediction in Section 4.2, which would determine “Market
Cap” and “Revenue” in Figure 7 as aggregation-column,
and the rest as index/header. From here, users can pick
columns of interest for the desired Pivot. In Figure 7, users
would pick “Sector”, “Ticker”, “Company”, “Year” as relevant
dimensions, and “Revenue” as the aggregation-column.

Predict to Split Index vs. Header. From user-selected
dimension columns, our second prediction task is to auto-
matically identify a “good” placement of these columns by
splitting them into index vs. header, which is di�cult for
users and typically require multiple trial-and-errors.

E������ 3. Users have selected { Sector, Ticker, Company,
Year } from Figure 7 as desired dimension columns. Since

they can either be arranged as index (on the left of the result-
ing Pivot) or header (on the top), there are a total of 24 = 16
possible choices to Pivot. Many of these arrangements are,
however, not ideal.
Figure 8 shows one such example. Observe that since

{ Company, Ticker, Year } are selected as index, while { Sec-
tor } as header, it creates a large number of “NULL” entries
in the resulting Pivot-table, because of a strong dependency
between “Sector” and “Company”. Splitting the two columns
with one at the top and one to the left of the resulting Pivot
would create a large number of empty cells (with 20 indus-
tries in the table, roughly 95% of the entries in the resulting
Pivot is empty).
Similarly arranging “Company” and “Ticker” to di�erent

sides of Pivot is also undesirable as it creates even more
number of empty cells.

These bad Pivots are unlikely to be selected by data scien-
tists and in the data we collect.

We formulate the problem of splitting dimension columns
into index vs. header as an optimization problem. Speci�-
cally, given columns C = {Ci } that users select as dimensions
for the desired Pivot, we need to partition them into index
vs. header. This requires us to consider desirable factors
such as minimizing emptiness, which we will �rst quantify.
Speci�cally, given two columns Ci ,Cj , we model their

“a�nity score”, denoted by a(Ci ,Cj), as the likelihood of
Ci ,Cj being on the same side of Pivot (both in index or
header), which can be seen as their conceptual “closeness”.
To do so, from a large number of Pivot-tables collected from
notebooks, we build a regression model to learn the a�nity
score between any pair of columns, using two features:
• Emptiness-reduction-ratio: This reduction ratio is de�ned
as | {u |u 2T (Ci)} | | {� |� 2T (Cj)} |

| {(u,�) |(u,�)2T (Ci ,Cj)} | , where T (C) denotes values in
column C 2 T . This ratio shows how much emptiness
we can “save” multiplicatively by arranging Ci and Cj
on the same side. For example, Figure 8 has 20 sectors
and 1000 companies, so the reduction-ratio for Sector and
Company is 20⇤1000

1000 = 20, which is signi�cant. However
the reduction-ratio between Year and Sector is 3⇤20

60 = 1,
indicating no saving. Attributes with higher reduction-
ratio should ideally be arranged on the same side to reduce
emptiness of the resulting Pivot.

• Column-position-di�erence: This is the relative di�erence of
positions betweenCi andCj inT . What we observe is that
columns that are close to each other in T are more likely

https://congyan.org/JupyterNotebooks.pdf

!

Dirty!Data!

Result!Es.ma.on!
(RawSC)!

Dirty!
Sample!

Cleaned!
Sample!

Result!Es.ma.on!
(NormalizedSC)!

Results!with!Con<!
fidence!Intervals!

Aggregate!
Queries!

Sample!Crea.on!

Data!Cleaning!

Results!with!Con<!
fidence!Intervals!

Figure 2: The SampleClean framework.

entire table. To determine it, one way would be to estimate
its value from the sample. However, both analytical proofs
and empirical tests have shown that this method can lead to
highly inaccurate query results [10]. Therefore, in our pa-
per, we determine the duplication factor from the complete
relation.

It is important to note, however, that compared to full
cleaning, we only need to determine the duplication factor
for those tuples in the sample. As with other uses of sam-
pling, this can result in significant cost savings in duplicate
detection. In the following, we will describe how to apply ex-
isting deduplication techniques to compute the duplication
factor, and explain why it is cheaper to determine the du-
plication factor for a sample of the data, even though doing
so requires access to the complete relation.

Duplicate detection (also known as entity resolution) aims
to identify di↵erent tuples that refer to the same real-world
entity. This problem has been extensively studied for several
decades [22]. Most deduplication approaches consist of two
phases:

1. Blocking. Due to the large (quadratic) cost of all-

pair comparisons, data is partitioned into a number

of blocks, and duplicates are considered only within a

block. For instance, if we partition papers based on

conference_name, then only the papers that are pub-

lished in the same conference will be checked for dupli-

cates;

2. Matching. To decide whether two tuples are duplicates

or not, existing techniques typically model this problem

as a classification problem, and train a classifier to la-

bel each tuple pair as duplicate or non-duplicate [9].

In some recent research (and also at many compa-

nies) crowdsourcing is used to get humans to match

tuples [20,54].

A recent survey on duplicate detection has argued that the
matching phase is typically much more expensive than the
blocking phase [13]. For instance, an evaluation of the popu-
lar duplicate detection technique [9] shows that the matching
phase takes on the order of minutes for a dataset of thou-
sands of tuples [39]. This is especially true in the context of
crowdsourced matching where each comparison is performed
by a crowd worker costing both time and money. Sample-
Clean reduces the number of comparisons in the matching
phase, as we only have to match each tuple in the sample
with the others in its block. For example, if we sample 1% of
the table, then we can reduce the matching cost by a factor
of 100.

2.3.3 Result Estimation
After cleaning a sample, SampleClean uses the cleaned

sample to estimate the result of aggregate queries. Simi-
lar to existing SAQP systems, we can estimate query results
directly from the cleaned sample. However, due to data er-
ror, result estimation can be very challenging. For example,

consider the avg(citation_count) query in previous section.
Assume that the data has duplication errors and that papers
with a higher citation count tend to have more duplicates.
The greater the number of duplicates, the higher probability
a paper is sampled, and thus the cleaned sample may con-
tain more highly cited papers, leading to an over-estimated
citation count. We formalize these issues and propose the
RawSC approach to address them in Section 3.
Another quantity of interest is how much the dirty data

di↵ers from the cleaned data. We can estimate the mean
di↵erence based on comparing the dirty and cleaned sam-
ple, and then correct a query result on the dirty data with
this estimate. We describe this alternative approach, called
NormalizedSC, and compare its performance with RawSC
in Section 4.

SampleClean v.s. SAQP: SAQP assumes perfectly clean
data while SampleClean relaxes this assumption and makes
cleaning feasible. In RawSC, we take a sample of data, ap-
ply a data cleaning technique, and then estimate the result.
The result estimation is similar to SAQP, however, we re-
quire a few additional scaling factors related to the clean-
ing. On the other hand, NormalizedSC is quite di↵erent
from typical SAQP frameworks. NormalizedSC estimates
the average di↵erence between the dirty and cleaned data,
and this is only possible in systems that couple data clean-
ing and sampling. What is surprising about SampleClean
is that sampling a relatively small population of the overall
data makes it feasible to manually or algorithmically clean
the sample, and experiments confirm that this cleaning of-
ten more than compensates for the error introduced by the
sampling.

