
Advanced Data Management (CSCI 640/490)

Data Curation

Dr. David Koop

D. Koop, CSCI 640/490, Spring 2023

Exploring	NASA	MODIS	data

5

Measure	vegetation	density

Measure	snow	melt

Track	phytoplankton	populations

Track	hurricanes Introduction

Spatial Data

2

[L. Battle, 2017]
D. Koop, CSCI 640/490, Spring 2023

https://courses.cs.washington.edu/courses/cse512/18sp/lectures/CSE512-Interaction.pdf

Exploratory	browsing	systems	design

7

DBMS

Client

Server

query

result

Exploratory
Browsing

SELECT	lat,	lng,	(b4-b6)/(b4+b6)	as	ndsi
FROM	modis_data
WHERE	ndsi >0.7	

Interactive Exploration of Spatial Data

3

[L. Battle, 2017]
D. Koop, CSCI 640/490, Spring 2023

https://courses.cs.washington.edu/courses/cse512/18sp/lectures/CSE512-Interaction.pdf

Exploratory	browsing	systems	design

7

DBMS

Client

Server

query

result

Exploratory
Browsing

SELECT	lat,	lng,	(b4-b6)/(b4+b6)	as	ndsi
FROM	modis_data
WHERE	ndsi >0.7	

Interactive Exploration of Spatial Data

3

[L. Battle, 2017]
D. Koop, CSCI 640/490, Spring 2023

SLOW

https://courses.cs.washington.edu/courses/cse512/18sp/lectures/CSE512-Interaction.pdf

Target	metric:	responsiveness

9

User	
submits	
query

Create	
visualization

User	
pan/zoom

Update
visualization

Prepare	data
in	DBMS

Fetch	results	
from	DBMS

Cold	start	time interaction	latency	<	500ms

Input Compute Respond Input Compute Respond

Exploratory
Browsing

(Pre-comp.
Structures)

Two Inputs to Exploratory Browsing

4

[L. Battle, 2017]
D. Koop, CSCI 640/490, Spring 2023

https://courses.cs.washington.edu/courses/cse512/18sp/lectures/CSE512-Interaction.pdf

Comparing	with	existing	exploratory	
browsing	systems

10

Sa
m
pl
in
g

Ag
gr
eg
at
io
n

Progressive/IncrementalPredictivePre-computed	structures
SampleAction (CHI	2012)
Vizdom (VLDB	2015)

Nanocubes (Infovis 2013)
imMens (Eurovis 2013)

ATLAS	(VAST	2008)

ForeCache

DICE	(ICDE	2014)

Exploratory
Browsing

O
ut
pu

t	
fo
rm

at

Time

XmdvTool (DASFAA 2003)

(Offline) (Before	interaction) (After	interaction)

A-WARE	(HILDA	2016)

Systems for Interactive Exploration

5

[L. Battle, 2017]
D. Koop, CSCI 640/490, Spring 2023

https://courses.cs.washington.edu/courses/cse512/18sp/lectures/CSE512-Interaction.pdf

Nanocubes for Real-Time Exploration of Spatiotemporal Datasets
Lauro Lins, James T. Klosowski, and Carlos Scheidegger

Fig. 1. Example visualizations of 210 million public geolocated Twitter posts over the course of a year. The data structure we
propose enables real-time (these images above were rendered faster than the typical screen refresh rate) visual exploration of large,
spatiotemporal, multidimensional datasets. The visual encodings built using nanocubes are within a controllable difference to ones
rendered by a traditional linear scan over the dataset. They naturally support linked navigation and brushing, and include choropleth
maps, time series over arbitrary regions and scales of space and time, parallel sets, histograms, and binned scatterplots. The
color scale of the choropleth map is a diverging scale in which blue corresponds to iPhones being relatively more popular, and red
corresponds to higher relative popularity of Android devices.

Abstract—Consider real-time exploration of large multidimensional spatiotemporal datasets with billions of entries, each defined by
a location, a time, and other attributes. Are certain attributes correlated spatially or temporally? Are there trends or outliers in the
data? Answering these questions requires aggregation over arbitrary regions of the domain and attributes of the data. Many relational
databases implement the well-known data cube aggregation operation, which in a sense precomputes every possible aggregate query
over the database. Data cubes are sometimes assumed to take a prohibitively large amount of space, and to consequently require disk
storage. In contrast, we show how to construct a data cube that fits in a modern laptop’s main memory, even for billions of entries;
we call this data structure a nanocube. We present algorithms to compute and query a nanocube, and show how it can be used
to generate well-known visual encodings such as heatmaps, histograms, and parallel coordinate plots. When compared to exact
visualizations created by scanning an entire dataset, nanocube plots have bounded screen error across a variety of scales, thanks
to a hierarchical structure in space and time. We demonstrate the effectiveness of our technique on a variety of real-world datasets,
and present memory, timing, and network bandwidth measurements. We find that the timings for the queries in our examples are
dominated by network and user-interaction latencies.

Index Terms—Data cube, Data structures, Interactive exploration

1 INTRODUCTION

As datasets get larger, exploratory data visualization becomes more
difficult. Consider a dataset with a billion entries. We can compute
a small summary of the dataset and visualize the summary instead of
the dataset, but as Anscombe’s famous quartet shows [3], summaries
themselves cannot ascertain their own validity. Summaries might help,
but in order to understand if that is the case, we will inevitably find

• Lauro Lins is with AT&T Research. E-mail: llins@research.att.com.
• Jim Klosowski is with AT&T Research. E-mail: jklosow@research.att.com.
• Carlos Scheidegger is with AT&T Research. E-mail:

cscheid@research.att.com.

Manuscript received 31 March 2013; accepted 1 August 2013; posted online
13 October 2013; mailed on 4 October 2013.
For information on obtaining reprints of this article, please send
e-mail to: tvcg@computer.org.

ourselves having to visualize one billion residuals. As far as scale goes,
we are back to square one. In other words, data summarization alone
will never solve the problem of scale in exploratory visualization. As
visualization practitioners, what then can we do? Even drawing the
simplest scatterplot is not straightforward. If we decide to produce
the visualization by scanning the rows of a table, we will either need
non-trivial parallel rendering algorithms or significant time to produce
a drawing. Neither of these solutions is attractive or scales well with
dataset size.

Data cubes are structures that perform aggregations across every
possible set of dimensions of a table in a database, to support quick
exploration [15, 31]. Many visualization systems are built on top of data
cubes, concretely or conceptually. Still, only recently have researchers
started to examine data cube creation algorithms in the context of
information visualization [33, 18, 21].

Data cubes are often problematic in that they can take prohibitively
large amounts of memory as the number of dimensions increases. In

Nanocubes

6

[Lins et. al, 2013]
D. Koop, CSCI 640/490, Spring 2023

From Tables and Spreadsheets to Data Cubes
• A data warehouse is based on a multidimensional data model which views

data in the form of a data cube
• A data cube, such as sales, allows data to be modeled and viewed in

multiple dimensions
- Dimension tables, such as item (item_name, brand, type), or time(day,

week, month, quarter, year)
- Fact table contains measures (such as dollars_sold) and keys to each of

the related dimension tables
• In data warehousing literature, an n-D base cube is called a base cuboid.

The top most 0-D cuboid, which holds the highest-level of summarization, is
called the apex cuboid. The lattice of cuboids forms a data cube.

7

[Han et al., 2011]
D. Koop, CSCI 640/490, Spring 2023

all

time item location supplier

time,location

time,supplier

item,location

item,supplier

location,supplier

time,item,supplier

time,location,supplier

item,location,supplier

��D (apex) cuboid

��D cuboids

��D cuboids

��D cuboids

��D (base) cuboid

Data Cube: A Lattice of Cuboids

8

[Han et al., 2011]
D. Koop, CSCI 640/490, Spring 2023

Data Cube Measures: Three Categories
• Distributive: if the result derived by applying the function to n aggregate

values is the same as that derived by applying the function on all the data
without partitioning
• E.g., count(), sum(), min(), max()

• Algebraic: if it can be computed by an algebraic function with M arguments
(where M is a bounded integer), each of which is obtained by applying a
distributive aggregate function
• E.g., avg(), min_N(), standard_deviation()

• Holistic: if there is no constant bound on the storage size needed to
describe a subaggregate.
• E.g., median(), mode(), rank()

9

[Han et al., 2011]
D. Koop, CSCI 640/490, Spring 2023

A Sample Data Cube

10

[Han et al., 2011]
D. Koop, CSCI 640/490, Spring 2023

Total annual sales
of TVs in U.S.A.

Date

Pro
du

ct

C
ou

nt
ry

All, All, All

sum

sum
TV

VCR
PC

1Qtr 2Qtr 3Qtr 4Qtr

U.S.A

Canada

Mexico

sum

OLAP Operations

11

[Han et al., 2011]
D. Koop, CSCI 640/490, Spring 2023

Natural language query s c t URL
count of all Delta flights R U R { Delta } R U /where/carrier=Delta
count of all Delta flights in the Midwest R Midwest R { Delta } R U /region/Midwest/where/carrier=Delta
count of all flights in 2010 R U D R 2010 /field/carrier/when/2010
time-series of all United flights in 2009 R U R { United } D 2009 /tseries/when/2009/where/carrier=United
heatmap of Delta flights in 2010 D tile0 R { Delta } R 2010 /tile/tile0/when/2010/where/carrier=Delta

Fig. 5. A simplified set of queries supported by nanocubes. The column s represents space; t, time; c, category. R means “rollup”, D means
“drilldown”. The value next to R or D contains the subset of that dimension’s domain being selected. U represents the entire domain (“universe”).

guage, but does not include the GROUP BY on Language only. As the
results of GROUP BYs, CUBEs and ROLL UPs can be seen as relations,
we can naturally compose such operators (e.g. a ROLL UP CUBE).

4 NANOCUBE: A COMPACT, SPATIOTEMPORAL DATA CUBE

Data visualizations in a computer are necessarily bounded by display
size, and so we would like to be able to quickly collect subsets of the
dataset that would end up in the same pixel on the screen. However,
spatiotemporal navigation is inherently multiscale. The same data
structure should support quick indexing for a visualization over multiple
years of time series and for drilling down into one particular hour or
day. Similarly, the data cube should support aggregation queries over
vast spatial regions covering entire continents, as well as very narrow
queries covering only a few city blocks.

The database notion of ROLL UP, in a sense, aligns nicely with the
notion of Level of Detail. For example, if the records of a table (relation)
contain a location attribute, one can design a ROLL UP query whose
resulting relation encodes the same information as the one encoded
in a level of detail data structure. More concretely, suppose `1, . . . ,`k
are attributes computed from the original location attribute and yield
“quadtree addresses” of increasingly higher levels of detail (from 1 to k).
A ROLL UP query on these (computed) attributes results in, essentially,
the same information as the one contained in a quadtree (given that we
are keeping the same summary in both, e.g. count).

The second important notion in the design of nanocubes is the idea
that we want to combine aggregations of independent dimensions at
independent levels of detail. For example we might want to know for
a whole country, what is the spatial distribution of tweets generated
by an iPhone: coarse on the spatial dimension, but specific on the
device dimension. Conversely, we might want to know the distribution
of tweets (coarse on device) in a small city block (fine in space). In
relational database terminology, this model has a name: it is a CUBE
of ROLL UP, or a ROLL UP CUBE. With the terminology set, we can
state: a nanocube is a data structure to efficiently store and query
spatiotemporal ROLL UP CUBE. Besides implementation tricks, the
main difference between nanocubes and previously published sparse
coalesced data cubes such as Dwarf cubes [30] is in the design of aggre-
gations across spatiotemporal dimensions (see Sections 4.3.1 and 4.3.3).
Next, we present a formal description of the components that make up
our nanocube index, pseudo-code for building nanocubes, an illustrated
example, and how queries are made against our index.

Online Submission ID: 276

1: function NANOCUBE([o1,o2, . . . ,on], S, `time) . n > 0
2: nano cube NODE() . New empty node
3: for i = 1 to n do
4: updated nodes /0
5: ADD(nano cube, oi, 1, S, `time, updated nodes)
6: end for
7: return nano cube
8: end function

1: function TRAILPROPERPATH(root, [v1, . . . ,vk])
2: stack STACK() . New Empty Stack
3: PUSH(stack, root)
4: node root
5: for i = 1 to k do
6: child CHILD(node, vi)
7: if child = null then
8: child NEWPROPERCHILD(node, vi, NODE())
9: else if ISSHAREDCHILD(node,child) then

10: child REPLACECHILD(node,
child, SHALLOWCOPY(child))

11: end if
12: PUSH(stack, child)
13: node child
14: end for
15: return stack
16: end function

1: function SHALLOWCOPY(node)
2: node sc NODE()
3: SETSHAREDCONTENT(node sc, CONTENT(node))
4: for v in CHILDRENLABELS(node) do
5: NEWSHAREDCHILD(node sc, v, CHILD(node, v))
6: end for
7: return node sc
8: end function

1: procedure ADD(root, o, d, S, `time, updated nodes)
2: [`1, . . . ,`k] CHAIN(S, d)
3: stack TRAILPROPERPATH(root, [`1(o), . . . ,`k(o)])
4: child null
5: while stack is not empty do
6: node POP(stack)
7: update false
8: if node has a single child then
9: SETSHAREDCONTENT(node, CONTENT(child))

10: else if CONTENT(node) is null then
11: SETPROPERCONTENT(node,

(d= dim(S) ?
SUMMEDTABLETIMESERIES() : NODE())

12: update true
13: else if CONTENTISSHARED(node) and

CONTENT(node) not in updated nodes then
14: SETPROPERCONTENT(node,

SHALLOWCOPY(CONTENT(node)))
15: update true
16: else if CONTENTISPROPER(node) then
17: update true
18: end if
19: if update then
20: if d= dim(S) then
21: INSERT(CONTENT(node), `time(o))
22: else
23: ADD(CONTENT(node), o, d+1, updated nodes)
24: end if
25: INSERT(updated nodes, CONTENT(node))
26: end if
27: child node
28: end while
29: end procedure

Fig. 3. Pseudo-code of an algorithm to build nanocubes.

exploits unique characteristics of space and time to get a good com-
promise between space usage and efficiency of queries (Sections 4.2.1
and 6). Second, we show how these structures enable the visualiza-
tions which are common in interactive tools (Section 4.3).

