Advanced Data Management (CSCI 680/490)

Data Cleaning

Dr. David Koop

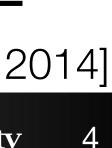
Tidy Data Principles

- **Tidy Data**: Codd's 3rd Normal Form (Databases)
 - 1. Each variable forms a column
 - 2. Each observation forms a row
 - 3. Each type of observational unit forms a table (DataFrame)
- Other structures are messy data

2

Messy Dataset Problems

- Column headers are values, not variable names
- Multiple variables are stored in one column
- Variables are stored in both rows and columns
- Multiple types of observational units are stored in the same table • A single observational unit is stored in multiple tables

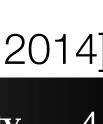

Problem: Variables stored in both rows & columns

Mexico Weather, Global Historical Climatology Network

id	year	month	element	d1	d2	d3	d4	d5	d6	d7	d8
MX17004	2010	1	tmax								
MX17004	2010	1	tmin								
MX17004	2010	2	tmax		27.3	24.1					
MX17004	2010	2	tmin		14.4	14.4					
MX17004	2010	3	tmax					32.1			
MX17004	2010	3	tmin					14.2			
MX17004	2010	4	tmax								
MX17004	2010	4	tmin								
MX17004	2010	5	tmax								
MX17004	2010	5	tmin								

Problem: Variables stored in both rows & columns

Mexico Weather, Global Historical Climatology Network


id	year	month	element	d1	d2	d3	d4	d5	d6	d7	d8
MX17004	2010	1	tmax								
MX17004	2010	1	tmin								
MX17004	2010	2	tmax		27.3	24.1					
MX17004	2010	2	tmin		14.4	14.4					
MX17004	2010	3	tmax					32.1			
MX17004	2010	3	tmin					14.2			
MX17004	2010	4	tmax								
MX17004	2010	4	tmin								
MX17004	2010	5	tmax								
MX17004	2010	5	tmin								

Variable in columns: day; Variable in rows: tmax/tmin

Solution: Melting + Pivot

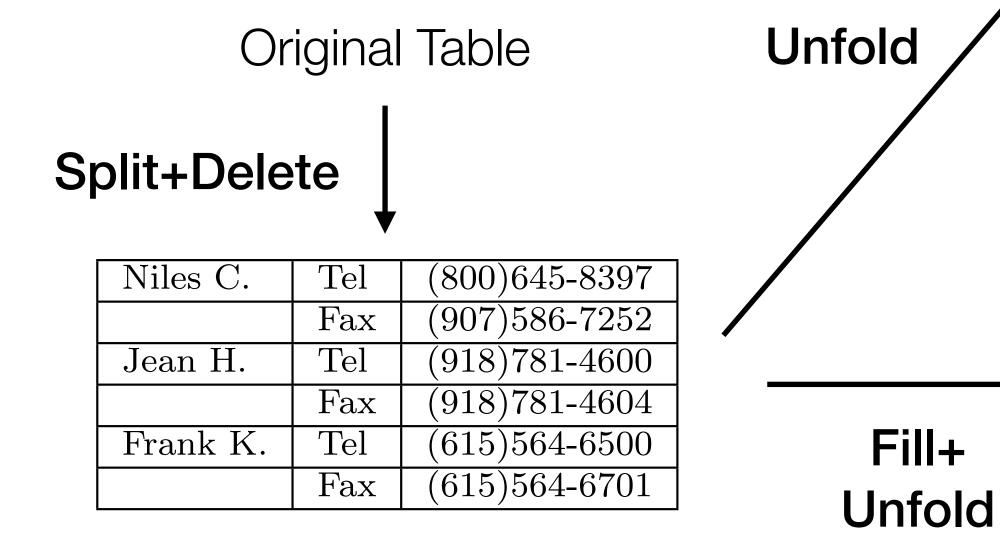
id	date	element	value	id	date	tmax	tmin
MX17004	2010-01-30	tmax	27.8	MX17004	2010-01-30	27.8	14.5
MX17004	2010-01-30	tmin	14.5	MX17004	2010-02-02	27.3	14.4
MX17004	2010-02-02	tmax	27.3	MX17004	2010-02-03	24.1	14.4
MX17004	2010-02-02	tmin	14.4	MX17004	2010-02-11	29.7	13.4
MX17004	2010-02-03	tmax	24.1	MX17004	2010-02-23	29.9	10.7
MX17004	2010-02-03	tmin	14.4	MX17004	2010-03-05	32.1	14.2
MX17004	2010-02-11	tmax	29.7	MX17004	2010-03-10	34.5	16.8
MX17004	2010-02-11	tmin	13.4	MX17004	2010-03-16	31.1	17.6
MX17004	2010-02-23	tmax	29.9	MX17004	2010-04-27	36.3	16.7
MX17004	2010-02-23	tmin	10.7	MX17004	2010-05-27	33.2	18.2

(a) Molten data

D. Koop, CSCI 640/490, Spring 2023

Tidy data (b)

[H. Wickham, 2014]



Getting Lost in Transformations

Bureau of I.A.	
Regional Director	Numbers
Niles C.	Tel: (800)645-8397
	Fax: (907)586-7252
Jean H.	Tel: (918)781-4600
	Fax: (918)781-4604
Frank K.	Tel: (615)564-6500
	Fax: (615)564-6701

Intermediate Table

D. Koop, CSCI 640/490, Spring 2023

	Tel	Fax
Niles C.	(800)645-8397	
		(615)564-6701
Jean H.	(918)781-4600	
Frank K.	(615)564-6500	

Problem Table

		Tel	Fax
•	Niles C.	(800)645-8397	(907)586-7252
	Jean H.	(918)781-4600	(918)781-4604
+	Frank K.	(615)564-6500	(615)564-6701

Desired Solution

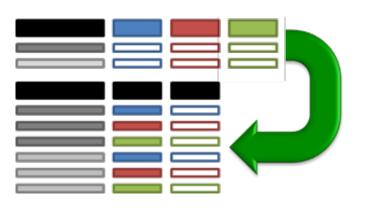
Foofah: Input, Output, and Transformations

Fax:(918)781-4604

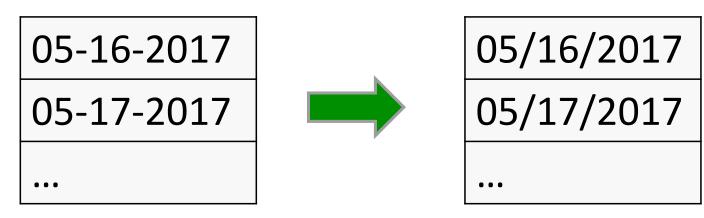
Raw Data:

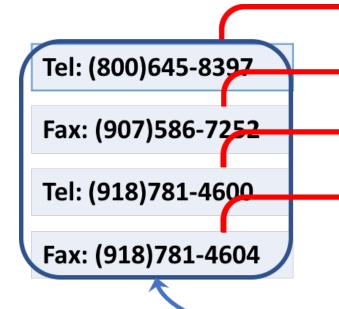
- A grid of values, i.e., spreadsheets "Somewhat" structured - must have some regular structure or is automatically generated.

