
Advanced Data Management (CSCI 640/490)

Time Series Data

Dr. David Koop

D. Koop, CSCI 640/490, Spring 2023

Dataframes, Databases, and the Cloud
• How do we take advantage of different architectures?
• Lots of work in scaling databases and specialized computational engines
• What is the code that people actually write?

2D. Koop, CSCI 640/490, Spring 2023

The current landscape … is a fragmented jungle!

PySparkNvidia
RAPIDS

RayDask

NumPy
Arrays

DASK
Dataframe

PySpark
Dataframe

Ray
Programs

Cuda
Dataframe

Backends

Data
Layer

APIs

Higher-level
Abstractions

Ibis

Vaex
Dataframe

Native
Python

Distributed

Microsoft
SCOPE

Apache
MADlib

Google
BigQuery

Apache
Spark PostgreSQL Microsoft

SQL Server

SQL +
Built-in

Functions
SQL ExtensionsSQL + User Defined Functions

Azure
Synapse
Analytics

Relational Tables

Extending Python ecosystem Extending SQL databases

Data Science Jungle

3

[A. Jindal et al., 2021]
D. Koop, CSCI 640/490, Spring 2023

Magpie

Microsoft
SCOPE

Apache
MADlib

Database
Backends

Unified Dataframe API

Pythonic Environment

Cross Optimization

Common Data Layer

Magpie
Middleware

PyFroid Compiler

PostgreSQL

Polyengines
& Mappers Native

Python

Apache
Spark Google

BigQuery

Azure Synapse Analytics

SQL Server

Familiar Python surface

Ongoing standardization

Cloud backends

Multi-backend
environments and libraries

Batching Pandas into large
query expressions

Backend selection using
past workloads

Cache commonly seen
dataframes

Magpie Goals

4

[A. Jindal et al., 2021]
D. Koop, CSCI 640/490, Spring 2023

Common Data Layer

SQL

Postgres MySQL

Spark Pandas ...

... SQL DW SCOPE
Cloud
backends

Blue parts: already in IBIS, Green parts: our contributions

Lazy
Translation

Pandas

Backend Selection

Ibis Expression

Ibis API

Cost-based
optimization

Dataframe cache

� Dataframe cache
� Generate unique signatures
� Store repeated dataframes in

ArrowFlight server
� Skip accessing the backend in

case of cache hit
Interactive
experience

1

100

10000

100K 1M 10M

Sp
ee
du

p

Input size (rows)

Cached Results
Cached Data
Hot & Cold Data 2-3x

4-11x
800-3800x

Magpie Architecture

5

[A. Jindal et al., 2021]
D. Koop, CSCI 640/490, Spring 2023

ConnectorX: Databases to Dataframes

6

[X. Wang, 2022]
D. Koop, CSCI 640/490, Spring 2023

Dataframe API?
• SQL, pandas, or something else?

7

[D. Lee, Ponder CEO]
D. Koop, CSCI 640/490, Spring 2023

Assignment 4
• Work on Data Integration and Data Fusion
• Integrate travel datasets from different institutions (UN World Tourism Office,

World Bank, OECD)
- Integrate information with population

• Record Matching:
- Which countries are the same?

• Data Fusion:
- The receipts/expenditures
- Country names

8D. Koop, CSCI 640/490, Spring 2023

http://faculty.cs.niu.edu/~dakoop/cs640-2023sp/assignment4.html

Test 2
• Upcoming… April 10
• Similar format, but more emphasis on topics we have covered including the

research papers

9D. Koop, CSCI 640/490, Spring 2023

http://faculty.cs.niu.edu/~dakoop/cs640-2023sp/test2.html

10

Time Series Data

D. Koop, CSCI 640/490, Spring 2023

What is time series data?
• Technically, it's normal tabular data with a timestamp attached
• But… we have observations of the same values over time, usually in order
• This allows more analysis
• Example: Web site database that tracks the last time a user logged in
- 1: Keep an attribute lastLogin that is overwritten every time user logs in
- 2: Add a new row with login information every time the user logs in
- Option 2 takes more storage, but we can also do a lot more analysis!

11D. Koop, CSCI 640/490, Spring 2023

What is Time Series Data?
• A row of data that consists of a timestamp, a value, optional tags

12

[A. Bader, 2017]
D. Koop, CSCI 640/490, Spring 2023

• A row of data that consists of a timestamp, a value, optional tags

2017-03-06University of Stuttgart - Andreas Bader - Survey and Comparison of Open Source Time Series Databases 2

What is a time series data?
Comparison of Open Source TSDBs

timestamp valuetags

Time Series Data
• Metrics: measurements at regular intervals
• Events: measurements that are not gathered at regular intervals

13

[InfluxDB]
D. Koop, CSCI 640/490, Spring 2023

https://www.influxdata.com/what-is-time-series-data/

Types of Time Series Data
• time series: observations for a single entity at different time intervals
- one patient's heart rate every minute

• cross-section: observations for multiple entities at the same point in time
- heart rates of 100 patients at 8:01pm

• panel data: observations for multiple entities at different time intervals
- heart rates of 100 patients every minute over the past hour

14

[InfluxDB]
D. Koop, CSCI 640/490, Spring 2023

https://www.influxdata.com/what-is-time-series-data/

Features of Time Series Data
• Trend: long-term increase or decrease in the data
• Seasonal Pattern: time series is affected by seasonal factors such as the time

of the year or the day of the week (fixed and of known frequency)
• Cyclic Pattern: rises and falls that are not of a fixed frequency
• Stationary: no predictable patterns (roughly horizontal with constant variance)
- White noise series is stationary
- Will look the basically the same whenever you observe it