There have been recent efforts to build data cube structures specif-
ically suited for visualization. Crossfilter [32] is a software package
built on the clever observation that many queries in interactive visual-
ization are incremental: assuming that previous results are available,
the results needed for the next query can be quickly computed. Unfor-
tunately, we do not see easily how this would work for the multiscale
queries necessary in a spatiotemporal setting. Just as recently, Kandel
et al. have proposed Datavore, a column-oriented database support fast
data cube queries [17], and Liu et al. leverage graphics hardware in iM-
mens, achieving extremely fast queries over large data [20]. While we
defer to Section 7 a full discussion and direct comparison of nanocubes
to Datavore and iMmens, we show in Figure 14 that nanocubes achieve
good performance for both sparse (the regime where Datavore’s data
structures are ideal) and dense occupation of key space (where iM-
mens’s are).

3 DATA CUBES

Following common practice, we will call the table in Figure 5 a rela-
tion, its columns attributes, its lines records, and its entries values. An
aggregation represents the idea of selecting a certain group of records
from a relation and summarizing this group using an aggregation func-
tion (e.g. count, sum, max, min). For example, a possible aggrega-
tion for the relation A could be to select all its records and summarize
those using count, yielding five as the aggregation result. If we al-
low a special value All to be a valid attribute value, we could represent
this aggregation as relation B in Figure 5.

A record that contains the special value All is an aggregation record.

Using this notation, it is easy to understand some conventional ways
of describing aggregations for a given relation: group by, cube, and
rollup. A group by operation is one in which a relation is derived from
a base relation given a list of attributes and an aggregate function. For
example, group by on attributes Device and Language with the count
aggregate function results in the relation C in Figure 5.

Note that for every different combination of values present in the
attributes of a base relation an aggregation record is added to the re-
sulting relation. In our running example (Figure 5) these combinations
are (Android, en), (iPhone, en), and (iPhone, ru). The cube operation

Online Submission ID: 276

1: function NANOCUBE([o1,o2, . . . ,on], S, `time) . n > 0
2: nano cube NODE() . New empty node
3: for i = 1 to n do
4: updated nodes /0
5: ADD(nano cube, oi, 1, S, `time, updated nodes)
6: end for
7: return nano cube
8: end function

1: function TRAILPROPERPATH(root, [v1, . . . ,vk])
2: stack STACK() . New Empty Stack
3: PUSH(stack, root)
4: node root
5: for i = 1 to k do
6: child CHILD(node, vi)
7: if child = null then
8: child NEWPROPERCHILD(node, vi, NODE())
9: else if ISSHAREDCHILD(node,child) then

10: child REPLACECHILD(node,
child, SHALLOWCOPY(child))

11: end if
12: PUSH(stack, child)
13: node child
14: end for
15: return stack
16: end function

1: function SHALLOWCOPY(node)
2: node sc NODE()
3: SETSHAREDCONTENT(node sc, CONTENT(node))
4: for v in CHILDRENLABELS(node) do
5: NEWSHAREDCHILD(node sc, v, CHILD(node, v))
6: end for
7: return node sc
8: end function

1: procedure ADD(root, o, d, S, `time, updated nodes)
2: [`1, . . . ,`k] CHAIN(S, d)
3: stack TRAILPROPERPATH(root, [`1(o), . . . ,`k(o)])
4: child null
5: while stack is not empty do
6: node POP(stack)
7: update false
8: if node has a single child then
9: SETSHAREDCONTENT(node, CONTENT(child))

10: else if CONTENT(node) is null then
11: SETPROPERCONTENT(node,

(d= dim(S) ?
SUMMEDTABLETIMESERIES() : NODE())

12: update true
13: else if CONTENTISSHARED(node) and

CONTENT(node) not in updated nodes then
14: SETPROPERCONTENT(node,

SHALLOWCOPY(CONTENT(node)))
15: update true
16: else if CONTENTISPROPER(node) then
17: update true
18: end if
19: if update then
20: if d= dim(S) then
21: INSERT(CONTENT(node), `time(o))
22: else
23: ADD(CONTENT(node), o, d+1, updated nodes)
24: end if
25: INSERT(updated nodes, CONTENT(node))
26: end if
27: child node
28: end while
29: end procedure

Fig. 3. Pseudo-code of an algorithm to build nanocubes.

Our technique is most closely related to the work of Sismanis et
al. [30, 29]. Specifically, we use similar ideas to reduce the size of
a data cube from potentially exponential in the cardinality of the key
space (we define these terms in Section 4.1) to essentially linear [31].
Nanocubes improve on Sismanis et al.’s work in two fundamental di-
rections. First, we develop a model for spatiotemporal data cubes that
exploits unique characteristics of space and time to get a good com-
promise between space usage and efficiency of queries (Sections 4.2.1
and 6). Second, we show how these structures enable the visualiza-
tions which are common in interactive tools (Section 4.3).

There have also been recent efforts to build data cube structures
specifically suited for visualization. Crossfilter [32] is a software pack-
age built on the clever observation that many queries in interactive vi-
sualization are incremental: assuming that previous results are avail-
able, the results needed for the next query can be quickly computed.
Unfortunately, we do not see easily how this would work for the multi-
scale queries necessary in a spatiotemporal setting. Just as recently,
Kandel et al. have proposed Datavore, a column-oriented data cube
representation [17], and Liu et al. leverage graphics hardware in iM-
mens, achieving extremely fast queries over large data [20]. While we
defer to Section 7 a full discussion and direct comparison of nanocubes
to Datavore and iMmens, we show in Figure 13 that nanocubes achieve
good performance for both sparse (the regime where Datavore’s data
structures are ideal) and dense occupation of key space (where iM-
mens’s are).

3 DATA CUBES

In the relational databases community, the table below is a relation, its
columns are attributes, its lines are records, and its entries are values.

Country Device Language
US Android en
US iPhone ru

South Africa iPhone en
India Android en

Australia iPhone en

An aggregation represents the idea of selecting a certain group of
records from a relation and summarizing this group using an aggrega-
tion function (e.g.count, sum, max, min). For example, a possible
aggregation for the relation above could be to select all its records and
summarize those using count. In this case, five would be the final
aggregation result. If we allow entries in the record to have a special
value All, we could represent this aggreation as the following relation:

Country Device Language Count
All All All 5

We refer to records in a relation that contain the special value All as ag-
gregation records. Using this notation, it is easy to understand the con-
ventional ways of describing aggregations for a given relation: group
by, cube, and rollup. A group by operation is one in which a relation is
derived from a base relation given a list of attributes and an aggregate
function. For example, group by on attributes Device and Language
with the count aggregate function results in the relation:

Country Device Language Count
All Android en 2
All iPhone en 2
All iPhone ru 1

Note that for every different combination of values present in the at-
tributes of the base relation an aggregation record is added to the re-

3

Online Submission ID: 276

1: function NANOCUBE([o1,o2, . . . ,on], S, `time) . n > 0
2: nano cube NODE() . New empty node
3: for i = 1 to n do
4: updated nodes /0
5: ADD(nano cube, oi, 1, S, `time, updated nodes)
6: end for
7: return nano cube
8: end function

1: function TRAILPROPERPATH(root, [v1, . . . ,vk])
2: stack STACK() . New Empty Stack
3: PUSH(stack, root)
4: node root
5: for i = 1 to k do
6: child CHILD(node, vi)
7: if child = null then
8: child NEWPROPERCHILD(node, vi, NODE())
9: else if ISSHAREDCHILD(node,child) then

10: child REPLACECHILD(node,
child, SHALLOWCOPY(child))

11: end if
12: PUSH(stack, child)
13: node child
14: end for
15: return stack
16: end function

1: function SHALLOWCOPY(node)
2: node sc NODE()
3: SETSHAREDCONTENT(node sc, CONTENT(node))
4: for v in CHILDRENLABELS(node) do
5: NEWSHAREDCHILD(node sc, v, CHILD(node, v))
6: end for
7: return node sc
8: end function

1: procedure ADD(root, o, d, S, `time, updated nodes)
2: [`1, . . . ,`k] CHAIN(S, d)
3: stack TRAILPROPERPATH(root, [`1(o), . . . ,`k(o)])
4: child null
5: while stack is not empty do
6: node POP(stack)
7: update false
8: if node has a single child then
9: SETSHAREDCONTENT(node, CONTENT(child))

10: else if CONTENT(node) is null then
11: SETPROPERCONTENT(node,

(d= dim(S) ?
SUMMEDTABLETIMESERIES() : NODE())

12: update true
13: else if CONTENTISSHARED(node) and

CONTENT(node) not in updated nodes then
14: SETPROPERCONTENT(node,

SHALLOWCOPY(CONTENT(node)))
15: update true
16: else if CONTENTISPROPER(node) then
17: update true
18: end if
19: if update then
20: if d= dim(S) then
21: INSERT(CONTENT(node), `time(o))
22: else
23: ADD(CONTENT(node), o, d+1, updated nodes)
24: end if
25: INSERT(updated nodes, CONTENT(node))
26: end if
27: child node
28: end while
29: end procedure

Fig. 3. Pseudo-code of an algorithm to build nanocubes.

Our technique is most closely related to the work of Sismanis et
al. [30, 29]. Specifically, we use similar ideas to reduce the size of
a data cube from potentially exponential in the cardinality of the key
space (we define these terms in Section 4.1) to essentially linear [31].
Nanocubes improve on Sismanis et al.’s work in two fundamental di-
rections. First, we develop a model for spatiotemporal data cubes that
exploits unique characteristics of space and time to get a good com-
promise between space usage and efficiency of queries (Sections 4.2.1
and 6). Second, we show how these structures enable the visualiza-
tions which are common in interactive tools (Section 4.3).

There have also been recent efforts to build data cube structures
specifically suited for visualization. Crossfilter [32] is a software pack-
age built on the clever observation that many queries in interactive vi-
sualization are incremental: assuming that previous results are avail-
able, the results needed for the next query can be quickly computed.
Unfortunately, we do not see easily how this would work for the multi-
scale queries necessary in a spatiotemporal setting. Just as recently,
Kandel et al. have proposed Datavore, a column-oriented data cube
representation [17], and Liu et al. leverage graphics hardware in iM-
mens, achieving extremely fast queries over large data [20]. While we
defer to Section 7 a full discussion and direct comparison of nanocubes
to Datavore and iMmens, we show in Figure 13 that nanocubes achieve
good performance for both sparse (the regime where Datavore’s data
structures are ideal) and dense occupation of key space (where iM-
mens’s are).

3 DATA CUBES

In the relational databases community, the table below is a relation, its
columns are attributes, its lines are records, and its entries are values.

Country Device Language
US Android en
US iPhone ru

South Africa iPhone en
India Android en

Australia iPhone en

An aggregation represents the idea of selecting a certain group of
records from a relation and summarizing this group using an aggrega-
tion function (e.g.count, sum, max, min). For example, a possible
aggregation for the relation above could be to select all its records and
summarize those using count. In this case, five would be the final
aggregation result. If we allow entries in the record to have a special
value All, we could represent this aggreation as the following relation:

Country Device Language Count
All All All 5

We refer to records in a relation that contain the special value All as ag-
gregation records. Using this notation, it is easy to understand the con-
ventional ways of describing aggregations for a given relation: group
by, cube, and rollup. A group by operation is one in which a relation is
derived from a base relation given a list of attributes and an aggregate
function. For example, group by on attributes Device and Language
with the count aggregate function results in the relation:

Country Device Language Count
All Android en 2
All iPhone en 2
All iPhone ru 1

Note that for every different combination of values present in the at-
tributes of the base relation an aggregation record is added to the re-

3

Online Submission ID: 276

1: function NANOCUBE([o1,o2, . . . ,on], S, `time) . n > 0
2: nano cube NODE() . New empty node
3: for i = 1 to n do
4: updated nodes /0
5: ADD(nano cube, oi, 1, S, `time, updated nodes)
6: end for
7: return nano cube
8: end function

1: function TRAILPROPERPATH(root, [v1, . . . ,vk])
2: stack STACK() . New Empty Stack
3: PUSH(stack, root)
4: node root
5: for i = 1 to k do
6: child CHILD(node, vi)
7: if child = null then
8: child NEWPROPERCHILD(node, vi, NODE())
9: else if ISSHAREDCHILD(node,child) then

10: child REPLACECHILD(node,
child, SHALLOWCOPY(child))

11: end if
12: PUSH(stack, child)
13: node child
14: end for
15: return stack
16: end function

1: function SHALLOWCOPY(node)
2: node sc NODE()
3: SETSHAREDCONTENT(node sc, CONTENT(node))
4: for v in CHILDRENLABELS(node) do
5: NEWSHAREDCHILD(node sc, v, CHILD(node, v))
6: end for
7: return node sc
8: end function

1: procedure ADD(root, o, d, S, `time, updated nodes)
2: [`1, . . . ,`k] CHAIN(S, d)
3: stack TRAILPROPERPATH(root, [`1(o), . . . ,`k(o)])
4: child null
5: while stack is not empty do
6: node POP(stack)
7: update false
8: if node has a single child then
9: SETSHAREDCONTENT(node, CONTENT(child))

10: else if CONTENT(node) is null then
11: SETPROPERCONTENT(node,

(d= dim(S) ?
SUMMEDTABLETIMESERIES() : NODE())

12: update true
13: else if CONTENTISSHARED(node) and

CONTENT(node) not in updated nodes then
14: SETPROPERCONTENT(node,

SHALLOWCOPY(CONTENT(node)))
15: update true
16: else if CONTENTISPROPER(node) then
17: update true
18: end if
19: if update then
20: if d= dim(S) then
21: INSERT(CONTENT(node), `time(o))
22: else
23: ADD(CONTENT(node), o, d+1, updated nodes)
24: end if
25: INSERT(updated nodes, CONTENT(node))
26: end if
27: child node
28: end while
29: end procedure

Fig. 3. Pseudo-code of an algorithm to build nanocubes.

Our technique is most closely related to the work of Sismanis et
al. [30, 29]. Specifically, we use similar ideas to reduce the size of
a data cube from potentially exponential in the cardinality of the key
space (we define these terms in Section 4.1) to essentially linear [31].
Nanocubes improve on Sismanis et al.’s work in two fundamental di-
rections. First, we develop a model for spatiotemporal data cubes that
exploits unique characteristics of space and time to get a good com-
promise between space usage and efficiency of queries (Sections 4.2.1
and 6). Second, we show how these structures enable the visualiza-
tions which are common in interactive tools (Section 4.3).