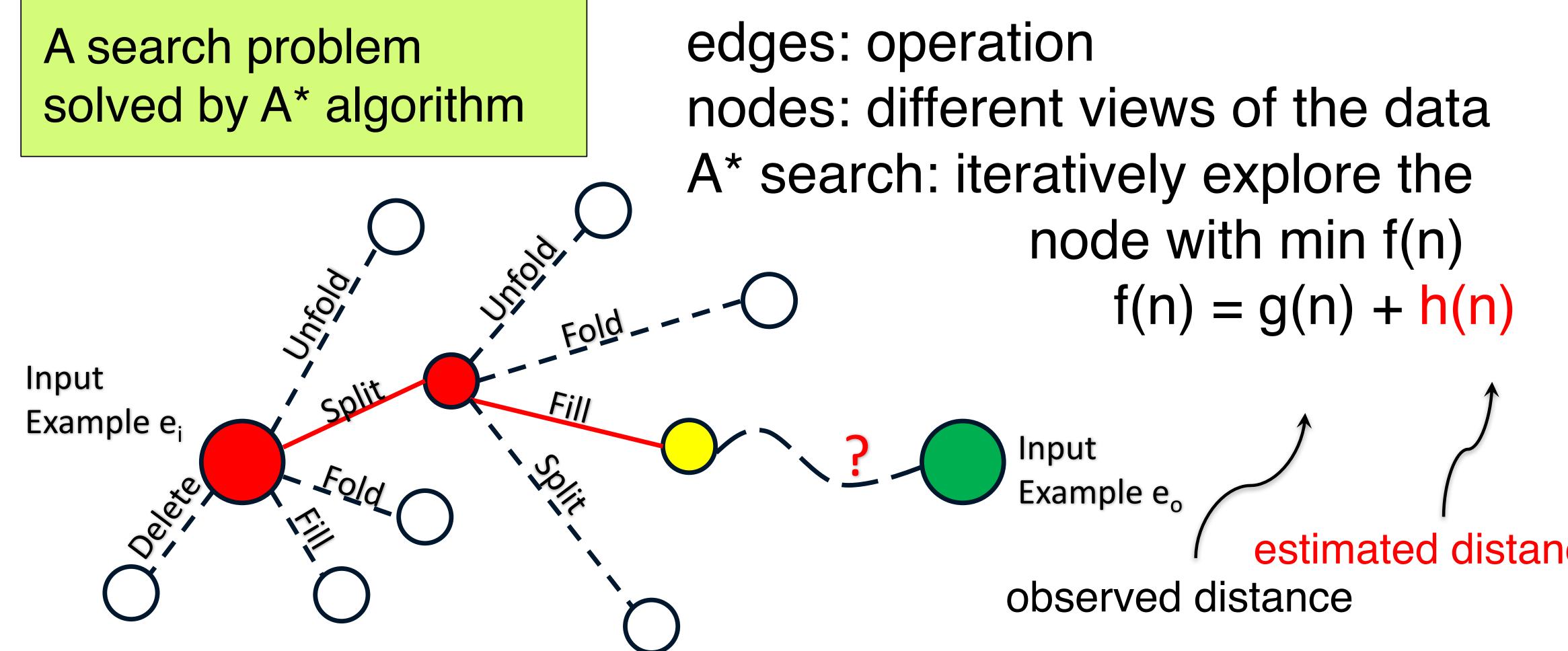
User Input:


 Sample from raw data • Transformed view of the sample

Tel:(800)645-839


Program to synthesize: A loop-free Potter's Wheel [2] program


Transformations Targeted: 1. Layout transformation



Foofah Solution

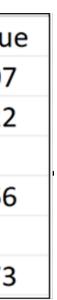
AutoSuggest

- Goals:
 - Automate "Complex" Data Preparation steps - Focus on frame transformations (not per-cell transformations)

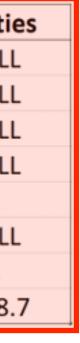
 - Learn from Jupyter Notebooks
 - Use interactive methods to help users select from top-k options
- Two Types of Predictions:
 - Single-Operator Prediction: Given two tables and an operation, decide how to best apply the operation (what are the parameters)
 - Next-Operator Prediction: Given all operations performed so far, predict the next one

Pivot/Unpivot Prediction

- Pivot is hard to get right
 - Index
 - Header
 - Aggregation Function
 - Aggregation Columns
- Use GroupBy Prediction
- Look for NULLs and use affiinity
- Affinity-Maximizing Pivot Table
- Unpivot requires compatibility


_							
	Sector	Ticker	Company	Year	Quarter	Market Cap	Revenu
	Aerospace	AJRD	AEROJET ROCKETD	2006	Q1	1442.67	472.07
	Aerospace	AJRD	AEROJET ROCKETD	2006	Q2	1514.80	489.22
	Aerospace	BA	BOEING CO	2006	Q1	343.41	210.66
	Utilities	YORW	YORK WATER CO	2008	Q4	600.19	271.73

Sector	Ticker	Company	2006	2007	2008
Aerospace	AJRD	AEROJET ROCKETD	6218.09	6342.45	7088.62
	ATRO	ASTRONICS CORP	1050.97	1071.99	1198.11
Business Services	HHS	HARTE-HANKS INC	2473.75	2523.22	2820.07
	NCMI	NATL CINEMEDIA	856.92	874.06	976.89
Consumer Staples	YTEN	TIELD10 BIOSCI	533.13	543.79	607.77
Utilities	YORW	YORK WATER CO	1902.37	1940.42	2168.70


Ticker	Company	Year	Aerospace	Business Services	 Utiliti
AJRD	AEROJET ROCKETD	2006	6218.09	NULL	 NUL
AJRD	AEROJET ROCKETD	2007	6342.45	NULL	 NUL
AJRD	AEROJET ROCKETD	2008	7088.62	NULL	 NUL
ATRO	ASTRONICS CORP	2006	1050.97	NULL	 NUL
HHS	HARTE-HANKS INC	2006	NULL	2473.75	 NUL
YORW	YORK WATER CO	2008	NULL	NULL	 2168
L					

AutoSuggest Results

-	method	full-accuracy	Rand-Index (RI)
-	Auto-Suggest	77%	0.87
	Affinity	42%	0.56
	Type-Rules	19%	0.55
	Min-Emptiness	46%	0.70
	Balanced-Cut	14%	0.55

Table 8: Pivot: splitting index/header columns.

method	full	column	column	column
methou	accuracy	precision	recall	F1
Auto-Suggest	67%	0.93	0.96	0.94
Pattern-similarity	21%	0.64	0.46	0.54
Col-name-similarity	27%	0.71	0.53	0.61
Data-type	44%	0.87	0.92	0.89
Contiguous-type	46%	0.80	0.83	0.81

 Table 9: Unpivot: Column prediction.

D. Koop, CSCI 640/490, Spring 2023

operator	groupby	join	concat	dropna	fillna	pivot	unpivot
percentage	33.3%	27.6%	12.2%	10.8%	9.6%	4.1%	2.4%

Table 10: Distribution of operators in data flows.

method	prec@1	prec@2	recall@1	recall@2
Auto-Suggest	0.72	0.79	0.72	0.85
RNN	0.56	0.68	0.56	0.77
N-gram model	0.40	0.53	0.40	0.66
Single-Operators	0.32	0.41	0.32	0.50
Random	0.23	0.35	0.24	0.42

Table 11: Precision for next operator prediction.

Assignment 3

- Same Salary Data
- Start with Pandas
- Hopefully Wrangler

D. Koop, CSCI 640/490, Spring 2023

Data Cleaning

Data Cleaning Types

- How can statistical techniques improve efficiency or reliability of data cleaning? (Data Cleaning with Statistics)
 - Example: Trifacta
- How how can we improve the reliability of statistical analytics with data cleaning? (Data Cleaning for Statistics)
 - Example: SampleClean

