
Advanced Data Management (CSCI 640/490)

Data Integration

Dr. David Koop

D. Koop, CSCI 640/490, Spring 2023

Data Cleaning Types
• How can statistical techniques improve efficiency or reliability of data

cleaning? (Data Cleaning with Statistics)
- Example: Trifacta
- Two tasks: Error Detection & Data Repairing

• How how can we improve the reliability of statistical analytics with data
cleaning? (Data Cleaning for Statistics)

- Example: SampleClean
- Task: Do statistics and clean along the way

• Similar questions if we substitute machine learning for statistics

2

[D. Haas et al., 2016]
D. Koop, CSCI 640/490, Spring 2023

Misconceptions about Data Cleaning
• The end goal of data cleaning is clean data
• Data cleaning is a sequential operation
• Data cleaning is performed by one person
• Data quality is easy to evaluate

3

[D. Haas et al., 2016]
D. Koop, CSCI 640/490, Spring 2023

3

Single-Source Problems

Schema Level
(Lack of integrity
constraints, poor
schema design)

Instance Level
(Data entry errors)

Multi-Source Problems

Schema Level Instance Level

Data Quality Problems

- Naming conflicts
- Structural conflicts
…

- Inconsistent aggregating
- Inconsistent timing
…

(Heterogeneous
data models and
schema designs)

(Overlapping,
contradicting and
inconsistent data)

- Uniqueness
- Referential integrity
…

- Misspellings
- Redundancy/duplicates
- Contradictory values
…

Figure 2. Classification of data quality problems in data sources

2.1 Single-source problems
The data quality of a source largely depends on the degree to which it is governed by schema and integrity
constraints controlling permissable data values. For sources without schema, such as files, there are few
restrictions on what data can be entered and stored, giving rise to a high probability of errors and
inconsistencies. Database systems, on the other hand, enforce restrictions of a specific data model (e.g., the
relational approach requires simple attribute values, referential integrity, etc.) as well as application-specific
integrity constraints. Schema-related data quality problems thus occur because of the lack of appropriate
model-specific or application-specific integrity constraints, e.g., due to data model limitations or poor
schema design, or because only a few integrity constraints were defined to limit the overhead for integrity
control. Instance-specific problems relate to errors and inconsistencies that cannot be prevented at the
schema level (e.g., misspellings).

Scope/Problem Dirty Data Reasons/Remarks
Attribute Illegal values bdate=30.13.70 values outside of domain range
Record Violated attribute

dependencies
age=22, bdate=12.02.70 age = (current date – birth date)

should hold
Record
type

Uniqueness
violation

emp1=(name=”John Smith”, SSN=”123456”)
emp2=(name=”Peter Miller”, SSN=”123456”)

uniqueness for SSN (social security
number) violated

Source Referential
integrity violation

emp=(name=”John Smith”, deptno=127) referenced department (127) not defined

Table 1. Examples for single-source problems at schema level (violated integrity constraints)
For both schema- and instance-level problems we can differentiate different problem scopes: attribute (field),
record, record type and source; examples for the various cases are shown in Tables 1 and 2. Note that
uniqueness constraints specified at the schema level do not prevent duplicated instances, e.g., if information
on the same real world entity is entered twice with different attribute values (see example in Table 2).

Scope/Problem Dirty Data Reasons/Remarks
Missing values phone=9999-999999 unavailable values during data entry

(dummy values or null)
Misspellings city=”Liipzig” usually typos, phonetic errors
Cryptic values,
Abbreviations

experience=”B”;
occupation=”DB Prog.”

Embedded values name=”J. Smith 12.02.70 New York” multiple values entered in one attribute
(e.g. in a free-form field)

Attribute

Misfielded values city=”Germany”
Record Violated attribute

dependencies
city=”Redmond”, zip=77777 city and zip code should correspond

Word
transpositions

name1= “J. Smith”, name2=”Miller P.” usually in a free-form field

Duplicated records emp1=(name=”John Smith”,...);
emp2=(name=”J. Smith”,...)

same employee represented twice due to
some data entry errors

Record
type

Contradicting
records

emp1=(name=”John Smith”, bdate=12.02.70);
emp2=(name=”John Smith”, bdate=12.12.70)

the same real world entity is described by
different values

Source Wrong references emp=(name=”John Smith”, deptno=17) referenced department (17) is defined but
wrong

