Advanced Data Management (CSCI 680/490)

Data Transformation

Dr. David Koop

Comma-separated values (CSV) Format

- Comma is a field separator, newlines denote records
 - a,b,c,d,message 1,2,3,4,hello 5, 6, 7, 8, world 9,10,11,12,foo
- May have a header (a, b, c, d, message), but not required
- No type information: we do not know what the columns are (numbers, strings, floating point, etc.)
 - Default: just keep everything as a string
- Type inference: Figure out the type to make each column based on values What about commas in a value? \rightarrow double quotes

2

Reading/Writing CSV with pandas

- Read: df = pd.read csv(<path>)
- Write: df.to csv(<path>)
- Parameters:
 - sep (Or delimiter): the delimiter (', ', '', '\t', '\s+')
 - header: if None, no header
 - names: list of header names (e.g. if the file has no header)
 - skiprows: number of list of lines to skip

Reading/Writing CSV with DuckDB

- Importing:
 - read csv method with parameters for delimter, header, etc. - read csv auto automatically infer these parameters - CREATE TABLE ontime AS SELECT * FROM

 - read csv auto('flights.csv');
- Exporting:
 - Use the COPY function
 - COPY tbl TO 'output.csv' (HEADER, DELIMITER ', ');

JavaScript Object Notation (JSON)

- A format for web data
- Looks very similar to python dictionaries and lists
- Example:
 - { "name": "Wes", "places lived": ["United States", "Spain", "Germany"], "pet": null,
- "siblings": [{"name": "Scott", "age": 25, "pet": "Zuko"}, {"name": "Katie", "age": 33, "pet": "Cisco"}] } Only contains literals (no variables) but allows null
- Values: strings, arrays, dictionaries, numbers, booleans, or null
 - Dictionary keys must be strings
 - Quotation marks help differentiate string or numeric values

Parquet

- "Open source, column-oriented data file format designed for efficient data storage and retrieval" [parquet.apache.org]
- Available in multiple languages including python
- Binary format
- Column-oriented: can read a column at a time (e.g. from the cloud) Self-describing (schema can be embedded)
- Supports compression

Dataset	Columns	Size on Amazon S3	Data scanned	Cost (1TB = \$5)
Data stored as CSV file	4	4TB	4TB	\$20
Data stored as GZIP CSV file	4	1TB	1TB	\$5
Data stored as Parquet file	4	1TB	0.25TB	\$1.25

Parquet Support

- Pandas:
 - Install pyarrow
 - df = pd.read_parquet('input.parquet')
 - df.to_parquet('output.parquet')
- DuckDB
 - CREATE TABLE new_tbl AS SELECT * FROM read_parquet('input.parquet');
 - COPY tbl TO 'output.parquet' (FORMAT PARQUET);

t.parquet' uet')

7

TDE: Transform Data by Example

С	D
Transaction Date	output
Wed, 12 Jan 2011	2011-01-12-Wednesday
Thu, 15 Sep 2011	2011-09-15-Thursday
Mon, 17 Sep 2012	
2010-Nov-30 11:10:41	
2011-Jan-11 02:27:21	
2011-Jan-12	
2010-Dec-24	
9/22/2011	
7/11/2012	
2/12/2012	

С	D	Transform Data by Example
Transaction Date	output	=
Wed, 12 Jan 2011	2011-01-12-Wednesday	Show Instructions Get Transformations
Thu, 15 Sep 2011	2011-09-15-Thursday	> + <i>F</i>
Mon, 17 Sep 2012	2012-09-17-Monday	System.DateTime Parse(System.String)
2010-Nov-30 11:10:41	2010-11-30-Tuesday	System.Convert ToDateTime(System.String)
2011-Jan-11 02:27:21	2011-01-11-Tuesday	> ¥ \$
2011-Jan-12	2011-01-12-Wednesday	DateFormat.Program Parse(System.String)
2010-Dec-24	2010-12-24-Friday	
9/22/2011	2011-09-22-Thursday	
7/11/2012	2012-07-11-Wednesday	
2/12/2012	2012-02-12-Sunday	© Microsoft Privacy Terms Feedback

Transform by Pattern (TBP)

- Focus on non-technical users
- More general than Transform by Example
- No need for paired examples
- Use Cases:
 - Auto-Unify: Unify data in different formats
 - Auto-Repair: Fix data quality issues
- Example (Auto-Unify):
 - $P_{S} = <|etter>{3}. <digit>{2},$ <digit>{4}
 - $P_T = \langle digit \rangle \{4\} \langle digit \rangle \{2\} \langle digit \rangle \{2\}$