There have also been recent efforts to build data cube structures
specifically suited for visualization. Crossfilter [32] is a software pack-
age built on the clever observation that many queries in interactive vi-
sualization are incremental: assuming that previous results are avail-
able, the results needed for the next query can be quickly computed.
Unfortunately, we do not see easily how this would work for the multi-
scale queries necessary in a spatiotemporal setting. Just as recently,
Kandel et al. have proposed Datavore, a column-oriented data cube
representation [17], and Liu et al. leverage graphics hardware in iM-
mens, achieving extremely fast queries over large data [20]. While we
defer to Section 7 a full discussion and direct comparison of nanocubes
to Datavore and iMmens, we show in Figure 13 that nanocubes achieve
good performance for both sparse (the regime where Datavore’s data
structures are ideal) and dense occupation of key space (where iM-
mens’s are).

3 DATA CUBES

In the relational databases community, the table below is a relation, its
columns are attributes, its lines are records, and its entries are values.

Country Device Language
US Android en
US iPhone ru

South Africa iPhone en
India Android en

Australia iPhone en

An aggregation represents the idea of selecting a certain group of
records from a relation and summarizing this group using an aggrega-
tion function (e.g.count, sum, max, min). For example, a possible
aggregation for the relation above could be to select all its records and
summarize those using count. In this case, five would be the final
aggregation result. If we allow entries in the record to have a special
value All, we could represent this aggreation as the following relation:

Country Device Language Count
All All All 5

We refer to records in a relation that contain the special value All as ag-
gregation records. Using this notation, it is easy to understand the con-
ventional ways of describing aggregations for a given relation: group
by, cube, and rollup. A group by operation is one in which a relation is
derived from a base relation given a list of attributes and an aggregate
function. For example, group by on attributes Device and Language
with the count aggregate function results in the relation:

Country Device Language Count
All Android en 2
All iPhone en 2
All iPhone ru 1

Note that for every different combination of values present in the at-
tributes of the base relation an aggregation record is added to the re-

3

Natural language query s c t URL
count of all Delta flights R U R { Delta } R U /where/carrier=Delta
count of all Delta flights in the Midwest R (Midwest) R { Delta } R U /region/(Midwest)/where/carrier=Delta
count of early flights in 2010 R U D R (2010) /field/carrier/when/(2010)
time-series of all United flights in 2009 R U R U D (2009) /tseries/when/2009/where/carrier=United
heatmap of Delta flights in 2010 D (tile) R { Delta } R (2010) /tile/(tile)/where/carrier=Delta

Fig. 4. A simplified set of queries supported by the nanocube data structure. The column s represents space; t, time; c, category. R means “rollup”,
D means “drilldown”. The value next to R or D contains the subset of that dimension’s domain being selected. We use U to represent the entire
domain (“universe”). Omitted here, but supported by our structure, are: the extra parameter for number of steps throughout the time region in a
time-based drilldown; multiple categories with separate rollups and drilldowns; tiles of variable resolution.

sulting relation. In our running example these combinations are (An-
droid, en), (iPhone, en), and (iPhone, ru). The cube operation is the
result of collecting all possible group by aggregations into a single re-
lation for a given list of attributes. In our running example, the cube
for count on Device and Language would be the same as the union
of four group by’s: on (1) no attributes; on (2) Device only; on (3)
Language only; and (4) on Device and Language (2n group bys where
n is the number of input attributes):

Country Device Language Count
All All All 5
All Android All 2
All iPhone All 3
All All eu 4
All All ru 1
All iPhone ru 1
All Android en 2
All iPhone en 2
All iPhone ru 1

Finally, a roll up is a constrained version of the cube operation where
the order of the input attributes is important. So a roll up on Device
and Language (in this order) means the union of group by’s on: (1)
no attributes; (2) Device; and (3) Device and Language. Note that the
group by on Language only is not part of the roll up. As the results
of group by’s, cubes and roll ups can be seen as relations, we can
naturally compose such operations. As we will describe nanocubes is
a specialized data structure to store and query cubes of roll ups.

4 NANOCUBES: A COMPACT, SPATIOTEMPORAL ROLL-UP
CUBE

Data visualizations in a computer are necessarily bounded by display
size, and so we would like to be able to quickly collect subspaces of
the dataset that would end up in the same pixel on the screen. How-
ever, spatiotemporal navigation is inherently multiscale. The same
data structure should support quick indexing for a visualization over
multiple years of time series and for drilling down into one particu-
lar hour or day. Similarly, the data cube should support aggregation
queries over vast spatial regions covering entire continents, as well as
very narrow queries covering only a few city blocks.

The database notion of roll ups (Section 3), in a sense, aligns nicely
with the notion of Level of Detail. For example, if the records of a table
(relation) contain a location attribute, one can design a roll up query
whose resulting relation encodes the same information as the one en-
coded in a level of detail data structure. More concretely, suppose
`1, . . . ,`k are attributes computed from the original location attribute
and yield ’quad-tree addresses’ of increasingly higher levels of detail
(from 1 to k). A roll up query on these (computed) attributes results in,
essentially, the same information as the one contained in a quad-tree
(given that we are keeping the same summary in both, e.g.count). At
first, this connection might be obvious but bridges between terminolo-
gies from different areas is usually important. As it turns out, only later
in the development of nanocubes is that we became aware of Hierar-
chical Dwarf-Cubes [29], which is a highly related to nanocubes and
was developed by the database community to efficiently store results
of aggreagation queries.

The second important notion in the design of nanocubes is the idea
that we want to combine aggregations of independent dimensions at

independent levels of detail. For example we might want to know for
a whole country, what is the spatial distribution of tweets gererated
by an iPhone: coarse on the spatial dimension, but specific on the
device dimension; conversely we might want to know the distribu-
tion of tweets (coarse on device) in a small block of a city (fine in
space). In relational database terminology, this model has a name: it
is a cube of roll-ups, or a roll-up cube. Now with the language set up,
we can state: A nanocube is a data structure to efficiently store and
query spatio-temporal roll-up cubes. Besides implmentation tricks
(e.g. tagged pointers, carefully design of the bit layout of the struc-
tures, specifically designed to live in main memory), there is, to the
best of our knowledge, a qualitative difference in nanocubes to other
data structures like [29]. The difference is in what nanocubes store for
each aggregation which is deeply related to spatio-temporal datasets:
it stores time series in a sparse summed table format. This element of
nanocubes is explained in Section 4.3 and, cannot be cannot be effi-
ciently simulated (memory-wise) by previous datastructures.

In the remainder of this section, we present a formal description
of the components that make up our nanocube index, pseudo-code
for building nanocubes together with an illustrated example, and how
queries are made against our index.

4.1 Definitions
Let O be a set of objects. A labeling function ` : O ! L associates a
label value to the objects of O. We can think of ` as an attribute in
a relational database. In connection with the level of detail discus-
sion above, if `1 and `2 are two labeling functions for O, we say `1 is
coarser than `2 or that `2 is finer than `1 if for any two objects o,o0 2 O
the implication `2(o) = `2(o0)) `1(o) = `1(o0) holds. We denote this
fact by `1 < `2.

A sequence of labeling functions c = [`1,`, . . . ,`k] for objects O
is a chain for O if every labeling function is coarser than the next
labeling function in the sequence: `i < `i+1. Note how chains are
related to roll ups, we avoid the same name to not overload more the
term roll up. The number of levels of a chain is defined by levels(c) =
|c|+1. An indexing schema for objects O consists of a sequence of
chains S = [c1,c2, . . . ,cn]. The dimension of an indexing schema S
is the length of its sequence of chains and is denoted by dim(S). The
multiplicity of a schema S is the product of its chains’ number of levels:
µ(S) = ’n

i=1 levels(ci).
A full assignment for a sequence of labeling functions [`1,`2, . . . ,`k]

is a sequence of label values [v1,v2, . . . ,vk] where vi is a label value
under `i. Any prefix of a full assignment for a sequence of label-
ing functions, including the empty one, is referred to as a partial as-
signment. Note that an full assignment is also a patial assignment
since a sequence is also a prefix of itself. An address on a schema
is a sequence of partial assignments for its chains, more formally, if
S = [c1,c2, . . . ,cn] is an indexing schema, then a = [p1, p2, . . . , pn] is
an address of S if pi is a partial assignment for chain ci. The set of pos-
sible addresses of S is denoted by addr(S). and its size is referred to as
the Global Cardinality of S. The subset of addr(S) whose addresses
contain only full assignments is called the Key Cardinality of S. The
key Key Cardinality is exactely the number of the finest resoultion bins
a nanocube can store.

The addresses of an object o under indexing schema S, denoted by
addr(o,S) are all the addresses in addr(S) whose partial assignments

4

Relation

Aggregation

Group By on Device, Language

Cube on Device, Language

Equivalent to Group By on
all possible subsets of
{Device, Language}

A

B

C

D

Fig. 5. A sample relation and its associated aggregation operators.

3

A

B

C

Online Submission ID: 276

1: function NANOCUBE([o1,o2, . . . ,on], S, `time) . n > 0
2: nano cube NODE() . New empty node
3: for i = 1 to n do
4: updated nodes /0
5: ADD(nano cube, oi, 1, S, `time, updated nodes)
6: end for
7: return nano cube
8: end function

1: function TRAILPROPERPATH(root, [v1, . . . ,vk])
2: stack STACK() . New Empty Stack
3: PUSH(stack, root)
4: node root
5: for i = 1 to k do
6: child CHILD(node, vi)
7: if child = null then
8: child NEWPROPERCHILD(node, vi, NODE())
9: else if ISSHAREDCHILD(node,child) then

10: child REPLACECHILD(node,
child, SHALLOWCOPY(child))

11: end if
12: PUSH(stack, child)
13: node child
14: end for
15: return stack
16: end function

1: function SHALLOWCOPY(node)
2: node sc NODE()
3: SETSHAREDCONTENT(node sc, CONTENT(node))
4: for v in CHILDRENLABELS(node) do
5: NEWSHAREDCHILD(node sc, v, CHILD(node, v))
6: end for
7: return node sc
8: end function

1: procedure ADD(root, o, d, S, `time, updated nodes)
2: [`1, . . . ,`k] CHAIN(S, d)
3: stack TRAILPROPERPATH(root, [`1(o), . . . ,`k(o)])
4: child null
5: while stack is not empty do
6: node POP(stack)
7: update false
8: if node has a single child then
9: SETSHAREDCONTENT(node, CONTENT(child))

10: else if CONTENT(node) is null then
11: SETPROPERCONTENT(node,

(d= dim(S) ?
SUMMEDTABLETIMESERIES() : NODE())

12: update true
13: else if CONTENTISSHARED(node) and

CONTENT(node) not in updated nodes then
14: SETPROPERCONTENT(node,

SHALLOWCOPY(CONTENT(node)))
15: update true
16: else if CONTENTISPROPER(node) then
17: update true
18: end if
19: if update then
20: if d= dim(S) then
21: INSERT(CONTENT(node), `time(o))
22: else
23: ADD(CONTENT(node), o, d+1, updated nodes)
24: end if
25: INSERT(updated nodes, CONTENT(node))
26: end if
27: child node
28: end while
29: end procedure

Fig. 3. Pseudo-code of an algorithm to build nanocubes.

exploits unique characteristics of space and time to get a good com-
promise between space usage and efficiency of queries (Sections 4.2.1
and 6). Second, we show how these structures enable the visualiza-
tions which are common in interactive tools (Section 4.3).

There have been recent efforts to build data cube structures specif-
ically suited for visualization. Crossfilter [32] is a software package
built on the clever observation that many queries in interactive visual-
ization are incremental: assuming that previous results are available,
the results needed for the next query can be quickly computed. Unfor-
tunately, we do not see easily how this would work for the multiscale
queries necessary in a spatiotemporal setting. Just as recently, Kandel
et al. have proposed Datavore, a column-oriented database support fast
data cube queries [17], and Liu et al. leverage graphics hardware in iM-
mens, achieving extremely fast queries over large data [20]. While we
defer to Section 7 a full discussion and direct comparison of nanocubes
to Datavore and iMmens, we show in Figure 14 that nanocubes achieve
good performance for both sparse (the regime where Datavore’s data
structures are ideal) and dense occupation of key space (where iM-
mens’s are).

3 DATA CUBES

Following common practice, we will call the table in Figure 5 a rela-
tion, its columns attributes, its lines records, and its entries values. An
aggregation represents the idea of selecting a certain group of records
from a relation and summarizing this group using an aggregation func-
tion (e.g. count, sum, max, min). For example, a possible aggrega-
tion for the relation A could be to select all its records and summarize
those using count, yielding five as the aggregation result. If we al-
low a special value All to be a valid attribute value, we could represent
this aggregation as relation B in Figure 5.

A record that contains the special value All is an aggregation record.

Using this notation, it is easy to understand some conventional ways
of describing aggregations for a given relation: group by, cube, and
rollup. A group by operation is one in which a relation is derived from
a base relation given a list of attributes and an aggregate function. For
example, group by on attributes Device and Language with the count
aggregate function results in the relation C in Figure 5.