15

[Hyndman and Athanosopoulos]
D. Koop, CSCI 640/490, Spring 2023

https://otexts.com/fpp2/

Examples

16

[R. J. Hyndman]
D. Koop, CSCI 640/490, Spring 2023

Time series patterns

Forecasting: Principles and Practice Seasonal or cyclic? 19

US Treasury bill contracts

Day

pr
ic
e

0 20 40 60 80 100

85
86

87
88

89
90

91

Time series patterns

Forecasting: Principles and Practice Seasonal or cyclic? 16

Australian electricity production

Year

G
W
h

1980 1985 1990 1995

80
00

10
00
0

12
00
0

14
00
0

Time series patterns

Forecasting: Principles and Practice Seasonal or cyclic? 18

Sales of new one−family houses, USA

To
ta

l s
al

es

1975 1980 1985 1990 1995

30
40

50
60

70
80

90

Time series patterns

Forecasting: Principles and Practice Seasonal or cyclic? 20

Annual Canadian Lynx trappings

Time

N
um

be
r t

ra
pp

ed

1820 1840 1860 1880 1900 1920

0
10

00
20

00
30

00
40

00
50

00
60

00
70

00

https://robjhyndman.com/seminars/uwa/

Examples

16

[R. J. Hyndman]
D. Koop, CSCI 640/490, Spring 2023

Time series patterns

Forecasting: Principles and Practice Seasonal or cyclic? 19

US Treasury bill contracts

Day

pr
ic
e

0 20 40 60 80 100

85
86

87
88

89
90

91

Time series patterns

Forecasting: Principles and Practice Seasonal or cyclic? 16

Australian electricity production

Year

G
W
h

1980 1985 1990 1995

80
00

10
00
0

12
00
0

14
00
0

Time series patterns

Forecasting: Principles and Practice Seasonal or cyclic? 18

Sales of new one−family houses, USA

To
ta

l s
al

es

1975 1980 1985 1990 1995

30
40

50
60

70
80

90

Trend

Time series patterns

Forecasting: Principles and Practice Seasonal or cyclic? 20

Annual Canadian Lynx trappings

Time

N
um

be
r t

ra
pp

ed

1820 1840 1860 1880 1900 1920

0
10

00
20

00
30

00
40

00
50

00
60

00
70

00

https://robjhyndman.com/seminars/uwa/

Examples

16

[R. J. Hyndman]
D. Koop, CSCI 640/490, Spring 2023

Time series patterns

Forecasting: Principles and Practice Seasonal or cyclic? 19

US Treasury bill contracts

Day

pr
ic
e

0 20 40 60 80 100

85
86

87
88

89
90

91

Time series patterns

Forecasting: Principles and Practice Seasonal or cyclic? 16

Australian electricity production

Year

G
W
h

1980 1985 1990 1995

80
00

10
00
0

12
00
0

14
00
0

Time series patterns

Forecasting: Principles and Practice Seasonal or cyclic? 18

Sales of new one−family houses, USA

To
ta

l s
al

es

1975 1980 1985 1990 1995

30
40

50
60

70
80

90

Trend Trend +
Seasonality

Time series patterns

Forecasting: Principles and Practice Seasonal or cyclic? 20

Annual Canadian Lynx trappings

Time

N
um

be
r t

ra
pp

ed

1820 1840 1860 1880 1900 1920

0
10

00
20

00
30

00
40

00
50

00
60

00
70

00

https://robjhyndman.com/seminars/uwa/

Examples

16

[R. J. Hyndman]
D. Koop, CSCI 640/490, Spring 2023

Time series patterns

Forecasting: Principles and Practice Seasonal or cyclic? 19

US Treasury bill contracts

Day

pr
ic
e

0 20 40 60 80 100

85
86

87
88

89
90

91

Time series patterns

Forecasting: Principles and Practice Seasonal or cyclic? 16

Australian electricity production

Year

G
W
h

1980 1985 1990 1995

80
00

10
00
0

12
00
0

14
00
0

Time series patterns

Forecasting: Principles and Practice Seasonal or cyclic? 18

Sales of new one−family houses, USA

To
ta

l s
al

es

1975 1980 1985 1990 1995

30
40

50
60

70
80

90

Trend Trend +
Seasonality

Seasonality +
Cyclic

Time series patterns

Forecasting: Principles and Practice Seasonal or cyclic? 20

Annual Canadian Lynx trappings

Time

N
um

be
r t

ra
pp

ed

1820 1840 1860 1880 1900 1920

0
10

00
20

00
30

00
40

00
50

00
60

00
70

00

https://robjhyndman.com/seminars/uwa/

Examples

16

[R. J. Hyndman]
D. Koop, CSCI 640/490, Spring 2023

Time series patterns

Forecasting: Principles and Practice Seasonal or cyclic? 19

US Treasury bill contracts

Day

pr
ic
e

0 20 40 60 80 100

85
86

87
88

89
90

91

Time series patterns

Forecasting: Principles and Practice Seasonal or cyclic? 16

Australian electricity production

Year

G
W
h

1980 1985 1990 1995

80
00

10
00
0

12
00
0

14
00
0

Time series patterns

Forecasting: Principles and Practice Seasonal or cyclic? 18

Sales of new one−family houses, USA

To
ta

l s
al

es

1975 1980 1985 1990 1995

30
40

50
60

70
80

90

Trend Trend +
Seasonality

Seasonality +
Cyclic

Time series patterns

Forecasting: Principles and Practice Seasonal or cyclic? 20

Annual Canadian Lynx trappings

Time

N
um

be
r t

ra
pp

ed

1820 1840 1860 1880 1900 1920

0
10

00
20

00
30

00
40

00
50

00
60

00
70

00

Stationary

https://robjhyndman.com/seminars/uwa/

Types of Time Data
• Timestamps: specific instants in time (e.g. 2018-11-27 14:15:00)
• Periods: have a standard start and length

(e.g. the month November 2018)
• Intervals: have a start and end timestamp
- Periods are special case
- Example: 2018-11-21 14:15:00 — 2018-12-01 05:15:00

• Elapsed time: measure of time relative to a start time (15 minutes)

17D. Koop, CSCI 640/490, Spring 2023

Dates and Times
• What is time to a computer?
- Can be stored as seconds since Unix Epoch (January 1st, 1970)

• Often useful to break down into minutes, hours, days, months, years…
• Lots of different ways to write time:
- How could you write "November 29, 2016"?
- European vs. American ordering…

• What about time zones?

18D. Koop, CSCI 640/490, Spring 2023

Python Support for Time
• The datetime package
- Has date, time, and datetime classes
- .now() method: the current datetime
- Can access properties of the time (year, month, seconds, etc.)

• Converting from strings to datetimes:
- datetime.strptime: good for known formats
- dateutil.parser.parse: good for unknown formats

• Converting to strings
- str(dt) or dt.strftime(<format>)

19D. Koop, CSCI 640/490, Spring 2023

Python's strftime directives

Note: Examples are based on datetime.datetime(2013, 9, 30, 7, 6, 5)

Code Meaning Example

%a Weekday as locale’s abbreviated name. Mon

%A Weekday as locale’s full name. Monday

%w Weekday as a decimal number, where 0 is Sunday and 6
is Saturday.

1

%d Day of the month as a zero-padded decimal number. 30

%-d Day of the month as a decimal number. (Platform
specific)

30

%b Month as locale’s abbreviated name. Sep

%B Month as locale’s full name. September

%m Month as a zero-padded decimal number. 09

%-m Month as a decimal number. (Platform specific) 9

%y Year without century as a zero-padded decimal
number.

13

%Y Year with century as a decimal number. 2013

%H Hour (24-hour clock) as a zero-padded decimal
number.

07

%-H Hour (24-hour clock) as a decimal number. (Platform
specific)

7

%I Hour (12-hour clock) as a zero-padded decimal
number.

07

%-I Hour (12-hour clock) as a decimal number. (Platform
specific)

7

%p Locale’s equivalent of either AM or PM. AM

%M Minute as a zero-padded decimal number. 06

%-M Minute as a decimal number. (Platform specific) 6

%S Second as a zero-padded decimal number. 05

%-S Second as a decimal number. (Platform specific) 5

%f Microsecond as a decimal number, zero-padded on the
left.

000000

Datetime format specification
• Look it up:
- http://strftime.org

• Generally, can create whatever format you
need using these format strings

20D. Koop, CSCI 640/490, Spring 2023

http://strftime.org

Pandas Support for Datetime
• pd.to_datetime:
- convenience method
- can convert an entire column to datetime

• Has a NaT to indicate a missing time value
• Stores in a numpy.datetime64 format
• pd.Timestamp: a wrapper for the datetime64 objects

21D. Koop, CSCI 640/490, Spring 2023

More Pandas Support
• Accessing a particular time or checking equivalence allows any string that

can be interpreted as a date:
- ts['1/10/2011'] or ts['20110110']

• Date ranges: pd.date_range('4/1/2012','6/1/2012',freq='4h')
• Slicing works as expected
• Can do operations (add, subtract) on data indexed by datetime and the

indexes will match up
• As with strings, to treat a column as datetime, you can use the .dt accessor

22D. Koop, CSCI 640/490, Spring 2023

Generating Date Ranges
• index = pd.date_range('4/1/2012', '6/1/2012')

• Can generate based on a number of periods as well
- index = pd.date_range('4/1/2012', periods=20)

• Frequency (freq) controls how the range is divided
- Codes for specifying this (e.g. 4h, D, M)
-

- Can also mix them: '2h30m'

23D. Koop, CSCI 640/490, Spring 2023

Sometimes you will have start or end dates with time information but want to generate
a set of timestamps normalized to midnight as a convention. To do this, there is a
normalize option:

In [84]: pd.date_range('5/2/2012 12:56:31', periods=5, normalize=True)
Out[84]:
<class 'pandas.tseries.index.DatetimeIndex'>
[2012-05-02, ..., 2012-05-06]
Length: 5, Freq: D, Timezone: None

Frequencies and Date Offsets
Frequencies in pandas are composed of a base frequency and a multiplier. Base fre-
quencies are typically referred to by a string alias, like 'M' for monthly or 'H' for hourly.
For each base frequency, there is an object defined generally referred to as a date off-
set. For example, hourly frequency can be represented with the Hour class:

In [85]: from pandas.tseries.offsets import Hour, Minute

In [86]: hour = Hour()

In [87]: hour
Out[87]: <Hour>

You can define a multiple of an offset by passing an integer:

In [88]: four_hours = Hour(4)

In [89]: four_hours
Out[89]: <4 * Hours>

In most applications, you would never need to explicitly create one of these objects,
instead using a string alias like 'H' or '4H'. Putting an integer before the base frequency
creates a multiple:

In [90]: pd.date_range('1/1/2000', '1/3/2000 23:59', freq='4h')
Out[90]:
<class 'pandas.tseries.index.DatetimeIndex'>
[2000-01-01 00:00:00, ..., 2000-01-03 20:00:00]
Length: 18, Freq: 4H, Timezone: None

Many offsets can be combined together by addition:

In [91]: Hour(2) + Minute(30)
Out[91]: <150 * Minutes>

Similarly, you can pass frequency strings like '2h30min' which will effectively be parsed
to the same expression:

In [92]: pd.date_range('1/1/2000', periods=10, freq='1h30min')
Out[92]:
<class 'pandas.tseries.index.DatetimeIndex'>
[2000-01-01 00:00:00, ..., 2000-01-01 13:30:00]
Length: 10, Freq: 90T, Timezone: None

Date Ranges, Frequencies, and Shifting | 295

Some frequencies describe points in time that are not evenly spaced. For example,
'M' (calendar month end) and 'BM' (last business/weekday of month) depend on the
number of days in a month and, in the latter case, whether the month ends on a weekend
or not. For lack of a better term, I call these anchored offsets.

See Table 10-4 for a listing of frequency codes and date offset classes available in pandas.

Users can define their own custom frequency classes to provide date
logic not available in pandas, though the full details of that are outside
the scope of this book.

Table 10-4. Base Time Series Frequencies

Alias Offset Type Description

D Day Calendar daily

B BusinessDay Business daily

H Hour Hourly

T or min Minute Minutely

S Second Secondly

L or ms Milli Millisecond (1/1000th of 1 second)

U Micro Microsecond (1/1000000th of 1 second)

M MonthEnd Last calendar day of month

BM BusinessMonthEnd Last business day (weekday) of month

MS MonthBegin First calendar day of month

BMS BusinessMonthBegin First weekday of month

W-MON, W-TUE, ... Week Weekly on given day of week: MON, TUE, WED, THU, FRI, SAT,
or SUN.

WOM-1MON, WOM-2MON, ... WeekOfMonth Generate weekly dates in the first, second, third, or fourth week
of the month. For example, WOM-3FRI for the 3rd Friday of
each month.

Q-JAN, Q-FEB, ... QuarterEnd Quarterly dates anchored on last calendar day of each month,
for year ending in indicated month: JAN, FEB, MAR, APR, MAY,
JUN, JUL, AUG, SEP, OCT, NOV, or DEC.

BQ-JAN, BQ-FEB, ... BusinessQuarterEnd Quarterly dates anchored on last weekday day of each month,
for year ending in indicated month

QS-JAN, QS-FEB, ... QuarterBegin Quarterly dates anchored on first calendar day of each month,
for year ending in indicated month

BQS-JAN, BQS-FEB, ... BusinessQuarterBegin Quarterly dates anchored on first weekday day of each month,
for year ending in indicated month

A-JAN, A-FEB, ... YearEnd Annual dates anchored on last calendar day of given month:
JAN, FEB, MAR, APR, MAY, JUN, JUL, AUG, SEP, OCT, NOV, or DEC.