2.3.4 Example: SampleClean with OpenRefine
In this section, we will walk through an example imple-

mentation of SampleClean using OpenRefine [46] to clean
the data. Consider our example dirty dataset of publica-
tions in Figure 1(a). First, the user creates a sample of data
(e.g., 100 records) and loads this sample into the OpenRefine
spreadsheet interface. The user can use the tool to detect
data errors such as missing attributes, and fill in the cor-
rect values (e.g., from another data source or based on prior
domain expertise). Next, for deduplication, the system will
propose potential matches for each publication in the sam-
ple based on a blocking technique and the user can accept
or reject these matches. Finally, the clean sample with the
deduplication information is loaded back into the dataset.
In this example, sampling reduces the data cleaning e↵ort
for the user. The user needs to inspect only 100 records in-
stead of the entire dataset, and has no more than 100 sets
of potential duplicates to manually check.
To query this clean sample, we need to apply Sample-

Clean’s result estimation to ensure that the estimate remains
unbiased after cleaning since some records may have been
corrected, or marked as duplicates. In the rest of the paper,
we discuss the details of how to ensure unbiased estimates,
and how large the sample needs to be to get a result of
acceptable quality.

3. RawSC ESTIMATION

In this section, we present the RawSC estimation ap-
proach. RawSC takes a sample of data as input, applies
a data cleaning technique to the sample, runs an aggregate
query directly on the clean sample, and returns a result with
a confidence interval.

3.1 Sample Estimates

We will first introduce the estimation setting without data
errors and explain some results about estimates from sam-

Data Cleaning: SampleClean

37

[J. Wang et al., 2014]
D. Koop, CSCI 640/490, Spring 2023

Data Cleaning: HoloClean

38

[T. Rekatsinas et al., 2017]
D. Koop, CSCI 640/490, Spring 2023

http://www.vldb.org/pvldb/vol10/p1190-rekatsinas.pdf

Merges (aka Joins)
• Need to merge data from one DataFrame with data from another DataFrame
• Example: Football game data merged with temperature data

39D. Koop, CSCI 640/490, Spring 2023

Id Location Date Home Away
0 Boston 9/2 1 15
1 Boston 9/9 1 7
2 Cleveland 9/16 12 1
3 San Diego 9/23 21 1

Game
wId City Date Temp
0 Boston 9/2 72
1 Boston 9/3 68
… … … …
7 Boston 9/9 75
… … … …
21 Boston 9/23 54
… … … …
36 Cleveland 9/16 81

Weather

No data for San Diego

Inner Strategy

40D. Koop, CSCI 640/490, Spring 2023

Id Location Date Home Away Temp wId
0 Boston 9/2 1 15 72 0
1 Boston 9/9 1 7 75 7
2 Cleveland 9/16 12 1 81 36

Merged

No San Diego entry

Outer Strategy

41D. Koop, CSCI 640/490, Spring 2023

Id Location Date Home Away Temp wId
0 Boston 9/2 1 15 72 0

NaN Boston 9/3 NaN NaN 68 1
… … … … … … …
1 Boston 9/9 1 7 75 7

NaN Boston 9/10 NaN NaN 76 8
… … … … … … …

NaN Cleveland 9/2 NaN NaN 61 22
… … … … … … …
2 Cleveland 9/16 12 1 81 36
… … … … … … …
3 San Diego 9/23 21 1 NaN NaN

Merged

Data Integration
select title, startTime
from Movie, Plays
where Movie.title=Plays.movie AND
 location=“New York” AND
 director=“Woody Allen”

Sources S1 and S3 are relevant, sources S4 and S5 are irrelevant, and
source S2 is relevant but possibly redundant.

42

[AH Doan et al., 2012]
D. Koop, CSCI 640/490, Spring 2023

Cinemas:
place, movie,

start

Reviews:
title, date

grade, review

Movies:
 name, actors,
director, genre

Cinemas in NYC:
cinema, title,

startTime

Cinemas in SF:
location, movie,

startingTime

Movie: Title, director, year, genre
Actors: title, actor
Plays: movie, location, startTime
Reviews: title, rating, description

S1 S2 S3 S4 S5

Information Integration

43

[L. Dong and F. Naumann, 2009]
D. Koop, CSCI 640/490, Spring 2023

Source A

Source B

<pub>
 <Titel> Federated Database
 Systems </Titel>
 <Autoren>
 <Autor> Amit Sheth </Autor>
 <Autor> James Larson </Autor>
 </Autoren>
</pub>

<publication>
 <title> Federated Database
 Systems for Managing
 Distributed, Heterogeneous,
 and Autonomous
 Databases </title>
 <author> Scheth & Larson </author>
 <year> 1990 </year>
</publication>

Schema
Mapping

Data
Transformation

Duplicate
Detection Data Fusion

Information Integration

44

[L. Dong and F. Naumann, 2009]
D. Koop, CSCI 640/490, Spring 2023

Source A

Source B

<pub>
 <Titel> Federated Database
 Systems </Titel>
 <Autoren>
 <Autor> Amit Sheth </Autor>
 <Autor> James Larson </Autor>
 </Autoren>
</pub>

<publication>
 <title> Federated Database
 Systems for Managing
 Distributed, Heterogeneous,
 and Autonomous
 Databases </title>
 <author> Scheth & Larson </author>
 <year> 1990 </year>
</publication>

<pub>
 <title> </title>
 <Autoren>
 <author> </author>
 <author> </author>
 </Autoren>
 <year> </year>
</pub>

Schema Mapping

Schema Integration

Schema
Mapping

Data
Transformation

Duplicate
Detection Data Fusion

Information Integration

45

[L. Dong and F. Naumann, 2009]
D. Koop, CSCI 640/490, Spring 2023

Source A

Source B

<pub>
 <Titel> Federated Database
 Systems </Titel>
 <Autoren>
 <Autor> Amit Sheth </Autor>
 <Autor> James Larson </Autor>
 </Autoren>
</pub>

<publication>
 <title> Federated Database
 Systems for Managing
 Distributed, Heterogeneous,
 and Autonomous
 Databases </title>
 <author> Scheth & Larson </author>
 <year> 1990 </year>
</publication>

<pub>
 <title> Federated Database
 Systems </title>
 <Autoren>
 <author> Amit Sheth </author>
 <author> James Larson </author>
 </Autoren>
</pub>
<pub>
 <title> Federated Database Systems for
 Managing Distributed,
 Heterogeneous, and Autonomous
 Databases </title>
 <Autoren>
 <author> Scheth & Larson </author>
 </Autoren>
 <year> 1990 </year>
</pub>

Schema
Mapping

Data
Transformation

Duplicate
Detection Data Fusion

XQuery

XQuery

Transformation
queries or views

Information Integration

46

[L. Dong and F. Naumann, 2009]
D. Koop, CSCI 640/490, Spring 2023

Source A

Source B

<pub>
 <Titel> Federated Database
 Systems </Titel>
 <Autoren>
 <Autor> Amit Sheth </Autor>
 <Autor> James Larson </Autor>
 </Autoren>
</pub>

<publication>
 <title> Federated Database
 Systems for Managing
 Distributed, Heterogeneous,
 and Autonomous
 Databases </title>
 <author> Scheth & Larson </author>
 <year> 1990 </year>
</publication>

<pub>
 <title> Federated Database
 Systems </title>
 <Autoren>
 <author> Amit Sheth </author>
 <author> James Larson </author>
 </Autoren>
</pub>
<pub>
 <title> Federated Database Systems for
 Managing Distributed,
 Heterogeneous, and Autonomous
 Databases </title>
 <Autoren>
 <author> Scheth & Larson </author>
 </Autoren>
 <year> 1990 </year>
</pub>