S-timestamp 💂	S-phone 🗸	S-coordinates
2019-12-23	(425) 882-8080	(38°57'N, 95°15'W
2019-12-24	(425) 882-8080	(38°61'N, 95°21'W
2019-12-23	(206) 876-1800	(39°19'N, 95°18'W
2019-12-24	(206) 876-1800	(39°26'N, 95°23'W
2019-12-23	(206) 903-8010	(39°42'N, 96°38'W
R-timestamp	R-phone	R-coordinates
R-timestamp Nov. 16 2019	R-phone € 50-853-1300	R-coordinates N37°31' W122°14
	-	
Nov. 16 2019	650-853-1300	N37°31′ W122°14
Nov. 16 2019 Nov. 17 2019	650-853-1300 650-853-1300	N37°31' W122°14 N37°18' W122°19
Nov. 16 2019 Nov. 17 2019 Nov. 16 2019	650-853-1300 650-853-1300 425-421-1225	N37°31' W122°14 N37°18' W122°19 N37°48' W122°17

TBP Use Cases

Auto-Unify

S-timestamp 🗖	S-phone	S-coordinates
2019-12-23	(425) 882-8080	(38°57'N, 95°15'W)
2019-12-24	(425) 882-8080	(38°61'N, 95°21'W)
2019-12-23	(206) 876-1800	(39°19'N, 95°18'W)
2019-12-24	(206) 876-1800	(39°26'N, 95°23'W)
2019-12-23	(206) 903-8010	(39°42'N, 96°38'W)
R-timestamp 🚽	R-phone 🖉	R-coordinates 💂
Nov. 16 2019	650-853-1300	N37°31' W122°14'
Nov. 17 2019	650-853-1300	N37°18' W122°19'
Nov. 16 2019	425-421-1225	N37°48' W122°17'
Nov. 17 2019	425-421-1225	N37°60' W123°08'
Nov. 16 2019	650-253-0827	N37°01' W123°72'

• Auto-Repair

Year	Artist	Issue Price (BU)		
1989	John Mardon	\$16.25		
1990	D.J. Craig	\$16.75		
1991	D.J. Craig	\$16.75		
1992	Karsten Smith	17.50		
1993	Stewart Sherwood	\$17.50		
1994	lan D. Sparkes	\$17.95		
(b) EN_Wiki Currency values				

(b) EN-Wiki: Currency values

D. Koop, CSCI 640/490, Spring 2023

Women's winner	Time +
Anikó Kálovics	2:31:24
Lenah Cheruiyot	2:27:02
Lenah Cheruiyot	2:33.44
Emily Kimuria	2:28.42
Jane Ekimat	2:32.08
c)	EN-

wiki:time

#	Original air date ^[1]		
12	March 23, 2008		
13	March 30, 2008		
14	April 6, 2008		
15	13 April 2008		
16	20 April 2008		
(d) EN-Wiki: Date			

TBP Programs and Triples


Table 1: An example repository of TBP programs (P_s, P_t) can be used to auto-unify the two tables shown in Figure 2.

	cu to auto-unity the two tables shown in Figure 2.		
TBP-id	Source-pattern (P_s)	Target-pattern (P_t)	(T)
TBP-1	<letter>{3}. <digit>{2}, <digit>{4}</digit></digit></letter>	<digit>{4}-<digit>{2}-<digit>{2}</digit></digit></digit>	
TBP-2	<pre>(<digit>{3}) <digit>{3}-<digit>{4}</digit></digit></digit></pre>	<letter>{3}-<digit>{3}-<digit>{4}</digit></digit></letter>	
TBP-3	<pre>(<digit>+°<num>'<letter>{1}, <digit>+°<num>'<letter>{1})</letter></num></digit></letter></num></digit></pre>	<letter>{1}<digit>+°<num>′ <letter>{1}<digit>+°<num>′</num></digit></letter></num></digit></letter>	•••
	•••	•••	•••
TBP-7	<digit>{4}/<digit>{2}/<digit>{2}</digit></digit></digit>	<letter>{3} <digit>{2}</digit></letter>	•••
TBP-8	<num> kg</num>	<num> lb</num>	•••
TBP-9	<num> lb</num>	<num> lb <num> oz</num></num>	•••
	•••	•••	•••
TBP-15	<num> kg</num>	<num>公斤</num>	•••
TBP-16	<letter>+ de <digit>{4}</digit></letter>	<digit>{4}</digit>	
•••	•••	•••	