296 | Chapter 10: Time Series

Time Series Frequencies

24

[W. McKinney, Python for Data Analysis]
D. Koop, CSCI 640/490, Spring 2023

DatetimeIndex
• Can use time as an index
• data = [('2017-11-30', 48),
 ('2017-12-02', 45),
 ('2017-12-03', 44),
 ('2017-12-04', 48)]
dates, temps = zip(*data)
s = pd.Series(temps, pd.to_datetime(dates))

• Accessing a particular time or checking equivalence allows any string that
can be interpreted as a date:

- s['12/04/2017'] or s['20171204']
• Using a less specific string will get all matching data:

- s['2017-12'] returns the three December entries

25D. Koop, CSCI 640/490, Spring 2023

DatetimeIndex
• Time slices do not need to exist:

- s['2017-12-01':'2017-12-31']

26D. Koop, CSCI 640/490, Spring 2023

Shifting Data
• Leading or Lagging Data

• Shifting by time:

27D. Koop, CSCI 640/490, Spring 2023

Alias Offset Type Description

BA-JAN, BA-FEB, ... BusinessYearEnd Annual dates anchored on last weekday of given month

AS-JAN, AS-FEB, ... YearBegin Annual dates anchored on first day of given month

BAS-JAN, BAS-FEB, ... BusinessYearBegin Annual dates anchored on first weekday of given month

Week of month dates
One useful frequency class is “week of month”, starting with WOM. This enables you to
get dates like the third Friday of each month:

In [93]: rng = pd.date_range('1/1/2012', '9/1/2012', freq='WOM-3FRI')

In [94]: list(rng)
Out[94]:
[Timestamp('2012-01-20 00:00:00', offset='WOM-3FRI'),
 Timestamp('2012-02-17 00:00:00', offset='WOM-3FRI'),
 Timestamp('2012-03-16 00:00:00', offset='WOM-3FRI'),
 Timestamp('2012-04-20 00:00:00', offset='WOM-3FRI'),
 Timestamp('2012-05-18 00:00:00', offset='WOM-3FRI'),
 Timestamp('2012-06-15 00:00:00', offset='WOM-3FRI'),
 Timestamp('2012-07-20 00:00:00', offset='WOM-3FRI'),
 Timestamp('2012-08-17 00:00:00', offset='WOM-3FRI')]

Traders of US equity options will recognize these dates as the standard dates of monthly
expiry.

Shifting (Leading and Lagging) Data
“Shifting” refers to moving data backward and forward through time. Both Series and
DataFrame have a shift method for doing naive shifts forward or backward, leaving
the index unmodified:

In [95]: ts = Series(np.random.randn(4),
 : index=pd.date_range('1/1/2000', periods=4, freq='M'))

In [96]: ts In [97]: ts.shift(2) In [98]: ts.shift(-2)
Out[96]: Out[97]: Out[98]:
2000-01-31 -0.066748 2000-01-31 NaN 2000-01-31 -0.117388
2000-02-29 0.838639 2000-02-29 NaN 2000-02-29 -0.517795
2000-03-31 -0.117388 2000-03-31 -0.066748 2000-03-31 NaN
2000-04-30 -0.517795 2000-04-30 0.838639 2000-04-30 NaN
Freq: M, dtype: float64 Freq: M, dtype: float64 Freq: M, dtype: float64

A common use of shift is computing percent changes in a time series or multiple time
series as DataFrame columns. This is expressed as

ts / ts.shift(1) - 1

Because naive shifts leave the index unmodified, some data is discarded. Thus if the
frequency is known, it can be passed to shift to advance the timestamps instead of
simply the data:

Date Ranges, Frequencies, and Shifting | 297

In [99]: ts.shift(2, freq='M')
Out[99]:
2000-03-31 -0.066748
2000-04-30 0.838639
2000-05-31 -0.117388
2000-06-30 -0.517795
Freq: M, dtype: float64

Other frequencies can be passed, too, giving you a lot of flexibility in how to lead and
lag the data:

In [100]: ts.shift(3, freq='D') In [101]: ts.shift(1, freq='3D')
Out[100]: Out[101]:
2000-02-03 -0.066748 2000-02-03 -0.066748
2000-03-03 0.838639 2000-03-03 0.838639
2000-04-03 -0.117388 2000-04-03 -0.117388
2000-05-03 -0.517795 2000-05-03 -0.517795
dtype: float64 dtype: float64

In [102]: ts.shift(1, freq='90T')
Out[102]:
2000-01-31 01:30:00 -0.066748
2000-02-29 01:30:00 0.838639
2000-03-31 01:30:00 -0.117388
2000-04-30 01:30:00 -0.517795
dtype: float64

Shifting dates with offsets
The pandas date offsets can also be used with datetime or Timestamp objects:

In [103]: from pandas.tseries.offsets import Day, MonthEnd

In [104]: now = datetime(2011, 11, 17)

In [105]: now + 3 * Day()
Out[105]: Timestamp('2011-11-20 00:00:00')

If you add an anchored offset like MonthEnd, the first increment will roll forward a date
to the next date according to the frequency rule:

In [106]: now + MonthEnd()
Out[106]: Timestamp('2011-11-30 00:00:00')

In [107]: now + MonthEnd(2)
Out[107]: Timestamp('2011-12-31 00:00:00')

Anchored offsets can explicitly “roll” dates forward or backward using their rollfor
ward and rollback methods, respectively:

In [108]: offset = MonthEnd()

In [109]: offset.rollforward(now)
Out[109]: Timestamp('2011-11-30 00:00:00')

298 | Chapter 10: Time Series

Shifting Time Series
• Data:

 [('2017-11-30', 48), ('2017-12-02', 45),
 ('2017-12-03', 44), ('2017-12-04', 48)]

• Compute day-to-day difference in high temperature:
- s - s.shift(1) (same as s.diff())
- 2017-11-30 NaN
2017-12-02 -3.0
2017-12-03 -1.0
2017-12-04 4.0

28D. Koop, CSCI 640/490, Spring 2023

- s - s.shift(1, 'd')

- 2017-11-30 NaN
2017-12-01 NaN
2017-12-02 NaN
2017-12-03 -1.0
2017-12-04 4.0
2017-12-05 NaN

Timedelta
• Compute differences between dates
• Lives in datetime module
• diff = parse_date("1 Jan 2017") - datetime.now().date()
diff.days

• Also a pd.Timedelta object that take strings:
- datetime.now().date() + pd.Timedelta("4 days")

• Also, Roll dates using anchored offsets

29D. Koop, CSCI 640/490, Spring 2023

In [99]: ts.shift(2, freq='M')
Out[99]:
2000-03-31 -0.066748
2000-04-30 0.838639
2000-05-31 -0.117388
2000-06-30 -0.517795
Freq: M, dtype: float64

Other frequencies can be passed, too, giving you a lot of flexibility in how to lead and
lag the data:

In [100]: ts.shift(3, freq='D') In [101]: ts.shift(1, freq='3D')
Out[100]: Out[101]:
2000-02-03 -0.066748 2000-02-03 -0.066748
2000-03-03 0.838639 2000-03-03 0.838639
2000-04-03 -0.117388 2000-04-03 -0.117388
2000-05-03 -0.517795 2000-05-03 -0.517795
dtype: float64 dtype: float64

In [102]: ts.shift(1, freq='90T')
Out[102]:
2000-01-31 01:30:00 -0.066748
2000-02-29 01:30:00 0.838639
2000-03-31 01:30:00 -0.117388
2000-04-30 01:30:00 -0.517795
dtype: float64

Shifting dates with offsets
The pandas date offsets can also be used with datetime or Timestamp objects:

In [103]: from pandas.tseries.offsets import Day, MonthEnd

In [104]: now = datetime(2011, 11, 17)

In [105]: now + 3 * Day()
Out[105]: Timestamp('2011-11-20 00:00:00')

If you add an anchored offset like MonthEnd, the first increment will roll forward a date
to the next date according to the frequency rule:

In [106]: now + MonthEnd()
Out[106]: Timestamp('2011-11-30 00:00:00')

In [107]: now + MonthEnd(2)
Out[107]: Timestamp('2011-12-31 00:00:00')

Anchored offsets can explicitly “roll” dates forward or backward using their rollfor
ward and rollback methods, respectively:

In [108]: offset = MonthEnd()

In [109]: offset.rollforward(now)
Out[109]: Timestamp('2011-11-30 00:00:00')

298 | Chapter 10: Time Series

In [99]: ts.shift(2, freq='M')
Out[99]:
2000-03-31 -0.066748
2000-04-30 0.838639
2000-05-31 -0.117388
2000-06-30 -0.517795
Freq: M, dtype: float64

Other frequencies can be passed, too, giving you a lot of flexibility in how to lead and
lag the data:

In [100]: ts.shift(3, freq='D') In [101]: ts.shift(1, freq='3D')
Out[100]: Out[101]:
2000-02-03 -0.066748 2000-02-03 -0.066748
2000-03-03 0.838639 2000-03-03 0.838639
2000-04-03 -0.117388 2000-04-03 -0.117388
2000-05-03 -0.517795 2000-05-03 -0.517795
dtype: float64 dtype: float64

In [102]: ts.shift(1, freq='90T')
Out[102]:
2000-01-31 01:30:00 -0.066748
2000-02-29 01:30:00 0.838639
2000-03-31 01:30:00 -0.117388
2000-04-30 01:30:00 -0.517795
dtype: float64

Shifting dates with offsets
The pandas date offsets can also be used with datetime or Timestamp objects:

In [103]: from pandas.tseries.offsets import Day, MonthEnd

In [104]: now = datetime(2011, 11, 17)

In [105]: now + 3 * Day()
Out[105]: Timestamp('2011-11-20 00:00:00')

If you add an anchored offset like MonthEnd, the first increment will roll forward a date
to the next date according to the frequency rule:

In [106]: now + MonthEnd()
Out[106]: Timestamp('2011-11-30 00:00:00')

In [107]: now + MonthEnd(2)
Out[107]: Timestamp('2011-12-31 00:00:00')

Anchored offsets can explicitly “roll” dates forward or backward using their rollfor
ward and rollback methods, respectively:

In [108]: offset = MonthEnd()

In [109]: offset.rollforward(now)
Out[109]: Timestamp('2011-11-30 00:00:00')

298 | Chapter 10: Time Series

Time Zones
• Why?
• Coordinated Universal Time (UTC) is the standard time (basically equivalent to

Greenwich Mean Time (GMT)
• Other time zones are UTC +/- a number in [1,12]
• DeKalb is UTC-6 (aka US/Central); Daylight Saving Time is UTC-5

30D. Koop, CSCI 640/490, Spring 2023

Python, Pandas, and Time Zones
• Time series in pandas are time zone native
• The pytz module keeps track of all of the time zone parameters
- even Daylight Savings Time

• Localize a timestamp using tz_localize
- ts = pd.Timestamp("1 Dec 2016 12:30 PM")
ts = ts.tz_localize("US/Eastern")

• Convert a timestamp using tz_convert
- ts.tz_convert("Europe/Budapest")

• Operations involving timestamps from different time zones become UTC

31D. Koop, CSCI 640/490, Spring 2023

Frequency
• Generic time series in pandas are irregular
- there is no fixed frequency
- we don't necessarily have data for every day/hour/etc.