Schema
Mapping

Data
Transformation

Duplicate
Detection Data Fusion

Information Integration

47

[L. Dong and F. Naumann, 2009]
D. Koop, CSCI 640/490, Spring 2023

Source A

Source B

<pub>
 <title> Federated Database
 Systems </title>
 <Autoren>
 <author> Amit Sheth </author>
 <author> James Larson </author>
 </Autoren>
</pub>
<pub>
 <title> Federated Database Systems for
 Managing Distributed,
 Heterogeneous, and Autonomous
 Databases </title>
 <Autoren>
 <author> Scheth & Larson </author>
 </Autoren>
 <year> 1990 </year>
</pub>

Schema
Mapping

Data
Transformation

Duplicate
Detection Data Fusion

<pub>
 <title> Federated Database Systems for
 Managing Distributed,
 Heterogeneous, and
 Autonomous Databases </title>
 <Autoren>
 <author> Amit Sheth </author>
 <author> James Larson </author>
 </Autoren>
 <year> 1990 </year>
</pub>

Preserve lineage

Challenges in Data Fusion when Sources Copy

48

[X L Dong et al., 2009]
D. Koop, CSCI 640/490, Spring 2023

S1 S2 S3 S4 S5

Stonebraker MIT Berkeley MIT MIT MS

Dewitt MSR MSR UWisc UWisc UWisc

Bernstein MSR MSR MSR MSR MSR

Carey UCI AT&T BEA BEA BEA

Halevy Google Google UW UW UW

http://www.lunadong.com/talks/depenDetection.pptx

Challenges in Data Fusion when Sources Copy

48

[X L Dong et al., 2009]
D. Koop, CSCI 640/490, Spring 2023

S1 S2 S3 S4 S5

Stonebraker MIT Berkeley MIT MIT MS

Dewitt MSR MSR UWisc UWisc UWisc

Bernstein MSR MSR MSR MSR MSR

Carey UCI AT&T BEA BEA BEA

Halevy Google Google UW UW UW

http://www.lunadong.com/talks/depenDetection.pptx

Challenges in Data Fusion when Sources Copy

48

[X L Dong et al., 2009]
D. Koop, CSCI 640/490, Spring 2023

S1 S2 S3 S4 S5

Stonebraker MIT Berkeley MIT MIT MS

Dewitt MSR MSR UWisc UWisc UWisc

Bernstein MSR MSR MSR MSR MSR

Carey UCI AT&T BEA BEA BEA

Halevy Google Google UW UW UW

2. With only a snapshot it is hard to
decide which source is a copier.

http://www.lunadong.com/talks/depenDetection.pptx

Challenges in Data Fusion when Sources Copy

48

[X L Dong et al., 2009]
D. Koop, CSCI 640/490, Spring 2023

S1 S2 S3 S4 S5

Stonebraker MIT Berkeley MIT MIT MS

Dewitt MSR MSR UWisc UWisc UWisc

Bernstein MSR MSR MSR MSR MSR

Carey UCI AT&T BEA BEA BEA

Halevy Google Google UW UW UW

3. A copier can also provide or verify some data by
itself, so it is inappropriate to ignore all of its data.

1. Sharing common data does
not in itself imply copying.

2. With only a snapshot it is hard to
decide which source is a copier.

http://www.lunadong.com/talks/depenDetection.pptx

Source Dependence: Iteration on Truth and Sources

49

[X L Dong et al., 2009]
D. Koop, CSCI 640/490, Spring 2023

Truth
Discovery

Source-accuracy
Computation

Dependence
Detection

http://www.lunadong.com/talks/depenDetection.pptx

Source Dependence: Iteration on Truth and Sources

49

[X L Dong et al., 2009]
D. Koop, CSCI 640/490, Spring 2023

Truth
Discovery

Source-accuracy
Computation

Dependence
Detection

Step 1Step 3

Step 2

http://www.lunadong.com/talks/depenDetection.pptx

NoSQL Databases

Scalability Impedance Mismatch

?

ID
Customer

Line Item 1: …
Line Item2: …

Orders
Line Items

CustomersPayment

 Two main motivations:

User-generated data,
Request load

Payment: Credit Card, …

NoSQL Motivation

50

[F. Gessert et al., 2017]
D. Koop, CSCI 640/490, Spring 2023

https://downloads.ctfassets.net/e8fwbhul2hwb/6uASLyVEMU4OcPb3X1hPOF/9d9653d0aad859bfcfd81d20de787215/BTW_2017_tutorial.pdf

www.percona.com

Simple column store on disk

Genre

Comedy
Horror
Horror
Drama
Comedy
Drama

id

1
2
3
4
5
6

Title

Mrs. Doubtfire
Jaws
The Fly
Steel Magnolias
The Birdcage
Erin Brokovitch

Person

Robin Williams
Roy Scheider
Jeff Goldblum
Dolly Parton
Nathan Lane
Julia Roberts

row id = 1

row id = 6

Each column has a file or segment on disk

Column Stores

51

[J. Swanhart, Introduction to Column Stores]
D. Koop, CSCI 640/490, Spring 2023

http://files.meetup.com/107604/intro_to_column_stores.pdf

CAP Theorem

52

[E. Brewer]
D. Koop, CSCI 640/490, Spring 2023

Mutli DC replication

39

Write
DC 1 DC 2

Cassandra: Replication and Consistency

53

[R. Stupp]
D. Koop, CSCI 640/490, Spring 2023

https://www.slideshare.net/RobertStupp/introduction-to-apache-cassandra-39565320

Three Types of NewSQL Systems
• New Architectures
- New codebase without architectural baggage of legacy systems
- Examples: VoltDB, Spanner, Clustrix

• Transparent Sharding Middleware:
- Transparent data sharding & query redirecting over cluster of single-node

DBMSs
- Examples: citusdata, ScaleArc (usually support MySQL/postgres wire)

• Database-as-a-Service:
- Distributed architecture designed specifically for cloud-native deployment
- Examples: xeround, GenieDB, FathomDB (usually based on MySQL)

54

[A. Pavlo]
D. Koop, CSCI 640/490, Spring 2023

HIGH AVAILABILITY: CAP THEOREM AND CASSANDRA

6

Partition
Tolerance

Availability

Consistency
(ACID)

RDBMS

Atomicity
Consistency
Isolation
Durability

Spanner: Google's NewSQL Cloud Database
• Which type of system is Spanner?
- C: consistency, which implies a

single value for shared data
- A: 100% availability, for both reads

and updates
- P: tolerance to network partitions

• Which two?
- CA: close, but not totally available
- So actually CP

55D. Koop, CSCI 640/490, Spring 2023

Spanner

Dataframe Data Model
• Combines parts of matrices, databases, and

spreadsheets
• Ordered, but not necessarily sorted
- Rows and columns

• No predefined schema necessary
- Types can be induced at runtime

• Typed Row/column labels
- Labels can become data

• Indexing by label or row/column number
- “Named notation” or “Positional notation”

56

[D. Petersohn]
D. Koop, CSCI 640/490, Spring 2023

Convenience

Flexible

Versatility

Entire query at once

Strict schema

SFW or bust

Incremental + inspection

Mixed types, R/C and
data/metadata equiv.

600+ functions

Differences between Databases & Dataframes

57

[D. Petersohn, 2022]
D. Koop, CSCI 640/490, Spring 2023

Modin as a Way to Scale Dataframes

58

[D. Petersohn]
D. Koop, CSCI 640/490, Spring 2023

The current landscape … is a fragmented jungle!

