
Advanced Data Management (CSCI 640/490)

Reproducibility

Dr. David Koop

D. Koop, CSCI 640/490, Spring 2023

Provenance in Computational Science

2D. Koop, CSCI 640/490, Spring 2023

Fig. 7: Using the blog to document processes: A visualization expert
created a series of blog posts to explain the problems found when gen-
erating the visualizations for CMOP.

ACKNOWLEDGMENTS

Our research has been funded by the National Science Foun-
dation (grants IIS-0905385, IIS-0746500, ATM-0835821, IIS-
0844546, CNS-0751152, IIS-0713637, OCE-0424602, IIS-0534628,
CNS-0514485, IIS-0513692, CNS-0524096, CCF-0401498, OISE-
0405402, CCF-0528201, CNS-0551724), the Department of En-
ergy SciDAC (VACET and SDM centers), and IBM Faculty Awards
(2005, 2006, 2007, and 2008). E. Santos is partially supported by a
CAPES/Fulbright fellowship.

REFERENCES

[1] L. Bavoil, S. Callahan, P. Crossno, J. Freire, C. Scheidegger, C. Silva, and
H. Vo. VisTrails: Enabling Interactive Multiple-View Visualizations. In
IEEE Visualization 2005, pages 135–142, 2005.

[2] S. P. Callahan, J. Freire, C. E. Scheidegger, C. T. Silva, and H. T. Vo.
Towards provenance-enabling paraview. pages 120–127, 2008.

[3] Chemical blogspace. http://cb.openmolecules.net/.
[4] NSF Center for Coastal Margin Observation and Prediction (CMOP).

http://www.stccmop.org.
[5] S. B. Davidson and J. Freire. Provenance and scientific workflows: chal-

lenges and opportunities. In Proceedings of SIGMOD, pages 1345–1350,
2008.

[6] R. T. Fielding. Architectural Styles and the Design of Network-based Soft-
ware Architectures. PhD thesis, University of California, Irvine, 2000.

[7] S. Fomel and J. Claerbout. Guest editors’ introduction: Reproducible
research. Computing in Science Engineering, 11(1):5 –7, jan.-feb. 2009.

Fig. 8: Visualizing a binary star system simulation. This
is an image that was generated by embedding a workflow di-
rectly in the text. The original workflow is available at
http://www.crowdlabs.org/vistrails/workflows/details/119/.

[8] J. Freire, D. Koop, E. Santos, and C. T. Silva. Provenance for computa-
tional tasks: A survey. Computing in Science & Engineering, 10(3):11–
21, May-June 2008.

[9] J. Freire, C. Silva, S. Callahan, E. Santos, C. Scheidegger, and H. Vo.
Managing rapidly-evolving scientific workflows. In International Prove-
nance and Annotation Workshop (IPAW), LNCS 4145, pages 10–18.
Springer Verlag, 2006.

[10] R. Hoffmann. A wiki for the life sciences where authorship matters. Na-
ture Genetics, 40(9):1047–1051, 2008.

[11] IBM. OpenDX. http://www.research.ibm.com/dx.
[12] Kitware. Paraview. http://www.paraview.org.
[13] Kitware. The visualization toolkit. http://www.vtk.org.
[14] Many Eyes Wikified. http://wikified.researchlabs.ibm.com.
[15] M. McKeon. Harnessing the Web Information Ecosystem with Wiki-

based Visualization Dashboards. IEEE Transactions on Visualization and
Computer Graphics, 15(6):1081–1088, 2009.

[16] A. R. Pico, T. Kelder, M. P. van Iersel, K. Hanspers, B. R. Conklin, and
C. Evelo. WikiPathways: Pathway editing for the people. PLoS Biology,
6(7), 2008.

[17] D. D. Roure, C. Goble, and R. Stevens. The design and realisation of
the virtual research environment for social sharing of workflows. Future
Generation Computer Systems, 25(5):561 – 567, 2009.

[18] E. Santos, L. Lins, J. Ahrens, J. Freire, and C. Silva. Vismashup: Stream-
lining the creation of custom visualization applications. IEEE Transac-
tions on Visualization and Computer Graphics, 15(6):1539–1546, 2009.

[19] Swivel. http://www.swivel.com.
[20] J. Tohline and E. Santos. Visualizing a Journal that Serves the Computa-

tional Sciences Community. Computing in Science & Engineering, 12(3),
2010. To appear.

[21] J. E. Tohline. Scientific Visualization: A Necessary Chore. Computing
in Science & Engineering, 9(6):76–81, 2007.

[22] C. Upson, J. Thomas Faulhaber, D. Kamins, D. H. Laidlaw, D. Schlegel,
J. Vroom, R. Gurwitz, and A. van Dam. The Application Visualiza-
tion System: A Computational Environment for Scientific Visualization.
IEEE Computer Graphics and Applications, 9(4):30–42, 1989.

[23] F. B. Viegas, M. Wattenberg, F. van Ham, J. Kriss, and M. McKeon.
ManyEyes: A site for visualization at internet scale. IEEE Transactions
on Visualization and Computer Graphics, 13(6):1121–1128, 2007.

[24] VisIt Visualization Tool. https://wci.llnl.gov/codes/visit.
[25] The VisTrails Project. http://www.vistrails.org.

DATA DATA

Data Management

Computation

Visualization

Publishing

Provenance

Provenance Capture Mechanisms
• Workflow-based: Since workflow execution is controlled, keep track of all

the workflow modules, parameters, etc. as they are executed
• Process-based: Each process is required to write out its own provenance

information (not centralized like workflow-based)
• OS-based: The OS or filesystem is modified so that any activity it does it

monitored and the provenance subsystem organizes it
• Tradeoffs:
- Workflow- and process-based have better abstraction
- OS-based requires minimal user effort once installed and can capture

"hidden dependencies"

3D. Koop, CSCI 640/490, Spring 2023

Prospective and Retrospective Provenance	
• Prospective provenance is what was specified/intended
- a workflow, script, list of steps

• Retrospective provenance is what actually happened
- actual data, actual parameters, errors that occurred, timestamps, machine

information
• Do not need prospective provenance to have retrospective provenance!
• Recipe for a cake vs. Baking a cake

4D. Koop, CSCI 640/490, Spring 2023

PROV: Three Key Classes

5

[Moreau et al., 2014]
D. Koop, CSCI 640/490, Spring 2023

An entity is a physical, digital, conceptual, or other kind
of thing with some fixed aspects; entities may be real or
imaginary.

An activity is something that occurs over a period of
time and acts upon or with entities; it may include
consuming, processing, transforming, modifying,
relocating, using, or generating entities.

An agent is something that bears some form of
responsibility for an activity taking place, for the
existence of an entity, or for another agent’s activity.

Database Provenance
• Motivation: Data warehouses and curated databases
- Lots of work
- Provenance helps check correctness
- Adds value to data by how it was obtained

• Three Types:
- Why (Lineage): Associate each tuple t present in the output of a query with a

set of tuples present in the input
- How: Not just existence but routes from tuples to output (multiple contrib.'s)
- Where: Location where data is copied from (may have choice of different

tables)

6

[Cheney et al., 2007]
D. Koop, CSCI 640/490, Spring 2023

Why Provenance
• Lineage of(HarborCruz, 831-3000):
{Agencies(t2),ExternalTours(t7)}

• Lineage of (BayTours, 415-1200):
{Agencies(t1), ExternalTours(t5,t6)}

• This is not really precise because we
don't need both t5 and t6—only
one is ok

7

[Cheney et al., 2007]
D. Koop, CSCI 640/490, Spring 2023

1.1 Why, How and Where: An Overview 383

Agencies
name based in phone

t1: BayTours San Francisco 415-1200
t2: HarborCruz Santa Cruz 831-3000

ExternalTours
name destination type price

t3: BayTours San Francisco cable car $50
t4: BayTours Santa Cruz bus $100
t5: BayTours Santa Cruz boat $250
t6: BayTours Monterey boat $400
t7: HarborCruz Monterey boat $200
t8: HarborCruz Carmel train $90

Fig. 1.1 Our example database: an online travel portal.

on the name attribute, selecting tours by boat, and projecting on the
name and phone attributes:

Q1:
SELECT a.name, a.phone
FROM Agencies a, ExternalTours e
WHERE a.name = e.name AND
e.type=‘boat’

Result of Q1:
name phone
BayTours 415-1200
HarborCruz 831-3000

The result of Q1 executed on our example database in Figure 1.1 is
shown above on the right. According to Cui et al., the lineage of the out-
put tuple (HarborCruz, 831-3000) is {Agencies(t2), ExternalTours(t7)},
where Agencies(t2) and ExternalTours(t7) denote the subinstances of
Agencies and ExternalTours consisting of tuples t2 and t7, respectively.
Intuitively, the two source tuples witness the existence of the tuple of
interest, (HarborCruz, 831-3000), according to Q1. Furthermore, each
of the two source tuples justify the existence of the HarborCruz tuple.
In other words, the source tuples t2 and t7 form a “proof” or “witness”
for the HarborCruz output tuple according to Q1, and no other source
tuples are part of the witness since they do not contribute to the Har-
borCruz output tuple. Technically speaking, by “witness” we mean a
subset of the input database records that is sufficient to ensure that a
given output tuple appears in the result of a query.