Table 2. Examples for single-source problems at instance level

Classifying Data Quality Problems

4

[E. Rahm & H. H. Do, 2000]
D. Koop, CSCI 640/490, Spring 2023

https://dbs.uni-leipzig.de/file/TBDE2000.pdf

2. QUERY PROCESSING ON DIRTY DATA

Like other SAQP systems, our main focus is on aggregate
numerical queries (avg, sum, count, var, geomean, product)
of the form:

SELECT f(attrs) FROM table
WHERE predicate
GROUP BY attrs

When running the aggregate queries on large and dirty
datasets, there may be two separate sources of errors that
a↵ect result quality. (1) Sampling error: since data is large,
we may execute queries on a sample of the data to reduce
query times. (2) Data error: since real-world data is dirty,
queries on the dirty data also lead to inaccurate query re-
sults.

In this section, we first precisely characterize sampling and
data errors, and then present our SampleClean framework to
deal with these two types of errors. Throughout the section,
we will refer to the following example query on a dataset of
academic publications:

SELECT AVG(citation_count) FROM papers
GROUP BY pub_year

which finds the average number of citations of the publica-
tions published every year.

2.1 Sampling Error

There are many di↵erent ways to sample data; a data
sample could be either created online during the query
time [14,32,47,57] or built o✏ine from past query work-
loads [2,3,5,11]. Consider our example citation query. A
uniform random-sampling scheme randomly selects a set of
papers from papers such that every paper has an equal
probability of selection. To answer queries with a highly
selective predicate or a group-by clause, prior works em-
ploy stratified-sampling [1,3,32], which performs a uniform
random sampling scheme in each group, to guarantee that
every group has a large enough sample size to estimate a
good result. The approaches presented in this paper can
support both uniformly random samples and stratified sam-
ples. However, for simplicity, we present our analysis with
uniform samples.

Answering queries on a sample has an inherent uncer-
tainty since a di↵erent sample may yield a di↵erent result.
Quantifying this uncertainty has been extensively studied
in statistics [43]. Due to this uncertainty, we return confi-
dence intervals in addition to results. For example, given
a confidence probability (e.g., 95%), we can apply results
from sampling statistics to estimate the average number of
citations along with a confidence interval (e.g. ±10), which
means that the estimated average number is within ±10 of
the actual value with 95% probability. The confidence in-
terval quantifies the uncertainty introduced by sampling the
data.

2.2 Data Error

In this work, we focus on three types of data errors: value
error, condition error, and duplication error. We use our ex-
ample query to illustrate how these errors can a↵ect results.

Value error: When an error occurs in the aggregation at-
tributes of the query (i.e. citation_count), it will lead to an
incorrect aggregate result. For example, consider the dirty
data in Figure 1(a). The first paper t1 involves value error
since its citation count should be 144 instead of 18.

Condition error: When an error occurs in the predicate or
group-by attribute of the query (i.e. pub_year), there may

(a) Dirty Data

YFilter()(ICDE 2982002t10000
...

6871997Online(Aggr.t7

1569

1

106

cita%on
_count

18

107

298

CrowdERt6 2012

DataSpace 2008t5
t4 Aqua

YFilter Feb,(2002t3
t2 TinyDB 2005

11t1 CrowdDB

pub_year%tleid

1

2

2

#dup

1

1
1

3

(b) Cleaned Sample

6871997Online(Aggr.t7

1569

34

106

cita%on
_count

144

107

298

CrowdERt6 2012

DataSpace 2008t5
1999t4 Aqua

YFilter 2002t3
t2 TinyDB 2005

2011t1 CrowdDB

pub_year%tleid

Figure 1: An example of dirty data and cleaned
sample (Shaded cells denote dirty values, and their
cleaned values are in bold font).

be some tuples that are falsely added into or excluded from
a group, leading to an incorrect result. In Figure 1(a), the
first paper t1 also has condition error since it was published
in the year 2011 rather than 11.

Duplication error: If data contains duplicate tuples (e.g.,
di↵erent representations of the same paper), the aggregate
result will also be a↵ected. This type of error commonly
happens when the data is integrated from multiple sources.
For instance, in Figure 1(a), the third paper t3 has duplica-
tion error as it refers to the same paper as t10000.