• Date ranges have frequency

32D. Koop, CSCI 640/490, Spring 2023

Generating Date Ranges
While I used it previously without explanation, pandas.date_range is responsible for
generating a DatetimeIndex with an indicated length according to a particular
frequency:

In [74]: index = pd.date_range('2012-04-01', '2012-06-01')

In [75]: index
Out[75]:
DatetimeIndex(['2012-04-01', '2012-04-02', '2012-04-03', '2012-04-04',
 '2012-04-05', '2012-04-06', '2012-04-07', '2012-04-08',
 '2012-04-09', '2012-04-10', '2012-04-11', '2012-04-12',
 '2012-04-13', '2012-04-14', '2012-04-15', '2012-04-16',
 '2012-04-17', '2012-04-18', '2012-04-19', '2012-04-20',
 '2012-04-21', '2012-04-22', '2012-04-23', '2012-04-24',
 '2012-04-25', '2012-04-26', '2012-04-27', '2012-04-28',
 '2012-04-29', '2012-04-30', '2012-05-01', '2012-05-02',
 '2012-05-03', '2012-05-04', '2012-05-05', '2012-05-06',
 '2012-05-07', '2012-05-08', '2012-05-09', '2012-05-10',
 '2012-05-11', '2012-05-12', '2012-05-13', '2012-05-14',
 '2012-05-15', '2012-05-16', '2012-05-17', '2012-05-18',
 '2012-05-19', '2012-05-20', '2012-05-21', '2012-05-22',
 '2012-05-23', '2012-05-24', '2012-05-25', '2012-05-26',
 '2012-05-27', '2012-05-28', '2012-05-29', '2012-05-30',
 '2012-05-31', '2012-06-01'],
 dtype='datetime64[ns]', freq='D')

By default, date_range generates daily timestamps. If you pass only a start or end
date, you must pass a number of periods to generate:

In [76]: pd.date_range(start='2012-04-01', periods=20)
Out[76]:
DatetimeIndex(['2012-04-01', '2012-04-02', '2012-04-03', '2012-04-04',
 '2012-04-05', '2012-04-06', '2012-04-07', '2012-04-08',
 '2012-04-09', '2012-04-10', '2012-04-11', '2012-04-12',
 '2012-04-13', '2012-04-14', '2012-04-15', '2012-04-16',
 '2012-04-17', '2012-04-18', '2012-04-19', '2012-04-20'],
 dtype='datetime64[ns]', freq='D')

In [77]: pd.date_range(end='2012-06-01', periods=20)
Out[77]:
DatetimeIndex(['2012-05-13', '2012-05-14', '2012-05-15', '2012-05-16',
 '2012-05-17', '2012-05-18', '2012-05-19', '2012-05-20',
 '2012-05-21', '2012-05-22', '2012-05-23', '2012-05-24',
 '2012-05-25', '2012-05-26', '2012-05-27', '2012-05-28',
 '2012-05-29', '2012-05-30', '2012-05-31', '2012-06-01'],
 dtype='datetime64[ns]', freq='D')

The start and end dates define strict boundaries for the generated date index. For
example, if you wanted a date index containing the last business day of each month,
you would pass the 'BM' frequency (business end of month; see more complete listing

328 | Chapter 11: Time Series

of frequencies in Table 11-4) and only dates falling on or inside the date interval will
be included:

In [78]: pd.date_range('2000-01-01', '2000-12-01', freq='BM')
Out[78]:
DatetimeIndex(['2000-01-31', '2000-02-29', '2000-03-31', '2000-04-28',
 '2000-05-31', '2000-06-30', '2000-07-31', '2000-08-31',
 '2000-09-29', '2000-10-31', '2000-11-30'],
 dtype='datetime64[ns]', freq='BM')

Table 11-4. Base time series frequencies (not comprehensive)
Alias O!set type Description
D Day Calendar daily
B BusinessDay Business daily
H Hour Hourly
T or min Minute Minutely
S Second Secondly
L or ms Milli Millisecond (1/1,000 of 1 second)
U Micro Microsecond (1/1,000,000 of 1 second)
M MonthEnd Last calendar day of month
BM BusinessMonthEnd Last business day (weekday) of month
MS MonthBegin First calendar day of month
BMS BusinessMonthBegin First weekday of month
W-MON, W-TUE, ... Week Weekly on given day of week (MON, TUE, WED, THU,

FRI, SAT, or SUN)
WOM-1MON, WOM-2MON, ... WeekOfMonth Generate weekly dates in the !rst, second, third, or

fourth week of the month (e.g., WOM-3FRI for the
third Friday of each month)

Q-JAN, Q-FEB, ... QuarterEnd Quarterly dates anchored on last calendar day of each
month, for year ending in indicated month (JAN, FEB,
MAR, APR, MAY, JUN, JUL, AUG, SEP, OCT, NOV, or DEC)

BQ-JAN, BQ-FEB, ... BusinessQuarterEnd Quarterly dates anchored on last weekday day of each
month, for year ending in indicated month

QS-JAN, QS-FEB, ... QuarterBegin Quarterly dates anchored on !rst calendar day of each
month, for year ending in indicated month

BQS-JAN, BQS-FEB, ... BusinessQuarterBegin Quarterly dates anchored on !rst weekday day of each
month, for year ending in indicated month

A-JAN, A-FEB, ... YearEnd Annual dates anchored on last calendar day of given
month (JAN, FEB, MAR, APR, MAY, JUN, JUL, AUG, SEP,
OCT, NOV, or DEC)

BA-JAN, BA-FEB, ... BusinessYearEnd Annual dates anchored on last weekday of given
month

AS-JAN, AS-FEB, ... YearBegin Annual dates anchored on !rst day of given month
BAS-JAN, BAS-FEB, ... BusinessYearBegin Annual dates anchored on !rst weekday of given

month

11.3 Date Ranges, Frequencies, and Shifting | 329

Lots of Frequencies (not comprehensive)

33

[W. McKinney, Python for Data Analysis]
D. Koop, CSCI 640/490, Spring 2023

Resampling
• Could be
- downsample: higher frequency to lower frequency
- upsample: lower frequency to higher frequency
- neither: e.g. Wednesdays to Fridays

• resample method: e.g. ts.resample('M').mean()

34

[W. McKinney, Python for Data Analysis]
D. Koop, CSCI 640/490, Spring 2023

2000-01 -0.165893
2000-02 0.078606
2000-03 0.223811
2000-04 -0.063643
Freq: M, dtype: float64

resample is a flexible and high-performance method that can be used to process very
large time series. The examples in the following sections illustrate its semantics and
use. Table 11-5 summarizes some of its options.

Table 11-5. Resample method arguments
Argument Description
freq String or DateO!set indicating desired resampled frequency (e.g., ‘M', ’5min', or Second(15))
axis Axis to resample on; default axis=0
fill_method How to interpolate when upsampling, as in 'ffill' or 'bfill'; by default does no interpolation
closed In downsampling, which end of each interval is closed (inclusive), 'right' or 'left'
label In downsampling, how to label the aggregated result, with the 'right' or 'left' bin edge (e.g., the

9:30 to 9:35 "ve-minute interval could be labeled 9:30 or 9:35)
loffset Time adjustment to the bin labels, such as '-1s' / Second(-1) to shift the aggregate labels one

second earlier
limit When forward or backward "lling, the maximum number of periods to "ll
kind Aggregate to periods ('period') or timestamps ('timestamp'); defaults to the type of index the

time series has
convention When resampling periods, the convention ('start' or 'end') for converting the low-frequency period

to high frequency; defaults to 'end'

Downsampling
Aggregating data to a regular, lower frequency is a pretty normal time series task. The
data you’re aggregating doesn’t need to be fixed frequently; the desired frequency
defines bin edges that are used to slice the time series into pieces to aggregate. For
example, to convert to monthly, 'M' or 'BM', you need to chop up the data into one-
month intervals. Each interval is said to be half-open; a data point can only belong to
one interval, and the union of the intervals must make up the whole time frame.
There are a couple things to think about when using resample to downsample data:

• Which side of each interval is closed
• How to label each aggregated bin, either with the start of the interval or the end

To illustrate, let’s look at some one-minute data:
In [213]: rng = pd.date_range('2000-01-01', periods=12, freq='T')

In [214]: ts = pd.Series(np.arange(12), index=rng)

11.6 Resampling and Frequency Conversion | 349

Downsampling
• Need to define bin edges which are used to group the time series into

intervals that can be aggregated
• Remember:
- Which side of the interval is closed
- How to label the aggregated bin (start or end of interval)

35D. Koop, CSCI 640/490, Spring 2023

2000-01-01 00:10:00 40
2000-01-01 00:15:00 11
Freq: 5T, dtype: int64

See Figure 11-3 for an illustration of minute frequency data being resampled to five-
minute frequency.