As another example, the lineage of the output tuple (Bay-
Tours, 415-1200) is the union of the lineage of the intermediate

1.1 Why, How and Where: An Overview 383

Agencies
name based in phone

t1: BayTours San Francisco 415-1200
t2: HarborCruz Santa Cruz 831-3000

ExternalTours
name destination type price

t3: BayTours San Francisco cable car $50
t4: BayTours Santa Cruz bus $100
t5: BayTours Santa Cruz boat $250
t6: BayTours Monterey boat $400
t7: HarborCruz Monterey boat $200
t8: HarborCruz Carmel train $90

Fig. 1.1 Our example database: an online travel portal.

on the name attribute, selecting tours by boat, and projecting on the
name and phone attributes:

Q1:
SELECT a.name, a.phone
FROM Agencies a, ExternalTours e
WHERE a.name = e.name AND
e.type=‘boat’

Result of Q1:
name phone
BayTours 415-1200
HarborCruz 831-3000

The result of Q1 executed on our example database in Figure 1.1 is
shown above on the right. According to Cui et al., the lineage of the out-
put tuple (HarborCruz, 831-3000) is {Agencies(t2), ExternalTours(t7)},
where Agencies(t2) and ExternalTours(t7) denote the subinstances of
Agencies and ExternalTours consisting of tuples t2 and t7, respectively.
Intuitively, the two source tuples witness the existence of the tuple of
interest, (HarborCruz, 831-3000), according to Q1. Furthermore, each
of the two source tuples justify the existence of the HarborCruz tuple.
In other words, the source tuples t2 and t7 form a “proof” or “witness”
for the HarborCruz output tuple according to Q1, and no other source
tuples are part of the witness since they do not contribute to the Har-
borCruz output tuple. Technically speaking, by “witness” we mean a
subset of the input database records that is sufficient to ensure that a
given output tuple appears in the result of a query.

As another example, the lineage of the output tuple (Bay-
Tours, 415-1200) is the union of the lineage of the intermediate

Q1:
SELECT a.name, a.phone
FROM Agencies a, ExternalTours e
WHERE a.name = e.name AND e.type='boat'

How Provenance
• How provenance gives more detail

about how the tuples provide
witnesses to the result

• Prov of (San Francisco, 415-1200):
{{t1}, {t1,t3}}

• t1 contributes twice
• Uses provenance semirings (the

"polynomial" shown on the right)

8

[Cheney et al., 2007]
D. Koop, CSCI 640/490, Spring 2023

386 Introduction

minimal witness since {t} is a subinstance of it and it is a witness to
(1,2). Hence, the minimal witness basis is {{t}} for this example. In a
subsequent work by [14], minimal witnesses were used in the study of
variants of the view deletion problem, which is that of finding source
tuples to remove in order to delete a tuple from the view for select-
project–join–union queries.

1.1.2 How-Provenance

Why-provenance describes the source tuples that witness the existence
of an output tuple in the result of the query. However, it leaves out
some information about how an output tuple is derived according to
the query. To illustrate, consider the query Q2 of Figure 1.4 which asks
for all cities where tours are offered (assuming all agencies offer tours
in the city they are headquartered). The result of Q2 on the example
database in Figure 1.1 is shown in the right of Figure 1.4. (Ignore the
additional tags on the output tuples for now.) For the output tuple
(San Francisco, 415-1200) in the result of Q2, its why-provenance is
{{t1}, {t1,t3}}. This description tells us that t1 alone, and t1 with t3 are
each sufficient to witness the existence of the output tuple according to
Q2. However, it does not tell us about the structure of the proof that
t1 (as well as t1 and t3) help witness the output tuple according to Q2.
Although arguably obvious from the description of the query Q2, the
why-provenance does not tell us that the source tuple t1 contributes
twice to the output tuple: (1) t1 contributes to the intermediary result
of the inner query, and (2) it combines with that intermediary result
to witness the output tuple. This intuition is formalized in [43] using

Q2:
SELECT e.destination, a.phone
FROM Agencies a,

(SELECT name,
based in AS destination

FROM Agencies a
UNION
SELECT name, destination
FROM ExternalTours) e

WHERE a.name = e.name

Result of Q2:
destination phone
San Francisco 415-1200 t1 · (t1 + t3)
Santa Cruz 831-3000 t22
Santa Cruz 415-1200 t1 · (t4 + t5)
Monterey 415-1200 t1 · t6
Monterey 831-3000 t1 · t7
Carmel 831-3000 t1 · t8

Fig. 1.4 A query and its output tagged with semiring provenance.

1.1 Why, How and Where: An Overview 383

Agencies
name based in phone

t1: BayTours San Francisco 415-1200
t2: HarborCruz Santa Cruz 831-3000

ExternalTours
name destination type price

t3: BayTours San Francisco cable car $50
t4: BayTours Santa Cruz bus $100
t5: BayTours Santa Cruz boat $250
t6: BayTours Monterey boat $400
t7: HarborCruz Monterey boat $200
t8: HarborCruz Carmel train $90

Fig. 1.1 Our example database: an online travel portal.

on the name attribute, selecting tours by boat, and projecting on the
name and phone attributes:

Q1:
SELECT a.name, a.phone
FROM Agencies a, ExternalTours e
WHERE a.name = e.name AND
e.type=‘boat’

Result of Q1:
name phone
BayTours 415-1200
HarborCruz 831-3000

The result of Q1 executed on our example database in Figure 1.1 is
shown above on the right. According to Cui et al., the lineage of the out-
put tuple (HarborCruz, 831-3000) is {Agencies(t2), ExternalTours(t7)},
where Agencies(t2) and ExternalTours(t7) denote the subinstances of
Agencies and ExternalTours consisting of tuples t2 and t7, respectively.
Intuitively, the two source tuples witness the existence of the tuple of
interest, (HarborCruz, 831-3000), according to Q1. Furthermore, each
of the two source tuples justify the existence of the HarborCruz tuple.
In other words, the source tuples t2 and t7 form a “proof” or “witness”
for the HarborCruz output tuple according to Q1, and no other source
tuples are part of the witness since they do not contribute to the Har-
borCruz output tuple. Technically speaking, by “witness” we mean a
subset of the input database records that is sufficient to ensure that a
given output tuple appears in the result of a query.

As another example, the lineage of the output tuple (Bay-
Tours, 415-1200) is the union of the lineage of the intermediate

Where Provenance
• Where provenance traces to specific

locations, not the tuple values
• Q and Q' give the same result but

the name comes from different
places

• Prov of HarborCruz in second output:
(t2, name)

• Important in annotation-propogation

9

[Cheney et al., 2007]
D. Koop, CSCI 640/490, Spring 2023

388 Introduction

the source instance is related to data in the target instance through
the schema mapping. Hence, in retrospect, routes can be classified as
a form of how-provenance over schema mappings.

1.1.3 Where-Provenance

Why-provenance describes all combinations of source tuples that wit-
ness the existence of an output tuple in the result of a query. In turn,
how-provenance describes how the source tuples witness the output
tuple. Buneman et al. also introduced a different notion of provenance,
called where-provenance [13]. Intuitively, where-provenance describes
where a piece of data is copied from. While why-provenance is about
the relationship between source and output tuples, where-provenance
describes the relationship between source and output locations. In the
relational setting, a location is simply a column of a tuple in a relation,
which precisely refers to a “cell” in a relation. The where-provenance
of a value that resides in some location l in Q(D) consists of locations
of D from which the value in l was copied according to Q. Naturally,
this requires that all the values that reside in the source locations of
the where-provenance of l are equal to the value that resides at l. For
example, the where-provenance of the value “HarborCruz” in the sec-
ond output tuple in the result of Q1 is the location (Agencies, t2, name)
(or simply, (t2, name)) in our example database, since “HarborCruz”
was copied from the name attribute of the tuple t2 in the Agencies
relation, according to Q1.

Where-provenance is also not invariant under equivalent queries.
To illustrate, consider the queries Q1 (repeated from earlier) and Q′

1.
The only difference between Q1 and Q′

1 is in the select clause. The first
attribute of the select clause of Q1 is a.name, whereas the first attribute
of the select clause of Q′

1 is e.name.

Q1:
SELECT a.name, a.phone
FROM Agencies a, ExternalTours e
WHERE a.name = e.name

AND e.type=‘boat’

Q′
1:

SELECT e.name, a.phone
FROM Agencies a, ExternalTours e
WHERE a.name = e.name

AND e.type=‘boat’

1.1 Why, How and Where: An Overview 383

Agencies
name based in phone

t1: BayTours San Francisco 415-1200
t2: HarborCruz Santa Cruz 831-3000

ExternalTours
name destination type price

t3: BayTours San Francisco cable car $50
t4: BayTours Santa Cruz bus $100
t5: BayTours Santa Cruz boat $250
t6: BayTours Monterey boat $400
t7: HarborCruz Monterey boat $200
t8: HarborCruz Carmel train $90

Fig. 1.1 Our example database: an online travel portal.

on the name attribute, selecting tours by boat, and projecting on the
name and phone attributes:

Q1:
SELECT a.name, a.phone
FROM Agencies a, ExternalTours e
WHERE a.name = e.name AND
e.type=‘boat’

Result of Q1:
name phone
BayTours 415-1200
HarborCruz 831-3000

The result of Q1 executed on our example database in Figure 1.1 is
shown above on the right. According to Cui et al., the lineage of the out-
put tuple (HarborCruz, 831-3000) is {Agencies(t2), ExternalTours(t7)},
where Agencies(t2) and ExternalTours(t7) denote the subinstances of
Agencies and ExternalTours consisting of tuples t2 and t7, respectively.
Intuitively, the two source tuples witness the existence of the tuple of
interest, (HarborCruz, 831-3000), according to Q1. Furthermore, each
of the two source tuples justify the existence of the HarborCruz tuple.
In other words, the source tuples t2 and t7 form a “proof” or “witness”
for the HarborCruz output tuple according to Q1, and no other source
tuples are part of the witness since they do not contribute to the Har-
borCruz output tuple. Technically speaking, by “witness” we mean a
subset of the input database records that is sufficient to ensure that a
given output tuple appears in the result of a query.