Note that for every different combination of values present in the
attributes of a base relation an aggregation record is added to the re-
sulting relation. In our running example (Figure 5) these combinations
are (Android, en), (iPhone, en), and (iPhone, ru). The cube operation

Online Submission ID: 276

1: function NANOCUBE([o1,o2, . . . ,on], S, `time) . n > 0
2: nano cube NODE() . New empty node
3: for i = 1 to n do
4: updated nodes /0
5: ADD(nano cube, oi, 1, S, `time, updated nodes)
6: end for
7: return nano cube
8: end function

1: function TRAILPROPERPATH(root, [v1, . . . ,vk])
2: stack STACK() . New Empty Stack
3: PUSH(stack, root)
4: node root
5: for i = 1 to k do
6: child CHILD(node, vi)
7: if child = null then
8: child NEWPROPERCHILD(node, vi, NODE())
9: else if ISSHAREDCHILD(node,child) then

10: child REPLACECHILD(node,
child, SHALLOWCOPY(child))

11: end if
12: PUSH(stack, child)
13: node child
14: end for
15: return stack
16: end function

1: function SHALLOWCOPY(node)
2: node sc NODE()
3: SETSHAREDCONTENT(node sc, CONTENT(node))
4: for v in CHILDRENLABELS(node) do
5: NEWSHAREDCHILD(node sc, v, CHILD(node, v))
6: end for
7: return node sc
8: end function

1: procedure ADD(root, o, d, S, `time, updated nodes)
2: [`1, . . . ,`k] CHAIN(S, d)
3: stack TRAILPROPERPATH(root, [`1(o), . . . ,`k(o)])
4: child null
5: while stack is not empty do
6: node POP(stack)
7: update false
8: if node has a single child then
9: SETSHAREDCONTENT(node, CONTENT(child))

10: else if CONTENT(node) is null then
11: SETPROPERCONTENT(node,

(d= dim(S) ?
SUMMEDTABLETIMESERIES() : NODE())

12: update true
13: else if CONTENTISSHARED(node) and

CONTENT(node) not in updated nodes then
14: SETPROPERCONTENT(node,

SHALLOWCOPY(CONTENT(node)))
15: update true
16: else if CONTENTISPROPER(node) then
17: update true
18: end if
19: if update then
20: if d= dim(S) then
21: INSERT(CONTENT(node), `time(o))
22: else
23: ADD(CONTENT(node), o, d+1, updated nodes)
24: end if
25: INSERT(updated nodes, CONTENT(node))
26: end if
27: child node
28: end while
29: end procedure

Fig. 3. Pseudo-code of an algorithm to build nanocubes.

Our technique is most closely related to the work of Sismanis et
al. [30, 29]. Specifically, we use similar ideas to reduce the size of
a data cube from potentially exponential in the cardinality of the key
space (we define these terms in Section 4.1) to essentially linear [31].
Nanocubes improve on Sismanis et al.’s work in two fundamental di-
rections. First, we develop a model for spatiotemporal data cubes that
exploits unique characteristics of space and time to get a good com-
promise between space usage and efficiency of queries (Sections 4.2.1
and 6). Second, we show how these structures enable the visualiza-
tions which are common in interactive tools (Section 4.3).

There have also been recent efforts to build data cube structures
specifically suited for visualization. Crossfilter [32] is a software pack-
age built on the clever observation that many queries in interactive vi-
sualization are incremental: assuming that previous results are avail-
able, the results needed for the next query can be quickly computed.
Unfortunately, we do not see easily how this would work for the multi-
scale queries necessary in a spatiotemporal setting. Just as recently,
Kandel et al. have proposed Datavore, a column-oriented data cube
representation [17], and Liu et al. leverage graphics hardware in iM-
mens, achieving extremely fast queries over large data [20]. While we
defer to Section 7 a full discussion and direct comparison of nanocubes
to Datavore and iMmens, we show in Figure 13 that nanocubes achieve
good performance for both sparse (the regime where Datavore’s data
structures are ideal) and dense occupation of key space (where iM-
mens’s are).

3 DATA CUBES

In the relational databases community, the table below is a relation, its
columns are attributes, its lines are records, and its entries are values.

Country Device Language
US Android en
US iPhone ru

South Africa iPhone en
India Android en

Australia iPhone en

An aggregation represents the idea of selecting a certain group of
records from a relation and summarizing this group using an aggrega-
tion function (e.g.count, sum, max, min). For example, a possible
aggregation for the relation above could be to select all its records and
summarize those using count. In this case, five would be the final
aggregation result. If we allow entries in the record to have a special
value All, we could represent this aggreation as the following relation:

Country Device Language Count
All All All 5

We refer to records in a relation that contain the special value All as ag-
gregation records. Using this notation, it is easy to understand the con-
ventional ways of describing aggregations for a given relation: group
by, cube, and rollup. A group by operation is one in which a relation is
derived from a base relation given a list of attributes and an aggregate
function. For example, group by on attributes Device and Language
with the count aggregate function results in the relation:

Country Device Language Count
All Android en 2
All iPhone en 2
All iPhone ru 1

Note that for every different combination of values present in the at-
tributes of the base relation an aggregation record is added to the re-

3

Online Submission ID: 276

1: function NANOCUBE([o1,o2, . . . ,on], S, `time) . n > 0
2: nano cube NODE() . New empty node
3: for i = 1 to n do
4: updated nodes /0
5: ADD(nano cube, oi, 1, S, `time, updated nodes)
6: end for
7: return nano cube
8: end function

1: function TRAILPROPERPATH(root, [v1, . . . ,vk])
2: stack STACK() . New Empty Stack
3: PUSH(stack, root)
4: node root
5: for i = 1 to k do
6: child CHILD(node, vi)
7: if child = null then
8: child NEWPROPERCHILD(node, vi, NODE())
9: else if ISSHAREDCHILD(node,child) then

10: child REPLACECHILD(node,
child, SHALLOWCOPY(child))

11: end if
12: PUSH(stack, child)
13: node child
14: end for
15: return stack
16: end function

1: function SHALLOWCOPY(node)
2: node sc NODE()
3: SETSHAREDCONTENT(node sc, CONTENT(node))
4: for v in CHILDRENLABELS(node) do
5: NEWSHAREDCHILD(node sc, v, CHILD(node, v))
6: end for
7: return node sc
8: end function

1: procedure ADD(root, o, d, S, `time, updated nodes)
2: [`1, . . . ,`k] CHAIN(S, d)
3: stack TRAILPROPERPATH(root, [`1(o), . . . ,`k(o)])
4: child null
5: while stack is not empty do
6: node POP(stack)
7: update false
8: if node has a single child then
9: SETSHAREDCONTENT(node, CONTENT(child))

10: else if CONTENT(node) is null then
11: SETPROPERCONTENT(node,

(d= dim(S) ?
SUMMEDTABLETIMESERIES() : NODE())

12: update true
13: else if CONTENTISSHARED(node) and

CONTENT(node) not in updated nodes then
14: SETPROPERCONTENT(node,

SHALLOWCOPY(CONTENT(node)))
15: update true
16: else if CONTENTISPROPER(node) then
17: update true
18: end if
19: if update then
20: if d= dim(S) then
21: INSERT(CONTENT(node), `time(o))
22: else
23: ADD(CONTENT(node), o, d+1, updated nodes)
24: end if
25: INSERT(updated nodes, CONTENT(node))
26: end if
27: child node
28: end while
29: end procedure

Fig. 3. Pseudo-code of an algorithm to build nanocubes.

Our technique is most closely related to the work of Sismanis et
al. [30, 29]. Specifically, we use similar ideas to reduce the size of
a data cube from potentially exponential in the cardinality of the key
space (we define these terms in Section 4.1) to essentially linear [31].
Nanocubes improve on Sismanis et al.’s work in two fundamental di-
rections. First, we develop a model for spatiotemporal data cubes that
exploits unique characteristics of space and time to get a good com-
promise between space usage and efficiency of queries (Sections 4.2.1
and 6). Second, we show how these structures enable the visualiza-
tions which are common in interactive tools (Section 4.3).

There have also been recent efforts to build data cube structures
specifically suited for visualization. Crossfilter [32] is a software pack-
age built on the clever observation that many queries in interactive vi-
sualization are incremental: assuming that previous results are avail-
able, the results needed for the next query can be quickly computed.
Unfortunately, we do not see easily how this would work for the multi-
scale queries necessary in a spatiotemporal setting. Just as recently,
Kandel et al. have proposed Datavore, a column-oriented data cube
representation [17], and Liu et al. leverage graphics hardware in iM-
mens, achieving extremely fast queries over large data [20]. While we
defer to Section 7 a full discussion and direct comparison of nanocubes
to Datavore and iMmens, we show in Figure 13 that nanocubes achieve
good performance for both sparse (the regime where Datavore’s data
structures are ideal) and dense occupation of key space (where iM-
mens’s are).

3 DATA CUBES

In the relational databases community, the table below is a relation, its
columns are attributes, its lines are records, and its entries are values.

Country Device Language
US Android en
US iPhone ru

South Africa iPhone en
India Android en

Australia iPhone en

An aggregation represents the idea of selecting a certain group of
records from a relation and summarizing this group using an aggrega-
tion function (e.g.count, sum, max, min). For example, a possible
aggregation for the relation above could be to select all its records and
summarize those using count. In this case, five would be the final
aggregation result. If we allow entries in the record to have a special
value All, we could represent this aggreation as the following relation:

Country Device Language Count
All All All 5

We refer to records in a relation that contain the special value All as ag-
gregation records. Using this notation, it is easy to understand the con-
ventional ways of describing aggregations for a given relation: group
by, cube, and rollup. A group by operation is one in which a relation is
derived from a base relation given a list of attributes and an aggregate
function. For example, group by on attributes Device and Language
with the count aggregate function results in the relation:

Country Device Language Count
All Android en 2
All iPhone en 2
All iPhone ru 1

Note that for every different combination of values present in the at-
tributes of the base relation an aggregation record is added to the re-

3

Online Submission ID: 276

1: function NANOCUBE([o1,o2, . . . ,on], S, `time) . n > 0
2: nano cube NODE() . New empty node
3: for i = 1 to n do
4: updated nodes /0
5: ADD(nano cube, oi, 1, S, `time, updated nodes)
6: end for
7: return nano cube
8: end function

1: function TRAILPROPERPATH(root, [v1, . . . ,vk])
2: stack STACK() . New Empty Stack
3: PUSH(stack, root)
4: node root
5: for i = 1 to k do
6: child CHILD(node, vi)
7: if child = null then
8: child NEWPROPERCHILD(node, vi, NODE())
9: else if ISSHAREDCHILD(node,child) then

10: child REPLACECHILD(node,
child, SHALLOWCOPY(child))

11: end if
12: PUSH(stack, child)
13: node child
14: end for
15: return stack
16: end function

1: function SHALLOWCOPY(node)
2: node sc NODE()
3: SETSHAREDCONTENT(node sc, CONTENT(node))
4: for v in CHILDRENLABELS(node) do
5: NEWSHAREDCHILD(node sc, v, CHILD(node, v))
6: end for
7: return node sc
8: end function

1: procedure ADD(root, o, d, S, `time, updated nodes)
2: [`1, . . . ,`k] CHAIN(S, d)
3: stack TRAILPROPERPATH(root, [`1(o), . . . ,`k(o)])
4: child null
5: while stack is not empty do
6: node POP(stack)
7: update false
8: if node has a single child then
9: SETSHAREDCONTENT(node, CONTENT(child))

10: else if CONTENT(node) is null then
11: SETPROPERCONTENT(node,

(d= dim(S) ?
SUMMEDTABLETIMESERIES() : NODE())

12: update true
13: else if CONTENTISSHARED(node) and

CONTENT(node) not in updated nodes then
14: SETPROPERCONTENT(node,

SHALLOWCOPY(CONTENT(node)))
15: update true
16: else if CONTENTISPROPER(node) then
17: update true
18: end if
19: if update then
20: if d= dim(S) then
21: INSERT(CONTENT(node), `time(o))
22: else
23: ADD(CONTENT(node), o, d+1, updated nodes)
24: end if
25: INSERT(updated nodes, CONTENT(node))
26: end if
27: child node
28: end while
29: end procedure

Fig. 3. Pseudo-code of an algorithm to build nanocubes.

Our technique is most closely related to the work of Sismanis et
al. [30, 29]. Specifically, we use similar ideas to reduce the size of
a data cube from potentially exponential in the cardinality of the key
space (we define these terms in Section 4.1) to essentially linear [31].
Nanocubes improve on Sismanis et al.’s work in two fundamental di-
rections. First, we develop a model for spatiotemporal data cubes that
exploits unique characteristics of space and time to get a good com-
promise between space usage and efficiency of queries (Sections 4.2.1
and 6). Second, we show how these structures enable the visualiza-
tions which are common in interactive tools (Section 4.3).

There have also been recent efforts to build data cube structures
specifically suited for visualization. Crossfilter [32] is a software pack-
age built on the clever observation that many queries in interactive vi-
sualization are incremental: assuming that previous results are avail-
able, the results needed for the next query can be quickly computed.
Unfortunately, we do not see easily how this would work for the multi-
scale queries necessary in a spatiotemporal setting. Just as recently,
Kandel et al. have proposed Datavore, a column-oriented data cube
representation [17], and Liu et al. leverage graphics hardware in iM-
mens, achieving extremely fast queries over large data [20]. While we
defer to Section 7 a full discussion and direct comparison of nanocubes
to Datavore and iMmens, we show in Figure 13 that nanocubes achieve
good performance for both sparse (the regime where Datavore’s data
structures are ideal) and dense occupation of key space (where iM-
mens’s are).

3 DATA CUBES

In the relational databases community, the table below is a relation, its
columns are attributes, its lines are records, and its entries are values.

Country Device Language
US Android en
US iPhone ru

South Africa iPhone en
India Android en

Australia iPhone en

An aggregation represents the idea of selecting a certain group of
records from a relation and summarizing this group using an aggrega-
tion function (e.g.count, sum, max, min). For example, a possible
aggregation for the relation above could be to select all its records and
summarize those using count. In this case, five would be the final
aggregation result. If we allow entries in the record to have a special
value All, we could represent this aggreation as the following relation:

Country Device Language Count
All All All 5

We refer to records in a relation that contain the special value All as ag-
gregation records. Using this notation, it is easy to understand the con-
ventional ways of describing aggregations for a given relation: group
by, cube, and rollup. A group by operation is one in which a relation is
derived from a base relation given a list of attributes and an aggregate
function. For example, group by on attributes Device and Language
with the count aggregate function results in the relation:

Country Device Language Count
All Android en 2
All iPhone en 2
All iPhone ru 1

Note that for every different combination of values present in the at-
tributes of the base relation an aggregation record is added to the re-

3

Natural language query s c t URL
count of all Delta flights R U R { Delta } R U /where/carrier=Delta
count of all Delta flights in the Midwest R (Midwest) R { Delta } R U /region/(Midwest)/where/carrier=Delta
count of early flights in 2010 R U D R (2010) /field/carrier/when/(2010)
time-series of all United flights in 2009 R U R U D (2009) /tseries/when/2009/where/carrier=United
heatmap of Delta flights in 2010 D (tile) R { Delta } R (2010) /tile/(tile)/where/carrier=Delta

Fig. 4. A simplified set of queries supported by the nanocube data structure. The column s represents space; t, time; c, category. R means “rollup”,
D means “drilldown”. The value next to R or D contains the subset of that dimension’s domain being selected. We use U to represent the entire
domain (“universe”). Omitted here, but supported by our structure, are: the extra parameter for number of steps throughout the time region in a
time-based drilldown; multiple categories with separate rollups and drilldowns; tiles of variable resolution.

sulting relation. In our running example these combinations are (An-
droid, en), (iPhone, en), and (iPhone, ru). The cube operation is the
result of collecting all possible group by aggregations into a single re-
lation for a given list of attributes. In our running example, the cube
for count on Device and Language would be the same as the union
of four group by’s: on (1) no attributes; on (2) Device only; on (3)
Language only; and (4) on Device and Language (2n group bys where
n is the number of input attributes):

Country Device Language Count
All All All 5
All Android All 2
All iPhone All 3
All All eu 4
All All ru 1
All iPhone ru 1
All Android en 2
All iPhone en 2
All iPhone ru 1

Finally, a roll up is a constrained version of the cube operation where
the order of the input attributes is important. So a roll up on Device
and Language (in this order) means the union of group by’s on: (1)
no attributes; (2) Device; and (3) Device and Language. Note that the
group by on Language only is not part of the roll up. As the results
of group by’s, cubes and roll ups can be seen as relations, we can
naturally compose such operations. As we will describe nanocubes is
a specialized data structure to store and query cubes of roll ups.