Figure 11-3. Five-minute resampling illustration of closed, label conventions

Lastly, you might want to shift the result index by some amount, say subtracting one
second from the right edge to make it more clear which interval the timestamp refers
to. To do this, pass a string or date offset to loffset:

In [219]: ts.resample('5min', closed='right',
 : label='right', loffset='-1s').sum()
Out[219]:
1999-12-31 23:59:59 0
2000-01-01 00:04:59 15
2000-01-01 00:09:59 40
2000-01-01 00:14:59 11
Freq: 5T, dtype: int64

You also could have accomplished the effect of loffset by calling the shift method
on the result without the loffset.

Open-High-Low-Close (OHLC) resampling
In finance, a popular way to aggregate a time series is to compute four values for each
bucket: the first (open), last (close), maximum (high), and minimal (low) values. By
using the ohlc aggregate function you will obtain a DataFrame having columns con‐
taining these four aggregates, which are efficiently computed in a single sweep of the
data:

In [220]: ts.resample('5min').ohlc()
Out[220]:
 open high low close
2000-01-01 00:00:00 0 4 0 4
2000-01-01 00:05:00 5 9 5 9
2000-01-01 00:10:00 10 11 10 11

11.6 Resampling and Frequency Conversion | 351

Upsampling
• No aggregation necessary

36D. Koop, CSCI 640/490, Spring 2023

Upsampling and Interpolation
When converting from a low frequency to a higher frequency, no aggregation is
needed. Let’s consider a DataFrame with some weekly data:

In [221]: frame = pd.DataFrame(np.random.randn(2, 4),
 : index=pd.date_range('1/1/2000', periods=2,
 : freq='W-WED'),
 : columns=['Colorado', 'Texas', 'New York', 'Ohio'])

In [222]: frame
Out[222]:
 Colorado Texas New York Ohio
2000-01-05 -0.896431 0.677263 0.036503 0.087102
2000-01-12 -0.046662 0.927238 0.482284 -0.867130

When you are using an aggregation function with this data, there is only one value
per group, and missing values result in the gaps. We use the asfreq method to con‐
vert to the higher frequency without any aggregation:

In [223]: df_daily = frame.resample('D').asfreq()

In [224]: df_daily
Out[224]:
 Colorado Texas New York Ohio
2000-01-05 -0.896431 0.677263 0.036503 0.087102
2000-01-06 NaN NaN NaN NaN
2000-01-07 NaN NaN NaN NaN
2000-01-08 NaN NaN NaN NaN
2000-01-09 NaN NaN NaN NaN
2000-01-10 NaN NaN NaN NaN
2000-01-11 NaN NaN NaN NaN
2000-01-12 -0.046662 0.927238 0.482284 -0.867130

Suppose you wanted to fill forward each weekly value on the non-Wednesdays. The
same filling or interpolation methods available in the fillna and reindex methods
are available for resampling:

In [225]: frame.resample('D').ffill()
Out[225]:
 Colorado Texas New York Ohio
2000-01-05 -0.896431 0.677263 0.036503 0.087102
2000-01-06 -0.896431 0.677263 0.036503 0.087102
2000-01-07 -0.896431 0.677263 0.036503 0.087102
2000-01-08 -0.896431 0.677263 0.036503 0.087102
2000-01-09 -0.896431 0.677263 0.036503 0.087102
2000-01-10 -0.896431 0.677263 0.036503 0.087102
2000-01-11 -0.896431 0.677263 0.036503 0.087102
2000-01-12 -0.046662 0.927238 0.482284 -0.867130

You can similarly choose to only fill a certain number of periods forward to limit how
far to continue using an observed value:

352 | Chapter 11: Time Series

Upsampling and Interpolation
When converting from a low frequency to a higher frequency, no aggregation is
needed. Let’s consider a DataFrame with some weekly data:

In [221]: frame = pd.DataFrame(np.random.randn(2, 4),
 : index=pd.date_range('1/1/2000', periods=2,
 : freq='W-WED'),
 : columns=['Colorado', 'Texas', 'New York', 'Ohio'])

In [222]: frame
Out[222]:
 Colorado Texas New York Ohio
2000-01-05 -0.896431 0.677263 0.036503 0.087102
2000-01-12 -0.046662 0.927238 0.482284 -0.867130

When you are using an aggregation function with this data, there is only one value
per group, and missing values result in the gaps. We use the asfreq method to con‐
vert to the higher frequency without any aggregation:

In [223]: df_daily = frame.resample('D').asfreq()

In [224]: df_daily
Out[224]:
 Colorado Texas New York Ohio
2000-01-05 -0.896431 0.677263 0.036503 0.087102
2000-01-06 NaN NaN NaN NaN
2000-01-07 NaN NaN NaN NaN
2000-01-08 NaN NaN NaN NaN
2000-01-09 NaN NaN NaN NaN
2000-01-10 NaN NaN NaN NaN
2000-01-11 NaN NaN NaN NaN
2000-01-12 -0.046662 0.927238 0.482284 -0.867130

Suppose you wanted to fill forward each weekly value on the non-Wednesdays. The
same filling or interpolation methods available in the fillna and reindex methods
are available for resampling:

In [225]: frame.resample('D').ffill()
Out[225]:
 Colorado Texas New York Ohio
2000-01-05 -0.896431 0.677263 0.036503 0.087102
2000-01-06 -0.896431 0.677263 0.036503 0.087102
2000-01-07 -0.896431 0.677263 0.036503 0.087102
2000-01-08 -0.896431 0.677263 0.036503 0.087102
2000-01-09 -0.896431 0.677263 0.036503 0.087102
2000-01-10 -0.896431 0.677263 0.036503 0.087102
2000-01-11 -0.896431 0.677263 0.036503 0.087102
2000-01-12 -0.046662 0.927238 0.482284 -0.867130

You can similarly choose to only fill a certain number of periods forward to limit how
far to continue using an observed value:

352 | Chapter 11: Time Series

Upsampling and Interpolation
When converting from a low frequency to a higher frequency, no aggregation is
needed. Let’s consider a DataFrame with some weekly data:

In [221]: frame = pd.DataFrame(np.random.randn(2, 4),
 : index=pd.date_range('1/1/2000', periods=2,
 : freq='W-WED'),
 : columns=['Colorado', 'Texas', 'New York', 'Ohio'])

In [222]: frame
Out[222]:
 Colorado Texas New York Ohio
2000-01-05 -0.896431 0.677263 0.036503 0.087102
2000-01-12 -0.046662 0.927238 0.482284 -0.867130

When you are using an aggregation function with this data, there is only one value
per group, and missing values result in the gaps. We use the asfreq method to con‐
vert to the higher frequency without any aggregation:

In [223]: df_daily = frame.resample('D').asfreq()

In [224]: df_daily
Out[224]:
 Colorado Texas New York Ohio
2000-01-05 -0.896431 0.677263 0.036503 0.087102
2000-01-06 NaN NaN NaN NaN
2000-01-07 NaN NaN NaN NaN
2000-01-08 NaN NaN NaN NaN
2000-01-09 NaN NaN NaN NaN
2000-01-10 NaN NaN NaN NaN
2000-01-11 NaN NaN NaN NaN
2000-01-12 -0.046662 0.927238 0.482284 -0.867130

Suppose you wanted to fill forward each weekly value on the non-Wednesdays. The
same filling or interpolation methods available in the fillna and reindex methods
are available for resampling:

In [225]: frame.resample('D').ffill()
Out[225]:
 Colorado Texas New York Ohio
2000-01-05 -0.896431 0.677263 0.036503 0.087102
2000-01-06 -0.896431 0.677263 0.036503 0.087102
2000-01-07 -0.896431 0.677263 0.036503 0.087102
2000-01-08 -0.896431 0.677263 0.036503 0.087102
2000-01-09 -0.896431 0.677263 0.036503 0.087102
2000-01-10 -0.896431 0.677263 0.036503 0.087102
2000-01-11 -0.896431 0.677263 0.036503 0.087102
2000-01-12 -0.046662 0.927238 0.482284 -0.867130

You can similarly choose to only fill a certain number of periods forward to limit how
far to continue using an observed value:

352 | Chapter 11: Time Series

Rolling Window Calculations

37D. Koop, CSCI 640/490, Spring 2023

12 8 7 4 9 13 4 11 3 8

Rolling Window Calculations

37D. Koop, CSCI 640/490, Spring 2023

12 8 7 4 9 13 4 11 3 8

7.8

Rolling Window Calculations

37D. Koop, CSCI 640/490, Spring 2023

12 8 7 4 9 13 4 11 3 8

7.8

Rolling Window Calculations

37D. Koop, CSCI 640/490, Spring 2023

12 8 7 4 9 13 4 11 3 8

7.8 7.0

Rolling Window Calculations

37D. Koop, CSCI 640/490, Spring 2023

12 8 7 4 9 13 4 11 3 8

7.8 7.0

Rolling Window Calculations

37D. Koop, CSCI 640/490, Spring 2023

12 8 7 4 9 13 4 11 3 8

7.8 7.0 8.3

Window Functions
• Idea: want to aggregate over a window of time, calculate the answer, and

then slide that window ahead. Repeat.
• rolling: smooth out data
• Specify the window size in rolling, then an aggregation method
• Result is set to the right edge of window (change with center=True)
• Example:

- df.rolling('180D').mean()

- df.rolling('90D').sum()

38D. Koop, CSCI 640/490, Spring 2023

Interpolation
• Fill in the missing values with computed best estimates using various types of

algorithms
• Apply after resample

39D. Koop, CSCI 640/490, Spring 2023

Sales Data by Month

40D. Koop, CSCI 640/490, Spring 2023

Resampled Sales Data (ffill)