As another example, the lineage of the output tuple (Bay-
Tours, 415-1200) is the union of the lineage of the intermediate

1.1 Why, How and Where: An Overview 383

Agencies
name based in phone

t1: BayTours San Francisco 415-1200
t2: HarborCruz Santa Cruz 831-3000

ExternalTours
name destination type price

t3: BayTours San Francisco cable car $50
t4: BayTours Santa Cruz bus $100
t5: BayTours Santa Cruz boat $250
t6: BayTours Monterey boat $400
t7: HarborCruz Monterey boat $200
t8: HarborCruz Carmel train $90

Fig. 1.1 Our example database: an online travel portal.

on the name attribute, selecting tours by boat, and projecting on the
name and phone attributes:

Q1:
SELECT a.name, a.phone
FROM Agencies a, ExternalTours e
WHERE a.name = e.name AND
e.type=‘boat’

Result of Q1:
name phone
BayTours 415-1200
HarborCruz 831-3000

The result of Q1 executed on our example database in Figure 1.1 is
shown above on the right. According to Cui et al., the lineage of the out-
put tuple (HarborCruz, 831-3000) is {Agencies(t2), ExternalTours(t7)},
where Agencies(t2) and ExternalTours(t7) denote the subinstances of
Agencies and ExternalTours consisting of tuples t2 and t7, respectively.
Intuitively, the two source tuples witness the existence of the tuple of
interest, (HarborCruz, 831-3000), according to Q1. Furthermore, each
of the two source tuples justify the existence of the HarborCruz tuple.
In other words, the source tuples t2 and t7 form a “proof” or “witness”
for the HarborCruz output tuple according to Q1, and no other source
tuples are part of the witness since they do not contribute to the Har-
borCruz output tuple. Technically speaking, by “witness” we mean a
subset of the input database records that is sufficient to ensure that a
given output tuple appears in the result of a query.

As another example, the lineage of the output tuple (Bay-
Tours, 415-1200) is the union of the lineage of the intermediate

VisTrails
• Comprehensive provenance infrastructure for computational tasks
• Focus on exploratory tasks such as simulation, visualization, and data

analysis
• Transparently tracks provenance of the discovery process—from data

acquisition to visualization
- The trail followed as users generate and test hypotheses
- Users can refer back to any point along this trail at any time

• Leverage provenance to streamline exploration
• Focus on usability—build tools for scientists

10D. Koop, CSCI 640/490, Spring 2023

watercolor

darkened

grayscale

original

sharpened

Version Trees for Evolution Provenance
• Undo/redo stacks are linear!
• We lose history of exploration
• Old Solution: User saves files/state
• VisTrails Solution:
- Automatically & transparently capture

entire history as a tree
- Users can tag or annotate each version
- Users can go back to any version by

selecting it in the tree

11D. Koop, CSCI 640/490, Spring 2023

Data Provenance for Data Science

12

[A. Chapman et al., 2020]
D. Koop, CSCI 640/490, Spring 2023

Table 1: Typical operations in ML pipelines of data preparation from Orange [7] and Scikit-Learn [31].
Orange3 Ex. ScikitLearn Ex. Category Operator Implementation

Feature Statistics Feature_selection

Data reduction

Feature Selection c⇠
Select Data by Index Dataframe op. Instance Selection f⇠

Select Columns Feature_selection Drop Columns c⇠
Select Rows Dataframe op. Drop Rows f⇠
Data Sampler Imbalanced-learn Undersampling f⇠

Impute SimpleImputer

Data
transformation

Imputation g5 (-)
Apply Domain FunctionTransformer Value Transformation g5 (-)
Edit Domain Binarizer Binarization g5 (-)
Preprocess Normalizer Normalization g5 (-)
Discretize KBinDiscretizer Discretization g5 (-)

Feature Constructor FunctionTransformer

Data augmentation

Space Transformation c/ � U!
5 (-) :.

Create Class FunctionTransformer Instance Generation U#
- :5 (.)

Data Sampler Imbalanced-learn Oversampling U#
- :5 (-)

Corpus Label Encoder String Indexer U!
5 (-) :.

Preprocess OneHotEncoder One-Hot Encoder U!
5 (-) :.

computes the average of a set of numbers. Then, the expression
U!51 (Age) :ageRange (⇡) produces the following dataset:

CId Gender Age Zip ageRange
1 113 � 24 98567 ~>D=6
2 241 " 28 ? 03D;C
3 375 ⇠ ? 32768 ?
4 578 � 44 32768 03D;C

whereas ⇢2 = U#
Gender:52 (Age) (⇡) the dataset:

CId Gender Age Zip
1 113 � 24 98567
2 241 " 28 ?
3 375 ⇠ ? 32768
4 578 � 44 32768
5 ? � 34 ?
6 ? " 28 ?

Note that brand-new data can be added to a dataset using an
horizontal augmentation in which - = ;, . = (, and 5 denotes
the procedure for adding records (e.g., by asking them to the user).
Note also that the horizontal augmentation allows us to combine, in
the same dataset, entities at di�erent levels of granularity, a feature
that can be very useful to a data scientist (e.g., to compute, in the
example above, the mean deviation).
Data transformation One basic data transformation operator is
de�ned over datasets:

g5 (-) : the transformation of a set of features - of ⇡ using a
function 5 is obtained by substituting each value 38a with
5 (3⇤a), for each feature a occurring in - .

Example 3.4. Let ⇡ be the dataset in Example 3.1 and 5 be an
imputation function that associates to the?’s occurring in a feature
a the most frequent value occurring in ⇡⇤a. Then, the result of the
expression g5 (Zip) (⇡) is the following dataset:

CId Gender Age Zip
1 113 � 24 98567
2 241 " 28 32768
3 375 ⇠ ? 32768
4 578 � 44 32768

We note that the data manipulation model presented here has
some similarity with the Dataframe algebra [32]. The main di�er-
ence is that we have focused on a restricted set of core operators
(with some of those in [32] missing and others combined in one)
with the speci�c goal of providing a solid basis to an e�ective
technique for capturing data provenance of classical preprocessing
operators. We point out that our algebra can be easily extended
to include operators implementing other ETL/ELT-like transfor-
mations, such as join, intersection, and union, whose �ne-grained
provenance capture have been described elsewhere [50].

3.3 Data provenance model
The purpose of data provenance is to extract relatively simple expla-
nations for the existence (or the absence) of some piece of data in
the result of complex data manipulations. Along this line, we adopt
as the provenance model a subset of the PROV model [25] from
the W3C, a widely adopted ontology that formalises the notion of
provenance document and which admits RDF and other serialisation
formats to facilitate interoperability. This model can be graphically
described as shown in Figure 1.

Figure 1: The core W3C PROV model.

In PROV an entity represents an element 3 of a dataset ⇡ and
is uniquely identi�ed by ⇡ and the coordinates of 3 in ⇡ (i.e., the
corresponding row index and feature). An activity represents any
pre-processing data manipulation that operates over datasets. For
each element 3 in a dataset ⇡ 0 generated by an operation o over a
dataset⇡ we represent the facts that: (i)3 wasGeneratedBy o, and (ii)
3 wasDerivedFrom a set of elements in ⇡ . In addition, we represent:
(iii) all the elements 3 of ⇡ such that 3 was used by o and (iv) all the
elements 3 of ⇡ such that 3 wasInvalidatedBy (i.e., deleted by) o (if

510

any). Note that in PROV derivation implies usage, but the inverse
is not true and this is why this notation is not redundant.

Example 3.5. Let ⇢ be the �rst expression in Example 3.3 and
⇡ 0 = ⇢ (⇡). A fragment of the data provenance generated by this
operation is reported in Figure 2.

Figure 2: A fragment of provenance data for the operation
in Example 3.5.

3.4 Problem Statement
We consider compositions of the operators introduced in Section 3.2
into pipelines that take input⇡ and produce⇡ 0, denoted⇡ 0 = ⇢ (⇡).
Note that although in principle any combination is possible, in
practice there are limitations, because some operators may alter
the dataset schema.