While data cleaning can fix the data errors, cleaning the
entire data is usually time consuming, often requiring user
confirmation or crowdsourcing. For this reason, we have
developed the SampleClean framework.

2.3 SampleClean Framework

Figure 2 illustrates all of the components of our frame-
work. SampleClean first creates a random sample of dirty
data, and then applies a data-cleaning technique to clean
the sample. After cleaning the sample, SampleClean uses
the cleaned sample to answer aggregate queries. Sample-
Clean gives results that are unbiased which means in expec-
tation the estimates are equal to the query results if the
entire dataset was cleaned by the data-cleaning technique.
The SampleClean framework is independent of how sam-

ples are cleaned, and in this paper, we consider data cleaning
as a user-provided module. Specifically, for each tuple in the
sample, the cleaning module corrects the attribute values of
the tuple, and estimates the number of duplicates for the
tuple from the dirty data. For example, consider a sample,
S = {t1, t2, · · · , t7} of the dirty data in Figure 1(a). Fig-
ure 1(b) shows the corresponding cleaned sample. For the
first paper t1, we correct pub_year from 11 to 2011, correct
citation_count from 18 to 144, and identify two duplicate
papers (including t1 itself) in the dirty data.

2.3.1 Cleaning Value and Condition Errors
To reduce value errors and condition errors, the data-

cleaning technique only needs to clean attribute values in
the sample, and we can apply a variety of recently proposed
data cleaning techniques to achieve this. For example, out-
lier detection [31,35] and rule-based approaches [17,23] have
been proposed to solve this problem. In addition, Fan et
al. [24] proposed editing rules, master data and user con-
firmation to correct attribute values, and they proved that
their approaches can always obtain perfect cleaning results.
There are also some data-cleaning tools [19,46] that can fa-
cilitate users to clean data based on their domain knowledge.
For example, OpenRefine [46] allows users to define facets
on a per attribute basis, and helps them to quickly identify
incorrect attribute values via faceted search.

2.3.2 Identifying Duplicates
The SampleClean framework defines the duplicate factor

for a tuple as the number of times the tuple appears in the

Dirty and Cleaned Data

5

[J. Wang et al., 2014]
D. Koop, CSCI 640/490, Spring 2023

!

Dirty!Data!

Result!Es.ma.on!
(RawSC)!

Dirty!
Sample!

Cleaned!
Sample!

Result!Es.ma.on!
(NormalizedSC)!

Results!with!Con<!
fidence!Intervals!

Aggregate!
Queries!

Sample!Crea.on!

Data!Cleaning!

Results!with!Con<!
fidence!Intervals!

Figure 2: The SampleClean framework.

entire table. To determine it, one way would be to estimate
its value from the sample. However, both analytical proofs
and empirical tests have shown that this method can lead to
highly inaccurate query results [10]. Therefore, in our pa-
per, we determine the duplication factor from the complete
relation.

It is important to note, however, that compared to full
cleaning, we only need to determine the duplication factor
for those tuples in the sample. As with other uses of sam-
pling, this can result in significant cost savings in duplicate
detection. In the following, we will describe how to apply ex-
isting deduplication techniques to compute the duplication
factor, and explain why it is cheaper to determine the du-
plication factor for a sample of the data, even though doing
so requires access to the complete relation.

Duplicate detection (also known as entity resolution) aims
to identify di↵erent tuples that refer to the same real-world
entity. This problem has been extensively studied for several
decades [22]. Most deduplication approaches consist of two
phases:

1. Blocking. Due to the large (quadratic) cost of all-

pair comparisons, data is partitioned into a number

of blocks, and duplicates are considered only within a

block. For instance, if we partition papers based on

conference_name, then only the papers that are pub-

lished in the same conference will be checked for dupli-

cates;

2. Matching. To decide whether two tuples are duplicates

or not, existing techniques typically model this problem

as a classification problem, and train a classifier to la-

bel each tuple pair as duplicate or non-duplicate [9].

In some recent research (and also at many compa-

nies) crowdsourcing is used to get humans to match

tuples [20,54].