CCT-id	Input-column (C)	Output-column (C')	Program (T)
CCT-1	(C_1) "Born" = {"02/22/1732", "10/30/1735", … }	(C_1') "Date of birth" = {"February 22, 1732", }	Listing 1
CCT-2	(C_2) "Date of birth" = {"February 22, 1732", }	(C'_2) "Born" = {"02/22/1732", "10/30/1735", }	• • •
CCT-3	(C_3) "Died" = {"02/14/1799", "07/04/1826", }	(C'_3) "Date of birth" = {"February 22, 1732", }	
CCT-4	(C_4) "Date" = {"11/01/2019", "12/01/2019", }	(C_4') "Date-2" = {"November 01, 2019", }	Listing 1
	•••	•••	
CCT-9	(C_9) "Name" = {"Washington, George", "Adam, John", }	(C_9') "Date of birth" = {"February 22, 1732", }	Ø
	•••	•••	

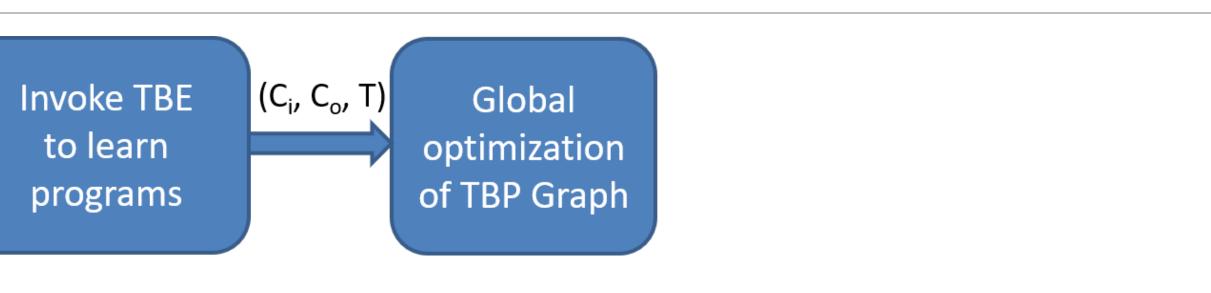
(t, T), where	each line i	s a TBP	program.	The first	three program	ns
2.						

Learning TBP Programs

- User Logs
 - Similar to Search Engines
 - (Privacy Issues)
- Tables
 - Find common tables whose rows can be linked
 - Link Wikipedia tables across languages
 - Obtain different data formats and abbreviations that can be used as patterns

TBP Learning from Tables

Table Corpus		
	Pair & Link	
	Related	
	Table-Cols	


T₁	Name	#	Born	Died
-	Washington, George	USA President (1)	02/22/1732	12/14/1799
	Adams, John	USA President (2), VP (1)	10/30/1735	07/04/1826
	Jefferson, Thomas	USA President (3), VP (2)	04/13/1743	07/04/1826
	Madison, James	USA President (4)	03/16/1751	06/28/1836
	Monroe, James	USA President (5)	04/28/1758	07/04/1851

 T_3

_									1		
30	George Washing	on –	57y, 10d	22.02.1732	14.12.1799	T ₄	1.	George Washington	Virginia	Feb. 22, 1732	Dec. 14, 17
31	John Quincy Ada	ms Nat-Rep	57y, 7m, 20d	11.07.1767	23.02.1848	I	3.	Thomas Jefferson	Virginia	Apr. 13, 1743	July 4, 182
32	. Thomas Jefferso	Dem-Rep	57y, 10m, 18d	13.04.1743	04.07.1826		4	James Madison	Virginia	Mar. 16, 1751	June 28, 18
33	James Madison	Dem-Rep	57y, 11m, 15d	16.03.1751	28.06.1836		6				
34	James Monroe	Dem-Rep	58y, 10m, 3d	28.04.1758	04.07.1831		0.	John Quincy Adams	Massachusetts	July 11, 1767	Feb. 23, 18


	-
	_
	-
_	
	-

	Name and		State of				Age at	Age at	Т ₆	PRESIDENT	BIRTH DATE	BIRTH PLACE	DEATH DATE	LOCATION OF DEATH
	(party) ¹	Term	birth	Born	Died	Religion ²	inaug.	death		George Washington	Feb 22, 1732	Westmoreland Co., Va.	Dec 14, 1799	Mount Vernon, Va.
1.	Washington (F) ³	1789–1797	Va.	2/22/1732	12/14/1799	Episcopalian	57	67						
2.	J. Adams (F)	1797–1801	Mass.	10/30/1735	7/4/1826	Unitarian	61	90		John Adams	Oct 30, 1735	Quincy, Mass.	July 4, 1826	Quincy, Mass.