PySparkNvidia
RAPIDS

RayDask

NumPy
Arrays

DASK
Dataframe

PySpark
Dataframe

Ray
Programs

Cuda
Dataframe

Backends

Data
Layer

APIs

Higher-level
Abstractions

Ibis

Vaex
Dataframe

Native
Python

Distributed

Microsoft
SCOPE

Apache
MADlib

Google
BigQuery

Apache
Spark PostgreSQL Microsoft

SQL Server

SQL +
Built-in

Functions
SQL ExtensionsSQL + User Defined Functions

Azure
Synapse
Analytics

Relational Tables

Extending Python ecosystem Extending SQL databases

Data Science Jungle

59

[A. Jindal et al., 2021]
D. Koop, CSCI 640/490, Spring 2023

Magpie

Microsoft
SCOPE

Apache
MADlib

Database
Backends

Unified Dataframe API

Pythonic Environment

Cross Optimization

Common Data Layer

Magpie
Middleware

PyFroid Compiler

PostgreSQL

Polyengines
& Mappers Native

Python

Apache
Spark Google

BigQuery

Azure Synapse Analytics

SQL Server

Familiar Python surface

Ongoing standardization

Cloud backends

Multi-backend
environments and libraries

Batching Pandas into large
query expressions

Backend selection using
past workloads

Cache commonly seen
dataframes

Magpie Goals

60D. Koop, CSCI 640/490, Spring 2023

Time Series Data

61

[R. J. Hyndman]
D. Koop, CSCI 640/490, Spring 2023

Time series patterns

Forecasting: Principles and Practice Seasonal or cyclic? 19

US Treasury bill contracts

Day

pr
ic
e

0 20 40 60 80 100

85
86

87
88

89
90

91

Time series patterns

Forecasting: Principles and Practice Seasonal or cyclic? 16

Australian electricity production

Year

G
W
h

1980 1985 1990 1995

80
00

10
00
0

12
00
0

14
00
0

Time series patterns

Forecasting: Principles and Practice Seasonal or cyclic? 18

Sales of new one−family houses, USA

To
ta

l s
al

es

1975 1980 1985 1990 1995

30
40

50
60

70
80

90

Time series patterns

Forecasting: Principles and Practice Seasonal or cyclic? 20

Annual Canadian Lynx trappings

Time

N
um

be
r t

ra
pp

ed

1820 1840 1860 1880 1900 1920

0
10

00
20

00
30

00
40

00
50

00
60

00
70

00

https://robjhyndman.com/seminars/uwa/

Time Series Data

61

[R. J. Hyndman]
D. Koop, CSCI 640/490, Spring 2023

Time series patterns

Forecasting: Principles and Practice Seasonal or cyclic? 19

US Treasury bill contracts

Day

pr
ic
e

0 20 40 60 80 100

85
86

87
88

89
90

91

Time series patterns

Forecasting: Principles and Practice Seasonal or cyclic? 16

Australian electricity production

Year

G
W
h

1980 1985 1990 1995

80
00

10
00
0

12
00
0

14
00
0

Time series patterns

Forecasting: Principles and Practice Seasonal or cyclic? 18

Sales of new one−family houses, USA

To
ta

l s
al

es

1975 1980 1985 1990 1995

30
40

50
60

70
80

90

Trend

Time series patterns

Forecasting: Principles and Practice Seasonal or cyclic? 20

Annual Canadian Lynx trappings

Time

N
um

be
r t

ra
pp

ed

1820 1840 1860 1880 1900 1920

0
10

00
20

00
30

00
40

00
50

00
60

00
70

00

https://robjhyndman.com/seminars/uwa/

Time Series Data

61

[R. J. Hyndman]
D. Koop, CSCI 640/490, Spring 2023

Time series patterns

Forecasting: Principles and Practice Seasonal or cyclic? 19

US Treasury bill contracts

Day

pr
ic
e

0 20 40 60 80 100

85
86

87
88

89
90

91

Time series patterns

Forecasting: Principles and Practice Seasonal or cyclic? 16

Australian electricity production

Year

G
W
h

1980 1985 1990 1995

80
00

10
00
0

12
00
0

14
00
0

Time series patterns

Forecasting: Principles and Practice Seasonal or cyclic? 18

Sales of new one−family houses, USA

To
ta

l s
al

es

1975 1980 1985 1990 1995

30
40

50
60

70
80

90

Trend Trend +
Seasonality

Time series patterns

Forecasting: Principles and Practice Seasonal or cyclic? 20

Annual Canadian Lynx trappings

Time

N
um

be
r t

ra
pp

ed

1820 1840 1860 1880 1900 1920

0
10

00
20

00
30

00
40

00
50

00
60

00
70

00

https://robjhyndman.com/seminars/uwa/

Time Series Data

61

[R. J. Hyndman]
D. Koop, CSCI 640/490, Spring 2023

Time series patterns

Forecasting: Principles and Practice Seasonal or cyclic? 19

US Treasury bill contracts

Day

pr
ic
e

0 20 40 60 80 100

85
86

87
88

89
90

91

Time series patterns

Forecasting: Principles and Practice Seasonal or cyclic? 16

Australian electricity production

Year

G
W
h

1980 1985 1990 1995

80
00

10
00
0

12
00
0

14
00
0

Time series patterns

Forecasting: Principles and Practice Seasonal or cyclic? 18

Sales of new one−family houses, USA

To
ta

l s
al

es

1975 1980 1985 1990 1995

30
40

50
60

70
80

90

Trend Trend +
Seasonality

Seasonality +
Cyclic

Time series patterns

Forecasting: Principles and Practice Seasonal or cyclic? 20

Annual Canadian Lynx trappings

Time

N
um

be
r t

ra
pp

ed

1820 1840 1860 1880 1900 1920

0
10

00
20

00
30

00
40

00
50

00
60

00
70

00

https://robjhyndman.com/seminars/uwa/

Time Series Data

61

[R. J. Hyndman]
D. Koop, CSCI 640/490, Spring 2023

Time series patterns

Forecasting: Principles and Practice Seasonal or cyclic? 19

US Treasury bill contracts

Day

pr
ic
e

0 20 40 60 80 100

85
86

87
88

89
90

91

Time series patterns

Forecasting: Principles and Practice Seasonal or cyclic? 16

Australian electricity production

Year

G
W
h

1980 1985 1990 1995

80
00

10
00
0

12
00
0

14
00
0

Time series patterns

Forecasting: Principles and Practice Seasonal or cyclic? 18

Sales of new one−family houses, USA

To
ta

l s
al

es

1975 1980 1985 1990 1995

30
40

50
60

70
80

90

Trend Trend +
Seasonality

Seasonality +
Cyclic

Time series patterns

Forecasting: Principles and Practice Seasonal or cyclic? 20

Annual Canadian Lynx trappings

Time

N
um

be
r t

ra
pp

ed

1820 1840 1860 1880 1900 1920

0
10

00
20

00
30

00
40

00
50

00
60

00
70

00

Stationary

https://robjhyndman.com/seminars/uwa/

Header:
March 24, 2015 02:00:00

Compressed data

March 24,
2015 02:01:02

Value:
12

Data stream

62 12

02:02:02 12

'10' : -2 '0'

64 14 64 9 1

02:03:02 24

Bit length

'0'

1

'11' : 11 : 1 :'1'

2 + 5 + 6 + 1

Previous Value

Value

XOR

12.0

24.0

-

0x4028000000000000

0x4038000000000000

0x0010000000000000

11 leading zeros, # of meaningful bits is 1

N-2 timestamp

N-1 timestamp

timestamp

02:00:00

02:01:02

02:02:02

-
Delta: 62

Delta: 60
Delta of deltas:

-2

a)

b) c)

Figure 2: Visualizing the entire compression algorithm. For this example, 48 bytes of values and time stamps
are compressed to just under 21 bytes/167 bits.

and e�cient scans of all data while maintaining constant
time lookup of individual time series.