A recent survey on duplicate detection has argued that the
matching phase is typically much more expensive than the
blocking phase [13]. For instance, an evaluation of the popu-
lar duplicate detection technique [9] shows that the matching
phase takes on the order of minutes for a dataset of thou-
sands of tuples [39]. This is especially true in the context of
crowdsourced matching where each comparison is performed
by a crowd worker costing both time and money. Sample-
Clean reduces the number of comparisons in the matching
phase, as we only have to match each tuple in the sample
with the others in its block. For example, if we sample 1% of
the table, then we can reduce the matching cost by a factor
of 100.

2.3.3 Result Estimation
After cleaning a sample, SampleClean uses the cleaned

sample to estimate the result of aggregate queries. Simi-
lar to existing SAQP systems, we can estimate query results
directly from the cleaned sample. However, due to data er-
ror, result estimation can be very challenging. For example,

consider the avg(citation_count) query in previous section.
Assume that the data has duplication errors and that papers
with a higher citation count tend to have more duplicates.
The greater the number of duplicates, the higher probability
a paper is sampled, and thus the cleaned sample may con-
tain more highly cited papers, leading to an over-estimated
citation count. We formalize these issues and propose the
RawSC approach to address them in Section 3.
Another quantity of interest is how much the dirty data

di↵ers from the cleaned data. We can estimate the mean
di↵erence based on comparing the dirty and cleaned sam-
ple, and then correct a query result on the dirty data with
this estimate. We describe this alternative approach, called
NormalizedSC, and compare its performance with RawSC
in Section 4.

SampleClean v.s. SAQP: SAQP assumes perfectly clean
data while SampleClean relaxes this assumption and makes
cleaning feasible. In RawSC, we take a sample of data, ap-
ply a data cleaning technique, and then estimate the result.
The result estimation is similar to SAQP, however, we re-
quire a few additional scaling factors related to the clean-
ing. On the other hand, NormalizedSC is quite di↵erent
from typical SAQP frameworks. NormalizedSC estimates
the average di↵erence between the dirty and cleaned data,
and this is only possible in systems that couple data clean-
ing and sampling. What is surprising about SampleClean
is that sampling a relatively small population of the overall
data makes it feasible to manually or algorithmically clean
the sample, and experiments confirm that this cleaning of-
ten more than compensates for the error introduced by the
sampling.

2.3.4 Example: SampleClean with OpenRefine
In this section, we will walk through an example imple-

mentation of SampleClean using OpenRefine [46] to clean
the data. Consider our example dirty dataset of publica-
tions in Figure 1(a). First, the user creates a sample of data
(e.g., 100 records) and loads this sample into the OpenRefine
spreadsheet interface. The user can use the tool to detect
data errors such as missing attributes, and fill in the cor-
rect values (e.g., from another data source or based on prior
domain expertise). Next, for deduplication, the system will
propose potential matches for each publication in the sam-
ple based on a blocking technique and the user can accept
or reject these matches. Finally, the clean sample with the
deduplication information is loaded back into the dataset.
In this example, sampling reduces the data cleaning e↵ort
for the user. The user needs to inspect only 100 records in-
stead of the entire dataset, and has no more than 100 sets
of potential duplicates to manually check.
To query this clean sample, we need to apply Sample-

Clean’s result estimation to ensure that the estimate remains
unbiased after cleaning since some records may have been
corrected, or marked as duplicates. In the rest of the paper,
we discuss the details of how to ensure unbiased estimates,
and how large the sample needs to be to get a result of
acceptable quality.

3. RawSC ESTIMATION

In this section, we present the RawSC estimation ap-
proach. RawSC takes a sample of data as input, applies
a data cleaning technique to the sample, runs an aggregate
query directly on the clean sample, and returns a result with
a confidence interval.

3.1 Sample Estimates

We will first introduce the estimation setting without data
errors and explain some results about estimates from sam-

SampleClean Framework

6

[J. Wang et al., 2014]
D. Koop, CSCI 640/490, Spring 2023

Figure 1: Comparison of the convergence
of the methods on two TPC-H datasets of
6M tuples with simulated errors 50% error
and 5% error. On the dataset with larger
errors, the direct estimate gives a narrower
confidence interval, and on the other the
correction is more accurate. 0 2000 4000 6000 8000 100000

2

4

6

8

10

12

Number of Cleaned Samples

Er
ro

r %

Less Dirty

AllDirty
Direct
Correction

0 2000 4000 6000 8000 100000

10

20

30

40

50

Number of Cleaned Samples
Er

ro
r %

Very Dirty

AllDirty
Direct
Correction

Q(Rclean) = Q(R). The interesting problem is when there are systematic errors[43] i.e., | εc |> 0. In other
words, the corruption that is correlated with the data, e.g., where every record is corrupted with a +1.