41D. Koop, CSCI 640/490, Spring 2023

Resampled with Linear Interpolation (Default)

42D. Koop, CSCI 640/490, Spring 2023

Resampled with Cubic Interpolation

43D. Koop, CSCI 640/490, Spring 2023

Piecewise Cubic Hermite Interpolating Polynomial

44D. Koop, CSCI 640/490, Spring 2023

90-Day Rolling Window (Mean)

45D. Koop, CSCI 640/490, Spring 2023

180-Day Rolling Window (Mean)

46D. Koop, CSCI 640/490, Spring 2023

Time Series Databases
• Most time series data is heavy inserts, few updates
• Also analysis tends to be on ordered data with trends, prediction, etc.
• Can also consider stream processing
• Focus on time series allows databases to specialize
• Examples:
- InfluxDB (noSQL)
- TimescaleDB (SQL-based)

47D. Koop, CSCI 640/490, Spring 2023

Time Series Database Motivation
• Boeing 787 produces 500GB sensor data per flight
• Purposes
- IoT
- Monitoring large industrial installations
- Data analytics

• Metrics (regular) and Events (irregular)
• Events can be obtained from metrics via binning

48D. Koop, CSCI 640/490, Spring 2023

What is a Time Series Database?
• A DBMS is called TSDB if it can
- store a row of data that consists of timestamp, value, and optional tags
- store multiple rows of time series data grouped together
- can query for rows of data
- can contain a timestamp or a time range in a query

49

[A. Bader, 2017]
D. Koop, CSCI 640/490, Spring 2023

• A DBMS is called TSDB if it can
• store a row of data that consists of timestamp, value, and optional tags
• store multiple rows of time series data grouped together (e. g., in a time series)
• can query for rows of data
• can contain a timestamp or a time range in a query

2017-03-06University of Stuttgart - Andreas Bader - Survey and Comparison of Open Source Time Series Databases 3

What is a Time Series Database (TSDB)?
Comparison of Open Source TSDBs

„SELECT * FROM ul1“

“SELECT * FROM ul1 WHERE time >= '2016-07-12T12:10:00Z‘”

Storing Time Series Data in a RDBMS
• Timestamp as a primary key
• Tags and timestamp as combined primary key
• Use an auto-incrementing primary key (timestamp is a normal attribute)

50

[A. Bader]
D. Koop, CSCI 640/490, Spring 2023

Gorilla: A Fast, Scalable, In-Memory Time Series Database

Tuomas Pelkonen Scott Franklin Justin Teller

Paul Cavallaro Qi Huang Justin Meza Kaushik Veeraraghavan

Facebook, Inc.

Menlo Park, CA

ABSTRACT
Large-scale internet services aim to remain highly available
and responsive in the presence of unexpected failures. Pro-
viding this service often requires monitoring and analyzing
tens of millions of measurements per second across a large
number of systems, and one particularly e↵ective solution
is to store and query such measurements in a time series
database (TSDB).

A key challenge in the design of TSDBs is how to strike
the right balance between e�ciency, scalability, and relia-
bility. In this paper we introduce Gorilla, Facebook’s in-
memory TSDB. Our insight is that users of monitoring sys-
tems do not place much emphasis on individual data points
but rather on aggregate analysis, and recent data points are
of much higher value than older points to quickly detect and
diagnose the root cause of an ongoing problem. Gorilla op-
timizes for remaining highly available for writes and reads,
even in the face of failures, at the expense of possibly drop-
ping small amounts of data on the write path. To improve
query e�ciency, we aggressively leverage compression tech-
niques such as delta-of-delta timestamps and XOR’d floating
point values to reduce Gorilla’s storage footprint by 10x.
This allows us to store Gorilla’s data in memory, reduc-
ing query latency by 73x and improving query throughput
by 14x when compared to a traditional database (HBase)-
backed time series data. This performance improvement has
unlocked new monitoring and debugging tools, such as time
series correlation search and more dense visualization tools.
Gorilla also gracefully handles failures from a single-node to
entire regions with little to no operational overhead.

1. INTRODUCTION
Large-scale internet services aim to remain highly-available

and responsive for their users even in the presence of unex-
pected failures. As these services have grown to support
a global audience, they have scaled beyond a few systems
running on hundreds of machines to thousands of individ-

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 41st International Conference on
Very Large Data Bases, August 31st - September 4th 2015, Kohala Coast,
Hawaii.
Proceedings of the VLDB Endowment, Vol. 8, No. 12
Copyright 2015 VLDB Endowment 2150-8097/15/08.

Back-end
Services

Web Tier

FB Servers

Long term
storage
(HBase)

Gorilla

Ad-hoc visualizations and
dashboardsAlarms and

automatic
remediation

Time Series
Correlation

Figure 1: High level overview of the ODS monitor-
ing and alerting system, showing Gorilla as a write-
through cache of the most recent 26 hours of time
series data.

ual systems running on many thousands of machines, often
across multiple geo-replicated datacenters.

An important requirement to operating these large scale
services is to accurately monitor the health and performance
of the underlying system and quickly identify and diagnose
problems as they arise. Facebook uses a time series database
(TSDB) to store system measuring data points and provides
quick query functionalities on top. We next specify some of
the constraints that we need to satisy for monitoring and
operating Facebook and then describe Gorilla, our new in-
memory TSDB that can store tens of millions of datapoints
(e.g., CPU load, error rate, latency etc.) every second and
respond queries over this data within milliseconds.

Writes dominate. Our primary requirement for a TSDB
is that it should always be available to take writes. As
we have hundreds of systems exposing multiple data items,
the write rate might easily exceed tens of millions of data
points each second. In constrast, the read rate is usually
a couple orders of magnitude lower as it is primarily from
automated systems watching ’important’ time series, data

1816

Gorilla Motivation
• Large-scale internet services rely on lots of

services and machines
• Want to monitor the health of the systems
• Writes dominate
• Want to detect state transitions
• Must be highly available and fault tolerant

51

[Pelkonen et al., 2015]
D. Koop, CSCI 640/490, Spring 2023

Gorilla Requirements
• 2 billion unique time series identified by a string key.
• 700 million data points (time stamp and value) added per minute.
• Store data for 26 hours.
• More than 40,000 queries per second at peak.
• Reads succeed in under one millisecond.
• Support time series with 15 second granularity (4 pts/minute per time series).
• Two in-memory, not co-located replicas (for disaster recovery capacity).
• Always serve reads even when a single server crashes.
• Ability to quickly scan over all in memory data.
• Support at least 2x growth per year.

52

[Pelkonen et al., 2015]
D. Koop, CSCI 640/490, Spring 2023

Gorilla
• In-memory DB
• Data: 3-tuple string key, 64-bit timestamp integer, double-precision float
• Integer compression didn't work

53D. Koop, CSCI 640/490, Spring 2023

Time Series Data Encoding for E!icient Storage: A Comparative
Analysis in Apache IoTDB

Jinzhao Xiao
BNRist, Tsinghua University

xiaojc17@mails.tsinghua.edu.cn

Yuxiang Huang
BNRist, Tsinghua University

huang-yx21@mails.tsinghua.edu.cn

Changyu Hu
BNRist, Tsinghua University

hucy19@mails.tsinghua.edu.cn

Shaoxu Song
BNRist, Tsinghua University
sxsong@tsinghua.edu.cn

Xiangdong Huang
BNRist, Tsinghua University
huangxdong@tsinghua.edu.cn

Jianmin Wang
BNRist, Tsinghua University
jimwang@tsinghua.edu.cn

ABSTRACT
Not only the vast applications but also the distinct features of time
series data stimulate the booming growth of time series database
management systems, such asApache IoTDB, In!uxDB,OpenTSDB
and so on. Almost all these systems employ columnar storage, with
e"ective encoding of time series data. Given the distinct features
of various time series data, it is not surprising that di"erent en-
coding strategies may perform variously. In this study, we #rst
summarize the features of time series data that may a"ect encod-
ing performance, including scale, delta, repeat and increase. Then,
we introduce the storage scheme of a typical time series database,
Apache IoTDB, prescribing the limits to implementing encoding
algorithms in the system. A qualitative analysis of encoding e"ec-
tiveness regarding to various data features is then presented for the
studied algorithms. To this end, we develop a benchmark for eval-
uating encoding algorithms, including a data generator regarding
the aforesaid data features and several real-world datasets from our
industrial partners. Finally, we present an extensive experimental
evaluation using the benchmark. Remarkably, a quantitative anal-
ysis of encoding e"ectiveness regarding to various data features is
conducted in Apache IoTDB.

PVLDB Reference Format:
Jinzhao Xiao, Yuxiang Huang, Changyu Hu, Shaoxu Song, Xiangdong
Huang, and Jianmin Wang. Time Series Data Encoding for E$cient
Storage: A Comparative Analysis in Apache IoTDB . PVLDB, 15(10): 2148 -
2160, 2022.

doi:10.14778/3547305.3547319

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at

https://github.com/xjz17/iotdb/tree/TSEncoding.

1 INTRODUCTION
The time ordered values, write intensive workloads and other spe-
cial features make the management of time series data distinct
from relational databases [23, 28], and thus lead to the develop-
ment of time series database management systems, open source or

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication
rights licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 15, No. 10 ISSN 2150-8097.
doi:10.14778/3547305.3547319

Sensor

s_
0

(a) Large Scale

Sensor

s_
0

(b) Large Delta

Sensor

s_
0

(c) Vast Repeats

timestamp

va
lu

e

(d) Vast Increases

Figure 1: Example of real data with distinct features on (a)
large scale, (b) large delta, (c) vast repeats and (d) vast in-
creases, a!ecting the encoding performance

commercial, such as Apache IoTDB [1], In!uxDB [2], OpenTSDB
[3], Prometheus [4] and so on. It is not surprising that almost all
these systems employ columnar storage, given time series natu-
rally organized by two columns, time and value. In particular, the
column-oriented scheme enables e"ective encoding and compres-
sion of time series data. Obviously, distinct features of various data
as illustrated in Figure 1 lead to di"erent encoding performances.