4 NANOCUBES: A COMPACT, SPATIOTEMPORAL ROLL-UP
CUBE

Data visualizations in a computer are necessarily bounded by display
size, and so we would like to be able to quickly collect subspaces of
the dataset that would end up in the same pixel on the screen. How-
ever, spatiotemporal navigation is inherently multiscale. The same
data structure should support quick indexing for a visualization over
multiple years of time series and for drilling down into one particu-
lar hour or day. Similarly, the data cube should support aggregation
queries over vast spatial regions covering entire continents, as well as
very narrow queries covering only a few city blocks.

The database notion of roll ups (Section 3), in a sense, aligns nicely
with the notion of Level of Detail. For example, if the records of a table
(relation) contain a location attribute, one can design a roll up query
whose resulting relation encodes the same information as the one en-
coded in a level of detail data structure. More concretely, suppose
`1, . . . ,`k are attributes computed from the original location attribute
and yield ’quad-tree addresses’ of increasingly higher levels of detail
(from 1 to k). A roll up query on these (computed) attributes results in,
essentially, the same information as the one contained in a quad-tree
(given that we are keeping the same summary in both, e.g.count). At
first, this connection might be obvious but bridges between terminolo-
gies from different areas is usually important. As it turns out, only later
in the development of nanocubes is that we became aware of Hierar-
chical Dwarf-Cubes [29], which is a highly related to nanocubes and
was developed by the database community to efficiently store results
of aggreagation queries.

The second important notion in the design of nanocubes is the idea
that we want to combine aggregations of independent dimensions at

independent levels of detail. For example we might want to know for
a whole country, what is the spatial distribution of tweets gererated
by an iPhone: coarse on the spatial dimension, but specific on the
device dimension; conversely we might want to know the distribu-
tion of tweets (coarse on device) in a small block of a city (fine in
space). In relational database terminology, this model has a name: it
is a cube of roll-ups, or a roll-up cube. Now with the language set up,
we can state: A nanocube is a data structure to efficiently store and
query spatio-temporal roll-up cubes. Besides implmentation tricks
(e.g. tagged pointers, carefully design of the bit layout of the struc-
tures, specifically designed to live in main memory), there is, to the
best of our knowledge, a qualitative difference in nanocubes to other
data structures like [29]. The difference is in what nanocubes store for
each aggregation which is deeply related to spatio-temporal datasets:
it stores time series in a sparse summed table format. This element of
nanocubes is explained in Section 4.3 and, cannot be cannot be effi-
ciently simulated (memory-wise) by previous datastructures.

In the remainder of this section, we present a formal description
of the components that make up our nanocube index, pseudo-code
for building nanocubes together with an illustrated example, and how
queries are made against our index.

4.1 Definitions
Let O be a set of objects. A labeling function ` : O ! L associates a
label value to the objects of O. We can think of ` as an attribute in
a relational database. In connection with the level of detail discus-
sion above, if `1 and `2 are two labeling functions for O, we say `1 is
coarser than `2 or that `2 is finer than `1 if for any two objects o,o0 2 O
the implication `2(o) = `2(o0)) `1(o) = `1(o0) holds. We denote this
fact by `1 < `2.

A sequence of labeling functions c = [`1,`, . . . ,`k] for objects O
is a chain for O if every labeling function is coarser than the next
labeling function in the sequence: `i < `i+1. Note how chains are
related to roll ups, we avoid the same name to not overload more the
term roll up. The number of levels of a chain is defined by levels(c) =
|c|+1. An indexing schema for objects O consists of a sequence of
chains S = [c1,c2, . . . ,cn]. The dimension of an indexing schema S
is the length of its sequence of chains and is denoted by dim(S). The
multiplicity of a schema S is the product of its chains’ number of levels:
µ(S) = ’n

i=1 levels(ci).
A full assignment for a sequence of labeling functions [`1,`2, . . . ,`k]

is a sequence of label values [v1,v2, . . . ,vk] where vi is a label value
under `i. Any prefix of a full assignment for a sequence of label-
ing functions, including the empty one, is referred to as a partial as-
signment. Note that an full assignment is also a patial assignment
since a sequence is also a prefix of itself. An address on a schema
is a sequence of partial assignments for its chains, more formally, if
S = [c1,c2, . . . ,cn] is an indexing schema, then a = [p1, p2, . . . , pn] is
an address of S if pi is a partial assignment for chain ci. The set of pos-
sible addresses of S is denoted by addr(S). and its size is referred to as
the Global Cardinality of S. The subset of addr(S) whose addresses
contain only full assignments is called the Key Cardinality of S. The
key Key Cardinality is exactely the number of the finest resoultion bins
a nanocube can store.

The addresses of an object o under indexing schema S, denoted by
addr(o,S) are all the addresses in addr(S) whose partial assignments

4

Relation

Aggregation

Group By on Device, Language

Cube on Device, Language

Equivalent to Group By on
all possible subsets of
{Device, Language}

A

B

C

D

Fig. 5. A sample relation and its associated aggregation operators.

3

A

B

C

Online Submission ID: 276

1: function NANOCUBE([o1,o2, . . . ,on], S, `time) . n > 0
2: nano cube NODE() . New empty node
3: for i = 1 to n do
4: updated nodes /0
5: ADD(nano cube, oi, 1, S, `time, updated nodes)
6: end for
7: return nano cube
8: end function

1: function TRAILPROPERPATH(root, [v1, . . . ,vk])
2: stack STACK() . New Empty Stack
3: PUSH(stack, root)
4: node root
5: for i = 1 to k do
6: child CHILD(node, vi)
7: if child = null then
8: child NEWPROPERCHILD(node, vi, NODE())
9: else if ISSHAREDCHILD(node,child) then

10: child REPLACECHILD(node,
child, SHALLOWCOPY(child))

11: end if
12: PUSH(stack, child)
13: node child
14: end for
15: return stack
16: end function

1: function SHALLOWCOPY(node)
2: node sc NODE()
3: SETSHAREDCONTENT(node sc, CONTENT(node))
4: for v in CHILDRENLABELS(node) do
5: NEWSHAREDCHILD(node sc, v, CHILD(node, v))
6: end for
7: return node sc
8: end function

1: procedure ADD(root, o, d, S, `time, updated nodes)
2: [`1, . . . ,`k] CHAIN(S, d)
3: stack TRAILPROPERPATH(root, [`1(o), . . . ,`k(o)])
4: child null
5: while stack is not empty do
6: node POP(stack)
7: update false
8: if node has a single child then
9: SETSHAREDCONTENT(node, CONTENT(child))

10: else if CONTENT(node) is null then
11: SETPROPERCONTENT(node,

(d= dim(S) ?
SUMMEDTABLETIMESERIES() : NODE())

12: update true
13: else if CONTENTISSHARED(node) and

CONTENT(node) not in updated nodes then
14: SETPROPERCONTENT(node,

SHALLOWCOPY(CONTENT(node)))
15: update true
16: else if CONTENTISPROPER(node) then
17: update true
18: end if
19: if update then
20: if d= dim(S) then
21: INSERT(CONTENT(node), `time(o))
22: else
23: ADD(CONTENT(node), o, d+1, updated nodes)
24: end if
25: INSERT(updated nodes, CONTENT(node))
26: end if
27: child node
28: end while
29: end procedure

Fig. 3. Pseudo-code of an algorithm to build nanocubes.

exploits unique characteristics of space and time to get a good com-
promise between space usage and efficiency of queries (Sections 4.2.1
and 6). Second, we show how these structures enable the visualiza-
tions which are common in interactive tools (Section 4.3).

There have been recent efforts to build data cube structures specif-
ically suited for visualization. Crossfilter [32] is a software package
built on the clever observation that many queries in interactive visual-
ization are incremental: assuming that previous results are available,
the results needed for the next query can be quickly computed. Unfor-
tunately, we do not see easily how this would work for the multiscale
queries necessary in a spatiotemporal setting. Just as recently, Kandel
et al. have proposed Datavore, a column-oriented database support fast
data cube queries [17], and Liu et al. leverage graphics hardware in iM-
mens, achieving extremely fast queries over large data [20]. While we
defer to Section 7 a full discussion and direct comparison of nanocubes
to Datavore and iMmens, we show in Figure 14 that nanocubes achieve
good performance for both sparse (the regime where Datavore’s data
structures are ideal) and dense occupation of key space (where iM-
mens’s are).

3 DATA CUBES

Following common practice, we will call the table in Figure 5 a rela-
tion, its columns attributes, its lines records, and its entries values. An
aggregation represents the idea of selecting a certain group of records
from a relation and summarizing this group using an aggregation func-
tion (e.g. count, sum, max, min). For example, a possible aggrega-
tion for the relation A could be to select all its records and summarize
those using count, yielding five as the aggregation result. If we al-
low a special value All to be a valid attribute value, we could represent
this aggregation as relation B in Figure 5.

A record that contains the special value All is an aggregation record.

Using this notation, it is easy to understand some conventional ways
of describing aggregations for a given relation: group by, cube, and
rollup. A group by operation is one in which a relation is derived from
a base relation given a list of attributes and an aggregate function. For
example, group by on attributes Device and Language with the count
aggregate function results in the relation C in Figure 5.

Note that for every different combination of values present in the
attributes of a base relation an aggregation record is added to the re-
sulting relation. In our running example (Figure 5) these combinations
are (Android, en), (iPhone, en), and (iPhone, ru). The cube operation

Online Submission ID: 276

1: function NANOCUBE([o1,o2, . . . ,on], S, `time) . n > 0
2: nano cube NODE() . New empty node
3: for i = 1 to n do
4: updated nodes /0
5: ADD(nano cube, oi, 1, S, `time, updated nodes)
6: end for
7: return nano cube
8: end function

1: function TRAILPROPERPATH(root, [v1, . . . ,vk])
2: stack STACK() . New Empty Stack
3: PUSH(stack, root)
4: node root
5: for i = 1 to k do
6: child CHILD(node, vi)
7: if child = null then
8: child NEWPROPERCHILD(node, vi, NODE())
9: else if ISSHAREDCHILD(node,child) then

10: child REPLACECHILD(node,
child, SHALLOWCOPY(child))

11: end if
12: PUSH(stack, child)
13: node child
14: end for
15: return stack
16: end function

1: function SHALLOWCOPY(node)
2: node sc NODE()
3: SETSHAREDCONTENT(node sc, CONTENT(node))
4: for v in CHILDRENLABELS(node) do
5: NEWSHAREDCHILD(node sc, v, CHILD(node, v))
6: end for
7: return node sc
8: end function

1: procedure ADD(root, o, d, S, `time, updated nodes)
2: [`1, . . . ,`k] CHAIN(S, d)
3: stack TRAILPROPERPATH(root, [`1(o), . . . ,`k(o)])
4: child null
5: while stack is not empty do
6: node POP(stack)
7: update false
8: if node has a single child then
9: SETSHAREDCONTENT(node, CONTENT(child))

10: else if CONTENT(node) is null then
11: SETPROPERCONTENT(node,

(d= dim(S) ?
SUMMEDTABLETIMESERIES() : NODE())

12: update true
13: else if CONTENTISSHARED(node) and

CONTENT(node) not in updated nodes then
14: SETPROPERCONTENT(node,

SHALLOWCOPY(CONTENT(node)))
15: update true
16: else if CONTENTISPROPER(node) then
17: update true
18: end if
19: if update then
20: if d= dim(S) then
21: INSERT(CONTENT(node), `time(o))
22: else
23: ADD(CONTENT(node), o, d+1, updated nodes)
24: end if
25: INSERT(updated nodes, CONTENT(node))
26: end if
27: child node
28: end while
29: end procedure

Fig. 3. Pseudo-code of an algorithm to build nanocubes.

Our technique is most closely related to the work of Sismanis et
al. [30, 29]. Specifically, we use similar ideas to reduce the size of
a data cube from potentially exponential in the cardinality of the key
space (we define these terms in Section 4.1) to essentially linear [31].
Nanocubes improve on Sismanis et al.’s work in two fundamental di-
rections. First, we develop a model for spatiotemporal data cubes that
exploits unique characteristics of space and time to get a good com-
promise between space usage and efficiency of queries (Sections 4.2.1
and 6). Second, we show how these structures enable the visualiza-
tions which are common in interactive tools (Section 4.3).

There have also been recent efforts to build data cube structures
specifically suited for visualization. Crossfilter [32] is a software pack-
age built on the clever observation that many queries in interactive vi-
sualization are incremental: assuming that previous results are avail-
able, the results needed for the next query can be quickly computed.
Unfortunately, we do not see easily how this would work for the multi-
scale queries necessary in a spatiotemporal setting. Just as recently,
Kandel et al. have proposed Datavore, a column-oriented data cube
representation [17], and Liu et al. leverage graphics hardware in iM-
mens, achieving extremely fast queries over large data [20]. While we
defer to Section 7 a full discussion and direct comparison of nanocubes
to Datavore and iMmens, we show in Figure 13 that nanocubes achieve
good performance for both sparse (the regime where Datavore’s data
structures are ideal) and dense occupation of key space (where iM-
mens’s are).