2.2.2 Key Idea I: Direct Estimate vs. Correction

The key quantity of interest is εc, and to be able to bound a query result on dirty data, requires that εc is 0 or
bound εc.

Direct Estimate: This technique is a direct extension of AQP to handle data cleaning. A set of k rows is
sampled uniformly at random from the dirty relation R resulting in a sample S. Data cleaning is applied to the
sample S resulting in Sclean. Data cleaning and sampling may change the statistical and scaling properties of
the query Q, so Q may have to be re-written to a query Q̂. Q̂ is applied to the sample Sclean and the result
is returned. There are a couple of important points to note about this techniques. First, as in AQP, the direct
estimate only processes a sample of data. Next, since it processes a cleaned sample of data, at no point is there
a dependence on the dirty data. As we will show later in the article, the direct estimate returns a result whose
accuracy is independent of the magnitude or rate of data error. One way to think about this technique is that it
ensures εc = 0 within the sample.

Correction: The direct estimate suffers a subtle drawback. Suppose, there are relatively few errors in the data.
The errors introduced by sampling may dominate any error reductions due to data cleaning. As an alternative,
we can try to estimate εc. A set of k rows is sampled uniformly at random from the dirty relation R resulting in
a sample S. Data cleaning is applied to the sample S resulting in Sclean. The difference in applying Q̂ to S and
Q̂ to Sclean gives an estimate of εc. The interpretation of this estimate is a correction to the query result on the
full dirty data. In contrast to the direct estimate, this technique requires processing the entire dirty data (but only
cleaning a sample). However, as we will later show, if errors are rare this technique gives significantly improved
accuracy over the direct estimates.

2.2.3 Key Idea II: Sampling to Improve Accuracy

Figure 1 plots error as a function of the cleaned sample size on a corrupted TPCH dataset for a direct estimate,
correction, and AllDirty (query on the full dirty data). In both cases, there is a break-even point (in terms of
number of cleaned samples) when the data cleaning has mitigated more data error than the approximation error
introduced by sampling. After this point, SampleClean improves query accuracy in comparison to AllDirty.
When errors are relatively rare (5% corruption rate), the correction is more accurate. When errors are more
significant (50% corruption rate), the direct estimate is more accurate. Note that the direct estimate returns
results of the same accuracy regardless of the corruption rate.

62

Comparing the Two Approaches

7

[S. Krishnan et al., 2015]
D. Koop, CSCI 640/490, Spring 2023

HoloClean
• A holistic data cleaning framework that combines qualitative methods with

quantitative methods:
- Qualitative: use integrity constraints or external data sources
- Quantitative: use statistics of the data

• Driven by probabilistic inference. Users only need to provide a dataset to be
cleaned and describe high-level domain specific signals.

• Can scale to large real-world dirty datasets and perform automatic repairs
with high accuracy

8

[T. Rekatsinas et al., 2017]
D. Koop, CSCI 640/490, Spring 2023

http://www.vldb.org/pvldb/vol10/p1190-rekatsinas.pdf

HoloClean

9

[T. Rekatsinas et al., 2017]
D. Koop, CSCI 640/490, Spring 2023

http://www.vldb.org/pvldb/vol10/p1190-rekatsinas.pdf

Pandas Operations
• Filtering out missing data (dropna):
- Can choose rows or columns

• Filling in missing data (fillna):
• Finding problems in data (statistics, special values)
• Filtering duplicates: (drop_duplicates, unique)
• Cleaning data: (map, replace, clamping data)

10D. Koop, CSCI 640/490, Spring 2023

Assignment 3
• Salary Data
• Use Pandas (not loops)
• Part 2: CSCI 640 students need to do (b), CSCI 490 students can choose
• Part 5: use melt/pivot or a similar high-level operation

11D. Koop, CSCI 640/490, Spring 2023

https://faculty.cs.niu.edu/~dakoop/cs640-2023sp/assignment3.html

Outline
• Combining Data
• Data Integration
• Data Matching (Entity Resolution)
• Data Fusion
• Data Fusion Techniques
- Integrating Conflicting Data: The Role of Source Dependence,

X. L. Dong et al., 2009
- Quiz at the beginning of class

12D. Koop, CSCI 640/490, Spring 2023

http://www.lunadong.com/publication/dependence_vldb.pdf

Example: Football Game Data
• Data about football games, teams, & players
- Game is between two Teams
- Each Team has Players

• For each game, we could specify every
player and all of their information… why is
this bad?