D. Koop, CSCI 640/490, Spring 2023

14

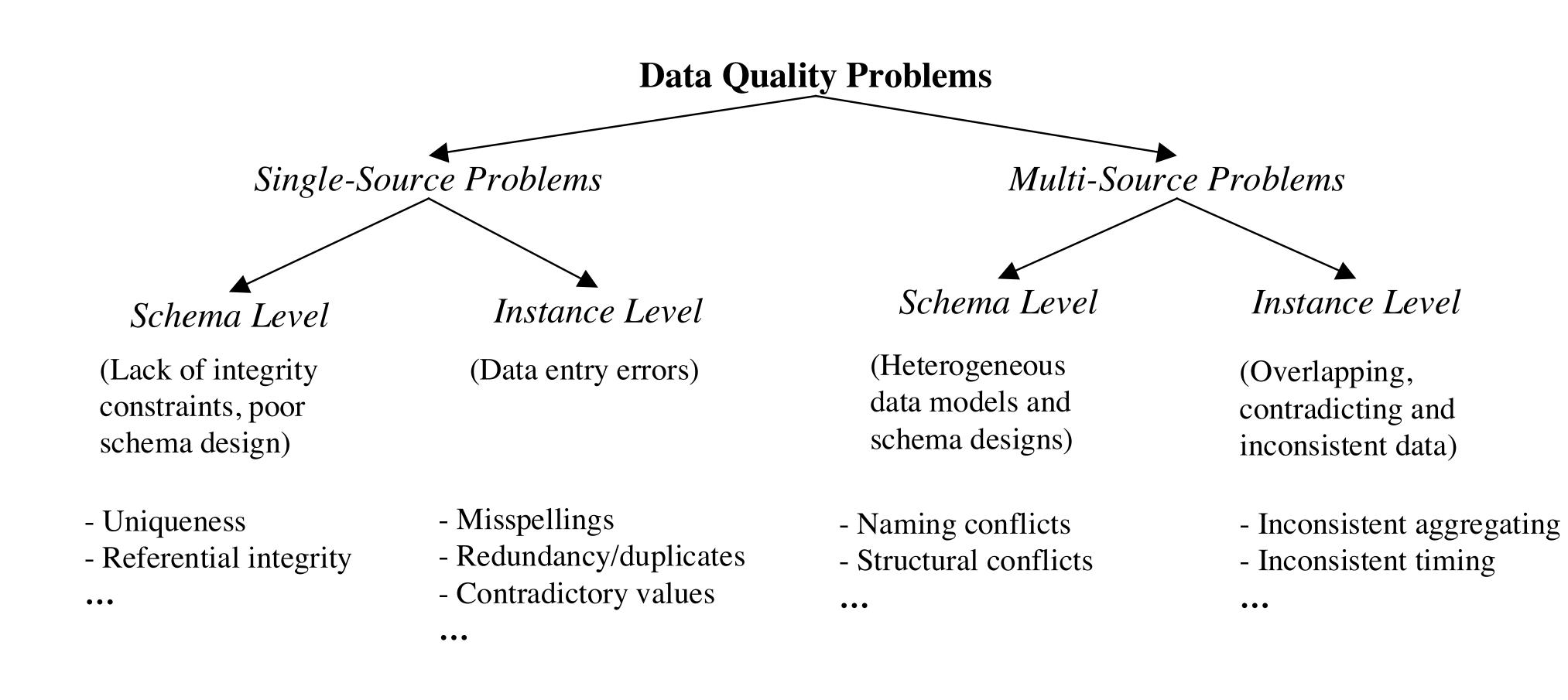
Misconceptions about Data Cleaning

- Surveyed Technology Professionals
- The end goal of data cleaning is clean data
- "We typically clean our data until the desired analytics works without error." Data cleaning is a sequential operation
 - "[It's an] iterative process, where I assess biggest problem, devise a fix, reevaluate. It is dirty work."
- Data cleaning is performed by one person
 - "There are often long back and forths with senior data scientists, devs, and the business units that provided the data on data quality."

Misconceptions about Data Cleaning

- Data quality is easy to evaluate
 - "I wish there were a more rigorous way to do this but we look at the models and guess if the data are correct"
 - "Other than common sense we do not have a procedure to do this" - "Usually [a data error] is only caught weeks later after someone notices."

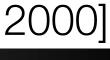
16


Data Cleaning

- Two key tasks:
 - Error Detection
 - Data Repairing

Classifying Data Quality Problems

D. Koop, CSCI 640/490, Spring 2023



Single-Source Schema Problems

Scope/Prob	lem	Dirty Data	Reasons/Remarks	
Attribute	Illegal values	bdate=30.13.70	values outside of domain range	
Record	Violated attribute	age=22, bdate=12.02.70	age = (current date - birth date)	
	dependencies		should hold	
Record	Uniqueness	emp ₁ =(name="John Smith", SSN="123456")	uniqueness for SSN (social security	
type	violation	emp ₂ =(name="Peter Miller", SSN="123456")	number) violated	
Source	Referential	emp=(name="John Smith", deptno=127)	referenced department (127) not defined	
	integrity violation			

Single-Source Instance Problems

Scope/Pro	blem	Dirty Data	Reasons/Remarks
Attribute	Missing values	phone=9999-999999	unavailable values during data entry (dummy values or null)
	Misspellings	city="Liipzig"	usually typos, phonetic errors
	Cryptic values, Abbreviations	experience="B"; occupation="DB Prog."	
	Embedded values	name="J. Smith 12.02.70 New York"	multiple values entered in one attribute (e.g. in a free-form field)
	Misfielded values	city="Germany"	
Record	Violated attribute dependencies	city="Redmond", zip=77777	city and zip code should correspond
Record type	Word transpositions	$name_1 = "J. Smith", name_2 = "Miller P."$	usually in a free-form field
	Duplicated records	$emp_1=(name="John Smith",);$ $emp_2=(name="J. Smith",)$	same employee represented twice due to some data entry errors
	Contradicting records	$emp_1=(name="John Smith", bdate=12.02.70);$ $emp_2=(name="John Smith", bdate=12.12.70)$	the same real world entity is described by different values
Source	Wrong references	emp=(name="John Smith", deptno=17)	referenced department (17) is defined but wrong

Multi-Source Schema & Instance Problems

Customer (source 1)

CID	Name	Street	City	Sex
11	Kristen Smith	2 Hurley Pl	South Fork, MN 48503	0
24	Christian Smith	Hurley St 2	S Fork MN	1

Client (source 2)

•••••	(~~~~~)				
Cno	LastName	FirstName	Gender	Address	Phone/Fax
24	Smith	Christoph	M	23 Harley St, Chicago IL, 60633-2394	333-222-6542 / 333-222-6599
493	Smith	Kris L.	F	2 Hurley Place, South Fork MN, 48503-5998	444-555-6666

Customers (integrated target with cleaned data)

No	LName	FName	Gender	Street	City	State	ZIP	Phone	Fax	CID	Cno
1	Smith	Kristen L.	F	2 Hurley	South	MN	48503-	444-555-		11	493
				Place	Fork		5998	6666			
2	Smith	Christian	M	2 Hurley	South	MN	48503-			24	
				Place	Fork		5998				
3	Smith	Christoph	M	23 Harley	Chicago	IL	60633-	333-222-	333-222-		24
				Street			2394	6542	6599		