The outcome, accuracy and performance of the �nal model are
dependent upon the �nal dataset produced by ⇢ (⇡). As the data
scientist attempts to create a performant model, she may wish
to inspect and understand exactly what happened within each
transformation of the dataset within the pipeline. Unfortunately,
as these pipelines become complex, they become more di�cult to
understand and debug. Table 2 contains a set of use cases from
the Data Science Stack Exchange (DSSE) of users attempting to
understand what is happening within the processes and data in
a machine learning pipeline. These use cases were gathered via
the following methodology: DSSE was searched for all questions
using the Orange framework; DSSE questions were included if they
were about pipeline construction; exclusions included questions on
speci�c operators, how to use the Orange GUI, etc. In Table 3, we
describe the provenance required for a developer to identify the
problems in their machine learning pipeline.

Thus, the problem within this work is to: a) de�ne the set of
operations for data manipulation available within a pipeline; b)
establish a set of provenance patterns that can be used to reason
over and capture the provenance of these operations over the data;
c) show that our approach can support typical provenance queries
in an e�ective and scalable way.

4 PRE-PROCESSING OPERATORS
In this section we illustrate a number of common pre-processing
operators that are often used in data preparation work�ows show-
ing how they can be suitably expressed as composition of the basic
operators introduced in Section 3.2

4.1 Data Reductions
Feature Selection. This operation consists of selecting a set of
relevant features from a given dataset and dropping the others,
which are either redundant or irrelevant for the goal of the learning
process.

Feature selection over a dataset ⇡ with a schema (can be ex-
pressed by means of a simple pipeline involving only the projection
operator with a condition that selects the set of features � ⇢ (of
interest:

FS(D) = cC (D)

where ⇠ = {a 2 I }.
A special case of feature selection is an operation that drops

columns with a value rate of missing values higher than a threshold
C . In this case, the condition of the projection operator is more
involved as it requires introspection of the dataset:

⇠ = {a 2 S | count(Dia = ?, 1  i  n) < t}.

Instance Selection. The aim of this operation is to reduce the
original dataset to a manageable volume by removing noisy in-
stances with the goal of improving the accuracy (and e�ciency) of
classi�cation problems.

Also in this case, instance selection over a dataset ⇡ with a
schema (can be expressed by means of a simple pipeline involving
only the selection operator with a condition that identi�es the set
of relevant rows of ⇡ by means of a predicate ?: IS(D) = fC (D)
where ⇠ = {Di⇤ 2 S | p(Di⇤)}.

Similar to feature selection, a relevant case of instance selec-
tion drops rows with a value rate of missing values higher than a
threshold C . In this case,

⇠ = {Di⇤ 2 D | count(Dij = ?, 1  j  m) < t}

4.2 Data Transformations
By data transformation we mean any operation on a given dataset
that modi�es its values with the goal of improving the quality of
⇡ and/or making more e�ective the process of information extrac-
tion from ⇡ . In general, any kind of data transformation can be
expressed by means of a pipeline involving the data transformation
operator: DT (D) = gf (X) (D), where 5 can be any scalar function
that associates with one or more values from the domain of the
features - of (a value. Several cases are common in preprocessing
pipelines, as illustrated in the following.
Data repair. It is the process of replacing inconsistent data items
with new values. In this case, 5 is a simple function that converts
values and the data transformation possibly operates on the whole
dataset.
Binarization. It is the process of converting numerical features to
binary features. For instance, if a value for a given feature is greater
than a threshold it is changed a 1, if not to 0.
Normalization. It is a scaling technique that transforms all the
values of a feature so that they fall in a smaller range, such as
from 0 to 1. There are many normalization techniques, such as Min-
Max normalization, Z-score normalization and Decimal scaling
normalization. This operation operates on a single feature at a time

511

5 CAPTURING PROVENANCE
In order to capture the provenance of a pipeline ? of a sequence
of preprocessing operations o1, . . . , o= , we associate a provenance-
generating function (p-gen) with each operation o: occurring in
? . Each such function generates a collection of provenance data
whenever a dataset is processed using o: , which describes the e�ect
of o: on the data at the appropriate level of detail.

In concordance with the provenance model presented in Section
3.3, for each element 38 9 (an entity in the PROV model) of a dataset
⇡ produced during the execution of ? , we represent its coordinates
(i.e., the row index 8 and feature 9 in ⇡) and a progressive number
: denoting the fact that 38 9 is in the result of the :-th operation in
? . For each operation o: (an activity in the PROV model) in ? , we
represent the operator(s) illustrated in Section 3.2 that implement(s)
o: and the list of the features on which o: operates.

5.1 Provenance templates
We now present the provenance-generating (p-gen) functions that
are invoked alongside the execution of one of the operators o on
⇡ to obtain ⇡ 0. As all speci�c operators in Section 4 are de�ned in
terms of our �ve core pipeline operators, it is enough to de�ne a
p-gen function for each of these operators. To recall, these are: (i)
data reduction: ⇡ 0 = c⇠ (⇡), ⇡ 0 = f⇠ (⇡); (ii) Data augmentations:
U!5 (-) :. , U

#
- :5 (.) ; and (iii) Data transformations: g5 (-) .

Each p-gen function takes inputs ⇡,⇡ 0 (the inputs and outputs
of their associated operator) along with a description of the op-
erator itself, and produces a PROV document that describes the
transformation produced by the operator on each element of⇡ . The
output PROV document is obtained by instantiating an appropriate
provenance template [24], which is designed to capture the trans-
formation at the most granular level, i.e., at the level of individual
elements of ⇡ , or its rows or columns, as appropriate.

In general, the template will have a used set of entities, which
refer to the subset of data items in⇡ which are e�ectively used by o,
and a generated set of new entities, corresponding to new elements
in ⇡ 0. For projection and selection, it will have an invalidated set
of entities instead, as these operators remove data from ⇡ .

Take for example the case of Vertical Augmentation (VA):
U!51 (Age) :ageRange (⇡) which we used in Example 3.3, where at-
tribute Age is binarised into {young, adult} based on a pre-de�ned
cuto�, de�ned as part of 5 (). The p-gen function for VAwill produce
a collection of small PROV documents, one for each input-output
pair h⇡8,Age,⇡

0
8,AgeRangei as shown in the example. As these doc-

uments all share the same structure, we specify p-gen by giving
two elements. First, a single PROV template for (VA) as shown in
Figure 3, where we use the generic attribute names - ,. to indicate
the old and new feature names, as per the operator’s general de�ni-
tion in Section 3.2. Notice that, since we want to express that new
data elements after transformation are indeed derived from cor-
responding old elements, we also add an explicit wasDerivedFrom
relationship in addition to used and wasGeneratedBy.

A template is simply a PROV document where: (i) variables,
indicated by the namespace var:, are used as placeholders for values
and (ii) a set of rules is used to specify how the “used” and the
“generated” sides of the template are repeatedly instantiated, by

binding the variables to each of the data items involved in the
transformation. We refer to each instantiated template produced
by a p-gen function as a provlet.

The VA example is particularly simple, as the transformation
between⇡ and⇡ 0 is 1:1 and thus a new PROV document instance is
created for each value of column⇡⇤,Age. Using a list comprehension
notation, the bindings for the variables used in the template in
Figure 3 are de�ned as:

[h� = Age, � = 8,+ = ⇡8,Age,

� 0 = AgeRange, � = 8,+ 0 = 5 (⇡8,Age)i |8 : 1 . . .=]
These are the new entities for the newly created data elements in
the new column ⇡⇤,AgeRange 2 {young, adult}. One of the = PROV
documents for this speci�c example is shown in Figure 3.

Figure 3: Example of PROV template for Vertical Augmen-
tation and corresponding instances.

5.2 Template binding rules
Generalising, we de�ne templates for each of the �ve core operators,
shown in Figure 4 and the corresponding binding generators for
used, generated, and invalidated sets of entities.

Note that we do not need to create a new provenance record for
all entities in any given output dataset. If 5 (⇡) does not change 38 9 ,
then no provenance record needs to be generated. If 5 (⇡) throws
away elements only invalidation records are required. Only in the
case where a new entity is generated, i.e. when 5 (⇡) creates a new
or updated value in 38 9 , is a provenance record required. In other
words, we only require provenance statements that capture the
delta for elements in the dataframe.
Data reduction, selection: Data reduction invalidates existing
entities. For selection: ⇡ 0 = f⇠ (⇡), the bindings specify that an
entire row 8 is invalidated whenever condition ⇠ is False when
evaluated on that row. This a�ects all features - 2 (:

[h� = - , � = 8i |- 2 (, 8 : 1 . . .=,⇠ (⇡8,⇤ = False)]
A wasInvalidatedBy relationship is established between each of
these entities and a single Activity, representing the selection.
Data reduction, projection: Conditional projection ⇡ 0 = c⇠ (⇡)
invalidates all elements in column - 2 (whenever ⇠ returns True
when evaluated on elements of - :

[h� = - , � = 8i |- 2 (, 8 : 1 . . .=,⇠ (⇡⇤,- =)AD4)]

513

Provenance Templates

13

[A. Chapman et al., 2020]
D. Koop, CSCI 640/490, Spring 2023

Assignment 5
• Chicago Bike Sharing Data
- Spatial Analysis
- Temporal Analysis
- Graph Database (neo4j)

14D. Koop, CSCI 640/490, Spring 2023

http://faculty.cs.niu.edu/~dakoop/cs640-2023sp/assignment5.html

Final Exam
• Wednesday, May 10, 8:00-9:50pm, PM 253
• Similar format
• More comprehensive (questions from topics covered in Test 1 & 2)
• Will also have questions from graph/spatial/temporal data, provenance,

reproducibility, machine learning

15D. Koop, CSCI 640/490, Spring 2023

The State of Repeatability in
Computer Systems Research

C. Collberg and T. Proebsting
CACM 2016

D. Koop, CSCI 640/490, Spring 2023

https://dl.acm.org/doi/10.1145/2812803
https://dl.acm.org/doi/10.1145/2812803

State of Repeatability in Computer Systems
• "Cool paper! Can you send me the system?"
• How hard is it to just re-execute published experiments
• Most people say they will share their code and data are available…
• Weak repeatability: Do authors make the source code used to create the

results in their article available, and will it build?