While general purpose data compression methods can be di-
rectly applied, e.g., SNAPPY [38] and LZ4 [19], the encoding tech-
niques are often specialized for time series, under some intuitions
like values usually not changing signi#cantly over time, i.e., small
delta. Though lossy approaches like expressing time series in piece-
wise polynomial [25] are highly e$cient in reducing space and
useful in edge or end devices, as a database, industrial customers
expect a complete archive of all the digital asset, i.e., lossless. More-
over, the extremely intensive write workloads, often machine gen-
erated in IoT scenarios, prevent the time consuming approaches
such as machine learning based reinforcement learning [47]. In
this sense, the scope of this study is within lossless encoding with
e$cient system implementation.

����

Time Series Data Patterns
• Numerical Data Features:
- Scale
- Delta
- Repeat
- Increase

• Text Data Features
- Value
- Character

54

[J. Xiao, 2021]
D. Koop, CSCI 640/490, Spring 2023

Header:
March 24, 2015 02:00:00

Compressed data

March 24,
2015 02:01:02

Value:
12

Data stream

62 12

02:02:02 12

'10' : -2 '0'

64 14 64 9 1

02:03:02 24

Bit length

'0'

1

'11' : 11 : 1 :'1'

2 + 5 + 6 + 1

Previous Value

Value

XOR

12.0

24.0

-

0x4028000000000000

0x4038000000000000

0x0010000000000000

11 leading zeros, # of meaningful bits is 1

N-2 timestamp

N-1 timestamp

timestamp

02:00:00

02:01:02

02:02:02

-
Delta: 62

Delta: 60
Delta of deltas:

-2

a)

b) c)

Figure 2: Visualizing the entire compression algorithm. For this example, 48 bytes of values and time stamps
are compressed to just under 21 bytes/167 bits.

and e�cient scans of all data while maintaining constant
time lookup of individual time series.

The key specified in the monitoring data is used to uniquely
identify a time series. By sharding all monitoring data based
on these unique string keys, each time series dataset can be
mapped to a single Gorilla host. Thus, we can scale Go-
rilla by simply adding new hosts and tuning the sharding
function to map new time series data to the expanded set of
hosts. When Gorilla was launched to production 18 months
ago, our dataset of all time series data inserted in the past
26 hours fit into 1.3TB of RAM evenly distributed across 20
machines. Since then, we have had to double the size of the
clusters twice due to data growth, and are now running on
80 machines within each Gorilla cluster. This process was
simple due to the share-nothing architecture and focus on
horizontal scalability.

Gorilla tolerates single node failures, network cuts, and
entire datacenter failures by writing each time series value
to two hosts in separate geographic regions. On detecting a
failure, all read queries are failed over to the alternate region
ensuring that users do not experience any disruption.

4.1 Time series compression
In evaluating the feasibility of building an in-memory time

series database, we considered several existing compression
schemes to reduce the storage overhead. We identified tech-
niques that applied solely to integer data which didn’t meet
our requirement of storing double precision floating point
values. Other techniques operated on a complete dataset
but did not support compression over a stream of data as
was stored in Gorilla [7, 13]. We also identified lossy time se-
ries approximation techniques used in data mining to make
the problem set more easily fit within memory [15, 11], but

Gorilla is focused on keeping the full resolution representa-
tion of data.

Our work was inspired by a compression scheme for float-
ing point data derived in scientific computation. This scheme
leveraged XOR comparison with previous values to generate
a delta encoding [25, 17].

Gorilla compresses data points within a time series with
no additional compression used across time series. Each data
point is a pair of 64 bit values representing the time stamp
and value at that time. Timestamps and values are com-
pressed separately using information about previous values.
The overall compression scheme is visualized in Figure 2,
showing how time stamps and values are interleaved in the
compressed block.

Figure 2.a illustrates the time series data as a stream con-
sisting of pairs of measurements (values) and time stamps.
Gorilla compresses this data stream into blocks, partitioned
by time. After a simple header with an aligned time stamp
(starting at 2 am, in this example) and storing the first value
in a less compressed format, Figure 2.b shows that times-
tamps are compressed using delta-of-delta compression, de-
scribed in more detail in Section 4.1.1. As shown in Figure
2.b the time stamp delta of delta is �2. This is stored with
a two bit header (‘10’), and the value is stored in seven bits,
for a total size of just 9 bits. Figure 2.c shows floating-point
values are compressed using XOR compression, described in
more detail in Section 4.1.2. By XORing the floating point
value with the previous value, we find that there is only a
single meaningful bit in the XOR. This is then encoded with
a two bit header (‘11’), encoding that there are eleven lead-
ing zeros, a single meaningful bit, and the actual value (‘1’).
This is stored in fourteen total bits.

1819

Gorilla Compression

55

[Pelkonen et al., 2015]
D. Koop, CSCI 640/490, Spring 2023

�����

����

��

���

����

� ��������
����������

������������
����

��
��
��
��
��
��
��
��
��
��
��

��
���
��
��
��
��
��
��
��
���
��
��
��
�

��

���������

��������

���������

��������� ���������

Figure 3: Distribution of time stamp compression
across di↵erent ranged buckets. Taken from a sam-
ple of 440, 000 real time stamps in Gorilla.

4.1.1 Compressing time stamps
We analyzed the time series data stored in ODS so we

could optimize the compression scheme implemented in Go-
rilla. We noticed that the vast majority of ODS data points
arrived at a fixed interval. For instance, it is common for a
time series to log a single point every 60 seconds. Occasion-
ally, the point may have a time stamp that is 1 second early
or late, but the window is usually constrained.

Rather than storing timestamps in their entirety, we store
an e�cient delta of deltas. If the delta between time stamps
for subsequent data points in a time series are 60, 60, 59
and 61 respectively, the delta of deltas is computed by sub-
tracting the current time stamp value from the previous one
which gives us 0, -1 and 2. An example of how this works is
shown in Figure 2.

We next encode the delta of deltas using variable length
encoding with the following algorithm:

1. The block header stores the starting time stamp, t�1,
which is aligned to a two hour window; the first time
stamp, t0, in the block is stored as a delta from t�1 in
14 bits. 1

2. For subsequent time stamps, tn:

(a) Calculate the delta of delta:
D = (tn � tn�1)� (tn�1 � tn�2)

(b) If D is zero, then store a single ‘0’ bit

(c) If D is between [-63, 64], store ‘10’ followed by
the value (7 bits)

(d) If D is between [-255, 256], store ‘110’ followed by
the value (9 bits)

(e) if D is between [-2047, 2048], store ‘1110’ followed
by the value (12 bits)

(f) Otherwise store ‘1111’ followed by D using 32 bits

The limits for the di↵erent ranges were selected by sam-
pling a set of real time series from the production system

1The first time stamp delta is sized at 14 bits, because that
size is enough to span a bit more than 4 hours (16,384 sec-
onds), If one chose a Gorilla block larger than 4 hours, this
size would increase.

Figure 4: Visualizing how XOR with the previous
value often has leading and trailing zeros, and for
many series, non-zero elements are clustered.

and selecting the ones that gave the best compression ra-
tio. A time series might have data points missing but the
existing points likely arrived at fixed intervals. For example
if there’s one missing data point the deltas could be 60, 60,
121 and 59. The deltas of deltas would be 0, 61 and -62.
Both 61 and -62 fit inside the smallest range and fewer bits
can be used to encode these values. The next smallest range
[-255, 256] is useful because a lot of the data points come
in every 4 minutes and a single data point missing still uses
that range.

Figure 3 show the results of time stamp compression in
Gorilla. We have found that about 96% of all time stamps
can be compressed to a single bit.

4.1.2 Compressing values
In addition to the time stamp compression, Gorilla also

compresses data values. Gorilla restricts the value element
in its tuple to a double floating point type. We use a com-
pression scheme similar to existing floating point compres-
sion algorithms, like the ones described in [17] and [25].

From analyzing our ODS data, we discovered that the
value in most time series does not change significantly when
compared to its neighboring data points. Further, many
data sources only store integers into ODS. This allowed us
to tune the expensive prediction scheme in [25] to a simpler
implementation that merely compares the current value to
the previous value. If values are close together the sign,
exponent, and first few bits of the mantissa will be identical.
We leverage this to compute a simple XOR of the current
and previous values rather than employing a delta encoding
scheme.

We then encode these XOR’d values with the following
variable length encoding scheme:

1. The first value is stored with no compression

2. If XOR with the previous is zero (same value), store
single ‘0’ bit

3. When XOR is non-zero, calculate the number of lead-
ing and trailing zeros in the XOR, store bit ‘1’ followed
by either a) or b):

(a) (Control bit ‘0’) If the block of meaningful bits
falls within the block of previous meaningful bits,
i.e., there are at least as many leading zeros and
as many trailing zeros as with the previous value,

1820

Delta of Delta Compression
• Data usually recorded at regular intervals
• Deltas: 60, 60, 59, 61
• Delta of deltas (D): 0, -1, 2
• Variable-length encoding:
- D = 0 → 0
- D in [-63,64] → 10 + value (7 bits)
- D in [-255,256] → 110 + value (9 bits)
- D in [-2047,2048] → 1110 + value (12 bits)
- else → 1111 + value (32 bits)

• 1 bit 96% of the time

56

[Pelkonen et al., 2015]
D. Koop, CSCI 640/490, Spring 2023

�����

����

��

���

����

� ��������
����������

������������
����

��
��
��
��
��
��
��
��
��
��
��

��
���
��
��
��
��
��
��
��
���
��
��
��
�

��

���������

��������

���������

��������� ���������

Figure 3: Distribution of time stamp compression
across di↵erent ranged buckets. Taken from a sam-
ple of 440, 000 real time stamps in Gorilla.