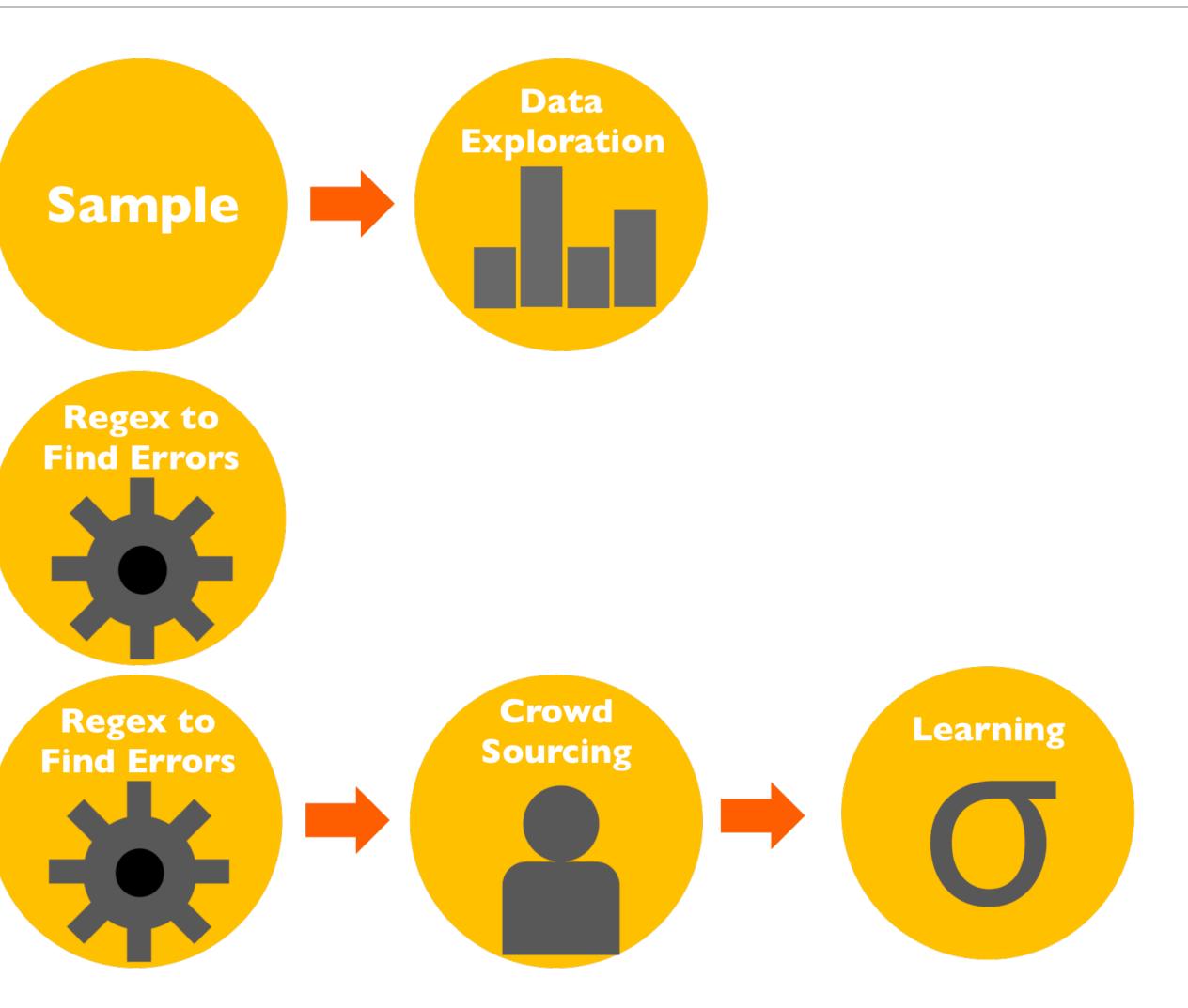
SampleClean (and Variants)

- Dirty Data?
 - Missing Values
 - Duplicate Values
 - Incorrect Values
 - Inconsistent Values
- Estimate query results using a sample of the data
- Two ideas:
 - Direct Estimate
 - Correction

Typical Data Cleaning Steps

Bad Data

Country	UN R/P	UN R/P	World Bank	WB Gini	CIA R/P
Afghanistan	4.1;4.2		27.8	2008	
Albania	7.2	4.8	29	2012	7.2
Algeria	9.6	6.1	35.3		1995,9.6


Bad Data

Country	UN R/P	UN R/P	World Bank	WB Gini	CIA R/P
Afghanistan	4.1;4.2		27.8	2008	
Albania	7.2	4.8	29	2012	7.2
Algeria	9.6	6.1	35.3		1995,9.6

Bad Data

Country	UN R/P	UN R/P	World Bank	WB Gini	CIA R/P
Afghanistan	4.1;4.2		27.8	2008	
Albania	7.2	4.8	29	2012	7.2
Algeria	9.6	6.1	35.3		1995,9.6

D. Koop, CSCI 640/490, Spring 2023

[sampleclean.org]

Dirty and Cleaned Data

(a) Dirty Data

id	title	pub_year	citation _count
t 1	CrowdDB	11	18
<i>t</i> 2	TinyDB	2005	1569
t 3	YFilter	Feb, 2002	298
<i>t</i> 4	Aqua		106
t 5	DataSpace	2008	107
t 6	CrowdER	2012	1
<i>t</i> 7	Online Aggr.	1997	687
•••	•••	•••	•••
t 10000	YFilter - ICDE	2002	298

D. Koop, CSCI 640/490, Spring 2023

(b) Cleaned Sample

id	title	pub_year	citation _count	#dup
<i>t</i> 1	CrowdDB	2011	144	2
<i>t</i> 2	TinyDB	2005	1569	1
t 3	YFilter	2002	298	2
<i>t</i> 4	Aqua	1999	106	1
t 5	DataSpace	2008	107	1
t 6	CrowdER	2012	34	1
t 7	Online Aggr.	1997	687	3

[J. Wang et al., 2014]

Two Sources of Error

- use samples to get an approximate result
- Now add dirty data
- Two sources of error:

If R is dirty, then there is a true relation R_{clean} . relation $\epsilon_c = Q(R_{clean}) - Q(R)$:

 $Q(R_{clean})$

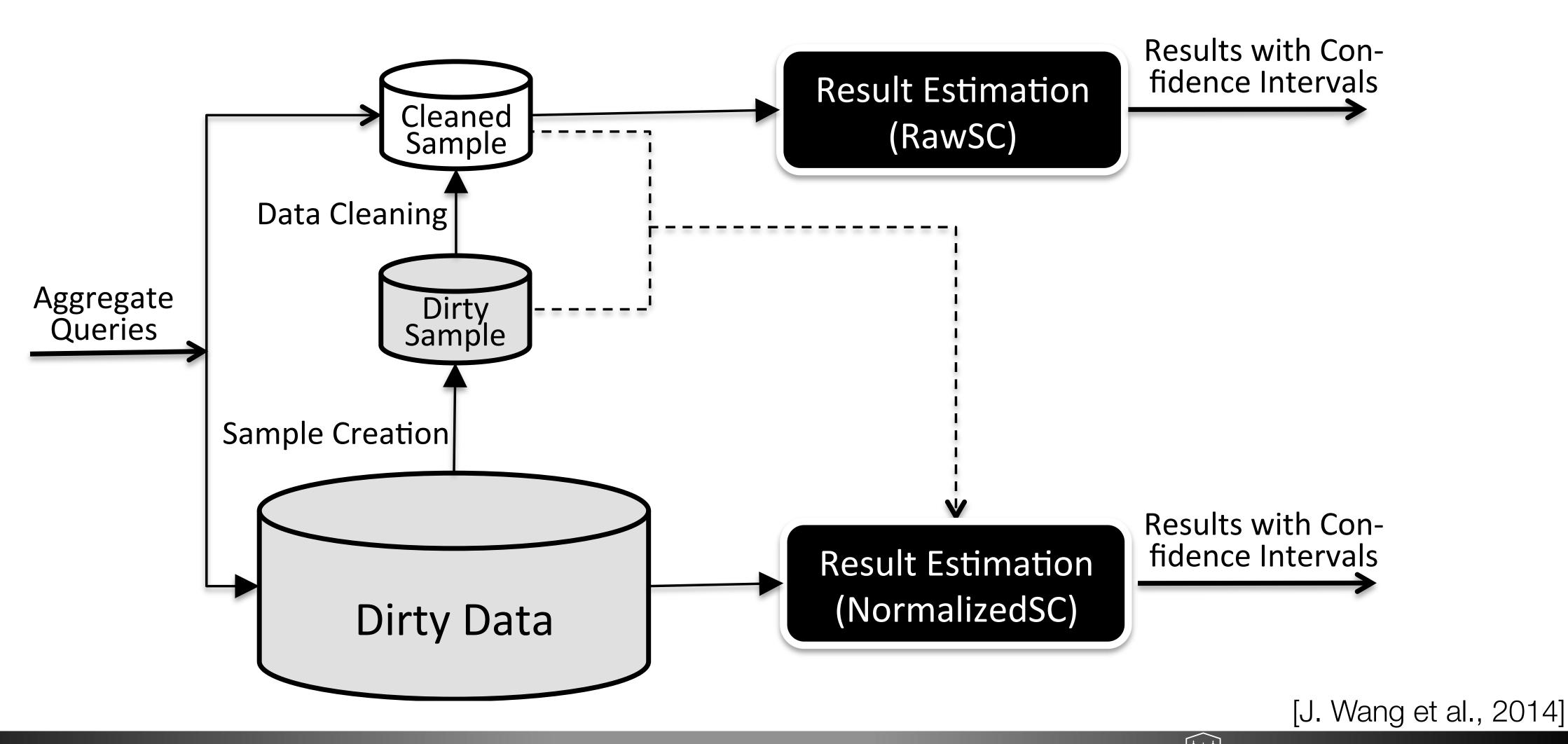
D. Koop, CSCI 640/490, Spring 2023

Approximate Query Processing (AQP): Don't process the entire dataset, but

 $Q(R_{clean}) \neq Q(R) \approx est = c \cdot Q(S)$

The error in est has two components: error due to sampling ϵ_s and error due to the difference with the cleaned

$$) - est \mid \leq \epsilon_s + \epsilon_c$$



SampleClean Framework

Types of Direct Estimation Errors

- Attribute Errors:
 - value of one attribute is wrong
 - affect a single row
 - does not affect sampling
- Duplication Errors
 - same items appear multiple times
 - those items are over-represented
 - count up duplicates and divide the influence