3 DATA CUBES

In the relational databases community, the table below is a relation, its
columns are attributes, its lines are records, and its entries are values.

Country Device Language
US Android en
US iPhone ru

South Africa iPhone en
India Android en

Australia iPhone en

An aggregation represents the idea of selecting a certain group of
records from a relation and summarizing this group using an aggrega-
tion function (e.g.count, sum, max, min). For example, a possible
aggregation for the relation above could be to select all its records and
summarize those using count. In this case, five would be the final
aggregation result. If we allow entries in the record to have a special
value All, we could represent this aggreation as the following relation:

Country Device Language Count
All All All 5

We refer to records in a relation that contain the special value All as ag-
gregation records. Using this notation, it is easy to understand the con-
ventional ways of describing aggregations for a given relation: group
by, cube, and rollup. A group by operation is one in which a relation is
derived from a base relation given a list of attributes and an aggregate
function. For example, group by on attributes Device and Language
with the count aggregate function results in the relation:

Country Device Language Count
All Android en 2
All iPhone en 2
All iPhone ru 1

Note that for every different combination of values present in the at-
tributes of the base relation an aggregation record is added to the re-

3

Online Submission ID: 276

1: function NANOCUBE([o1,o2, . . . ,on], S, `time) . n > 0
2: nano cube NODE() . New empty node
3: for i = 1 to n do
4: updated nodes /0
5: ADD(nano cube, oi, 1, S, `time, updated nodes)
6: end for
7: return nano cube
8: end function

1: function TRAILPROPERPATH(root, [v1, . . . ,vk])
2: stack STACK() . New Empty Stack
3: PUSH(stack, root)
4: node root
5: for i = 1 to k do
6: child CHILD(node, vi)
7: if child = null then
8: child NEWPROPERCHILD(node, vi, NODE())
9: else if ISSHAREDCHILD(node,child) then

10: child REPLACECHILD(node,
child, SHALLOWCOPY(child))

11: end if
12: PUSH(stack, child)
13: node child
14: end for
15: return stack
16: end function

1: function SHALLOWCOPY(node)
2: node sc NODE()
3: SETSHAREDCONTENT(node sc, CONTENT(node))
4: for v in CHILDRENLABELS(node) do
5: NEWSHAREDCHILD(node sc, v, CHILD(node, v))
6: end for
7: return node sc
8: end function

1: procedure ADD(root, o, d, S, `time, updated nodes)
2: [`1, . . . ,`k] CHAIN(S, d)
3: stack TRAILPROPERPATH(root, [`1(o), . . . ,`k(o)])
4: child null
5: while stack is not empty do
6: node POP(stack)
7: update false
8: if node has a single child then
9: SETSHAREDCONTENT(node, CONTENT(child))

10: else if CONTENT(node) is null then
11: SETPROPERCONTENT(node,

(d= dim(S) ?
SUMMEDTABLETIMESERIES() : NODE())

12: update true
13: else if CONTENTISSHARED(node) and

CONTENT(node) not in updated nodes then
14: SETPROPERCONTENT(node,

SHALLOWCOPY(CONTENT(node)))
15: update true
16: else if CONTENTISPROPER(node) then
17: update true
18: end if
19: if update then
20: if d= dim(S) then
21: INSERT(CONTENT(node), `time(o))
22: else
23: ADD(CONTENT(node), o, d+1, updated nodes)
24: end if
25: INSERT(updated nodes, CONTENT(node))
26: end if
27: child node
28: end while
29: end procedure

Fig. 3. Pseudo-code of an algorithm to build nanocubes.

Our technique is most closely related to the work of Sismanis et
al. [30, 29]. Specifically, we use similar ideas to reduce the size of
a data cube from potentially exponential in the cardinality of the key
space (we define these terms in Section 4.1) to essentially linear [31].
Nanocubes improve on Sismanis et al.’s work in two fundamental di-
rections. First, we develop a model for spatiotemporal data cubes that
exploits unique characteristics of space and time to get a good com-
promise between space usage and efficiency of queries (Sections 4.2.1
and 6). Second, we show how these structures enable the visualiza-
tions which are common in interactive tools (Section 4.3).

There have also been recent efforts to build data cube structures
specifically suited for visualization. Crossfilter [32] is a software pack-
age built on the clever observation that many queries in interactive vi-
sualization are incremental: assuming that previous results are avail-
able, the results needed for the next query can be quickly computed.
Unfortunately, we do not see easily how this would work for the multi-
scale queries necessary in a spatiotemporal setting. Just as recently,
Kandel et al. have proposed Datavore, a column-oriented data cube
representation [17], and Liu et al. leverage graphics hardware in iM-
mens, achieving extremely fast queries over large data [20]. While we
defer to Section 7 a full discussion and direct comparison of nanocubes
to Datavore and iMmens, we show in Figure 13 that nanocubes achieve
good performance for both sparse (the regime where Datavore’s data
structures are ideal) and dense occupation of key space (where iM-
mens’s are).

3 DATA CUBES

In the relational databases community, the table below is a relation, its
columns are attributes, its lines are records, and its entries are values.

Country Device Language
US Android en
US iPhone ru

South Africa iPhone en
India Android en

Australia iPhone en

An aggregation represents the idea of selecting a certain group of
records from a relation and summarizing this group using an aggrega-
tion function (e.g.count, sum, max, min). For example, a possible
aggregation for the relation above could be to select all its records and
summarize those using count. In this case, five would be the final
aggregation result. If we allow entries in the record to have a special
value All, we could represent this aggreation as the following relation:

Country Device Language Count
All All All 5

We refer to records in a relation that contain the special value All as ag-
gregation records. Using this notation, it is easy to understand the con-
ventional ways of describing aggregations for a given relation: group
by, cube, and rollup. A group by operation is one in which a relation is
derived from a base relation given a list of attributes and an aggregate
function. For example, group by on attributes Device and Language
with the count aggregate function results in the relation:

Country Device Language Count
All Android en 2
All iPhone en 2
All iPhone ru 1

Note that for every different combination of values present in the at-
tributes of the base relation an aggregation record is added to the re-

3

Online Submission ID: 276

1: function NANOCUBE([o1,o2, . . . ,on], S, `time) . n > 0
2: nano cube NODE() . New empty node
3: for i = 1 to n do
4: updated nodes /0
5: ADD(nano cube, oi, 1, S, `time, updated nodes)
6: end for
7: return nano cube
8: end function

1: function TRAILPROPERPATH(root, [v1, . . . ,vk])
2: stack STACK() . New Empty Stack
3: PUSH(stack, root)
4: node root
5: for i = 1 to k do
6: child CHILD(node, vi)
7: if child = null then
8: child NEWPROPERCHILD(node, vi, NODE())
9: else if ISSHAREDCHILD(node,child) then

10: child REPLACECHILD(node,
child, SHALLOWCOPY(child))

11: end if
12: PUSH(stack, child)
13: node child
14: end for
15: return stack
16: end function

1: function SHALLOWCOPY(node)
2: node sc NODE()
3: SETSHAREDCONTENT(node sc, CONTENT(node))
4: for v in CHILDRENLABELS(node) do
5: NEWSHAREDCHILD(node sc, v, CHILD(node, v))
6: end for
7: return node sc
8: end function

1: procedure ADD(root, o, d, S, `time, updated nodes)
2: [`1, . . . ,`k] CHAIN(S, d)
3: stack TRAILPROPERPATH(root, [`1(o), . . . ,`k(o)])
4: child null
5: while stack is not empty do
6: node POP(stack)
7: update false
8: if node has a single child then
9: SETSHAREDCONTENT(node, CONTENT(child))

10: else if CONTENT(node) is null then
11: SETPROPERCONTENT(node,

(d= dim(S) ?
SUMMEDTABLETIMESERIES() : NODE())

12: update true
13: else if CONTENTISSHARED(node) and

CONTENT(node) not in updated nodes then
14: SETPROPERCONTENT(node,

SHALLOWCOPY(CONTENT(node)))
15: update true
16: else if CONTENTISPROPER(node) then
17: update true
18: end if
19: if update then
20: if d= dim(S) then
21: INSERT(CONTENT(node), `time(o))
22: else
23: ADD(CONTENT(node), o, d+1, updated nodes)
24: end if
25: INSERT(updated nodes, CONTENT(node))
26: end if
27: child node
28: end while
29: end procedure

Fig. 3. Pseudo-code of an algorithm to build nanocubes.

Our technique is most closely related to the work of Sismanis et
al. [30, 29]. Specifically, we use similar ideas to reduce the size of
a data cube from potentially exponential in the cardinality of the key
space (we define these terms in Section 4.1) to essentially linear [31].
Nanocubes improve on Sismanis et al.’s work in two fundamental di-
rections. First, we develop a model for spatiotemporal data cubes that
exploits unique characteristics of space and time to get a good com-
promise between space usage and efficiency of queries (Sections 4.2.1
and 6). Second, we show how these structures enable the visualiza-
tions which are common in interactive tools (Section 4.3).

There have also been recent efforts to build data cube structures
specifically suited for visualization. Crossfilter [32] is a software pack-
age built on the clever observation that many queries in interactive vi-
sualization are incremental: assuming that previous results are avail-
able, the results needed for the next query can be quickly computed.
Unfortunately, we do not see easily how this would work for the multi-
scale queries necessary in a spatiotemporal setting. Just as recently,
Kandel et al. have proposed Datavore, a column-oriented data cube
representation [17], and Liu et al. leverage graphics hardware in iM-
mens, achieving extremely fast queries over large data [20]. While we
defer to Section 7 a full discussion and direct comparison of nanocubes
to Datavore and iMmens, we show in Figure 13 that nanocubes achieve
good performance for both sparse (the regime where Datavore’s data
structures are ideal) and dense occupation of key space (where iM-
mens’s are).

3 DATA CUBES

In the relational databases community, the table below is a relation, its
columns are attributes, its lines are records, and its entries are values.

Country Device Language
US Android en
US iPhone ru

South Africa iPhone en
India Android en

Australia iPhone en

An aggregation represents the idea of selecting a certain group of
records from a relation and summarizing this group using an aggrega-
tion function (e.g.count, sum, max, min). For example, a possible
aggregation for the relation above could be to select all its records and
summarize those using count. In this case, five would be the final
aggregation result. If we allow entries in the record to have a special
value All, we could represent this aggreation as the following relation:

Country Device Language Count
All All All 5

We refer to records in a relation that contain the special value All as ag-
gregation records. Using this notation, it is easy to understand the con-
ventional ways of describing aggregations for a given relation: group
by, cube, and rollup. A group by operation is one in which a relation is
derived from a base relation given a list of attributes and an aggregate
function. For example, group by on attributes Device and Language
with the count aggregate function results in the relation:

Country Device Language Count
All Android en 2
All iPhone en 2
All iPhone ru 1

Note that for every different combination of values present in the at-
tributes of the base relation an aggregation record is added to the re-

3

Natural language query s c t URL
count of all Delta flights R U R { Delta } R U /where/carrier=Delta
count of all Delta flights in the Midwest R (Midwest) R { Delta } R U /region/(Midwest)/where/carrier=Delta
count of early flights in 2010 R U D R (2010) /field/carrier/when/(2010)
time-series of all United flights in 2009 R U R U D (2009) /tseries/when/2009/where/carrier=United
heatmap of Delta flights in 2010 D (tile) R { Delta } R (2010) /tile/(tile)/where/carrier=Delta

Fig. 4. A simplified set of queries supported by the nanocube data structure. The column s represents space; t, time; c, category. R means “rollup”,
D means “drilldown”. The value next to R or D contains the subset of that dimension’s domain being selected. We use U to represent the entire
domain (“universe”). Omitted here, but supported by our structure, are: the extra parameter for number of steps throughout the time region in a
time-based drilldown; multiple categories with separate rollups and drilldowns; tiles of variable resolution.

sulting relation. In our running example these combinations are (An-
droid, en), (iPhone, en), and (iPhone, ru). The cube operation is the
result of collecting all possible group by aggregations into a single re-
lation for a given list of attributes. In our running example, the cube
for count on Device and Language would be the same as the union
of four group by’s: on (1) no attributes; on (2) Device only; on (3)
Language only; and (4) on Device and Language (2n group bys where
n is the number of input attributes):

Country Device Language Count
All All All 5
All Android All 2
All iPhone All 3
All All eu 4
All All ru 1
All iPhone ru 1
All Android en 2
All iPhone en 2
All iPhone ru 1

Finally, a roll up is a constrained version of the cube operation where
the order of the input attributes is important. So a roll up on Device
and Language (in this order) means the union of group by’s on: (1)
no attributes; (2) Device; and (3) Device and Language. Note that the
group by on Language only is not part of the roll up. As the results
of group by’s, cubes and roll ups can be seen as relations, we can
naturally compose such operations. As we will describe nanocubes is
a specialized data structure to store and query cubes of roll ups.

4 NANOCUBES: A COMPACT, SPATIOTEMPORAL ROLL-UP
CUBE

Data visualizations in a computer are necessarily bounded by display
size, and so we would like to be able to quickly collect subspaces of
the dataset that would end up in the same pixel on the screen. How-
ever, spatiotemporal navigation is inherently multiscale. The same
data structure should support quick indexing for a visualization over
multiple years of time series and for drilling down into one particu-
lar hour or day. Similarly, the data cube should support aggregation
queries over vast spatial regions covering entire continents, as well as
very narrow queries covering only a few city blocks.

The database notion of roll ups (Section 3), in a sense, aligns nicely
with the notion of Level of Detail. For example, if the records of a table
(relation) contain a location attribute, one can design a roll up query
whose resulting relation encodes the same information as the one en-
coded in a level of detail data structure. More concretely, suppose
`1, . . . ,`k are attributes computed from the original location attribute
and yield ’quad-tree addresses’ of increasingly higher levels of detail
(from 1 to k). A roll up query on these (computed) attributes results in,
essentially, the same information as the one contained in a quad-tree
(given that we are keeping the same summary in both, e.g.count). At
first, this connection might be obvious but bridges between terminolo-
gies from different areas is usually important. As it turns out, only later
in the development of nanocubes is that we became aware of Hierar-
chical Dwarf-Cubes [29], which is a highly related to nanocubes and
was developed by the database community to efficiently store results
of aggreagation queries.