4.1.1 Compressing time stamps
We analyzed the time series data stored in ODS so we

could optimize the compression scheme implemented in Go-
rilla. We noticed that the vast majority of ODS data points
arrived at a fixed interval. For instance, it is common for a
time series to log a single point every 60 seconds. Occasion-
ally, the point may have a time stamp that is 1 second early
or late, but the window is usually constrained.

Rather than storing timestamps in their entirety, we store
an e�cient delta of deltas. If the delta between time stamps
for subsequent data points in a time series are 60, 60, 59
and 61 respectively, the delta of deltas is computed by sub-
tracting the current time stamp value from the previous one
which gives us 0, -1 and 2. An example of how this works is
shown in Figure 2.

We next encode the delta of deltas using variable length
encoding with the following algorithm:

1. The block header stores the starting time stamp, t�1,
which is aligned to a two hour window; the first time
stamp, t0, in the block is stored as a delta from t�1 in
14 bits. 1

2. For subsequent time stamps, tn:

(a) Calculate the delta of delta:
D = (tn � tn�1)� (tn�1 � tn�2)

(b) If D is zero, then store a single ‘0’ bit

(c) If D is between [-63, 64], store ‘10’ followed by
the value (7 bits)

(d) If D is between [-255, 256], store ‘110’ followed by
the value (9 bits)

(e) if D is between [-2047, 2048], store ‘1110’ followed
by the value (12 bits)

(f) Otherwise store ‘1111’ followed by D using 32 bits

The limits for the di↵erent ranges were selected by sam-
pling a set of real time series from the production system

1The first time stamp delta is sized at 14 bits, because that
size is enough to span a bit more than 4 hours (16,384 sec-
onds), If one chose a Gorilla block larger than 4 hours, this
size would increase.

Figure 4: Visualizing how XOR with the previous
value often has leading and trailing zeros, and for
many series, non-zero elements are clustered.

and selecting the ones that gave the best compression ra-
tio. A time series might have data points missing but the
existing points likely arrived at fixed intervals. For example
if there’s one missing data point the deltas could be 60, 60,
121 and 59. The deltas of deltas would be 0, 61 and -62.
Both 61 and -62 fit inside the smallest range and fewer bits
can be used to encode these values. The next smallest range
[-255, 256] is useful because a lot of the data points come
in every 4 minutes and a single data point missing still uses
that range.

Figure 3 show the results of time stamp compression in
Gorilla. We have found that about 96% of all time stamps
can be compressed to a single bit.

4.1.2 Compressing values
In addition to the time stamp compression, Gorilla also

compresses data values. Gorilla restricts the value element
in its tuple to a double floating point type. We use a com-
pression scheme similar to existing floating point compres-
sion algorithms, like the ones described in [17] and [25].

From analyzing our ODS data, we discovered that the
value in most time series does not change significantly when
compared to its neighboring data points. Further, many
data sources only store integers into ODS. This allowed us
to tune the expensive prediction scheme in [25] to a simpler
implementation that merely compares the current value to
the previous value. If values are close together the sign,
exponent, and first few bits of the mantissa will be identical.
We leverage this to compute a simple XOR of the current
and previous values rather than employing a delta encoding
scheme.

We then encode these XOR’d values with the following
variable length encoding scheme:

1. The first value is stored with no compression

2. If XOR with the previous is zero (same value), store
single ‘0’ bit

3. When XOR is non-zero, calculate the number of lead-
ing and trailing zeros in the XOR, store bit ‘1’ followed
by either a) or b):

(a) (Control bit ‘0’) If the block of meaningful bits
falls within the block of previous meaningful bits,
i.e., there are at least as many leading zeros and
as many trailing zeros as with the previous value,

1820

XOR Representation
• Values usually do not change significantly
• Look at XOR
- Same → 0
- Changes in Meaningful Bits

• Same as previous value → 10 + changed
bits

• Outside previous value → 11 + leading
zeros + length of meaningful bits + bits

57

[Pelkonen et al., 2015]
D. Koop, CSCI 640/490, Spring 2023

Figure 10: When searching for the root cause for
a site-wide error rate increase, Gorilla’s time series
correlation found anomalous events that were corre-
lated in time, namely a drop in memory used when
copying a newly released binary.

6.2 Site wide error rate debugging
For an example of how Facebook uses time series data to

drive our monitoring, one can look at a recent issue that
was detected quickly and fixed due to monitoring data, first
described externally at SREcon15 [19].

A mysterious problem resulted in a spike in the site wide
error rate. This error rate was visible in Gorilla a few min-
utes after the error rate spike and raised an alert which noti-
fied the appropriate team a few minutes later [19]. Then, the
hard work began. As one set of engineers mitigated the is-
sue, others began the hunt for a root cause. Using tools built
on Gorilla, including a new time series correlation search
described in Section 5, they were able to find that the rou-
tine process of copying the release binary to Facebook’s web
servers caused an anomalous drop in memory used across
the site, as illustrated in Figure 10. The detection of the
problem, various debugging e↵orts and root cause analysis,
depended on time series analysis tools enabled by Gorilla’s
high performance query engine.

Since launching about 18 months ago, Gorilla has helped
Facebook engineers identify and debug several such produc-
tion issues. By reducing the 90th percentile Gorilla query
time to 10ms, Gorilla has also improved developer produc-
tivity. Further by serving 85% of all monitoring data from
Gorilla, very few queries must hit the HBase TSDB [26],
resulting in a lower load on the HBase cluster.

6.3 Lessons learned
Prioritize recent data over historical data. Go-

rilla occupies an interesting optimization and design niche.
While it must be very reliable, it does not require ACID data
guarantees. In fact, we have found that it is more important
for the most recent data to be available than any previous
data point. This led to interesting design trade-o↵s, such as
making a Gorilla host available for reads before older data
is read o↵ disk.

Read latency matters. The e�cient use of compression
and in-memory data structures has allowed for extremely
fast reads and resulted in a significant usage increase. While
ODS served 450 queries per second when Gorilla launched,
Gorilla soon overtook it and currently handles more than
5,000 steady state queries per second, peaking at one point

to 40,000 peak queries per second, as seen in Figure 9. Low
latency reads have encouraged our users to build advanced
data analysis tools on top of Gorilla as described in Section
5.

High availability trumps resource e�ciency. Fault
tolerance was an important design goal for Gorilla. It needed
to be able to withstand single host failures with no interrup-
tion in data availability. Additionally, the service must be
able to withstand disaster events that may impact an entire
region. For this reason, we keep two redundant copies of
data in memory despite the e�ciency hit.

We found that building a reliable, fault tolerant system
was the most time consuming part of the project. While
the team prototyped a high performance, compressed, in-
memory TSDB in a very short period of time, it took several
more months of hard work to make it fault tolerant. How-
ever, the advantages of fault tolerance were visible when the
system successfully survived both real and simulated fail-
ures [21]. We also benefited from a system that we can
safely restart, upgrade, and add new nodes to whenever we
need to. This has allowed us to scale Gorilla e↵ectively with
low operational overhead while providing a highly reliable
service to our customers.

7. FUTURE WORK
We wish to extend Gorilla in several ways. One e↵ort is to

add a second, larger data store between in-memory Gorilla
and HBase based on flash storage. This store has been built
to hold the compressed two hour chunks but for a longer
period than 26 hours. We have found that flash storage
allows us to store about two weeks of full resolution, Gorilla
compressed data. This will extend the amount of time full
resolution data is available to engineers to debug problems.
Preliminary performance results are included in Figure 8.

Before building Gorilla, ODS relied on the HBase backing
store to be a real-time data store: very shortly after data
was sent to ODS for storage, it needed to be available to read
operations placing a significant burden on HBase’s disk I/O.
Now that Gorilla is acting as a write-through cache for the
most recent data, we have at least a 26 hour window after
data is sent to ODS before they will be read from HBase.
We are exploiting this property by rewriting our write path
to wait longer before writing to HBase. This optimization
should be much more e�cient on HBase, but the e↵ort is
too new to report results.

8. CONCLUSION
Gorilla is a new in-memory times series database that we

have developed and deployed at Facebook. Gorilla functions
as a write through cache for the past 26 hours of monitor-
ing data gathered across all of Facebook’s systems. In this
paper, we have described a new compression scheme that
allows us to e�ciently store monitoring data comprising of
over 700 million points per minute. Further, Gorilla has al-
lowed us to reduce our production query latency by over 70x
when compared to our previous on-disk TSDB. Gorilla has
enabled new monitoring tools including alerts, automated
remediation and an online anomaly checker. Gorilla has
been in deployment for the past 18 months and has success-
fully doubled in size twice in this period without much oper-
ational e↵ort demonstrating the scalability of our solution.
We have also verified Gorilla’s fault tolerance capabilities via

1825

Enabling Gorilla Features
• Correlation Engine: "What happened

around the time my service broke?"
• Charting: Horizon charts to see

outliers and anomalies
• Aggregations: Rollups locally in

Gorilla every couple of hours

58

[Pelkonen et al., 2015]
D. Koop, CSCI 640/490, Spring 2023

Gorilla Lessons Learned
• Prioritize recent data over historical data
• Read latency matters
• High availability trumps resource efficiency
- Withstand single-node failures and "disaster events" that affect region
- "[B]uilding a reliable, fault tolerant system was the most time consuming

part of the project"
- "[K]eep two redundant copies of data in memory"

59

[Pelkonen et al., 2015]
D. Koop, CSCI 640/490, Spring 2023