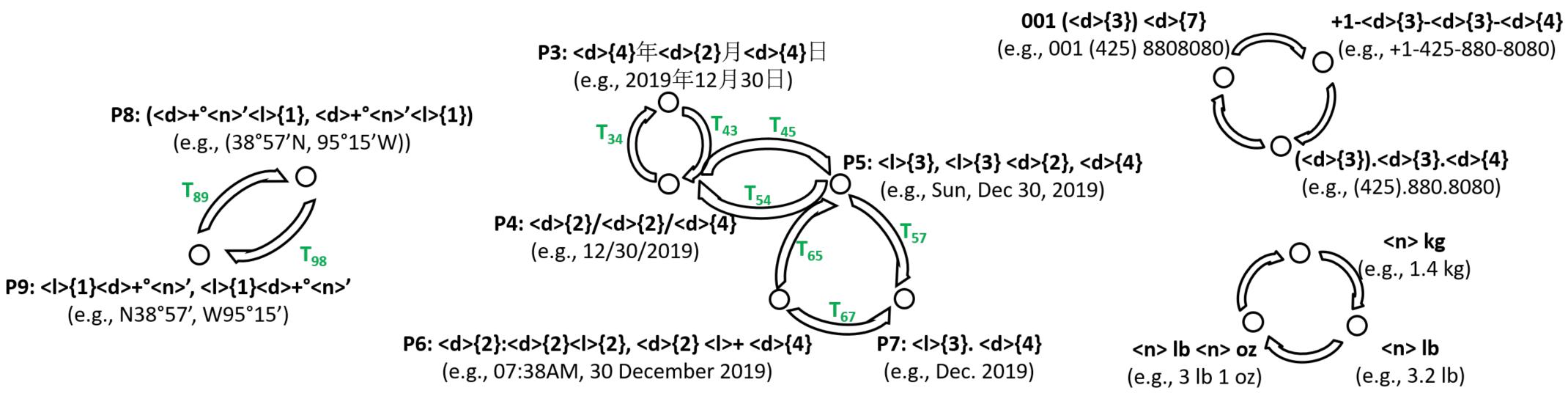
1 ₂	Date of birth 🔺	President 🗢	Birthplace ¢	State [†] of birth ¢	
	February 22, 1732	George Washington	Westmoreland County	Virginia†	
	October 30, 1735	ober 30, 1735 John Adams		Massachusetts†	

Generating Patterns

- Generate potential regex patterns
- Want more general patterns
- Can be too general: <num><symbol><num><symbol><num>
- Want high "coverage" and high "accuracy"

D. Koop, CSCI 640/490, Spring 2023

• (<digits>/<digits>/<digits> VS. <digits>/<digits>)



Graph Pattern Relationships

- Lossless inverses: can go back and forth
- matches the output of apply two other transformations in sequence