The second important notion in the design of nanocubes is the idea
that we want to combine aggregations of independent dimensions at

independent levels of detail. For example we might want to know for
a whole country, what is the spatial distribution of tweets gererated
by an iPhone: coarse on the spatial dimension, but specific on the
device dimension; conversely we might want to know the distribu-
tion of tweets (coarse on device) in a small block of a city (fine in
space). In relational database terminology, this model has a name: it
is a cube of roll-ups, or a roll-up cube. Now with the language set up,
we can state: A nanocube is a data structure to efficiently store and
query spatio-temporal roll-up cubes. Besides implmentation tricks
(e.g. tagged pointers, carefully design of the bit layout of the struc-
tures, specifically designed to live in main memory), there is, to the
best of our knowledge, a qualitative difference in nanocubes to other
data structures like [29]. The difference is in what nanocubes store for
each aggregation which is deeply related to spatio-temporal datasets:
it stores time series in a sparse summed table format. This element of
nanocubes is explained in Section 4.3 and, cannot be cannot be effi-
ciently simulated (memory-wise) by previous datastructures.

In the remainder of this section, we present a formal description
of the components that make up our nanocube index, pseudo-code
for building nanocubes together with an illustrated example, and how
queries are made against our index.

4.1 Definitions
Let O be a set of objects. A labeling function ` : O ! L associates a
label value to the objects of O. We can think of ` as an attribute in
a relational database. In connection with the level of detail discus-
sion above, if `1 and `2 are two labeling functions for O, we say `1 is
coarser than `2 or that `2 is finer than `1 if for any two objects o,o0 2 O
the implication `2(o) = `2(o0)) `1(o) = `1(o0) holds. We denote this
fact by `1 < `2.

A sequence of labeling functions c = [`1,`, . . . ,`k] for objects O
is a chain for O if every labeling function is coarser than the next
labeling function in the sequence: `i < `i+1. Note how chains are
related to roll ups, we avoid the same name to not overload more the
term roll up. The number of levels of a chain is defined by levels(c) =
|c|+1. An indexing schema for objects O consists of a sequence of
chains S = [c1,c2, . . . ,cn]. The dimension of an indexing schema S
is the length of its sequence of chains and is denoted by dim(S). The
multiplicity of a schema S is the product of its chains’ number of levels:
µ(S) = ’n

i=1 levels(ci).
A full assignment for a sequence of labeling functions [`1,`2, . . . ,`k]

is a sequence of label values [v1,v2, . . . ,vk] where vi is a label value
under `i. Any prefix of a full assignment for a sequence of label-
ing functions, including the empty one, is referred to as a partial as-
signment. Note that an full assignment is also a patial assignment
since a sequence is also a prefix of itself. An address on a schema
is a sequence of partial assignments for its chains, more formally, if
S = [c1,c2, . . . ,cn] is an indexing schema, then a = [p1, p2, . . . , pn] is
an address of S if pi is a partial assignment for chain ci. The set of pos-
sible addresses of S is denoted by addr(S). and its size is referred to as
the Global Cardinality of S. The subset of addr(S) whose addresses
contain only full assignments is called the Key Cardinality of S. The
key Key Cardinality is exactely the number of the finest resoultion bins
a nanocube can store.

The addresses of an object o under indexing schema S, denoted by
addr(o,S) are all the addresses in addr(S) whose partial assignments

4

Relation

Aggregation

Group By on Device, Language

Cube on Device, Language

Equivalent to Group By on
all possible subsets of
{Device, Language}

A

B

C

D

Fig. 5. A sample relation and its associated aggregation operators.

3

A

B

C

Fig. 4. A sample relation and its associated aggregation operators.

4.1 Definitions
Let O be a set of objects. A labeling function ` : O ! L associates a
label value to the objects of O. We can think of ` as an attribute in a
relational database. In connection with the level of detail discussion
above, if `1 and `2 are two labeling functions for O, we say `1 is coarser
than `2 or that `2 is finer than `1 if for any two objects o,o0 2 O the
implication `2(o) = `2(o0)) `1(o) = `1(o0) holds. We denote this fact
by `1 < `2.

A sequence of labeling functions c = [`1,`, . . . ,`k] for objects O is a
chain for O if every labeling function is coarser than the next labeling
function in the sequence: `i < `i+1. The number of levels of a chain
is defined by levels(c) = |c|+1. An indexing schema for objects O
consists of a sequence of chains S = [c1,c2, . . . ,cn]. The dimension of
an indexing schema S is the length of its sequence of chains and is
denoted by dim(S). The multiplicity of a schema S is the product of its
chains’ number of levels: µ(S) = ’n

i=1 levels(ci).
A full assignment for a sequence of labeling functions [`1,`2, . . . ,`k]

is a sequence of label values [v1,v2, . . . ,vk] where vi is a label value
under `i. Any prefix of a full assignment for a sequence of labeling func-
tions, including the empty one, is referred to as a partial assignment.
Note that a full assignment is also a partial assignment since a sequence
is also a prefix of itself. An address on a schema is a sequence of partial
assignments for its chains, more formally, if S = [c1,c2, . . . ,cn] is an
indexing schema, then a = [p1, p2, . . . , pn] is an address of S if pi is a
partial assignment for chain ci. The set of possible addresses of S is
denoted by addr(S).

The addresses of an object o under indexing schema S, denoted by
addr(o,S) are all the addresses in addr(S) whose partial assignments
are consistent with the label values associated to o and it is easy to
see that the size of addr(o,S) is always µ(S). Besides a schema S,
the definition of a nanocube requires a separate labeling function,
`time : O ! T , which we refer to as the time labeling function since we
use it to encode the temporal aspect of our datasets. Thus, a nanocube
for objects o1, . . . ,on is denoted by:

NANOCUBE([o1, . . . ,on],S,`time)

A key in a nanocube is any pair (a, t) where a 2 addr(S) and corre-
sponds to a full assignment (see definition above) and t 2 T is a possible
time label. If we remove the requirement of a being a full assignment,
we say that pair (a, t) is an aggregate key. Note that every key is also
an aggregate key. The set of all possible keys and the set of all possible
aggregate keys of a nanocube are respectively referred to as its key
space, or K?, and its aggregate key space, or K?

a . The size of the key
space, |K?|, is referred to as its cardinality.

4.2 Building the Index
To ease the remaining exposition, we assume that a nanocube maps an
aggregate key to a count. Nevertheless, nanocubes support any kind
of summary that is an algebra with weighted sums and subtractions.
Notably, this includes linear combinations of moment statistics, with
which we can compute means, variances and covariances.

The pseudo-code for building a nanocube is presented in Figure 3.
The main idea of the algorithm is for every object oi to first find the
finest address of the schema S hit by this object, update the time series
associated with this address and from there on update in a deepest
first fashion, all coarser addresses also hit by oi. Note that the content
of the last dimension of schema S is always a time series and that is
why, in line 21 of ADD, we insert the time label of the current object.
The important trick used is to, when possible, allow for shared links

Data Cube Aggregations

12

[Lins et. al, 2013]
D. Koop, CSCI 640/490, Spring 2023

00,11 01,11 10,11 11,11

00,10 01,10 10,10 11,10

00,01 01,01 10,01 11,01

00,00 01,00 10,00 11,00

o1

o2

o3

o4

o5

0,1 1,1

0,0 1,0

Five Tweets: Location and Device

= iPhone
= Android`device()

`device()

`spatial1 `spatial2

S = [[`spatial1, `spatial2], [`device]]

o2

o2o1

o2 o3

0,1

01,10

Android

o1

iPhone

1,0

10,01

o3

iPhone

o2o1 o3

iPhone Android

10,10

Android

o4

1,1

o1 o4

o4

11,01

iPhone

o5

iPhone

o5o3

0,1

01,10

Android

o1

0,1

01,10

Android

o1 o2 o2o1

iPhone

0,1

01,10

Android

o1 o2 o2o1

iPhone

1,0

10,01

o3

iPhone

o2o1 o3

iPhone
Android

o2 o3

0,1

01,10

Android

o1 o2 o2o1

iPhone

1,0

10,01

o3

iPhone

o2o1 o3

iPhone Android

o2 o3

10,10

Android

o4

1,1

o1 o4

o4

Indexing Schema

1. 2. 3.

4. 5.

parent-child (same dimension):

proper

content (next dimension):

shared

proper shared

o5

o5

updated in
current step

dimension
boundary

Fig. 2. An illustration of how to build a nanocube for five points [o1, . . . ,o5] under schema S. The complete process is described in Section 4.

Section 4, we show how to construct a data cube that fits in the main
memory of a modern laptop computer or workstation, extending the
work of Sismanis et al. [31]. In addition, the query times to build the
visual encodings in which we are interested will be at most proportional
to the size of the output, which is bounded by the number of screen
pixels (within a small factor). This is an important observation: the time
complexity of a visualization algorithm should ideally be bounded the
number of pixels it touches on the screen. Our technique enables real-
time exploratory visualization on datasets that are large, spatiotemporal,
and multidimensional. Because the speed of our data cube structure
hinges partly on it being small enough to fit in main memory, we call it
a nanocube.

By real-time, we mean query times on average under a millisecond
for a single thread running on computers ranging from laptops, to
workstations, to server-class computing nodes (Section 6). By large,
we mean that the datasets we support have millions to billions of entries.

By spatiotemporal, we mean that nanocubes support queries typical
of spatial databases, such as counting events in a spatial region that
can be either a rectangle covering most of the world, or a heatmap
of activity in downtown San Francisco (Section 4.3.1). By the same
token, nanocubes support temporal queries at multiple scales, such
as event counts by hour, day, week, or month over a period of years
(Section 4.3.3). Data cubes in general enable the Visual Information-
Seeking Mantra [29] of “Overview first, zoom and filter, then details-
on-demand” by providing summaries and letting users drill down by
expanding along the wanted dimensions. Nanocubes also provide
overviews, filters, zooming, and details-on-demand inside the spa-
tiotemporal dimensions themselves.

By multidimensional, we mean that besides latitude, longitude, and
time, each entry can have additional attributes (see section 6) that can
be used in query selections and rollups.

As we will show, nanocubes lend themselves very well to building
visual encodings which are fundamental building blocks of interac-
tive visualization systems, such as scatterplots, histograms, parallel
coordinate plots, and choropleth maps. In summary, we contribute:

• a novel data structure that improves on the current state of the art
data cube technology to enable real-time exploratory visualization
of multidimensional, spatiotemporal datasets;

• algorithms to query the nanocube and build linked and brushable
visual encodings commonly found in visualization systems; and

• case studies highlighting the strengths and weaknesses of our

technique, together with experiments to measure its utilization of
space, time, and network bandwidth.

2 RELATED WORK

Relational databases are so widespread and fundamental to the practice
of computing that they were a natural target for information visualiza-
tion almost since the field’s inception [20]. Mackinlay’s Automatic
Presentation Tool is the breakthrough result that critically connected the
relational structure of the data with the graphical primitives available
for display [23] and ultimately lead to data cube visualization tools
like Polaris [34, 35] and Show Me [24]. Nanocubes are specifically
designed to speed up queries for spatiotemporal data cubes, and could
eventually be used as a backend for these types of applications.

In contrast, some of the work in large data visualization involves
shipping the computation and data to a cluster of processing nodes.
While parallelism is an attractive option for increasing throughput, it
does not necessarily help achieve low latency, which is essential for
fluid interactions with a visualization tool. As a result, sophisticated
techniques such as query prediction become necessary [6]. Leveraging
the enormous power of graphics processing units has also become
popular [25, 21], but without algorithmic changes, linear scans through
the dataset will still be too slow for fluid interaction, even with GPUs.

Another popular way to cope with large datasets is through sampling.
Statistical sampling can be performed on the database backend [26, 1,
10, 14], or on the front-end [11]. Still, the techniques we introduce
with nanocubes can produce results quickly and exactly (to within
screen precision) without requiring approximations, which we believe
is preferable. In addition, as Liu et al. argue, sampling by itself is not
sufficient to prevent overplotting, and might actually mask important
data outliers [21].

Fekete and Plaisant have proposed modifications of traditional visual
encodings which use the computer screen more efficiently [13]. These
scale better with dataset size, but nevertheless require a traversal of
all input data points that renders the proposal less attractive for larger
datasets. Carr et al. were among the first to propose techniques replac-
ing a scatterplot with an equivalent density plot [5]; nanocubes enable
these visualizations at a variety of dataset sizes and scales.

Careful data aggregation [17], then, appears to be one of the few
scalable solutions for low-latency large data graphics. While Elmqvist
and Fekete propose variations of visualization techniques that include
aggregation as a first-class citizen [12], in this paper we show how to
issue queries such that, at the screen resolution in which the application
is operating, the result is indistinguishable (or close to) from a complete

Building a Nanocube

13

[Lins et. al, 2013]
D. Koop, CSCI 640/490, Spring 2023

The Built-in Approach of Beast

The On-top
Approach

28

Storage (HDFS)

RDD Runtime

Job Monitoring
and Scheduling

SQL Spark Java/
Scala APIS

User Programs

Spatial Modules
(Spatial)

User Program
+

RDD APIs
+

Job Monitoring
and Scheduling +

RDD Runtime
+

Storage
+
… Storage (HDFS)

RDD Runtime

Job Monitoring
and Scheduling

SQL Spark Java/
Scala APIS

User Programs

Spatial
Indexing

Early
Pruning

Spatial
Operators

Spatial
Language

From Scratch
Approach

The Built-in Approach
(Beast)

Beast Architecture

14

[A. Eldawy, 2021]
D. Koop, CSCI 640/490, Spring 2023

https://www.cs.ucr.edu/~eldawy/21SCS167/slides/CS167-07-BigSpatialData.pdf

Beast Architecture

30

Spatial Data Types

In-situ Spark Loaders/Writers

Spatial Partitioner & Load Balancer

RDD-based Query Processor

Visualization Framework
Big

Spatial
Data
Apps

Beast Architecture

15

[A. Eldawy, 2021]
D. Koop, CSCI 640/490, Spring 2023

https://www.cs.ucr.edu/~eldawy/21SCS167/slides/CS167-07-BigSpatialData.pdf

Spatial Data Types

33

Point Envelope

Geometry

Feature

Beast Spatial Data Types

16

[A. Eldawy, 2021]
D. Koop, CSCI 640/490, Spring 2023

https://www.cs.ucr.edu/~eldawy/21SCS167/slides/CS167-07-BigSpatialData.pdf

R-tree
• Read a sample
• Partition the sample using

an R-tree index
• Use MBR of leaf nodes

as partition boundaries
for all the data

46

Beast Partitioning/Indexing & Range Query

17

Range Query

55

Use the partition
information to prune
disjoint partitions

Scan matching
partitions in parallel to
find matching records

[A. Eldawy, 2021]
D. Koop, CSCI 640/490, Spring 2023

https://www.cs.ucr.edu/~eldawy/21SCS167/slides/CS167-07-BigSpatialData.pdf

Spatial Join

58

Join Directly Partition – Join

Total of 36 overlapping pairs Only 16 overlapping pairs

Beast Spatial Join

18

[A. Eldawy, 2021]
D. Koop, CSCI 640/490, Spring 2023

https://www.cs.ucr.edu/~eldawy/21SCS167/slides/CS167-07-BigSpatialData.pdf

Assignment 5
• Divvy Bikes Data
• Spatial, Graph, and Temporal Data Processing
• Use pandas, geopandas, neo4j, (modin for extra credit)

19D. Koop, CSCI 640/490, Spring 2023

https://faculty.cs.niu.edu/~dakoop/cs640-2023sp/assignment5.html

20

Data Curation

D. Koop, CSCI 640/490, Spring 2023

21

Why?