The key specified in the monitoring data is used to uniquely
identify a time series. By sharding all monitoring data based
on these unique string keys, each time series dataset can be
mapped to a single Gorilla host. Thus, we can scale Go-
rilla by simply adding new hosts and tuning the sharding
function to map new time series data to the expanded set of
hosts. When Gorilla was launched to production 18 months
ago, our dataset of all time series data inserted in the past
26 hours fit into 1.3TB of RAM evenly distributed across 20
machines. Since then, we have had to double the size of the
clusters twice due to data growth, and are now running on
80 machines within each Gorilla cluster. This process was
simple due to the share-nothing architecture and focus on
horizontal scalability.

Gorilla tolerates single node failures, network cuts, and
entire datacenter failures by writing each time series value
to two hosts in separate geographic regions. On detecting a
failure, all read queries are failed over to the alternate region
ensuring that users do not experience any disruption.

4.1 Time series compression
In evaluating the feasibility of building an in-memory time

series database, we considered several existing compression
schemes to reduce the storage overhead. We identified tech-
niques that applied solely to integer data which didn’t meet
our requirement of storing double precision floating point
values. Other techniques operated on a complete dataset
but did not support compression over a stream of data as
was stored in Gorilla [7, 13]. We also identified lossy time se-
ries approximation techniques used in data mining to make
the problem set more easily fit within memory [15, 11], but

Gorilla is focused on keeping the full resolution representa-
tion of data.

Our work was inspired by a compression scheme for float-
ing point data derived in scientific computation. This scheme
leveraged XOR comparison with previous values to generate
a delta encoding [25, 17].

Gorilla compresses data points within a time series with
no additional compression used across time series. Each data
point is a pair of 64 bit values representing the time stamp
and value at that time. Timestamps and values are com-
pressed separately using information about previous values.
The overall compression scheme is visualized in Figure 2,
showing how time stamps and values are interleaved in the
compressed block.

Figure 2.a illustrates the time series data as a stream con-
sisting of pairs of measurements (values) and time stamps.
Gorilla compresses this data stream into blocks, partitioned
by time. After a simple header with an aligned time stamp
(starting at 2 am, in this example) and storing the first value
in a less compressed format, Figure 2.b shows that times-
tamps are compressed using delta-of-delta compression, de-
scribed in more detail in Section 4.1.1. As shown in Figure
2.b the time stamp delta of delta is �2. This is stored with
a two bit header (‘10’), and the value is stored in seven bits,
for a total size of just 9 bits. Figure 2.c shows floating-point
values are compressed using XOR compression, described in
more detail in Section 4.1.2. By XORing the floating point
value with the previous value, we find that there is only a
single meaningful bit in the XOR. This is then encoded with
a two bit header (‘11’), encoding that there are eleven lead-
ing zeros, a single meaningful bit, and the actual value (‘1’).
This is stored in fourteen total bits.

1819

Gorilla Time Series Data Compression

62

[Pelkonen et al., 2015]
D. Koop, CSCI 640/490, Spring 2023

Graph Databases focus on relationships
• Directed, labelled, attributed multigraph
• Properties are key/value pairs that represent metadata for nodes and edges

63

[R. Angles and C. Gutierrez, 2017]

D. Koop, CSCI 640/490, Spring 2023
Figure 7: Property graph data model. The main characteristic of this model
is the occurrence of properties in nodes and edges. Each property is repre-
sented as a pair property-name = “property-value”.

(i.e. AND, UNION, OPTIONAL, and FILTER). The latest version of the
language, SPARQL 1.1 [71], includes explicit operators to express negation of
graph patterns, arbitrary length path matching (i.e. reachability), aggregate
operators (e.g. COUNT), subqueries, and query federation.

3.6 Nodes, edges and properties: The Property graph model

A property graph is a directed, labelled, attributed multigraph. That is,
a graph where the edges are directed, both nodes and edges are labeled
and can have any number of properties (or attributes), and there can be
multiple edges between any two vertices [128]. Properties are key/value
pairs that represent metadata for nodes and edges. In practice, each vertex
of a property graph has an identifier (unique within the graph) and zero
or more labels. Node labels could be associated to node typing in order to
provide schema-based restrictions. Additionally, each (directed) edge has a
unique identifier and one or more labels. An example of property graph is
shown in Figure 7.

Property graphs are used extensively in computing as they are more
expressive2 than the simplified mathematical objects studied in theory. In
fact, the property graph model can express other types of graph models by
simply abandoning or adding particular bits and pieces [128].

There is no standard query language for property graphs although some
proposals are available. Blueprints [11] was one of the first libraries created

2Note that the expressiveness of a model is defined by ease of use, not by the limits of
what can be modeled.

14

B$�i¢͓ŽČƀĤŚƀŏãőÿČ͓ĤŚƀ͓ƈƜþĥƀãŽĬ͓ſƜČƀıČƈ
Ɣ
*���/# ���/�У�ЎЍЍ��1 -/$� .Т�ГВЍ�� �" .
Ɣ �0)��''�Ж�,0 -$.�*) ж�4ж*) �т�*0)/�)0(� -�*!�(�/�# .у
Ɣ �)1$-*)()/У��'*0����Т�АДЍ������Т�БЕ�1�����*- .

��PLQ ���PLQ

!���PLQ
WLPHRXW
��FUDVK

�(�-�
+-*/*/4+
�����

	4+ -
$)�0./-4
�����

 1 -4������
2 �/ ./ �

-0)/$(

Graph DBMS Problems
• performance
- Slow loading speeds
- Query speeds over magnitude

slower than RDBMS
• scalability
- Low datasize limit, typically << RAM
- Little benefit from parallelism

• reliability
- Loads never terminate
- Query run out of memory or crash
- Bugs

64

[P. Boncz, 2022]
D. Koop, CSCI 680/490, Spring 2022

Runtime

https://homepages.cwi.nl/~boncz/edbt2022.pdf

Exploratory	browsing	systems	design

7

DBMS

Client

Server

query

result

Exploratory
Browsing

SELECT	lat,	lng,	(b4-b6)/(b4+b6)	as	ndsi
FROM	modis_data
WHERE	ndsi >0.7	

Interactive Exploration of Spatial Data

65

[L. Battle, 2017]
D. Koop, CSCI 640/490, Spring 2023

https://courses.cs.washington.edu/courses/cse512/18sp/lectures/CSE512-Interaction.pdf

Exploratory	browsing	systems	design

7

DBMS

Client

Server

query

result

Exploratory
Browsing

SELECT	lat,	lng,	(b4-b6)/(b4+b6)	as	ndsi
FROM	modis_data
WHERE	ndsi >0.7	

Interactive Exploration of Spatial Data

65

[L. Battle, 2017]
D. Koop, CSCI 640/490, Spring 2023

SLOW

https://courses.cs.washington.edu/courses/cse512/18sp/lectures/CSE512-Interaction.pdf

Zhicheng Liu, Biye Jiang & Jeffrey Heer / imMens: Real-time Visual Querying of Big Data

Figure 3: Panning and zooming in a binned plot: initial view
(left), zooming in (middle), panning to the lower-left (right).

5. Enabling Interaction in Binned Plots

Interaction is essential to exploratory visual analysis [HS12],
but big data imposes challenges to real-time response rates.
While each binned chart type in the previous section visual-
izes one or two aggregated dimensions, more data resolution
is needed to support interaction. Panning and zooming may
require finer grained bins, as in Figure 3.