D. Koop, CSCI 640/490, Spring 2023

• Triangular equivalent programs: applying one transformation on a column

Experiment Results

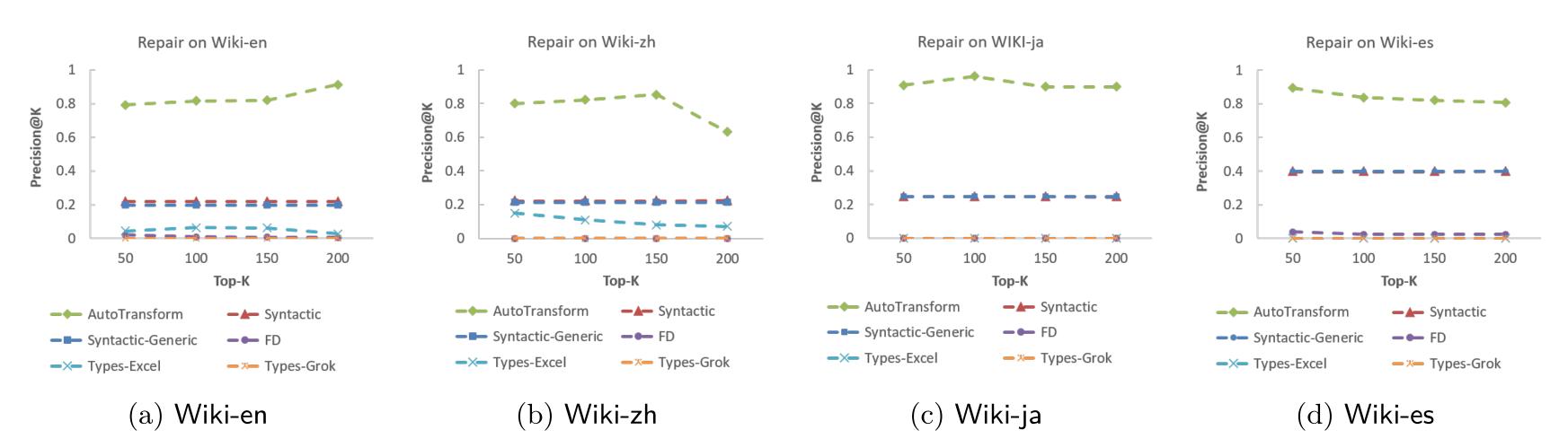


Figure 10: Quality of repairs on Wiki-en, Wiki-zh, Wiki-ja, Wiki-es, using TBP programs learned from corresponding corpus.

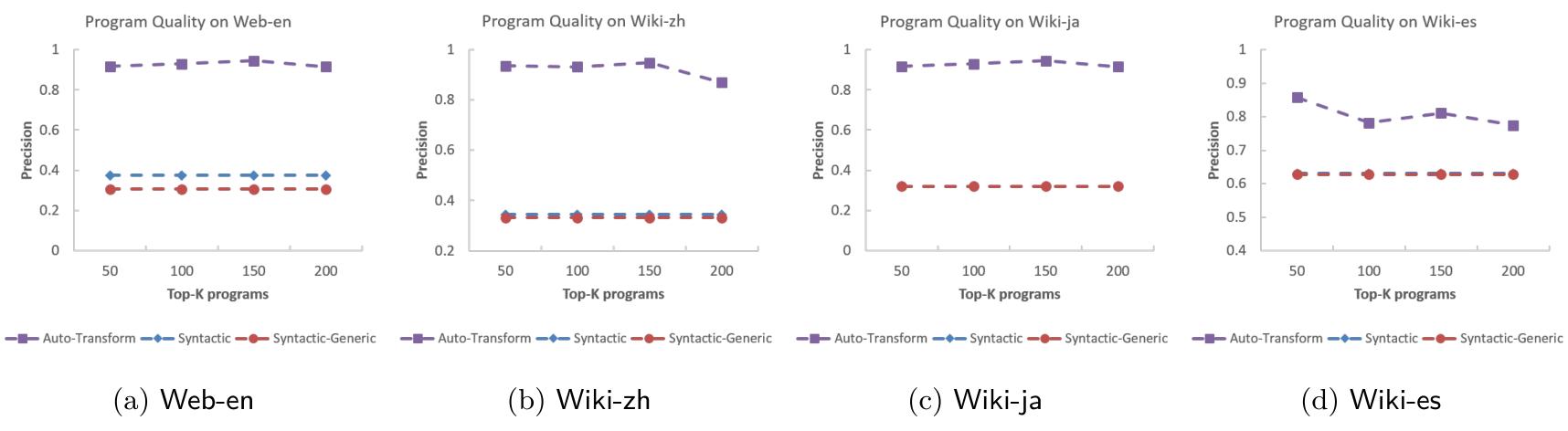


Figure 11: Quality of TBP programs produced on Web-en, Wiki-zh, Wiki-ja, Wiki-es, respectively.



Questions/Discussion?

Questions/Discussion?

- Strong focus on dates in examples
- Does this help the analyst who has specific types of data and formats?
- How does this relate to programmatic means of wrangling?

D. Koop, CSCI 640/490, Spring 2023

specific types of data and formats? Atic means of wrangling?

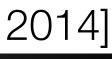
Test 1

- Monday, Feb. 27
- In-class, 9:30-10:45am
- Format:
 - Multiple Choice
 - Free Response
- Information will be posted online

Data Transformation

Pandas Transformations

- Split: str.split
- Fold/Unfold: stack/unstack
- Merge, join, and concatenate documentation:
 - https://pandas.pydata.org/pandas-docs/stable/merging.html



Tidy Data

- Dataset contain values: quantitative and categorical/qualitative
- Value is either:
 - variable: all values that measure the same underlying attribute
 - **observation**: all values measured on the same unit across attributes