17D. Koop, CSCI 640/490, Spring 2023

Commercial?

no
response

research
repeatable

Non−

research
repeatable

Non−

evidence
Anecdotal

builds 1? builds 2?

no
response

response
or late

research
repeatable

Non−

resolve issues
Issue survey,

resolve issues
Issue survey,

runs?
Record
resultsresearch

Repeatable

evidence
Anecdotal

ASPLOS’12, CCS’12, OOPSLA’12, OSDI’12,
PLDI’12, SIGMOD’12, SOSP’11, VLDB’12,
TACO’9, TISSEC’15, TOCS’30, TODS’37,
TOPLAS’34

no yes

no no

yes yes

Theoretical/HW

"yes"

"no" "no"

"yes"

no

yes yes

no

2nd email?

no

yes

Practical

by code?

Results backed

Links to code

http://...

http://...

Download

code

Source code

paper? web? 1st email?

Download

papers

Build and

execute

Scan

manually

Search for

link to code

Search for

other data

NSF support?

Figure 4: Process by which the study was performed.

11

Experiment

18

Commercial?

no
response

research
repeatable

Non−

research
repeatable

Non−

evidence
Anecdotal

builds 1? builds 2?

no
response

response
or late

research
repeatable

Non−

resolve issues
Issue survey,

resolve issues
Issue survey,

runs?
Record
resultsresearch

Repeatable

evidence
Anecdotal

ASPLOS’12, CCS’12, OOPSLA’12, OSDI’12,
PLDI’12, SIGMOD’12, SOSP’11, VLDB’12,
TACO’9, TISSEC’15, TOCS’30, TODS’37,
TOPLAS’34

no yes

no no

yes yes

Theoretical/HW

"yes"

"no" "no"

"yes"

no

yes yes

no

2nd email?

no

yes

Practical

by code?

Results backed

Links to code

http://...

http://...

Download

code

Source code

paper? web? 1st email?

Download

papers

Build and

execute

Scan

manually

Search for

link to code

Search for

other data

NSF support?

Figure 4: Process by which the study was performed.

11

[Collberg and Proebsting, 2015]
D. Koop, CSCI 640/490, Spring 2023

http://reproducibility.cs.arizona.edu/v2/RepeatabilityTR.pdf

601

NC
63

HW
30

508

Article
85

Web
54

EMyes

87

EX
106

226

OK∑30

130
OK>30

64
OKAuth

23

Build
fails

9

176

EMno

146
EM;

30

Figure 11: Study result. Blue numbers represent papers that were excluded from consideration,
green numbers papers that are weakly repeatable, red numbers papers that are non-weakly repeat-
able, and orange numbers represent papers that were excluded (due to our restriction of sending
at most one email to each author).

10. Notes:

(a) If a link was found through a web search go back and check the paper again to make
sure it was not there.

(b) It can be complicated to determine when there is a larger project of which the current
paper is a subset. In that case the paper may refer to the larger project as though it
were a separate subject when in fact their current code is included with it.

4 Results

Table 2, Figure 11, and Appendix B show the results of the study. Table 4 lists the abbreviations
we use.

Table 2 shows that out of an initial 601 papers, we excluded 30 because they required esoteric
hardware, 63 because the results presented were not backed by code, and 106 in order to avoid
sending multiple email requests to the same author, resulting in a total of 402 papers whose results
were backed by code. Out of these, we found 85 codes through links in the paper itself, 54 codes
through web searches, and 87 codes through email requests. For the remaining 176 papers backed
by code we either got a negative response to our email requests, or no response within two months.

Our results show that for 32.3% of the papers backed by code we were able to obtain the code
and, within  30 minutes, also build it (weak repeatability A); for 48.3% of the papers we managed
to build the code, but it may have required extra e↵ort (weak repeatability B); and for 54.0% of
the papers either we managed to build the code or the authors stated the code would build with
reasonable e↵ort (weak repeatability C).

21

Repeatability Results

19

[Collberg and Proebsting, 2015]
D. Koop, CSCI 640/490, Spring 2023

64 COMMUNICATIONS OF THE ACM | MARCH 2016 | VOL. 59 | NO. 3

contributed articles

take the expected level of repeatability
into consideration in their recommen-
dation to accept or reject. To this end,
we make a recommendation for add-
ing sharing contracts to publications—
a statement by authors as to the level of
repeatability readers can expect.

Background
Three previous empirical studies ex-
plored computer science researchers’
willingness to share code and data.
Kovac̆ević 5 rated 15 papers published
in the IEEE Transactions on Image
Proc essing and found that while all al-
gorithms had proofs, none had code
available, and 33% had data available.
Vandewalle et al.18 examined the 134
papers published in IEEE Transactions
on Image Processing in 2004, finding “…
code (9%) and data (33%) are available
online only in a minority of the cases
…” Stodden15 reported while 74% of the
registrants at the Neural Information
Processing Systems (machine-learn-
ing) conference said they were willing
to share post-publication code and 67%
post-publication data, only “ … 30% of
respondents shared some code and
20% shared some data on their own
websites.” The most common reasons
for not sharing code were “The time
it takes to clean up and document for
release,” “Dealing with questions from
users about the code,” “The possibility
that your code may be used without ci-
tation,” “The possibility of patents, or
other IP constraints,” and “Competi-
tors may get an advantage.” Stodden14
has since proposed “The Open Re-
search License,” which, if universally
adopted, would incentivize researchers
to share by ensuring “ … each scientist
is attributed for only the work he or she
has created.”13

Public repositories can help authors
make their research artifacts available
in perpetuity. Unfortunately, the “if you
build it they will come” paradigm does
not always work; for example, on the
RunMyCode17 and ResearchCompen-
dia Web portals,a only 143 and 236 arti-
facts, respectively, had been registered
as of January 2016.

One attractive proposition for re-
searchers to ensure repeatability is to
bundle code, data, operating system,

a http://RunMyCode.org and http://research-
compendia.org

the researchers’ experiment using the
same method in the same environ-
ment and obtain the same results.19
Sharing for repeatability is essential to
ensure colleagues and reviewers can
evaluate our results based on accurate
and complete evidence. Sharing for
benefaction allows colleagues to build
on our results, better advancing scien-
tific progress by avoiding needless rep-
lication of work.

Unlike repeatability, reproducibility
does not necessarily require access to
the original research artifacts. Rather,
it is the independent confirmation of a
scientific hypothesis,19 done post-pub-
lication, by collecting different proper-
ties from different experiments run on
different benchmarks, and using these
properties to verify the claims made in
the paper. Repeatability and reproduc-
ibility are cornerstones of the scientific
process, necessary for avoiding dis-
semination of flawed results.

In light of our discouraging experi-
ences with sharing research artifacts,
we embarked on a study to examine
the extent to which computer systems
researchers share their code and data,
reporting the results here. We also
make recommendations as to how to
improve such sharing, for the good of
both repeatability and benefaction.

The study. Several hurdles must be
cleared to replicate computer systems
research. Correct versions of source
code, input data, operating systems,
compilers, and libraries must be avail-
able, and the code itself must build

and run to completion. Moreover, if
the research requires accurate mea-
surements of resource consumption,
the hardware platform must be rep-
licated. Here, we use the most liberal
definitions of repeatability: Do the
authors make the source code used to
create the results in their article avail-
able, and will it build? We will call this
“weak repeatability.”

Our study examined 601 papers
from ACM conferences and journals,
attempting to locate any source code
that backed up published results. We
examined the paper itself, performed
Web searches, examined popular
source-code repositories, and, when
all else failed, emailed the authors. We
also attempted to build the code but
did not go so far as trying to verify the
correctness of the published results.

Recommendations. Previous work on
repeatability describes the steps that
must be taken in order to produce re-
search that is truly repeatable11,12 or de-
scribes tools or websites that support
publication of repeatable research.4,6

Our recommendations are more mod-
est. We recognize that, as a discipline,
computer science is a long way away
from producing research that is al-
ways, and completely, repeatable. But,
in the interim, we can require authors
to conscientiously inform their peers
of their intent with respect to sharing
their research artifacts. This informa-
tion should be provided by the authors
when submitting their work for pub-
lication; this would allow reviewers to

Table 1. Notation used in Table 2 and the figure.

Notation Number of papers ...