Brushing & linking, in which selections in one view high-
light the corresponding data in other views, requires com-
puting aggregates filtered by an initial data selection. These
queries require partially de-aggregated data over which to
compute the filtered aggregation (or “roll-up”). Sending
these queries to a server incurs latency due to both process-
ing and networking delays, and can easily exceed a 100 mil-
lisecond threshold for interactive response [CMN83]. Fur-
thermore, multiple clients might overload the server.

In this section, we present our method for enabling real-
time visual querying in imMens. We use brushing & linking
over the Brightkite data set as a running example. The raw
Brightkite data has five dimensions: User, Date, Time, Lat
and Lon. Figure 4 shows four linked visualizations depict-
ing binned data from different perspectives. The geographi-
cal heatmap (X, Y) is based on Mercator-projected Lon, Lat
coordinates; the three histograms show monthly (Month),
daily (Day) and hourly (Hour) checkin distributions derived
from the Date and Time fields. The Jan bin is selected in the
Month histogram. In response, corresponding data are high-
lighted in orange in the other histograms, and the geographic
heatmap shows only checkins in the month of January.

5.1. Data Cube Queries to Support Interaction

Applying binned aggregation to X, Y, Month, Day and Hour,
we form a 5-dimensional data cube (Figure 5(a)). The data
cube contains the lowest level of data resolution in the
linked visualizations. To perform brushing & linking from
the Month histogram to the Day histogram, we can filter the
data cube to only the rows with bin value 0 in the Month di-
mension (corresponding to January; highlighted in yellow in
Figure 5(a)) and perform a roll-up by summing data along
the Hour, X and Y dimensions. To zoom out, we can aggre-
gate adjacent bins to compute a coarser-grained projection.
Panning at the most zoomed-in level involves querying the
bins visible in the current viewport.

Figure 4: Multiple coordinated views of Brightkite user
checkins in North America. Cyan lines in the heatmap in-
dicate data tile boundaries. Each visualization region is an-
notated by its backing data dimensions and indices.

5.2. From Data Cubes to Multivariate Data Tiles

A full data cube is often too big to fit in memory and query
in real-time. The size of a cube is ’i bi, where bi is the bin
count for dimension i. As the number of dimensions or bins
increases, the data cube size may become unwieldy. To ad-
dress this issue, we decompose the full cube into sub-cubes
with at most four dimensions.

The primary contributor to data cube size is the combina-
torial explosion of multiple dimensions. However, for any
pair of 1D or 2D binned plots, the maximum number of
dimensions needed to support brushing & linking is four
(e.g., between two binned scatterplots that do not share a
dimension). As a result, we can safely decompose the full
cube into a collection of smaller 3- or 4-dimensional projec-
tions. For example, four 3-dimensional cubes can cover all
the possible brushing and linking scenarios shown in Figure
4: (X,Y,Hour), (X,Y,Day), (X,Y,Month), (Hour,Day,Month).
If we assume a uniform bin count b, this decomposition re-
duces the total data record count from b5 to 4b3; when b=50,
the reduction is from 312.5M to 0.5M records.

After decomposition, individual sub-cubes may still be
prohibitively large if the bin count is high. In some plots,
we can treat the bin count as a free parameter, and adjust ac-
cordingly. For others – particularly geographic heatmaps –
we may wish to zoom in to see fine-grained details, requir-
ing an exponentially increasing number of bins across zoom
levels. To handle large bin counts, we segment the bin ranges
to form multivariate data tiles, as illustrated in Figure 5(b).

Data tiles are inspired by the notion of map tiles used in
systems such as Google Maps and Hotmap [Fis07]. How-
ever, data tiles differ in two important ways. First, they pro-
vide data for dynamic visualization, not pre-rendered im-
ages. Second, they contain multidimensional data to support
querying as well as rendering. Given a set of data tiles and
a query selection (bin range), we can dynamically compute
roll-up queries and render projected data. Figure 4 shows ge-
ographic tile boundaries highlighted in cyan. We label each

© 2013 The Author(s)
© 2013 The Eurographics Association and Blackwell Publishing Ltd.

Visualization: Minimize Latency

66

[Z. Liu et al., 2013]
D. Koop, CSCI 640/490, Spring 2023

http://vis.stanford.edu/files/2013-imMens-EuroVis.pdf

$ brushes in the precomputed view

Data Cube. Gray et al. 1997.
serves requests from a data cube

$ interacts with a new view

query for new data cubes

Visualization: Task-Prioritized Prefetching

67

[D. Moritz et al. via J. Heer]
D. Koop, CSCI 680/490, Spring 2022

http://courses.cs.washington.edu/courses/cse442/20au/lectures/CSE442-Scalability.pdf

Visualization: Prefetching
• Predict which tiles a user will need next and prefetch those
- Use common patterns (zoom, pan)
- Use regions of interest (ROIs)

68

[Battle et al., 2016]
D. Koop, CSCI 640/490, Spring 2023

Algorithm 2 Pseudocode showing the Markov chain transition fre-
quencies building process.
Input: For PROCESSTRACES, a set of user traces, and sequence length n.
Output: F , computed transition frequencies.
1: procedure PROCESSTRACES({U1,U2, ...,Uj, ...}, n)
2: F {}
3: for user trace Uj do
4: Vj GETMOVESEQUENCE(Uj)
5: F UPDATEFREQUENCIES(Vj , F , n)
6: return F
7: procedure GETMOVESEQUENCE(Uj)
8: Vj []
9: for i = 1,2, ..., where i |Vj | do

10: Vj[i] Uj[i].move
11: return Vj

12: procedure UPDATEFREQUENCIES(Vj = [v1,v2,v3, ...], F , n)
13: for i = n+1,n+2, ..., where n < i |Vj | do
14: F [sequence(vi�n,vi�(n�1),vi�(n�2), ...,vi�1)! vi] += 1
15: return F

(line 6). In contrast, an observed zoom-out tells the prediction en-
gine to stop adding tiles to tempROI (lines 8-12). If the inFlag was
set while the zoom-out occurred, we replace the user’s old ROI
with tempROI (lines 9-10). Then, tempROI is reset (line 12). Last,
if r.move = pan while the inFlag is true, Tr (i.e., the requested tile)
is added to tempROI (lines 13-14).

4.3.2 Actions-Based (AB) Recommender
As the user moves to or from ROI’s, she is likely to consistently

zoom or pan in a predictable way (e.g., zoom out three times).
Doshi et al. leverage this assumption in their Momentum model,
which predicts that the user’s next move will match her previous
move [8]. We expand on this idea with our AB recommender,
which builds an n-th order Markov chain from users’ past actions.

To build the Markov chain, we create a state for each possible
sequence of moves, where we only consider sequences of length n
(i.e., the length of H). For example, if n = 3, then the following
are two sequences that would have their own states in the Markov
chain: panning left three times (i.e., le f t, le f t, le f t), and zooming
out twice and then panning right (i.e., out, out, right). After creat-
ing our states, we create an outgoing transition from each state for
every possible move the user can make in the interface. In the n = 3
case, if the user is in state (le f t, le f t, le f t) and then decides to pan
right, we represent this as the user taking the edge labeled “right”
from the state (le f t, le f t, le f t) to the state (le f t, le f t, right).

We learn transition probabilities for our Markov chains using
traces from our user study; the traces are described in Section 4.1.
Algorithm 2 shows how we calculate the transition frequencies
needed to compute the final probabilities. For each user trace Uj
from the study, we extract the sequence of moves observed in the
trace (lines 7-11). We then iterate over every sub-sequence of length
n (i.e., every time a state was visited in the trace), and count how of-
ten each transition was taken (lines 12-15). To do this, for each sub-
sequence observed (i.e., for each state observed from our Markov
chain), we identified the move that was made immediately after this
sub-sequence occurred, and incremented the relevant counter (line
14). To fill in missing counts, we apply Kneser-Ney smoothing, a
well-studied smoothing method in natural language processing for
Markov chains [7]. We used the BerkeleyLM [18] Java library to
implement our Markov chains.