Direct Estimation with Errors

- 1. Given a sample S and an aggregation function $f(\cdot)$
- 3. Calculate the mean μ_c , and the variance σ_c^2 of $\phi_{clean}(S)$
- 4. Return $\mu_c \pm \lambda \sqrt{\frac{\sigma_c^2}{K}}$

D. Koop, CSCI 640/490, Spring 2023

2. Apply $\phi_{clean}(\cdot)$ to each $t_i \in S$ and call the resulting set $\phi_{clean}(S)$

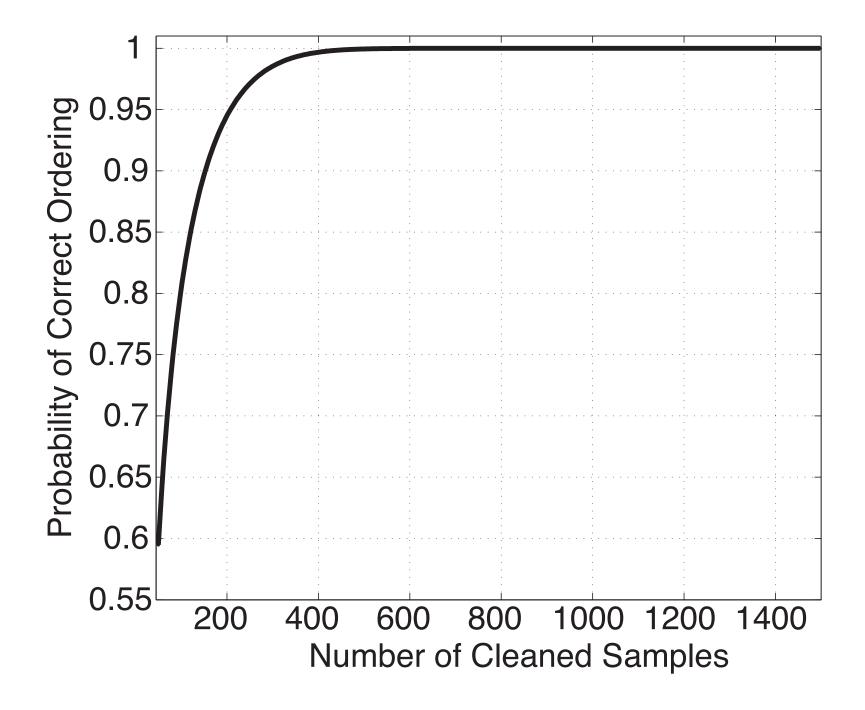
Correction with Data Errors

- 1. Given a sample S and an aggregation function $f(\cdot)$
- 3. Calculate the mean μ_q , and the variance σ_q of Q(S)

4. Return
$$(f(R) - \mu_q) \pm \lambda \sqrt{\frac{\sigma_q^2}{k}}$$

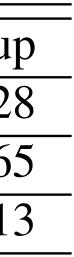
D. Koop, CSCI 640/490, Spring 2023

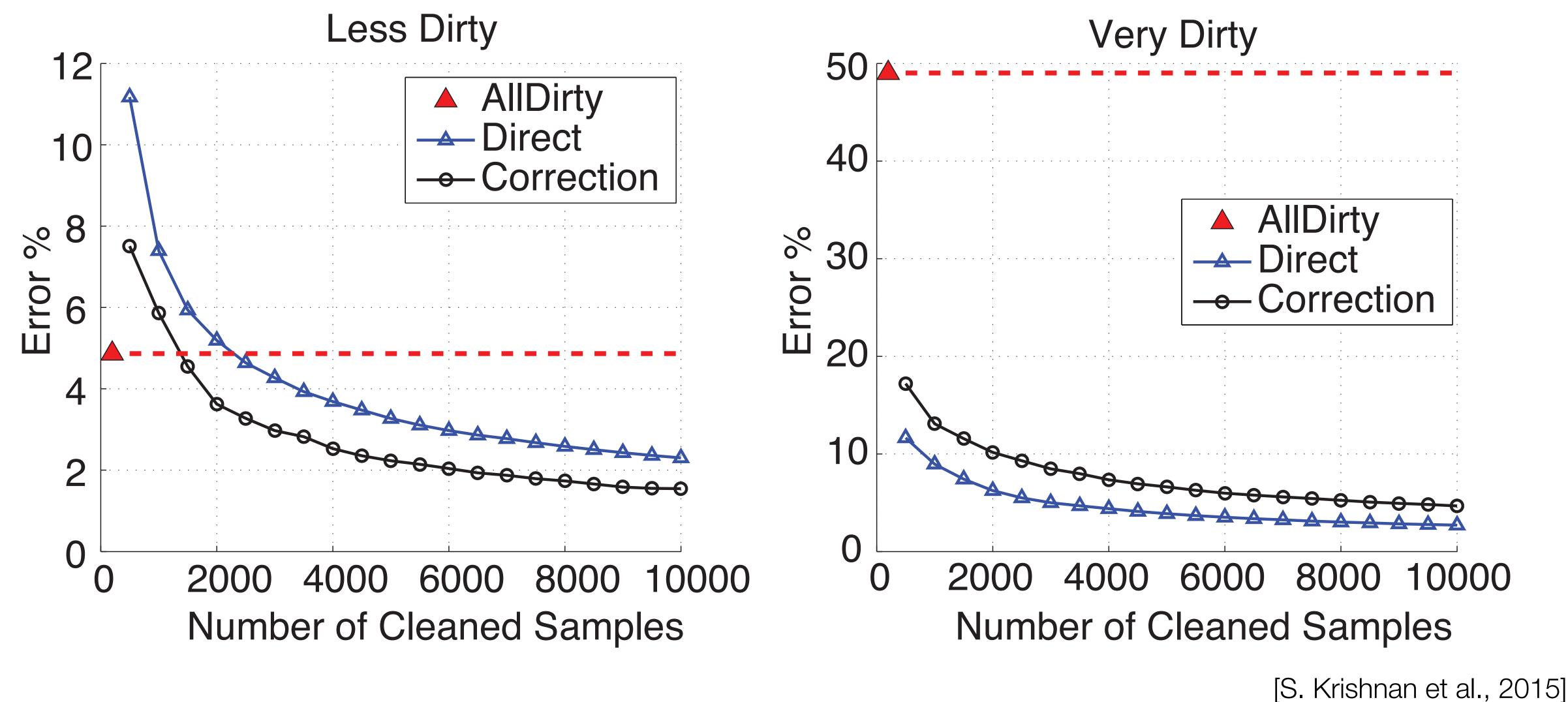
2. Apply $\phi(\cdot)$ and $\phi_{clean}(\cdot)$ to each $r_i \in S$ and call the set of differences Q(S).