HW excluded due to replication requiring special hardware

NC excluded due to results not being backed by code

EX excluded due to overlapping author lists

BC where the results are backed by code

Article where code was found in the paper itself

Web where code was found through a Web search

EM yes where the author provides code after receiving an email message

EM no where the author responds to an email message saying code cannot be provided

EM ø where the author does not respond to email requests within two months

OK ≤30 where code is available and we succeed in building the system in ≤30 minutes

OK >30 where code is available and we succeed in building the system in >30 minutes

OK Auth where code is available and we fail to build, and the author says the code
builds with reasonable effort

Fails where code is available and we fail to build, and the author says the code
may have problems building

http://reproducibility.cs.arizona.edu/v2/RepeatabilityTR.pdf

Excuses
• "Unfortunately the current system is not mature"
• "The code was never intended to be released so it is not in any shape for

general use"
• "[Our] prototype included many moving pieces that only [student] knew how

to operate… he left"
• "… the server in which my implementation was stored had a disk crash …

three disks crashed… Sorry for that"

20

[Collberg and Proebsting, 2015]
D. Koop, CSCI 640/490, Spring 2023

http://reproducibility.cs.arizona.edu/v2/RepeatabilityTR.pdf

Excuses
• "…when we attempted to share it, we [spent] more time getting outsiders up

to speed than on our own research"
• "… we can't share what [we] did for this paper. … this is not in the academic

tradition, but this is a hazard in an industrial lab"
• "… based on earlier (bad) experience, we [want] to make sure that our

implementation is not used in situations that it is not meant for"

21

[Collberg and Proebsting, 2015]
D. Koop, CSCI 640/490, Spring 2023

http://reproducibility.cs.arizona.edu/v2/RepeatabilityTR.pdf

Excuse Classification
• Versioning
• Available Soon
• No Intention to Share
• Personnel Issues
• Lost Code
• Academic Tradeoffs
• Industrial Lab Tradeoffs
• Obsolete HW/SW
• Controlled Usage
• Privacy/Security
• Design Issues

22

[Collberg and Proebsting, 2015]
D. Koop, CSCI 640/490, Spring 2023

http://reproducibility.cs.arizona.edu/v2/RepeatabilityTR.pdf

23

Some of these are (partially) people problems, not
technical problems

D. Koop, CSCI 640/490, Spring 2023

Examining 'Reproducibility in Computer Science'
• Repeat the experiment in reproducibility!
• Differences from original
• Shows issues with trying

to classify experiments

24

[S. Krishnamurthi et al.]
D. Koop, CSCI 640/490, Spring 2023

Examining “Reproducibility in Computer Science”

1 What We Are Doing

Welcome to repo-repe-repro: the repository to repeat an experiment in
“reproducibility”!

A group led by Christian Collberg attempted to evaluate the buildability of artifacts
from research papers. Our goal is to allow the community to review and
reconstruct their findings. Note: We are not the original authors! If you have
questions about the original study, please contact them, not us!

We are grateful to Collberg, et al. for initiating this discussion and making all their
data available. This is a valuable service based on an enormous amount of manual
labor. Even if we end up disagreeing with their findings, we remain deeply
appreciative of their service to the community by highlighting these important
issues.

We do disagree with Collberg, et al.’s use of the term “reproducibility”. Many
people, including ourselves, associate it with an independent reconstruction of a
work. This paper, for instance, spells out the difference between repeatability and
reproducibility and provides interesting examples.

2 Progress

Purported Not Building;
Disputed; Not Checked

 6% ••••••

Purported Building; Disputed;
Not Checked

 2% ••

Conflicting Checks! 0%

Misclassified 1% •

Purported Not Building But
Found Building

 14% ••••••••••••••

Purported Building But Found
Not Building

 0%

Purported Not Building;
Confirmed

 0% •

Purported Building; Confirmed 0% •

All Others Purported Not 27% •••••••••••••••••••••••••••

http://cs.brown.edu/~sk/Memos/Examining-Reproducibility/

Recommendations
• Fund repeatability engineering
• Require sharing contracts

25

[Collberg and Proebsting, 2015]
D. Koop, CSCI 640/490, Spring 2023

Location • email address and/or web site

Resource

• types: code, data, media, documentation
• availability: no access, access, NDA access
• expense: free, non-free, free for academics
• distribution form: source, binary, service
• expiration date
• license
• comment

Support

• kinds: resolve installation issues, fix bugs,
upgrade to new language and operating
system versions, port to new environments,
improve performance, add features

• expense: free, non-free, free for academics
• expiration date

http://reproducibility.cs.arizona.edu/v2/RepeatabilityTR.pdf

Reproducible Research
• Science is verified by replicating work independently
• Replication Issues:
- Requires many resources to replicate (Sloan Digital Sky Survey)
- Requires significant computing power (Climate Model Simulation)
- Requires too much time or very specific circumstances (Environment

Epidemiology)
• Reproducibility
- Replication of the analysis based on the collected data (not replicating the

data collection itself)
- Better if we have the actual code or available executables

26

[R. D. Peng]
D. Koop, CSCI 640/490, Spring 2023

Fig. 1.
The spectrum of reproducibility.

Peng Page 5

Science. Author manuscript; available in PMC 2012 December 02.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Reproducibility Spectrum

27

[R. D. Peng]
D. Koop, CSCI 640/490, Spring 2023

Published Papers
• “It’s impossible to verify most of the results that computational scientists

present at conference and in papers.” [Donoho et al., 2009]
• “Scientific and mathematical journals are filled with pretty pictures of

computational experiments that the reader has no hope of repeating.”
[LeVeque, 2009]

• “Published documents are merely the advertisement of scholarship whereas
the computer programs, input data, parameter values, etc. embody the
scholarship itself.” [Schwab et al., 2007]

28D. Koop, CSCI 640/490, Spring 2023

Problem: Incomplete Publications
• A paper cannot include all relevant details of

the science
- Large volumes of data
- Complex processes
- Code dependencies

• This makes publishing complete results
more difficult!

29D. Koop, CSCI 640/490, Spring 2023

Text

011100101
111001011
001001101
101010110
111000110

Data

WorkflowsSource Code Libraries

ResultsVisualizations

Reproducible/Executable Papers

30D. Koop, CSCI 640/490, Spring 2023

Reproducible/Executable Papers

30D. Koop, CSCI 640/490, Spring 2023

Reproducible/Executable Papers

30D. Koop, CSCI 640/490, Spring 2023

Reproducible/Executable Papers

30D. Koop, CSCI 640/490, Spring 2023

Reproducible/Executable Papers

30D. Koop, CSCI 640/490, Spring 2023

Challenges
• Re-using results
• Adding results to publications
• Obtaining results, computations, and input from publications
• Publishing interactive experiments
• Searching executable paper collections
• Reviewers: execution environments, checking different parameters
• Longevity/maintenance
• Resource constraints:
- analyses run on supercomputers
- large datasets
- privacy or intellectual property concerns

31D. Koop, CSCI 640/490, Spring 2023

General Strategies for Reproducibility
• Preserving the Mess:
- Just save a virtual machine
- Trace dependencies

• Encouraging Cleanliness:
- Use a system (e.g. Umbrella, VisTrails)
- Use literate programming environments
- Use code and data repositories
- Use packaging system (ReproZip)

32

[Categories from H. Meng et al., 2016]
D. Koop, CSCI 640/490, Spring 2023

Literate Programming
• Knuth’s WEB system
• Mathematica
• Code this is well-documented using comments
• Jupyter Notebooks

33D. Koop, CSCI 640/490, Spring 2023

Data and Code Availability
• Code Repositories:
- GitHub
- GitLab
- ...

• Data Repositories:
- figshare, freebase, dryad, DataONE
- Also many domain-specific repositories
- http://oad.simmons.edu/oadwiki/Data_repositories

34D. Koop, CSCI 640/490, Spring 2023

10 Rules for Reproducible Computational Research
• Rule 1: For Every Result, Keep Track of How It Was Produced
• Rule 2: Avoid Manual Data Manipulation Steps
• Rule 3: Archive the Exact Versions of All External Programs Used
• Rule 4: Version Control All Custom Scripts
• Rule 5: Record All Intermediate Results, When Possible in Standardized

Formats

35

[Sandve et al., 2013]
D. Koop, CSCI 640/490, Spring 2023

10 Rules for Reproducible Computational Research
• Rule 6: For Analyses That Include Randomness, Note Underlying Random

Seeds
• Rule 7: Always Store Raw Data behind Plots
• Rule 8: Generate Hierarchical Analysis Output, Allowing Layers of Increasing

Detail to Be Inspected
• Rule 9: Connect Textual Statements to Underlying Results
• Rule 10: Provide Public Access to Scripts, Runs, and Results

36

[Sandve et al., 2013]
D. Koop, CSCI 640/490, Spring 2023

Rules or Benefits?
• Laws to make sure people don't cheat or lie or steal
• Is that a good incentive? You won't be mislabeled as a criminal?
• Benefits of Reproducibility
- Reproducible programs can be compared
- Reproducible software and results are documented
- Reproducible software is portable
- Reproducible experiments are cited

37

[J. Freire et al.]
D. Koop, CSCI 640/490, Spring 2023

Reproducible Experiments Classification
• Depth: how much is available?
- figures
- scripts
- raw data
- experiments
- software system

• Portability: what machine specs are necessary?
- same machine
- similar machine
- different OS

• Coverage: how much can be reproduced?
38

[J. Freire et al.]
D. Koop, CSCI 640/490, Spring 2023

(Database) Research Topics
• Design and Management of Experiment Repositories
• Querying and Searching Experiments
• Mining Experiments

39

[J. Freire et al.]
D. Koop, CSCI 640/490, Spring 2023

A Large-scale Study about Quality and
Reproducibility of Jupyter Notebooks

J. F. Pimentel, L. Murta, V. Braganholo, and J. Freire

D. Koop, CSCI 640/490, Spring 2023

55

In [3]:

Out[3]:

Fibonnaci

LeW¶s plot the numbers

def fib(x):
if x <= 1:

return x
return fib(x-1) + fib(x-2)

fib(10)

from matplotlib import pyplot
%matplotlib inline
x = range(15)
y = [fib(n) for n in x]
pyplot.plot(x, y);

In [8]:

0 2 4 6 8 10 12 14
0

50

100

150

200

250

300

350

Markdown
Cells

Code
Cells

Execution
Counter

Output 2

Output 1

Fig. 1. A notebook example with markdown, code, and output.

logic. It allows the programmers themselves and others to
more easily understand the code. Nowadays, literate program-
ming is used in interactive computational notebook environ-
ments [2], which allow parts of a notebook to be executed
with immediate visualization of results and formatted text.