13D. Koop, CSCI 640/490, Spring 2023

Example: Football Game Data
• Data about football games, teams, & players
- Game is between two Teams
- Each Team has Players

• For each game, we could specify every
player and all of their information… why is
this bad?

• Normalization: reduce redundancy, keep
information that doesn't change separate

• 3 Relations: Team, Player, Game
• Each relation only encodes the data specific

to what it represents

13D. Koop, CSCI 640/490, Spring 2023

Id Name Height Weight

Player

Id Name Wins Losses

Team

Id Location Date

Game

Example: Football Game Data
• Have each game store the id of the home

team and the id of the away team (one-to-
one)

• Have each player store the id of the team he
plays on (many-to-one)

• What happens if a player plays on 2+ teams?

14D. Koop, CSCI 640/490, Spring 2023

Id Name Height Weight TeamId

Player

Id Name Wins Losses

Team

Id Location Date Home Away

Game

How does this relate to pandas?
• DataFrames in pandas are ~relations (tables)
• We may wish to normalize data in a similar manner in pandas
• However, operating on 2+ DataFrames at the same time can be unwieldy,

can we merge them together?
• Two potential operations:
- Have football game data (just the Game table) from 2013, 2014, and 2015

and wish to merge the data into one data frame
- Have football game data and wish to find the average temperature of the

cities where the games were played

15D. Koop, CSCI 640/490, Spring 2023

Concatenation
• Take two data frames with the same columns and add more rows
• pd.concat([data-frame-1, data-frame-2, …])

• Default is to add rows (axis=0), but can also add columns (axis=1)
• Can also concatenate Series into a data frame.
• concat preserves the index so this can be confusing if you have two default

indices (0,1,2,3…)—they will appear twice
- Use ignore_index=True to get a 0,1,2…

16D. Koop, CSCI 640/490, Spring 2023

Merges (aka Joins)
• Need to merge data from one DataFrame with data from another DataFrame
• Example: Football game data merged with temperature data

17D. Koop, CSCI 640/490, Spring 2023

Id Location Date Home Away
0 Boston 9/2 1 15
1 Boston 9/9 1 7
2 Cleveland 9/16 12 1
3 San Diego 9/23 21 1

Game
wId City Date Temp
0 Boston 9/2 72
1 Boston 9/3 68
… … … …
7 Boston 9/9 75
… … … …
21 Boston 9/23 54
… … … …
36 Cleveland 9/16 81

Weather

No data for San Diego

Merges (aka Joins)
• Want to join the two tables based on the location and date
• Location and date are the keys for the join
• What happens when we have missing data?
• Merges are ordered: there is a left and a right side
• Four types of joins:
- Inner: intersection of keys (match on both sides)
- Outer: union of keys (if there is no match on other side, still include with NaN

to indicate missing data)
- Left: always have rows from left table (no unmatched right data)
- Right: like left, but with no unmatched left data

18D. Koop, CSCI 640/490, Spring 2023

Inner Strategy

19D. Koop, CSCI 640/490, Spring 2023

Id Location Date Home Away Temp wId
0 Boston 9/2 1 15 72 0
1 Boston 9/9 1 7 75 7
2 Cleveland 9/16 12 1 81 36

Merged

No San Diego entry

Outer Strategy

20D. Koop, CSCI 640/490, Spring 2023

Id Location Date Home Away Temp wId
0 Boston 9/2 1 15 72 0

NaN Boston 9/3 NaN NaN 68 1
… … … … … … …
1 Boston 9/9 1 7 75 7

NaN Boston 9/10 NaN NaN 76 8
… … … … … … …

NaN Cleveland 9/2 NaN NaN 61 22
… … … … … … …
2 Cleveland 9/16 12 1 81 36
… … … … … … …
3 San Diego 9/23 21 1 NaN NaN