Example

-	Name	Dirty	Clean	Pred %	Dup
-	Rakesh Agarwal	353	211	18.13%	1.28
-	Jeffery Ullman	460	255	05.00%	1.65
-	Michael Franklin	560	173	65.09%	1.13

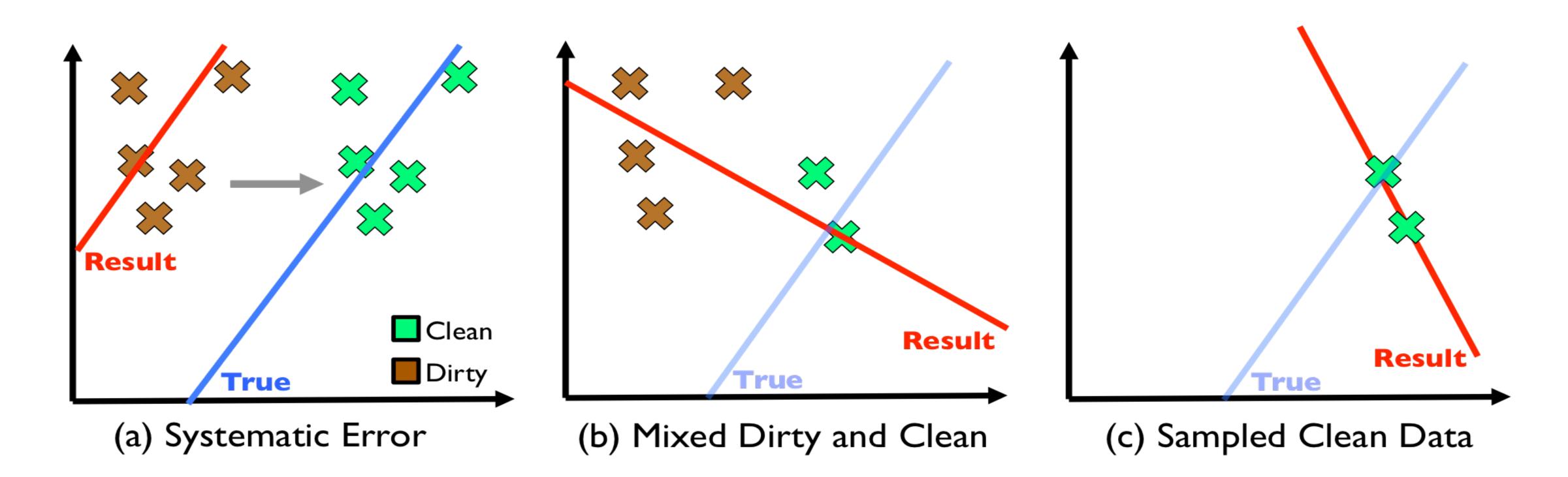




Comparing the Two Approaches

Notes

- Duplicate Problem
- Focuses on aggregate measures
- How do we actually clean the data?



Data Cleaning for Machine Learning

D. Koop, CSCI 640/490, Spring 2023

Problem: Simpson's Paradox

ActiveClean

- we want a **reliable** estimate of the **clean** model
 - reliable = bounded estimate
- Solution: Use stochastic gradient descent (uses sampling!)

D. Koop, CSCI 640/490, Spring 2023

• Given dirty data and a mapping from the data to a feature vector and label,

Machine Learning and Data Cleaning

- Data cleaning important for machine learning
 - Filter dirty Data
 - Make learning robust to noise (early stopping?)
- ...but machine learning can also help data cleaning
 - No need for rules, just learn

 - What about explainability?

- Can include lots of features like statistical properties, integrity constraints

HoloClean

- quantitative methods:
 - Qualitative: use integrity constraints or external data sources
 - Quantitative: use statistics of the data
- Driven by probabilistic inference. Users only need to provide a dataset to be cleaned and describe high-level domain specific signals.
- Can scale to large real-world dirty datasets and perform automatic repairs with high accuracy

A holistic data cleaning framework that combines qualitative methods with

Example: Input Data

(A) Input Database External Information (Chicago food inspections)

	DBAName	AKAName	Address	City	State	Zip	
t1	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL I	60608	Cont
t2	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60609	due t
t3	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL		
t4	Johnnyo's	Johnnyo's	3465 S Morgan ST	Cicago	IL	60608	
Does not obey → data distribution						to c2	

D. Koop, CSCI 640/490, Spring 2023

c1: DBAName \rightarrow Zip (B) Functional Dependencies c2: Zip \rightarrow

c3: City, Ste

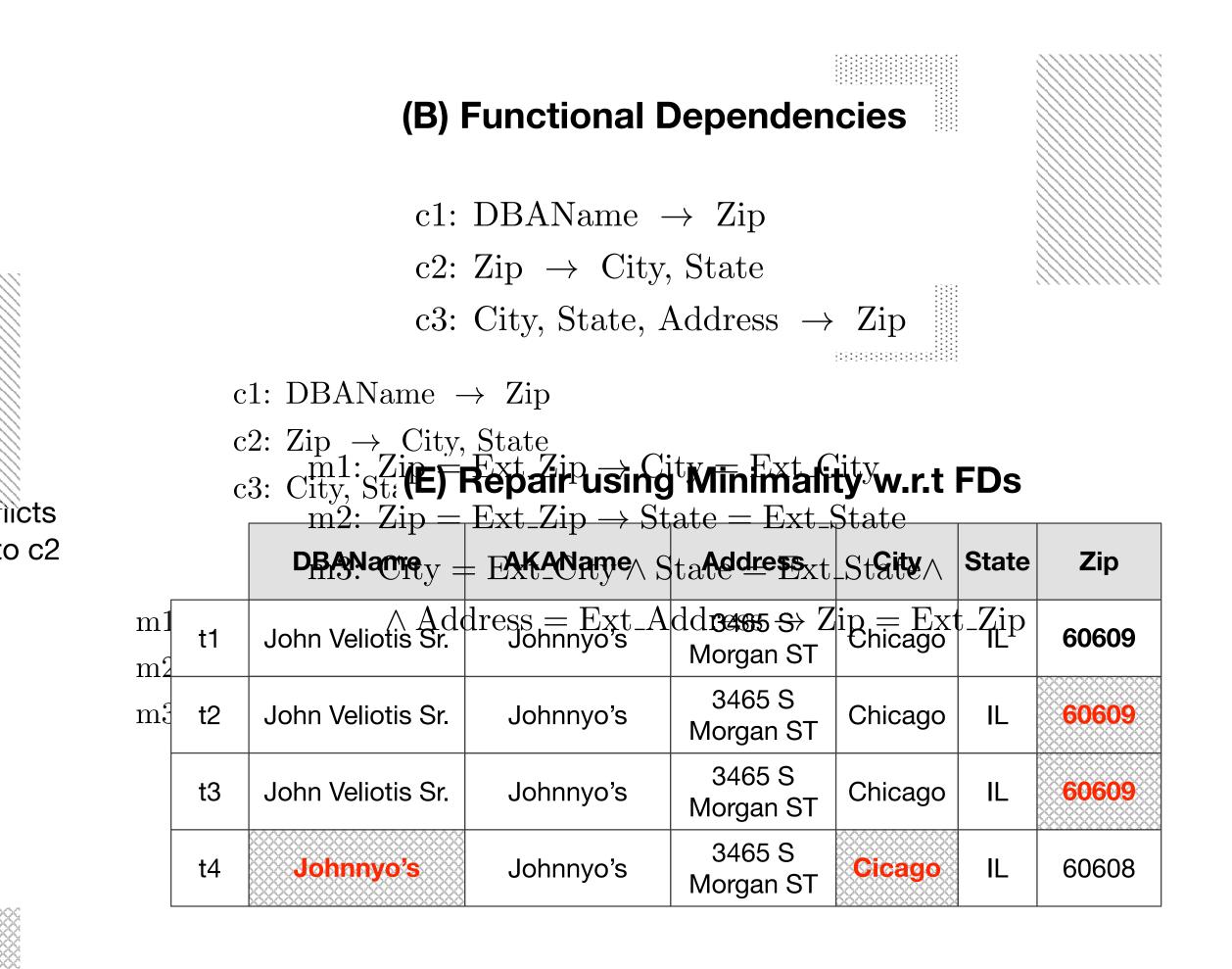
c1: DBAName \rightarrow Zip

c2: Zip \rightarrow City, State

m1: $Zip = Ext_Zip$ c3: City, State, Address \rightarrow Zip m2: $Zip = Ext_Zip \rightarrow State = Ext_State$ m3: City = Ext_City \land State = Ext_State \land $\wedge \operatorname{Address}_{\overline{m}1} \xrightarrow{Ext}_{ip} \xrightarrow{Address}_{ip} \xrightarrow{Zip} \xrightarrow{Ext}_{ip} \xrightarrow{Zip} \xrightarrow{Ext}_{ip} \xrightarrow{Zip} \xrightarrow{Ext}_{ip} \xrightarrow{Zip} \xrightarrow{Ext}_{ip} \xrightarrow{Zip} \xrightarrow{Ext}_{ip} \xrightarrow{Zip} \xrightarrow{Z$ m2: $Zip = Ext_Zip \rightarrow State = Ext_State$ m3: $City = Ext_City \land State = Ext_State \land$ $\land Address = Ext_Address \rightarrow Zip = Ext_Zip$