Three Ways to Present the Same Data

	trea	atmenta	treatmentb				
John Smit	h		2				
Jane Doe		16	11				1,
Mary John	nson	3	1		name	trt	result
					John Smith	a	
	Initia	l Data		Jane Doe	a	16	
					Mary Johnson	a	3
					John Smith	b	2
					Jane Doe	b	11
Joh	n Smith	Jane Doe	e Mary Jo	hnson	Mary Johnson	b	1
tmenta		16	5	3	Tidv E)ata	

		treat	atmenta	UIEa				
				Smith	John S			
			16	Doe	Jane D			
name t			3	Johnson	Mary J			
John Smith a								
Jane Doe a		Initial Data						
Mary Johnson a								
John Smith b								
Jane Doe b								
Mary Johnson b	nson	e M	Jane Doe	John Smith				
	3	6	16		reatmenta			
Tidy Da	_ 1			eatmentb 2 11				

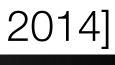
Iranspose

D. Koop, CSCI 680/490, Spring 2022

[H. Wickham, 2014]

Tidy Data Principles

- **Tidy Data**: Codd's 3rd Normal Form (Databases)
 - 1. Each variable forms a column
 - 2. Each observation forms a row
 - 3. Each type of observational unit forms a table (DataFrame)
- Other structures are messy data



Tidy Data

- Benefits:
 - Easy for analyst to extract variables
 - Works well for vectorized programming
- Organize variables by their role
 - Fixed variables: describe experimental design, known in advance - Measured variables: what is measured in study
- Variables also known as dimensions and measures

Messy Dataset Problems

- Column headers are values, not variable names
- Multiple variables are stored in one column
- Variables are stored in both rows and columns
- Multiple types of observational units are stored in the same table • A single observational unit is stored in multiple tables

Problem: Column Headers are Values


	Income and Religion, Pew Forum										
religion	<\$10k	\$10-20k	\$20-30k	\$30-40k	\$40-50k	\$50-75k					
Agnostic	27	34	60	81	76	137					
Atheist	12	27	37	52	35	70					
Buddhist	27	21	30	34	33	58					
Catholic	418	617	732	670	638	1116					
Don't know/refused	15	14	15	11	10	35					
Evangelical Prot	575	869	1064	982	881	1486					
Hindu	1	9	7	9	11	34					
Historically Black Prot	228	244	236	238	197	223					
Jehovah's Witness	20	27	24	24	21	30					
Jewish	19	19	25	25	30	95					

D. Koop, CSCI 680/490, Spring 2022

Income and Religion Paw Forum

[H. Wickham, 2014]

Problem: Column Headers are Values

religion	<\$10k	\$10-20k	\$20-30k	\$30-40k	\$40-50k	\$50-75k
Agnostic	27	34	60	81	76	137
Atheist	12	27	37	52	35	70
Buddhist	27	21	30	34	33	58
Catholic	418	617	732	670	638	1116
Don't know/refused	15	14	15	11	10	35
Evangelical Prot	575	869	1064	982	881	1486
Hindu	1	9	7	9	11	34
Historically Black Prot	228	244	236	238	197	223
Jehovah's Witness	20	27	24	24	21	30
Jewish	19	19	25	25	30	95

D. Koop, CSCI 680/490, Spring 2022

Income and Religion, Pew Forum

Variables: religion, income, frequency

Solution: Melt Data

- Turn columns into rows
- One or more columns become rows under a new column (column)
- Values become a new column (value)
- After melt, data is **molten**
- AKA pivot_longer
- **Inverse** of pivot

D. Koop, CSCI 680/490, Spring 2022

row	a	b	С
A	1	4	7
В	2	5	8
\mathbf{C}	3	6	9

(a) Raw data

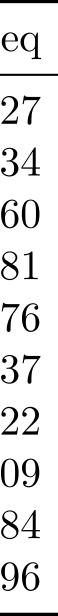
row	column	value
A	a	1
В	a	2
\mathbf{C}	a	3
A	b	4
В	b	5
\mathbf{C}	b	6
A	С	7
В	С	8
\mathbf{C}	С	9

(b) Molten data

[H. Wickham, 2014]

Solution: Molten Data

religion	<\$10k	\$10-20k	\$20-30k	\$30-40k	\$40-50k	\$50-75k	religion	income	free
Agnostic	27	34	60	81	76	137	Agnostic	<\$10k	27
Atheist	12	27	37	52	35	70	Agnostic	\$10-20k	34
Buddhist	27	21	30	34	33	58	Agnostic	\$20-30k	60
Catholic	418	617	732	670	638	1116	Agnostic	\$30-40k	81
Don't know/refused	15	14	15	11	10	35	Agnostic	\$40-50k	76
Evangelical Prot	575	869	1064	982	881	1486	Agnostic	\$50-75k	137
Hindu	1	9	7	9	11	34	Agnostic	\$75-100k	122
Historically Black Prot	228	244	236	238	197	223	Agnostic	\$100-150k	109
Jehovah's Witness	20	27	24	24	21	30	Agnostic	>150k	84
Jewish	19	19	25	25	30	95	Agnostic	Don't know/refused	96