4.3.3 Signature-Based (SB) Recommender
The goal of our SB recommender is to identify neighboring tiles

that are visually similar to what the user has requested in the past.

(a) Potential snow cover
ROI’s in the US and Canada.

(b) Tiles in the user’s history,
after visiting ROI’s from (a).

Figure 6: Example ROI’s in the US and Canada for snow cover
data. Snow is orange to yellow, snow-free areas in green to blue.
Note that (a) and (b) span the same latitude-longitude range.

Table 2: Features computed over individual array attributes in Fore-
Cache to compare data tiles for visual similarity.

Signature Measures Visual Characteristics
Compared Captured

Normal Mean, standard average position/color/size
Distribution deviation of rendered datapoints
1-D histogram bins position/color/size distribu-
histogram -tion of rendered datapoints
SIFT histogram built distinct “landmarks” in the

from clustered visualization (e.g., clusters
SIFT descriptors of orange pixels)

DenseSIFT same as SIFT distinct “landmarks” and
their positions in the
visualization

For example, in the Foraging phase, the user is using a coarse view
of the data to find new ROI’s to explore. When the user finds a new
ROI, she zooms into this area until she reaches her desired zoom
level. Each tile along her zooming path will share the same visual
features, which the user depends on to navigate to her destination.
In the Sensemaking phase, the user is analyzing visually similar
data tiles at the same zoom level. One such example is when the
user is exploring satellite imagery of the earth, and panning to tiles
within the same mountain range.

Consider Figure 6a, where the user is exploring snow cover data
derived from a satellite imagery dataset. Snow is colored orange,
and regions without snow are blue. Thus, the user will search for
ROI’s that contain large clusters of orange pixels, which are circled
in Figure 6a. These ROI’s correspond to mountain ranges.

Given the user’s last ROI (i.e., the last mountain range the user
visited), we can look for neighboring tiles that look similar (i.e.,
find more mountains). Figure 6b is an example of some tiles that
may be in the user’s history if she has recently explored some of
these ROI’s, which we can use for reference to find new ROI’s.

We measure visual similarity by computing a diverse set of tile
signatures. A signature is a compact, numerical representation of
a data tile, and is stored as a vector of double-precision values.
Table 2 lists the four signatures we compute in ForeCache. All of
our signatures are calculated over a single SciDB array attribute.
The first signature in Table 2 calculates the average and standard
deviation of all values stored within a single data tile. The second
signature builds a histogram over these array values, using a fixed
number of bins.

We also tested two machine vision techniques as signatures: the
scale-invariant feature transform (SIFT), and a variant called dens-
eSIFT (signatures 3 and 4 in Table 2). SIFT is used to identify and
compare visual “landmarks” in an image, called keypoints. Much
like how seeing the Statue of Liberty can help people distinguish
pictures of New York city from pictures of other cities, SIFT key-

The Built-in Approach of Beast

The On-top
Approach

28

Storage (HDFS)

RDD Runtime

Job Monitoring
and Scheduling

SQL Spark Java/
Scala APIS

User Programs

Spatial Modules
(Spatial)

User Program
+

RDD APIs
+

Job Monitoring
and Scheduling +

RDD Runtime
+

Storage
+
… Storage (HDFS)

RDD Runtime

Job Monitoring
and Scheduling

SQL Spark Java/
Scala APIS

User Programs

Spatial
Indexing

Early
Pruning

Spatial
Operators

Spatial
Language

From Scratch
Approach

The Built-in Approach
(Beast)

Spatial Data: Beast Architecture

69

[A. Eldawy, 2021]
D. Koop, CSCI 640/490, Spring 2023

https://www.cs.ucr.edu/~eldawy/21SCS167/slides/CS167-07-BigSpatialData.pdf

R-tree
• Read a sample
• Partition the sample using

an R-tree index
• Use MBR of leaf nodes

as partition boundaries
for all the data

46

Spatial Data: Partitioning/Indexing & Range Query

70

Range Query

55

Use the partition
information to prune
disjoint partitions

Scan matching
partitions in parallel to
find matching records

[A. Eldawy, 2021]
D. Koop, CSCI 640/490, Spring 2023

https://www.cs.ucr.edu/~eldawy/21SCS167/slides/CS167-07-BigSpatialData.pdf

The DCC Curation
Lifecycle Model

Description and
Representation Information

Preservation Planning

Community Watch and
Participation

Curate and Preserve

Conceptualise

Create or Receive

Appraise and Select

Ingest

Preservation Action

Store

Access, Use and Reuse

Transform

Assign administrative, descriptive, technical, structural and preservation metadata, using appropriate standards, to ensure adequate description and control over the long-term. Collect and assign representation information required to understand
and render both the digital material and the associated metadata.

Plan for preservation throughout the curation lifecycle of digital material. This would include plans for management and administration of all curation lifecycle actions.

Maintain a watch on appropriate community activities, and participate in the development of shared standards, tools and suitable software.

Be aware of, and undertake management and administrative actions planned to promote curation and preservation throughout the curation lifecycle.

Conceive and plan the creation of data, including capture method and storage options.

Create data including administrative, descriptive, structural and technical metadata. Preservation metadata may also be added at the time of creation.
Receive data, in accordance with documented collecting policies, from data creators, other archives, repositories or data centres, and if required assign appropriate metadata.

Evaluate data and select for long-term curation and preservation. Adhere to documented guidance, policies or legal requirements.

Transfer data to an archive, repository, data centre or other custodian. Adhere to documented guidance, policies or legal requirements.

Undertake actions to ensure long-term preservation and retention of the authoritative nature of data. Preservation actions should ensure that data remains authentic, reliable and usable while maintaining its integrity. Actions include data cleaning,
validation, assigning preservation metadata, assigning representation information and ensuring acceptable data structures or file formats.

Store the data in a secure manner adhering to relevant standards.

Ensure that data is accessible to both designated users and reusers, on a day-to-day basis. This may be in the form of publicly available published information. Robust access controls and authentication procedures may be applicable.

Create new data from the original, for example
- By migration into a different format.
- By creating a subset, by selection or query, to create newly derived results, perhaps for publication.

www.dcc.ac.uk
info@dcc.ac.uk

The Curation Lifecycle
The DCC Curation Lifecycle Model provides a graphical high level overview of the stages required for successful curation and preservation of data from initial conceptualisation or receipt. The model can be used to plan activities within an organisation or consortium to
ensure that all necessary stages are undertaken, each in the correct sequence. The model enables granular functionality to be mapped against it; to define roles and responsibilities, and build a framework of standards and technologies to implement. It can help with
the process of identifying additional steps which may be required, or actions which are not required by certain situations or disciplines, and ensuring that processes and policies are adequately documented.

Data, any information in binary digital form, is at the centre of the Curation Lifecycle. This includes:

- Simple Digital Objects are discrete digital items; such as textual files, images or sound files, along with their related identifiers and metadata.
- Complex Digital Objects are discrete digital objects, made by combining a number of other digital objects, such as websites.

Structured collections of records or data stored in a computer system.

Full Lifecycle Actions

Sequential Actions

Data (Digital Objects or Databases)

Occasional Actions
Dispose

Reappraise

Migrate

Dispose of data, which has not been selected for long-term curation and preservation in accordance with documented policies, guidance or legal requirements. Typically data may be transferred to another archive, repository, data centre or
other custodian. In some instances data is destroyed. The data’s nature may, for legal reasons, necessitate secure destruction.