Northern Illinois University

icts o c2

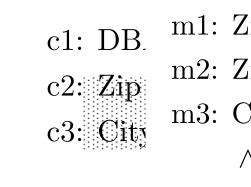

Example: Fixing via Minimality

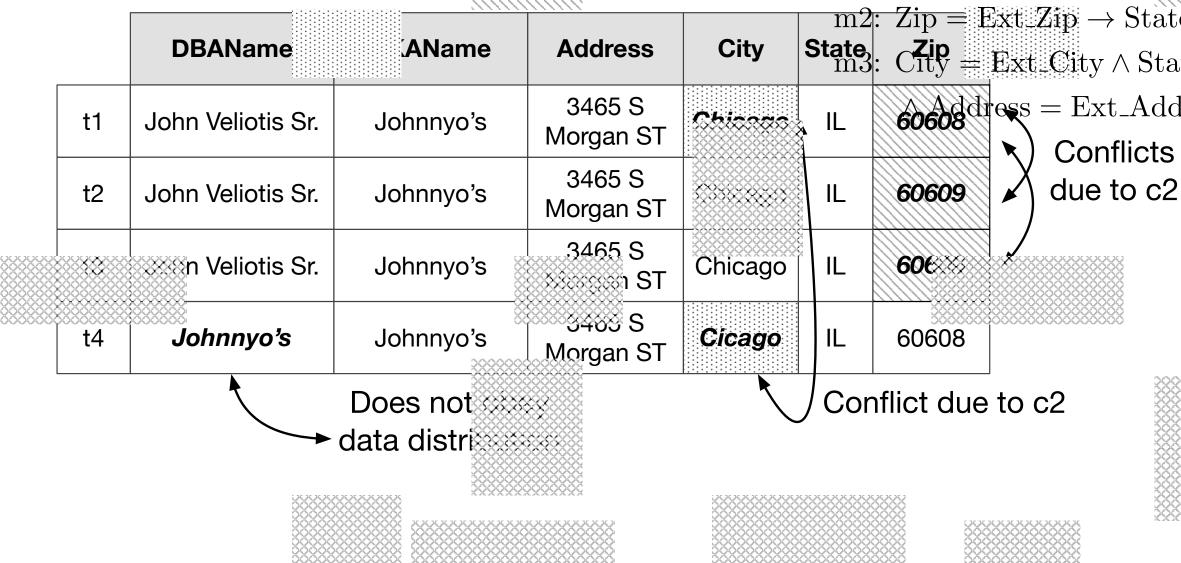
(A) Input Database External Inform (Chicago food inspections)

								111
	DBAName	AKAName	Address	City	State	Zip		
t1	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60608		
t2	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago		609		du
t3	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60609		
t4	Johnnyo's	Johnnyo's	3465 S Morgan ST	Cicago	IL	60608		
		Does not ob data distribut	5		Con	iflict due	e to c	2

Spring 2023

D. Koop, C





(A) Input Datab (Chicago

ternal Information nspections)

m1: $Zip = Ext_Zip \rightarrow 0$

3888888888888

D. Koop, CSCI 640/490, Spring 2023

c3: City, State, Address \rightarrow Zip

(C) Matching Dependencies

$Zip = Ext_Zip \rightarrow City = Ext_City$	DB	
$Zip = Ext_Zip \rightarrow State = Ext_State$	Zip	Ex
$City = Ext_City \land State = Ext_State \land$	Cit	
$\land \text{Address} = \text{Ext}_{Address} \rightarrow \text{Zip} = \text{Ext}_{Zip}$)	346
		12
$City = Ext_City$ m1: Zip =	= Ext	
State = Ext_State_{c1} : DBAName $\xrightarrow{m2}$ Zip_{ij}	= Ext	259
$\$ State = Ext_StateA c2: Zip \rightarrow City, State	e Ex	C
$Address \rightarrow Zip = Ext Zip Address \rightarrow Zip = City, State, Address \rightarrow Zip = Cit$	ldres ss —,	

(D) External Information (Address listings in Chicago)

Ext_Address	Ext_City	Ext_State	Ext_Zip
3465 S Morgan ST	Chicago	IL	60608
1208 N Wells ST	Chicago	IL	60610
259 E Erie ST	Chicago	IL	60611
2806 W Cermak Rd	Chicago	IL	60623

(F) Repair using Matching Dependencies

m1:		DBAName	AKAName	Address	City	State	Zip
m2: m3:	t1	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60608
	t2	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60608
	t3	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60608
	t4	Johnnyo's	Johnnyo's	3465 S Morgan ST	Chicago	IL	60608

C1: DBAName - Zip Example: Fixing in Address - Zip

m1: $Zip = Ext_Zip \rightarrow City = Ext_City$ m2: $Zip = Ext_Zip \rightarrow State = Ext_State$ m3: City = Ext_City \land State = Ext_State \land $\wedge \text{Address} = \text{Ext}_{\text{Address}} \rightarrow \text{Zip} = \text{Ext}_{\text{Zip}}$

(A) Input Database External Information (Chicago food inspections)

D. Koop, CSCI 640/490, Spring 2023

(G) Repair that leverages Quantitative Statistics

		DBAName	AKAName	Address	City	State	Zip
	t1	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60608
	t2	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60609
m1:	t3	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60609
m2: m3:	t4	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60608

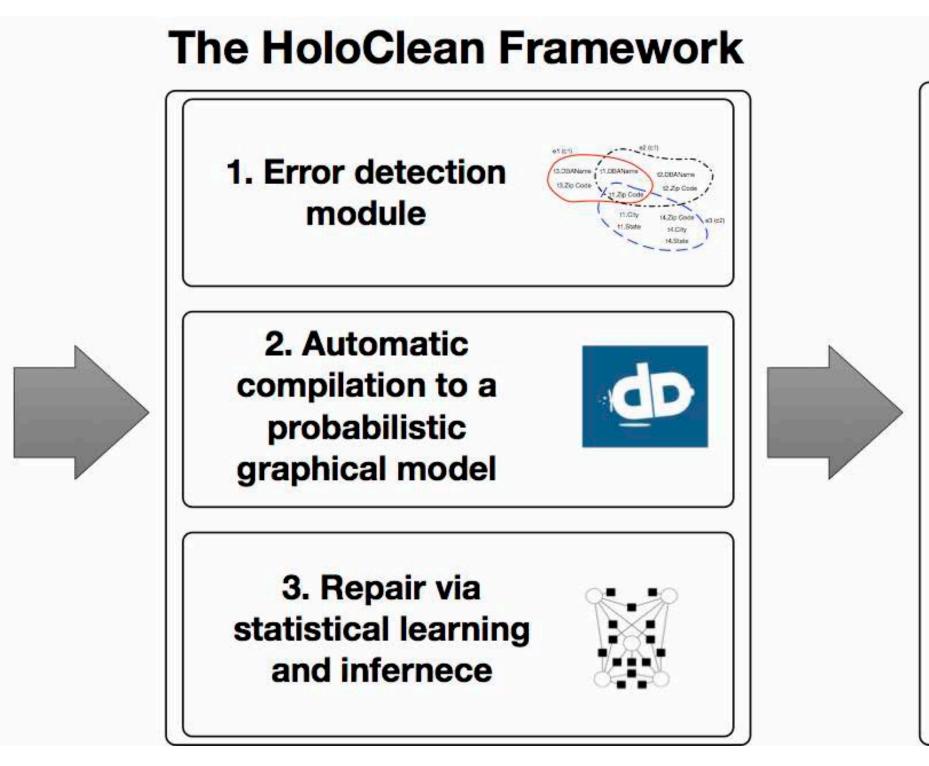
 $\wedge \text{Address} = \text{Ext}_{\text{Address}} \rightarrow \text{Zip} = \text{Ext}_{\text{Zip}}$