Original


D. Koop, CSCI 680/490, Spring 2022

Molten (first 10 rows)

Melting: Billboard Top Hits

year	artist	track	time	date.entered	wk1	wk2	wk3
2000	2 Pac	Baby Don't Cry	4:22	2000-02-26	87	82	72
2000	2Ge+her	The Hardest Part Of	3:15	2000-09-02	91	87	92
2000	3 Doors Down	Kryptonite	3:53	2000-04-08	81	70	68
2000	98^0	Give Me Just One Nig	3:24	2000-08-19	51	39	34
2000	A*Teens	Dancing Queen	3:44	2000-07-08	97	97	96
2000	Aaliyah	I Don't Wanna	4:15	2000-01-29	84	62	51
2000	Aaliyah	Try Again	4:03	2000-03-18	59	53	38
2000	Adams, Yolanda	Open My Heart	5:30	2000-08-26	76	76	74

year	artist	time	track	date	week	rank
2000	2 Pac	4:22	Baby Don't Cry	2000-02-26	1	87
2000	2 Pac	4:22	Baby Don't Cry	2000-03-04	2	82
2000	2 Pac	4:22	Baby Don't Cry	2000-03-11	3	72
2000	2 Pac	4:22	Baby Don't Cry	2000-03-18	4	77
2000	2 Pac	4:22	Baby Don't Cry	2000-03-25	5	87
2000	2 Pac	4:22	Baby Don't Cry	2000-04-01	6	94
2000	2 Pac	4:22	Baby Don't Cry	2000-04-08	7	99
2000	2Ge+her	3:15	The Hardest Part Of	2000-09-02	1	91
2000	2Ge+her	3:15	The Hardest Part Of	2000-09-09	2	87
2000	2Ge+her	3:15	The Hardest Part Of	2000-09-16	3	92
2000	3 Doors Down	3:53	Kryptonite	2000-04-08	1	81
2000	3 Doors Down	3:53	Kryptonite	2000-04-15	2	70
2000	3 Doors Down	3:53	Kryptonite	2000-04-22	3	68
2000	3 Doors Down	3:53	Kryptonite	2000-04-29	4	67
2000	3 Doors Down	3:53	Kryptonite	2000-05-06	5	66

D. Koop, CSCI 680/490, Spring 2022

Table 7: The first eight Billboard top hits for 2000. Other columns not shown are wk4, wk5, ..., wk75.

Melting

Pandas also has a melt function:

```
In [41]: cheese = pd.DataFrame({'first' : ['John', 'Mary'],
                                 'last' : ['Doe', 'Bo'],
   • • • • •
                                 'height' : [5.5, 6.0],
   • • • • •
                                 'weight' : [130, 150]})
   • • • • •
   • • • • •
In [42]: cheese
Out[42]:
 first height last weight
  John
            5.5 Doe
                         130
0
                         150
            6.0
1 Mary
                 Bo
In [43]: cheese.melt(id_vars=['first', 'last'])
Out[43]:
 first last variable value
              height
                         5.5
  John
        Doe
0
               height
                         6.0
  Mary
         Bo
Τ
   John
               weight 130.0
        Doe
2
         Bo
               weight 150.0
  Mary
3
In [44]: cheese.melt(id_vars=['first', 'last'], var_name='quantity')
Out[44]:
  first last quantity value
  John Doe
              height
                         5.5
0
  Mary
         Bo
               height
                         6.0
   John
               weight 130.0
         Doe
         Bo
               weight 150.0
  Mary
3
```


Problem: Multiple variables stored in one column

Tuberculosis Data, V

country	year	m014	m1524	m2534	m3544	m4554	m5564	m65	mu	f014
AD	2000	0	0	1	0	0	0	0		
AE	2000	2	4	4	6	5	12	10		3
AF	2000	52	228	183	149	129	94	80		93
AG	2000	0	0	0	0	0	0	1		1
AL	2000	2	19	21	14	24	19	16		3
AM	2000	2	152	130	131	63	26	21		1
AN	2000	0	0	1	2	0	0	0		0
AO	2000	186	999	1003	912	482	312	194		247
AR	2000	97	278	594	402	419	368	330		121
AS	2000					1	1			