Merged

Left Strategy

21D. Koop, CSCI 640/490, Spring 2023

Id Location Date Home Away Temp wId
0 Boston 9/2 1 15 72 0
1 Boston 9/9 1 7 75 7
2 Cleveland 9/16 12 1 81 36
3 San Diego 9/23 21 1 NaN NaN

Merged

Right Strategy

22D. Koop, CSCI 640/490, Spring 2023

Id Location Date Home Away Temp wId
0 Boston 9/2 1 15 72 0

NaN Boston 9/3 NaN NaN 68 1
… … … … … … …
1 Boston 9/9 1 7 75 7

NaN Boston 9/10 NaN NaN 76 8
… … … … … … …

NaN Cleveland 9/2 NaN NaN 61 22
… … … … … … …
2 Cleveland 9/16 12 1 81 36
… … … … … … …

Merged

No San Diego entry

Data Merging in Pandas
• pd.merge(left, right, …) or left.merge(right, …)

• Default merge: join on matching column names
• Better: specify the column name(s) to join on via on kwarg
- If column names differ, use left_on and right_on
- Multiple keys: use a list

• how kwarg specifies type of join ("inner", "outer", "left", "right")
• Can add suffixes to column names when they appear in both tables, but are

not being joined on
• Can also merge using the index by setting
left_index or right_index to True

23D. Koop, CSCI 640/490, Spring 2023

Table 8-2. merge function arguments
Argument Description
left DataFrame to be merged on the left side.
right DataFrame to be merged on the right side.
how One of 'inner', 'outer', 'left', or 'right'; defaults to 'inner'.
on Column names to join on. Must be found in both DataFrame objects. If not speci!ed and no other join keys

given, will use the intersection of the column names in left and right as the join keys.
left_on Columns in left DataFrame to use as join keys.
right_on Analogous to left_on for left DataFrame.
left_index Use row index in left as its join key (or keys, if a MultiIndex).
right_index Analogous to left_index.
sort Sort merged data lexicographically by join keys; True by default (disable to get better performance in

some cases on large datasets).
suffixes Tuple of string values to append to column names in case of overlap; defaults to ('_x', '_y') (e.g., if

'data' in both DataFrame objects, would appear as 'data_x' and 'data_y' in result).
copy If False, avoid copying data into resulting data structure in some exceptional cases; by default always

copies.
indicator Adds a special column _merge that indicates the source of each row; values will be 'left_only',

'right_only', or 'both' based on the origin of the joined data in each row.

Merging on Index
In some cases, the merge key(s) in a DataFrame will be found in its index. In this
case, you can pass left_index=True or right_index=True (or both) to indicate that
the index should be used as the merge key:

In [56]: left1 = pd.DataFrame({'key': ['a', 'b', 'a', 'a', 'b', 'c'],
 : 'value': range(6)})

In [57]: right1 = pd.DataFrame({'group_val': [3.5, 7]}, index=['a', 'b'])

In [58]: left1
Out[58]:
 key value
0 a 0
1 b 1
2 a 2
3 a 3
4 b 4
5 c 5

In [59]: right1
Out[59]:
 group_val
a 3.5
b 7.0

232 | Chapter 8: Data Wrangling: Join, Combine, and Reshape

Merge Arguments

24

[W. McKinney, Python for Data Analysis]
D. Koop, CSCI 640/490, Spring 2023

Outline
• Combining Data
• Data Integration
• Data Matching (Entity Resolution)
• Data Fusion
• Data Fusion Techniques
- Integrating Conflicting Data: The Role of Source Dependence,

X. L. Dong et al., 2009
- Quiz at the beginning of class

25D. Koop, CSCI 640/490, Spring 2023

http://www.lunadong.com/publication/dependence_vldb.pdf

Introduction to Data Integration

A. Doan, A. Halevy, and Z. Ives

D. Koop, CSCI 640/490, Spring 2023

http://research.cs.wisc.edu/dibook/slides/Chapter_1.ppt

Data Integration
select title, startTime
from Movie, Plays
where Movie.title=Plays.movie AND
 location=“New York” AND
 director=“Woody Allen”

Sources S1 and S3 are relevant, sources S4 and S5 are irrelevant, and
source S2 is relevant but possibly redundant.