HoloClean

Input

	Dataset to be cleaned					
	DBAName	Address	City	State	Zip	
t1	John Veliotis Sr.	3465 S Morgan ST	Chicago	IL	60608	
t2	John Veliotis Sr.	3465 S Morgan ST	Chicago	IL	60609	
t3	John Veliotis Sr.	3465 S Morgan ST	Chicago	IL	60609	
t4	Johnnyo's	3465 S Morgan ST	Cicago	ΪL	60608	

Denial Constraints


- c1: DBAName \rightarrow Zip
- c2: Zip \rightarrow City, State
- c3: City, State, Address \rightarrow Zip

Matching Dependencies

m1: $Zip = Ext_Zip \rightarrow City = Ext_City$ m2: $Zip = Ext_Zip \rightarrow State = Ext_State$ m3: $City = Ext_City \land State = Ext_State \land$ $\land Address = Ext_Address \rightarrow Zip = Ext_Zip$

External Information

Ext_Address	Ext_City	Ext_State	Ext_Zip
3465 S Morgan ST	Chicago	IL	60608
1208 N Wells ST	Chicago	IL	60 <mark>61</mark> 0
259 E Erie ST	Chicago	IL	60611
2806 W Cermak Rd	Chicago	IL	60623

D. Koop, CSCI 640/490, Spring 2023

Output


	Proposed Cleaned Dataset					
	DBAName	Address	City	State	Zip	
t1	John Veliotis Sr.	3465 S Morgan ST	Chicago	IL	60608	
t2	John Veliotis Sr.	3465 S Morgan ST	Chicago	IL	60608	
t3	John Veliotis Sr.	3465 S Morgan ST	Chicago	1L	60608	
t4	John Veliotis Sr.	3465 S Morgan ST	Chicago	IL	60608	

Marginal Distribution of Cell Assignments

Cell	Possible Values	Probability
+0 7im	60608	0.84
t2.Zip	60609	0.16
	Chicago	0.95
t4.City	Cicago	0.05
	John Veliotis Sr.	0.99
t4.DBAName	Johnnyo's	0.01

Data Cleaning in pandas

D. Koop, CSCI 640/490, Spring 2023

Handling Missing Data

- Filtering out missing data:
 - Can choose rows or columns
- Filling in missing data:
 - with a default value
 - with an interpolated value
- In pandas:

Argument	Description
dropna	Filter axis labels based on whether values for much missing data to tolerate.
fillna	Fill in missing data with some value or using
isnull	Return boolean values indicating which value
notnull	Negation of isnull.

D. Koop, CSCI 640/490, Spring 2023

r each label have missing data, with varying thresholds for how

an interpolation method such as 'ffill' or 'bfill'. es are missing/NA.

[W. McKinney, Python for Data Analysis]

Filling in missing data

• fillna arguments:

Argument	Description
value	Scalar value or dict-like object
method	Interpolation; by default 'ff
axis	Axis to fill on; default axis=
inplace	Modify the calling object with
limit	For forward and backward fill

D. Koop, CSCI 640/490, Spring 2023

- ct to use to fill missing values
- fill' if function called with no other arguments
- =0
- hout producing a copy
- lling, maximum number of consecutive periods to fill

[W. McKinney, Python for Data Analysis]

44

Filtering and Cleaning Data

- Find duplicates
 - duplicated: returns boolean Series indicating whether row is a duplicate first instance is **not marked** as a duplicate
- Remove duplicates:
 - drop duplicates: drops all rows where duplicated is True - keep: which value to keep (first or last)
- Can pass specific columns to check for duplicates, e.g. check only key column

Changing Data

- Convert strings to upper/lower case
- Convert Fahrenheit temperatures to Celsius
- Create a new column based on another column

```
In [56]: lowercased
Out[56]:
                                meat_to_animal = {
0
           bacon
     pulled pork
                                  'bacon': 'pig',
1
2
           bacon
                                  'pulled pork': 'pig',
3
        pastrami
                                  'pastrami': 'cow',
     corned beef
4
                                  'corned beef': 'cow',
           bacon
5
                                  'honey ham': 'pig',
        pastrami
6
                                  'nova lox': 'salmon'
       honey ham
        nova lox
Name: food, dtype: object
```

D. Koop, CSCI 640/490, Spring 2023

<pre>In [57]: data['animal'] = lowercased.map(meat_to_animal)</pre>									
In [58]: data Out[58]:									
	food	ounces	animal						
0	bacon	4.0	pig						
1	pulled pork	3.0	pig						
2	bacon	12.0	pig						
3	Pastrami	6.0	COW						
4	corned beef	7.5	COW						
5	Bacon	8.0	pig						
6	pastrami	3.0	COW						
7	honey ham	5.0	pig						
8	nova lox	6.0	salmon						

[W. McKinney, Python for Data Analysis]

Replacing Values

- fillna is a special case
- What if –999 in our dataset was identified as a missing value?

In	[61]: data	In [62]:	
Out	[<mark>61</mark>]:	Out[62]:	
0	1.0	$oldsymbol{O}$	
1	-999.0	1	
2	2.0	2	
3	-999.0	3	
4	-1000.0	4 -100	
5	3.0	5	
dty	pe: float64	dtype: f	

Can pass list of values or dictionary to change different values

D. Koop, CSCI 640/490, Spring 2023

```
: data.replace(-999, np.nan)
```

```
1.0
```

```
NaN
```

```
2.0
```

```
NaN
```

```
00.0
```

```
3.0
```

```
float64
```


Clamping Values

<pre>In [93]: data.describe()</pre>								
Out[93]:								
	Ο	1	2	3				
count	1000.000000	1000.000000	1000.000000	1000.000000				
mean	0.049091	0.026112	-0.002544	-0.051827				
std	0.996947	1.007458	0.995232	0.998311				
min	-3.645860	-3.184377	-3.745356	-3.428254				
25%	-0.599807	-0.612162	-0.687373	-0.747478				
50 %	0.047101	-0.013609	-0.022158	-0.088274				
75%	0.756646	0.695298	0.699046	0.623331				
max	2.653656	3.525865	2.735527	3.366626				

D. Koop, CSCI 640/490, Spring 2023

Values above or below a specified thresholds are set to a max/min value

```
In [97]: data[np.abs(data) > 3] = np.sign(data) * 3
In [98]: data.describe()
Out[98]:
                                            2
                                                          3
                 0
                               1
       1000.000000
                    1000.000000
                                  1000.000000
                                               1000.000000
count
                                                 -0.051765
          0.050286
                       0.025567
                                    -0.001399
mean
          0.992920
                                     0.991414
                                                  0.995761
std
                       1.004214
         -3.000000
                                    -3.000000
min
                       -3.000000
                                                 -3.000000
25%
         -0.599807
                       -0.612162
                                    -0.687373
                                                 -0.747478
          0.047101
                       -0.013609
                                    -0.022158
                                                  -0.088274
50%
75%
                       0.695298
          0.756646
                                     0.699046
                                                  0.623331
          2.653656
                       3.000000
                                     2.735527
                                                  3.000000
max
```