Return data which fails validation procedures for further appraisal and reselection.

Migrate data to a different format. This may be done to accord with the storage environment or to ensure the data’s immunity from hardware or software obsolescence.

Digital Objects

Databases

Data Curation

71

[DCC]
D. Koop, CSCI 640/490, Spring 2023

http://www.dcc.ac.uk/sites/default/files/documents/publications/DCCLifecycle.pdf

Data Curation: FAIR Principles
• Findable: Metadata and data should be easy to find for both humans and

computers
• Accessible: Users need to know how data can be accessed, possibly

including authentication and authorization
• Interoperable: Can be integrated with other data, and can interoperate with

applications or workflows for analysis, storage, and processing
• Reusable: Optimize the reuse of data. Metadata and data should be well-

described so they can be replicated and/or combined in different settings

72

[GO FAIR]
D. Koop, CSCI 640/490, Spring 2023

https://www.go-fair.org/fair-principles/

Provenance

73D. Koop, CSCI 640/490, Spring 2023

Fig. 7: Using the blog to document processes: A visualization expert
created a series of blog posts to explain the problems found when gen-
erating the visualizations for CMOP.

ACKNOWLEDGMENTS

Our research has been funded by the National Science Foun-
dation (grants IIS-0905385, IIS-0746500, ATM-0835821, IIS-
0844546, CNS-0751152, IIS-0713637, OCE-0424602, IIS-0534628,
CNS-0514485, IIS-0513692, CNS-0524096, CCF-0401498, OISE-
0405402, CCF-0528201, CNS-0551724), the Department of En-
ergy SciDAC (VACET and SDM centers), and IBM Faculty Awards
(2005, 2006, 2007, and 2008). E. Santos is partially supported by a
CAPES/Fulbright fellowship.

REFERENCES

[1] L. Bavoil, S. Callahan, P. Crossno, J. Freire, C. Scheidegger, C. Silva, and
H. Vo. VisTrails: Enabling Interactive Multiple-View Visualizations. In
IEEE Visualization 2005, pages 135–142, 2005.

[2] S. P. Callahan, J. Freire, C. E. Scheidegger, C. T. Silva, and H. T. Vo.
Towards provenance-enabling paraview. pages 120–127, 2008.

[3] Chemical blogspace. http://cb.openmolecules.net/.
[4] NSF Center for Coastal Margin Observation and Prediction (CMOP).

http://www.stccmop.org.
[5] S. B. Davidson and J. Freire. Provenance and scientific workflows: chal-

lenges and opportunities. In Proceedings of SIGMOD, pages 1345–1350,
2008.

[6] R. T. Fielding. Architectural Styles and the Design of Network-based Soft-
ware Architectures. PhD thesis, University of California, Irvine, 2000.

[7] S. Fomel and J. Claerbout. Guest editors’ introduction: Reproducible
research. Computing in Science Engineering, 11(1):5 –7, jan.-feb. 2009.

Fig. 8: Visualizing a binary star system simulation. This
is an image that was generated by embedding a workflow di-
rectly in the text. The original workflow is available at
http://www.crowdlabs.org/vistrails/workflows/details/119/.

[8] J. Freire, D. Koop, E. Santos, and C. T. Silva. Provenance for computa-
tional tasks: A survey. Computing in Science & Engineering, 10(3):11–
21, May-June 2008.

[9] J. Freire, C. Silva, S. Callahan, E. Santos, C. Scheidegger, and H. Vo.
Managing rapidly-evolving scientific workflows. In International Prove-
nance and Annotation Workshop (IPAW), LNCS 4145, pages 10–18.
Springer Verlag, 2006.

[10] R. Hoffmann. A wiki for the life sciences where authorship matters. Na-
ture Genetics, 40(9):1047–1051, 2008.

[11] IBM. OpenDX. http://www.research.ibm.com/dx.
[12] Kitware. Paraview. http://www.paraview.org.
[13] Kitware. The visualization toolkit. http://www.vtk.org.
[14] Many Eyes Wikified. http://wikified.researchlabs.ibm.com.
[15] M. McKeon. Harnessing the Web Information Ecosystem with Wiki-

based Visualization Dashboards. IEEE Transactions on Visualization and
Computer Graphics, 15(6):1081–1088, 2009.

[16] A. R. Pico, T. Kelder, M. P. van Iersel, K. Hanspers, B. R. Conklin, and
C. Evelo. WikiPathways: Pathway editing for the people. PLoS Biology,
6(7), 2008.

[17] D. D. Roure, C. Goble, and R. Stevens. The design and realisation of
the virtual research environment for social sharing of workflows. Future
Generation Computer Systems, 25(5):561 – 567, 2009.

[18] E. Santos, L. Lins, J. Ahrens, J. Freire, and C. Silva. Vismashup: Stream-
lining the creation of custom visualization applications. IEEE Transac-
tions on Visualization and Computer Graphics, 15(6):1539–1546, 2009.

[19] Swivel. http://www.swivel.com.
[20] J. Tohline and E. Santos. Visualizing a Journal that Serves the Computa-

tional Sciences Community. Computing in Science & Engineering, 12(3),
2010. To appear.

[21] J. E. Tohline. Scientific Visualization: A Necessary Chore. Computing
in Science & Engineering, 9(6):76–81, 2007.

[22] C. Upson, J. Thomas Faulhaber, D. Kamins, D. H. Laidlaw, D. Schlegel,
J. Vroom, R. Gurwitz, and A. van Dam. The Application Visualiza-
tion System: A Computational Environment for Scientific Visualization.
IEEE Computer Graphics and Applications, 9(4):30–42, 1989.

[23] F. B. Viegas, M. Wattenberg, F. van Ham, J. Kriss, and M. McKeon.
ManyEyes: A site for visualization at internet scale. IEEE Transactions
on Visualization and Computer Graphics, 13(6):1121–1128, 2007.

[24] VisIt Visualization Tool. https://wci.llnl.gov/codes/visit.
[25] The VisTrails Project. http://www.vistrails.org.

DATA DATA

Data Management

Computation

Visualization

Publishing

Provenance

Prospective and Retrospective Provenance	
• Recipe for baking a cake versus the actual process & outcome
• Prospective provenance is what was specified/intended
- a workflow, script, list of steps

• Retrospective provenance is what actually happened
- actual data, actual parameters, errors that occurred, timestamps, machine

information
• Do not need prospective provenance to have retrospective provenance!

74D. Koop, CSCI 640/490, Spring 2023

Fig. 1.
The spectrum of reproducibility.

Peng Page 5

Science. Author manuscript; available in PMC 2012 December 02.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Reproducibility

75

[R. D. Peng]
D. Koop, CSCI 640/490, Spring 2023

Fundamental
Building Blocks

Sorting

B-TreeHash-
Map

Scheduling

Join

Priority
Queue

Bloom
Filter

CachingRange
Filter

Machine Learning and Databases

76

[T. Kraska, 2019]
D. Koop, CSCI 640/490, Spring 2023

77

Questions?

D. Koop, CSCI 640/490, Spring 2023

Final Exam
• Wednesday, May 10, 8:00-9:50am, PM 253
• Similar format
• More comprehensive (questions from topics covered in Test 1 & 2)
• Will also have questions from graph/spatial/temporal data, provenance,

reproducibility, machine learning

78D. Koop, CSCI 640/490, Spring 2023

http://faculty.cs.niu.edu/~dakoop/cs640-2023sp/final.html