27

[AH Doan et al., 2012]
D. Koop, CSCI 640/490, Spring 2023

Cinemas:
place, movie,

start

Reviews:
title, date

grade, review

Movies:
 name, actors,
director, genre

Cinemas in NYC:
cinema, title,

startTime

Cinemas in SF:
location, movie,

startingTime

Movie: Title, director, year, genre
Actors: title, actor
Plays: movie, location, startTime
Reviews: title, rating, description

S1 S2 S3 S4 S5

Data Matching & Data Fusion
• Google Thinks I’m Dead

(I know otherwise.) [R. Abrams,
NYTimes, 2017]

• Not only Google, but also Alexa:
- "Alexa replies that Rachel Abrams is

a sprinter from the Northern
Mariana Islands (which is true of
someone else)."

- "He asks if Rachel Abrams is
deceased, and Alexa responds yes,
citing information in the Knowledge
Graph panel."

28D. Koop, CSCI 640/490, Spring 2023

http://www.apple.com
http://www.apple.com

Data Integration, Data Matching, & Data Fusion
• Data Integration: focus on integrating data from different sources
• Data Matching (aka Entity Resolution aka Record Linkage):

want to know that two entities (often in different sources) are the same "real"
entity

• When sources are orthogonal, no problems
• What happens when two sources provide the same type of information and

they conflict?
• Data Fusion: create a single object while resolving conflicting values

29D. Koop, CSCI 640/490, Spring 2023

Outline
• Combining Data
• Data Integration
• Data Matching (Entity Resolution)
• Data Fusion
• Data Fusion Techniques
- Integrating Conflicting Data: The Role of Source Dependence,

X. L. Dong et al., 2009
- Quiz at the beginning of class

30D. Koop, CSCI 640/490, Spring 2023

http://www.lunadong.com/publication/dependence_vldb.pdf

Data Fusion—
Resolving Data Conflicts in Integration

X. L. Dong and F. Naumann

D. Koop, CSCI 640/490, Spring 2023

http://lunadong.com/talks/dataFusion_vldb.pptx
http://lunadong.com/talks/dataFusion_vldb.pptx

Information Integration

32

[L. Dong and F. Naumann, 2009]
D. Koop, CSCI 640/490, Spring 2023

Source A

Source B

<pub>
 <Titel> Federated Database
 Systems </Titel>
 <Autoren>
 <Autor> Amit Sheth </Autor>
 <Autor> James Larson </Autor>
 </Autoren>
</pub>

<publication>
 <title> Federated Database
 Systems for Managing
 Distributed, Heterogeneous,
 and Autonomous
 Databases </title>
 <author> Scheth & Larson </author>
 <year> 1990 </year>
</publication>

Schema
Mapping

Data
Transformation

Duplicate
Detection Data Fusion

Information Integration

33

[L. Dong and F. Naumann, 2009]
D. Koop, CSCI 640/490, Spring 2023

Source A

Source B

<pub>
 <title> Federated Database
 Systems </title>
 <Autoren>
 <author> Amit Sheth </author>
 <author> James Larson </author>
 </Autoren>
</pub>
<pub>
 <title> Federated Database Systems for
 Managing Distributed,
 Heterogeneous, and Autonomous
 Databases </title>
 <Autoren>
 <author> Scheth & Larson </author>
 </Autoren>
 <year> 1990 </year>
</pub>

Schema
Mapping

Data
Transformation

Duplicate
Detection Data Fusion

<pub>
 <title> Federated Database Systems for
 Managing Distributed,
 Heterogeneous, and
 Autonomous Databases </title>
 <Autoren>
 <author> Amit Sheth </author>
 <author> James Larson </author>
 </Autoren>
 <year> 1990 </year>

Preserve lineage

Outline
• Combining Data
• Data Integration
• Data Matching (Entity Resolution)
• Data Fusion
• Data Fusion Techniques
- Integrating Conflicting Data: The Role of Source Dependence,

X. L. Dong et al., 2009
- Quiz at the beginning of class

34D. Koop, CSCI 640/490, Spring 2023

http://www.lunadong.com/publication/dependence_vldb.pdf