A Jupyter Notebook [2] is at the same time an interactive
literate programming document and an application that exe-
cutes the document. In this paper, to avoid the ambiguity, we
use the term Jupyter to refer to the application, as well as to
Jupyter Lab and other applications that execute notebooks. We
use the terms Notebook or Jupyter Notebook interchangeably
to refer to the literate programming document.

A notebook is composed of cells, which can be of three
types: code, markdown, and raw. A code cell contains ex-
ecutable code used to produce results. A markdown cell
contains formatted text. Finally, a raw cell contains text that is
neither code nor formatted text. Tools that convert notebooks
into other formats use raw cells for configuration.

Jupyter uses a kernel to execute code cells. When Jupyter
sends a code cell for execution, it marks the cell as executing
by assigning “*” to the cell execution counter. After the
execution, the kernel allocates a number to the counter, which
indicates the execution order. Users can execute the cells in
any order, and a given cell can be executed multiple times.

Storing either executed or non-executed notebooks is pos-
sible. A non-executed notebook contains only prospective
data [15], i.e., the notebook title and definition of its cells. An
executed notebook contains prospective data plus retrospective
data [15] derived by the execution of the notebook cells –
the output of code cells and their execution counters. The
execution of a notebook does not require cleaning the outputs
of previous executions. Thus, an executed notebook may
contain retrospective data of multiple executions.

Figure 1 shows an executed Jupyter notebook which con-
tains two markdown cells and two code cells. On the left of
code cells, Jupyter displays an execution counter that indicates
the order in which the cells were executed. Below the code
cells, Jupyter displays their outputs. Note that the first code

cell returns a number, identified by Out[3] and the second
code cell displays an image, without returning it. This figure
also presents two skips on the execution counters. A skip
represents cell executions that do not have explicit definitions
in the notebooks. In this case, the two executions before the
execution counter 3 represent one skip, and the four executions
between 3 and 8 represent the other.

III. MATERIALS AND METHODS

In this section, we discuss the method for the analyses we
have carried out and data collection procedures we used to
obtain evidence for quality and reproducibility best practices
(or lack of thereof) in Jupyter notebooks.

A. Analyses

As discussed in Section I, Jupyter has received substantial
criticism for encouraging bad coding habits and practices that
hinder reproducibility [6]–[8]. In what follows, we discuss
these criticisms and propose analyses to quantify their impact
on notebooks present in GitHub. These criticisms relate to both
prospective and retrospective components of notebooks [15].
We thus frame our analyses in terms of seven research ques-
tions (RQ1, RQ2, RQ3, RQ4, RQ5, RQ6, and RQ7), which
we organize into these two categories.

1) Analysis of Prospective Data: Notebooks store cell
definitions and the notebook title as prospective data. In our
analyses, we tried to answer the following questions:

RQ1. How are literate programming features used in note-
books? According to Wilson et al. [9], scientists should write
programs for people and not for computers. Being a literate
programming tool, Jupyter can fulfill this goal. Jupyter allows
users to write markdown cells with text describing the logic
behind their programs, followed by direct visualizations of
the results. However, the ability to do it does not imply that
users will write descriptions or whether these descriptions are
meaningful. Grus [7] pointed out that among the officially
recommended tutorials written in Jupyter, there are tutorials
with descriptive text that does not correctly explain what the
code does. We analyze whether Jupyter is used as literate
programming tool by looking at the number of markdown cells
and their positions in the notebooks. Investigating the presence
of linguistic anti-patterns [16] or whether the markdown
descriptions are meaningful for the notebooks is outside the
scope of this work.

RQ2. How are notebooks named? By default, Jupyter
creates notebooks titled “Untitled”. This discourages users to
choose meaningful names [7]. Also, the notebook title is the
same as the filename. Using the filename creates OS-based
restrictions in the size of titles and the allowed characters (e.g.,
in Windows, it is impossible to create or use a notebook that
has ”?” in the title [17]). Moreover, it makes the notebook
title susceptible to filename conventions (e.g., not using space
characters [18]). We analyze the number of “Untitled” note-
books, the number of notebooks with “-Copy” in the title,
the size of notebook titles, and the presence of characters not

2

Notebooks and Hidden State

41

recommended by the POSIX fully portable filenames guide
(the guide recommends A-Z a-z 0-9 . -) [19].

RQ3. How do notebooks use modules, functions, and
classes? In traditional programming languages, modules,
functions, and classes are essential constructs to maintain
the separation of concerns in software [10]. In literate pro-
gramming environments, markdown cells could be used to
separate the concerns. However, this would suffer from the
lack of referencing and reusability. Moreover, Python treats
every script as a module and allows users to import functions
and classes from them, which improves the reusability across
scripts. However, importing notebooks is hard and unusual [7].
We extract the Python Abstract Syntax Tree (AST) from cells
to analyze the presence of local module imports, and function
and class definitions as evidence of separation of concerns.

RQ4. How are notebooks tested? Testing is a good practice
to verify that a given program meets its requirements and
keeps working after changes are applied [11]. Since notebooks
are not modules, testing code in a notebook is challenging
as it requires mixing text code with the notebook narrative
code [7], [8]. To search for evidence of testing in notebooks,
we analyze the imported modules names that contain “test”,
“Test”, “TEST”, “mock”, “Mock”, or “MOCK” as a sub-
string. We also checked for known Python testing tools that
do not have these sub-strings (i.e., antiparser, aspectlib, be-
have, doublex, fit, fudge, fusil, hypothesis, lettuce, ludibrio,
mox, nose, peckcheck, pester, pry, pythoscope, reahl.tofu,
reahl.stubble, sancho, subunit, taof, twisted.trial). We obtained
this list of modules from the categories unit testing tools, mock
testing tools, fuzz testing tools, and acceptance testing tools
of the Python testing tools taxonomy page [20].

2) Analysis of Retrospective Data: Notebooks store cell
outputs and execution counters as retrospective data. We use
the following questions to explore the retrospective data.

RQ5. Do users store notebooks with retrospective data?
Displaying execution results is part of the literate programming
aspect of notebooks. The support for rich media enhances the
narratives and the writing of programs for people. Moreover,
having partial cell results helps in checking the reproduction
of a notebook, by allowing the comparison of the cell outputs
upon re-execution. However, some advocate that the results
of notebook execution should be removed before committing
to avoid noise in diffs [21]. Furthermore, Jupyter is also used
as an IDE for general purpose software development with the
goal of extracting the produced code to scripts afterward [13].
We analyze the number of notebooks that have retrospective
data and whether Jupyter is used as literate programming tool
by looking at the output formats (i.e., MIME types of cells’
outputs) in executed notebooks.

RQ6. How are notebooks executed? Jupyter allows users
to execute cells in any order. While notebooks present the
cells in a linear top-bottom narrative, a user may choose to
execute the cells in a non-linear, arbitrary order. This ability
is not intuitive to how most people expect to run code [6]–[8].
Moreover, cells that appear at the beginning of notebooks may
depend on cells that appear later, causing even more issues to

Out[4]:

co = 0

2

In [1]:

co += 1In [3]:

coIn [4]:

(a)
Out[3]:

co = 0

1

In [1]:

co += 2In [2]:

coIn [3]:

(b)
Out[3]:

co = 0

1

In [1]:

coIn [3]:

(c)
Fig. 2. Three types of Hidden States: (a) Re-execution; (b) edited cell; (c)
removed cell.

people that run them in the default order [22]. To quantify the
prevalence of this issue, we identify notebooks that have cells
in a non-linear order.

In addition to the out-of-order cell issue, when Jupyter
executes a code cell, the execution may change a state in
the environment. It does not cause problems when users run
cells only once and do not change the previously executed
cells. However, when the user runs the same cell multiple
times, edits, or removes the cell code after executing it, the
environment state may no longer represent the code definition,
and this can lead to bugs and make debugging harder [6], [7].