D. Koop, CSCI 640/490, Spring 2023

Research Data Infrastructure

C. L. Borgman

D. Koop, CSCI 640/490, Spring 2023

https://escholarship.org/uc/item/4nf659d5

What is data and why share it?
• "Data are representations of observations, objects, or other entities used as

evidence of phenomena for the purposes of research or scholarship."
 [C. L. Borgman]

• Data can be digital but can also be physical (e.g. sculptures)
• Semantics are important (e.g. temperature to engineer and biologist)
• Grey Data: surveys, student records—think about privacy
• Sharing Data
- Required/encouraged by universities, funding agencies, publishers
- "Publications are arguments made by authors, and data are the evidence

used to support the arguments." [C. L. Borgman]

23D. Koop, CSCI 640/490, Spring 2023

Data attribution and citation
• Publications are counted, authorship is negotiated
• For data:
- Often compound
- Ownership is rarely clear
- Attribution?
- What about derived data?

• Bibliometrics and Altmetrics

24D. Koop, CSCI 640/490, Spring 2023

Data Identity
• Identifiers: DOIs, URIs
• Naming and namespaces: ORCID, KEGG Identifier
• Description: Metadata, Self-describing

25D. Koop, CSCI 640/490, Spring 2023

Data Persistence
• How long should this data be kept?
- Perishable
- Long-lived
- Permanent

• Who is responsible for keeping the data?
- Scientists/investigators?
- Publishers?
- Librarians?

• Privacy should be considered from the beginning

26D. Koop, CSCI 640/490, Spring 2023

The DCC Curation
Lifecycle Model

Description and
Representation Information

Preservation Planning

Community Watch and
Participation

Curate and Preserve

Conceptualise

Create or Receive

Appraise and Select

Ingest

Preservation Action

Store

Access, Use and Reuse

Transform

Assign administrative, descriptive, technical, structural and preservation metadata, using appropriate standards, to ensure adequate description and control over the long-term. Collect and assign representation information required to understand
and render both the digital material and the associated metadata.

Plan for preservation throughout the curation lifecycle of digital material. This would include plans for management and administration of all curation lifecycle actions.

Maintain a watch on appropriate community activities, and participate in the development of shared standards, tools and suitable software.

Be aware of, and undertake management and administrative actions planned to promote curation and preservation throughout the curation lifecycle.

Conceive and plan the creation of data, including capture method and storage options.

Create data including administrative, descriptive, structural and technical metadata. Preservation metadata may also be added at the time of creation.
Receive data, in accordance with documented collecting policies, from data creators, other archives, repositories or data centres, and if required assign appropriate metadata.

Evaluate data and select for long-term curation and preservation. Adhere to documented guidance, policies or legal requirements.

Transfer data to an archive, repository, data centre or other custodian. Adhere to documented guidance, policies or legal requirements.

Undertake actions to ensure long-term preservation and retention of the authoritative nature of data. Preservation actions should ensure that data remains authentic, reliable and usable while maintaining its integrity. Actions include data cleaning,
validation, assigning preservation metadata, assigning representation information and ensuring acceptable data structures or file formats.

Store the data in a secure manner adhering to relevant standards.

Ensure that data is accessible to both designated users and reusers, on a day-to-day basis. This may be in the form of publicly available published information. Robust access controls and authentication procedures may be applicable.

Create new data from the original, for example
- By migration into a different format.
- By creating a subset, by selection or query, to create newly derived results, perhaps for publication.

www.dcc.ac.uk
info@dcc.ac.uk

The Curation Lifecycle
The DCC Curation Lifecycle Model provides a graphical high level overview of the stages required for successful curation and preservation of data from initial conceptualisation or receipt. The model can be used to plan activities within an organisation or consortium to
ensure that all necessary stages are undertaken, each in the correct sequence. The model enables granular functionality to be mapped against it; to define roles and responsibilities, and build a framework of standards and technologies to implement. It can help with
the process of identifying additional steps which may be required, or actions which are not required by certain situations or disciplines, and ensuring that processes and policies are adequately documented.

Data, any information in binary digital form, is at the centre of the Curation Lifecycle. This includes:

- Simple Digital Objects are discrete digital items; such as textual files, images or sound files, along with their related identifiers and metadata.
- Complex Digital Objects are discrete digital objects, made by combining a number of other digital objects, such as websites.

Structured collections of records or data stored in a computer system.

Full Lifecycle Actions

Sequential Actions

Data (Digital Objects or Databases)

Occasional Actions
Dispose

Reappraise

Migrate

Dispose of data, which has not been selected for long-term curation and preservation in accordance with documented policies, guidance or legal requirements. Typically data may be transferred to another archive, repository, data centre or
other custodian. In some instances data is destroyed. The data’s nature may, for legal reasons, necessitate secure destruction.

Return data which fails validation procedures for further appraisal and reselection.

Migrate data to a different format. This may be done to accord with the storage environment or to ensure the data’s immunity from hardware or software obsolescence.

Digital Objects

Databases

Data Curation Lifecycle

27

[DCC]
D. Koop, CSCI 640/490, Spring 2023

http://www.dcc.ac.uk/sites/default/files/documents/publications/DCCLifecycle.pdf

Data (Digital Objects or Databases)
• Data, any information in binary digital form, is at the centre of the Curation

Lifecycle. This includes:
- Digital Objects

• Simple Digital Objects are discrete digital items; such as textual files,
images or sound files, along with their related identifiers and metadata.

• Complex Digital Objects are discrete digital objects, made by combining a
number of other digital objects, such as websites.

- Databases: Structured collections of records or data stored in a computer
system.

28

[DCC]
D. Koop, CSCI 640/490, Spring 2023

http://www.dcc.ac.uk/sites/default/files/documents/publications/DCCLifecycle.pdf

Full Lifecycle Actions
• Description and Representation Information: Assign metadata, using

appropriate standards, to ensure adequate description and control
• Preservation Planning: Plan for preservation throughout the curation lifecycle

of digital material
• Community Watch and Participation: Watch standards, tools, software.
• Curate and Preserve: Promote curation and preservation throughout the

curation lifecycle

29

[DCC]
D. Koop, CSCI 640/490, Spring 2023

http://www.dcc.ac.uk/sites/default/files/documents/publications/DCCLifecycle.pdf

Sequential Actions
• Conceptualize: Plan creation of data—capture method and storage options.
• Create or Receive: Create/receive data and make sure metadata exists
• Appraise and Select: Evaluate data and select for long-term curation and

preservation
• Ingest: Transfer data to an archive, repository, data centre or other custodian
• Preservation Action: Data cleaning, validation (ensure that data remains

authentic, reliable and usable)
• Store: Store the data in a secure manner adhering to relevant standards

Access, Use and Reuse: Make sure is accessible to users and reusers
• Transform: Create new data from the original (migrate formats, subsets, etc.)

30

[DCC]
D. Koop, CSCI 640/490, Spring 2023

http://www.dcc.ac.uk/sites/default/files/documents/publications/DCCLifecycle.pdf

Occasional Actions
• Dispose: Transfer to another archive or perhaps destroy data
• Reappraise: Return data which fails validation procedures for further

appraisal and reelection
• Migrate: Migrate data to a different format—ensure the data’s immunity from

hardware or software obsolescence

31

[DCC]
D. Koop, CSCI 640/490, Spring 2023

http://www.dcc.ac.uk/sites/default/files/documents/publications/DCCLifecycle.pdf

The FAIR Guiding Principles for Scientific Data
Management and Stewardship

M. D. Wilkinson et al.

D. Koop, CSCI 640/490, Spring 2023

https://www.nature.com/articles/sdata201618.pdf
https://www.nature.com/articles/sdata201618.pdf

Who and Why?
• Who: People from academia, industry, funding agencies, & scholarly publishers
• Why?
- Data management leads to knowledge discovery, innovation, and reuse
- Existing digital ecosystem prevents maximum benefit
- Need to specify what "good" data management/curation/stewardship is
- Enhance the ability of machines to automatically find and use the data
- Principles should also apply to tools

33

[M. D. Wilkinson et al., 2016]
D. Koop, CSCI 640/490, Spring 2023

https://www.nature.com/articles/sdata201618.pdf

FAIR Principles
• Findable: Metadata and data should be easy to find for both humans and

computers
• Accessible: Users need to know how data can be accessed, possibly

including authentication and authorization
• Interoperable: Can be integrated with other data, and can interoperate with

applications or workflows for analysis, storage, and processing
• Reusable: Optimize the reuse of data. Metadata and data should be well-

described so they can be replicated and/or combined in different settings

34

[GO FAIR]
D. Koop, CSCI 640/490, Spring 2023

https://www.go-fair.org/fair-principles/

To be Findable
• F1. (Meta)data are assigned a globally unique and persistent identifier
• F2. Data are described with rich metadata (defined by R1)
• F3. Metadata clearly and explicitly include the identifier of the data it

describes
• F4. (Meta)data are registered or indexed in a searchable resource

35

[M. D. Wilkinson et al., 2016]
D. Koop, CSCI 640/490, Spring 2023

https://www.nature.com/articles/sdata201618.pdf

DataCite Workflow

36

[DataCite]
D. Koop, CSCI 640/490, Spring 2023

1. Take a dataset 2. Describe it
Title

Authors

Year

Description

And others…

3. Assign a DOI

10.1234/exampledata

4. Reuse and reference!

Unique Persistent

5. Enjoy the benefits

Findability

Reusability

Track
citations

Measure
impact

http://www.datacite.org

Digital Object Identifier
• Name: Proxy + Prefix + Suffix

• Metadata: description of the object
• URL: resolves to a digital location, which contains object’s details

37

[DataCite]
D. Koop, CSCI 640/490, Spring 2023

http://www.datacite.org

DataCite Metadata

38

[DataCite]
D. Koop, CSCI 640/490, Spring 2023

Mandatory Properties Details
Identifier with mandatory type sub‐property
Creator with optional name identifier and affiliation sub-properties
Title with optional type sub‐properties
Publisher
PublicationYear
ResourceType with mandatory general type description sub-property

Recommended Properties Details
Subject with scheme sub‐property
Contributor with type, name identifier, and affiliation sub‐properties
Date with type sub‐property
RelatedIdentifier with type and relation type sub‐properties
Description with type sub‐property
GeoLocation with point, box, and polygon sub‐properties

Optional Properties
Language
AlternateIdentifier
Size
Format
Version
Rights
FundingReference

http://www.datacite.org

To be Accessible
• A1. (Meta)data are retrievable by their identifier using a standardized

communications protocol
- A1.1. The protocol is open, free, and universally implementable
- A1.2. The protocol allows for an authentication and authorization

procedure, where necessary
• A2. Metadata are accessible, even when the data are no longer available

39

[M. D. Wilkinson et al., 2016]
D. Koop, CSCI 640/490, Spring 2023

https://www.nature.com/articles/sdata201618.pdf

How data accessibility might work within publications

40

[M. Fenner et al., 2019]
D. Koop, CSCI 640/490, Spring 2023

https://www.nature.com/articles/s41597-019-0031-8

To be Interoperable
• I1. (Meta)data use a formal, accessible, shared, and broadly applicable

language for knowledge representation.
• I2. (Meta)data use vocabularies that follow FAIR principles
• I3. (Meta)data include qualified references to other (meta)data

41

[M. D. Wilkinson et al., 2016]
D. Koop, CSCI 640/490, Spring 2023

https://www.nature.com/articles/sdata201618.pdf

Standard vocabularies

42

[fairsharing.org]
D. Koop, CSCI 640/490, Spring 2023

http://fairsharing.org

To be Reusable
• R1. (Meta)data are richly described with a plurality of accurate and relevant

attributes
- R1.1. (Meta)data are released with a clear and accessible data usage

license
- R1.2. (Meta)data are associated with detailed provenance
- R1.3. (Meta)data meet domain-relevant community standards

43

[M. D. Wilkinson et al., 2016]
D. Koop, CSCI 640/490, Spring 2023

https://www.nature.com/articles/sdata201618.pdf

Licensing
• Citation of a dataset is expected as a scholarly norm, not by law
• CC0:
- "I hereby waive all copyright and related or neighboring rights together with

all associated claims and causes of action with respect to this work to the
extent possible under the law"

• CC BY: license, not a waiver as CC0
- "You must give appropriate credit, provide a link to the license, and indicate

if changes were made."
• Data Use Agreements (DUA): Used when data are restricted due to

proprietary or privacy concerns.

44

[M. Crosas]
D. Koop, CSCI 640/490, Spring 2023

https://scholar.harvard.edu/files/mercecrosas/files/fairdata-dataverse-mercecrosas.pdf

Make Data Count

45

[H. Cousijn et al., 2019]
D. Koop, CSCI 640/490, Spring 2023

https://datascience.codata.org/articles/10.5334/dsj-2019-009/