Figure 2 presents three examples of hidden states caused
by these situations. Note that hidden states caused by cell
re-execution or removal make the notebooks skip numbers
in the execution counter sequence. Thus, in our analyses,
we count how many execution counters skips there exist in
the notebooks. Note that a removed or re-executed cell that
causes a skip number does not necessarily produce a hidden
state when it has code that does not change the environment.
Hence, our measurement states the susceptibility of notebooks
to have hidden states rather than confirming that they have
them. Additionally, our analysis does not consider hidden
states caused by edited cells that were not executed.

Finally, the presence of non-executed code cells in the
middle of the notebooks also hinders the reasoning about the
execution. We analyze this issue by counting how many non-
executed cells there exist in the notebooks and by comparing
their positions with the position of executed ones.

RQ7. How reproducible are notebooks? Notebooks do not
declare the versions of imported libraries [7]. The lack of
versions may cause incompatibilities and prevent the usage in
other systems. In Python, this issue can be addressed by defin-
ing dependencies in standard files: requirements.txt,
setup.py, and Pipfile. We analyze how many notebooks
belong to repositories with such files.

The existence of hidden states, out-of-order cells, hard-
coded paths, and other bad practices also prevent the repro-
duction of notebooks. To assess the rate of reproducibility,
we perform a reproducibility analysis of all unambiguous
execution order Python notebooks. We define unambiguous
execution order notebooks as notebooks that have only one
valid execution sequence. That is, they have neither cells with
repeated execution counters, nor cells whose counter count
indicates that they are being executed. Note that this definition
does not guarantee that the notebook outputs represent a
single execution, but it is a close approximation with practical

3

[Pimentel et al., 2019]
D. Koop, CSCI 640/490, Spring 2023

Fig. 9. Distribution of Python constructs in notebooks. This figure groups constructs into categories. The constructs of a category appear on the right of the
category bar. A category corresponds to the union of its constructs.

Fig. 10. Distribution of code cells in notebooks.

Fig. 11. Distribution of skips. Max. outlier: 220.

skips occurred. Since skips represent cell executions without
explicit definitions, they may indicate the presence of hidden
states. Figure 11 presents the distribution of skips by note-
books. 76.90% of unambiguous execution order notebooks
have at least one skip. A skip contains 12.82 executions
on average. By considering only skips in the middle (i.e.,
excluding skips in the first cell), the percentage of notebooks
with skips drops to 66.08%. Additionally, the average of
skipped executions drops to 10.32.

RQ6. How are notebooks executed?
Answer: Many unambiguous execution order notebooks have
non-executed code cells, out-of-order cells, and skips in the
execution count. All these characteristics hinder the reasoning
about execution states. The number of notebooks with skips
and the average size of skips drop when we exclude skips
at the beginning of the notebooks. A possible cause of these
skips only at the beginning of a notebook is the re-execution
of all of its cells without restarting the kernel.
Implications: There is an opportunity for proposing ap-
proaches that measure non-executed code cell, out-of-order
cells, and skips as code smells in notebooks, i.e., structures
in the code that violate design principles and can negatively
impact quality [31]. Fortunately, most of these code smells are
easily fixable by restarting the kernel and executing all cells
again before committing. Nonetheless, such approach could
detect out-of-order cells by looking not only to cell numbers
but also to variable usages occurring before the definition.

G. How reproducible are notebooks?
Only 149,259 notebooks belong to repositories that de-

clare module dependencies. Most of these repositories use

requirements.txt (10.04%), while 5.98% use setup.py. Among
these, many repositories (3.23%) have both setup.py files and
requirements.txt files. Moreover, some repositories even have
more than one of these files. In addition to these files, we found
1,541 notebooks that belong to repositories with Pipfile.

In the remainder of this section, we describe a repro-
ducibility study in which we executed all 863,878 Python
notebooks with unambiguous execution order. Among these,
118,483 (13.72%) declared dependencies using the files men-
tioned above. Not all dependency declarations are valid. We
attempted to install the dependencies of these notebooks in
conda environments. However, the dependencies of 75,059
notebooks failed to install. To install the dependencies, we
first installed all the setup.py files in the repository. Then,
we installed the requirements.txt files. Finally, we installed
the Pipfile files. The failure rate for these files were 67.55%,
61.17%, and 65.20%, respectively.

The failure rate for the installation of requirements.txt was
lower than the other formats. While the requirements.txt is a
declarative format in which the module version is pinned, the
setup.py is a generic Python script that supports any flexible
installation code. Thus, setup.py is more susceptible to errors.
In comparison to Pipfile, requirements.txt is a well-established
format that has been used for many years. Pipfile, on the other
hand, exists for less than two years, and its specification still
goes through constant revisions.

Among the reasons for installation errors, we identified that
35.04% have files that require other unavailable files (e.g.,
sub-requirements and downloads from unavailable servers),
24.77% have malformed files (i.e., wrong syntax or conflicting
dependencies), 25.67% have files that require a previous
installation of Python packages (e.g., a setup.py that requires
Cython to compile and build a package), 8.73% have files that
require external tools (e.g., compilers and libraries), 4.77%
have files designed for other systems (e.g., Raspberry Pi and
Windows), and 1.02% have dependencies that do not support
the declared Python version (e.g., the repository has a Python
2 notebook, but the setup.py requires a module that dropped
support to Python 2 and did not pin the module version).

We were able to install the dependencies of 43,424 note-
books. In addition to these notebooks, we prepared anaconda
environments for 745,389 notebooks that did not declare de-
pendencies. Different from the previous conda environments,

7

Notebook Composition

42

[Pimentel et al., 2019]
D. Koop, CSCI 640/490, Spring 2023

Notebook Reproducibility
• Use notebooks from Github (~1 million)
- Unambiguous cell order? 81.99%

• Study notebook dependencies
- Dependencies Available? 13.72%
- Dependencies Install? 5.03%

• Study notebook executability
- Execute: 24.11% of unambiguous cell order
- Matched results: 4.03%

43

[Pimentel et al., 2019]
D. Koop, CSCI 640/490, Spring 2023

Best Practices
• Use short titles with a restrict charset (A-Z a-z 0-9 . -) for notebook files and

markdown headings for more detailed ones in the body
• Pay attention to the bottom of the notebook. Check whether it can benefit

from descriptive markdown cells or can have code cells executed or removed
• Abstract code into functions, classes, and modules and test them
• Declare the dependencies in requirement files & pin versions of all packages
• Use a clean environment to test if dependencies are properly declared
• Put imports at the beginning of notebooks
• Use relative paths for accessing data in the repository
• Re-run notebooks top to bottom before committing

44

[Pimentel et al., 2019]
D. Koop, CSCI 640/490, Spring 2023

In [5]: import pandas as pd
df = pd.read_csv('guardian-top100-female-2019.csv')

In [6]: df = df.rename(columns={'Age on 1 Dec 2019': 'Age'})

Out[5]: Name Rank Position Age on 1 Dec 2019 Nationality

0 Sam Kerr 1 Forward 26 Australia

...

99 Ludmila 100 Forward 25 Brazil
100 rows 5 columns

Out[6]: Name Rank Position Age Nationality

0 Sam Kerr 1 Forward 26 Australia

...

99 Ludmila 100 Forward 25 Brazil
100 rows 5 columns

Problem: What is df at any point in time?

45

In [3]: df = df[df.Age >= 31]

In [7]: df = df[df.Age <= 24]

Out[3]: Name Rank Position Age Nationality

2 Megan Rapinoe 3 Midfielder 34 USA

...

96 Cláudia Neto 97 Midfielder 31 Portugal
19 rows 5 columns

Out[7]: Name Rank Position Age Nationality

3 Ada Hegerberg 4 Forward 24 Norway

...

98 Lena Oberdorf 99 Midfielder 17 Germany
25 rows 5 columns

D. Koop, CSCI 640/490, Spring 2023

In [d51f8eab]: import pandas as pd
df = pd.read_csv('guardian-top100-female-2019.csv')

In [full]: df = df.rename(columns={'Age on 1 Dec 2019': 'Age'})

df: Name Rank Position Age on 1 Dec 2019 Nationality

0 Sam Kerr 1 Forward 26 Australia

...

99 Ludmila 100 Forward 25 Brazil
100 rows 5 columns

df: Name Rank Position Age Nationality

0 Sam Kerr 1 Forward 26 Australia

...

99 Ludmila 100 Forward 25 Brazil
100 rows 5 columns

Dataflow Notebooks: Resolve Notebook Ambiguities

46

In [over30]: df = df$full[df$full.Age >= 31]

In [under25]: df = df$full[df$full.Age <= 24]

df: Name Rank Position Age Nationality

2 Megan Rapinoe 3 Midfielder 34 USA

...

96 Cláudia Neto 97 Midfielder 31 Portugal
19 rows 5 columns

df: Name Rank Position Age Nationality

3 Ada Hegerberg 4 Forward 24 Norway

...

98 Lena Oberdorf 99 Midfielder 17 Germany
25 rows 5 columns

D. Koop, CSCI 640/490, Spring 2023

b11c72

b0ad32

fc93ee

X_train

X_test

y_train

y_test

classifier

Dataflow Notebooks: Dependency Graph
• Shows connections between cells
• Can see which cells would be affected by a

change
• Same colors indicate which parts of the

graph are stale
• Linked to the notebook
- Hover to show a cell's code
- Can also execute in the graph

47D. Koop, CSCI 640/490, Spring 2023