Norld Health	Organization
--------------	--------------

Problem: Multiple variables stored in one column

country	year	m014	m1524	m2534	m3544	m4554	m5564	m65	mu	f014
AD	2000	0	0	1	0	0	0	0		
AE	2000	2	4	4	6	5	12	10		3
AF	2000	52	228	183	149	129	94	80		93
AG	2000	0	0	0	0	0	0	1		1
AL	2000	2	19	21	14	24	19	16		3
AM	2000	2	152	130	131	63	26	21		1
AN	2000	0	0	1	2	0	0	0		0
AO	2000	186	999	1003	912	482	312	194		247
AR	2000	97	278	594	402	419	368	330		121
AS	2000					1	1			

D. Koop, CSCI 680/490, Spring 2022

Tuberculosis Data, World Health Organization

Two variables in columns: age and sex

Solution: Melting + Splitting

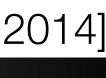
country	year	column	cases
AD	2000	m014	0
AD	2000	m1524	0
AD	2000	m2534	1
AD	2000	m3544	0
AD	2000	m4554	0
AD	2000	m5564	0
AD	2000	m65	0
AE	2000	m014	2
AE	2000	m1524	4
AE	2000	m2534	4
AE	2000	m3544	6
AE	2000	m4554	5
AE	2000	m5564	12
AE	2000	m65	10
AE	2000	f014	3

(a) Molten data


D. Koop, CSCI 680/490, Spring 2022

cases	country	year	sex	age	cases
0	AD	2000	m	0-14	0
0	AD	2000	m	15 - 24	0
1	AD	2000	m	25 - 34	1
0	AD	2000	m	35 - 44	0
0	AD	2000	m	45 - 54	0
0	AD	2000	m	55 - 64	0
0	AD	2000	m	65 +	0
2	AE	2000	m	0-14	2
4	AE	2000	m	15 - 24	4
4	AE	2000	m	25 - 34	4
6	AE	2000	m	35 - 44	6
5	AE	2000	m	45 - 54	5
12	AE	2000	m	55 - 64	12
10	AE	2000	m	65 +	10
3	AE	2000	f	0-14	3

(b) Tidy data

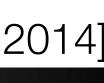

Problem: Variables stored in both rows & columns

Mexico Weather, Global Historical Climatology Network

id	year	month	element	d1	d2	d3	d4	d5	d6	d7	d8
MX17004	2010	1	tmax								
MX17004	2010	1	tmin								
MX17004	2010	2	tmax		27.3	24.1					
MX17004	2010	2	tmin		14.4	14.4					
MX17004	2010	3	tmax					32.1			
MX17004	2010	3	tmin					14.2			
MX17004	2010	4	tmax								
MX17004	2010	4	tmin								
MX17004	2010	5	tmax								
MX17004	2010	5	tmin								

Problem: Variables stored in both rows & columns

Mexico Weather, Global Historical Climatology Network


id	year	month	element	d1	d2	d3	d4	d5	d6	d7	d8
MX17004	2010	1	tmax								
MX17004	2010	1	tmin								
MX17004	2010	2	tmax		27.3	24.1					
MX17004	2010	2	tmin		14.4	14.4					
MX17004	2010	3	tmax					32.1			
MX17004	2010	3	tmin					14.2			
MX17004	2010	4	tmax								
MX17004	2010	4	tmin								
MX17004	2010	5	tmax								
MX17004	2010	5	tmin								

Variable in columns: day; Variable in rows: tmax/tmin

Pivot

- "wide" format (AKA pivot_wider)
- Long format: column names are data values...
- Wide format: more like spreadsheet format
- Example:

date	item	value	
0 1959-03-31	realgdp	2710.349	
1 1959-03-31	infl	0.000	
2 1959-03-31	unemp	5.800	
3 1959-06-30	realgdp	2778.801	
4 1959-06-30	infl	2.340	
5 1959-06-30	unemp	5.100	
6 1959-09-30	realgdp	2775.488	
7 1959-09-30	infl	2.740	
8 1959-09-30	unemp	5.300	
9 1959-12-31	realgdp	2785.204	

Sometimes, we have data that is given in "long" format and we would like

```
.pivot('date', 'item', 'value')
```

item	infl	realgdp	unemp
date			
1959-03-31	0.00	2710.349	5.8
1959-06-30	2.34	2778.801	5.1
1959-09-30	2.74	2775.488	5.3
1959-12-31	0.27	2785.204	5.6
1960-03-31	2.31	2847.699	5.2

[W. McKinney, Python for Data Analysis]

Solution: Melting + Pivot

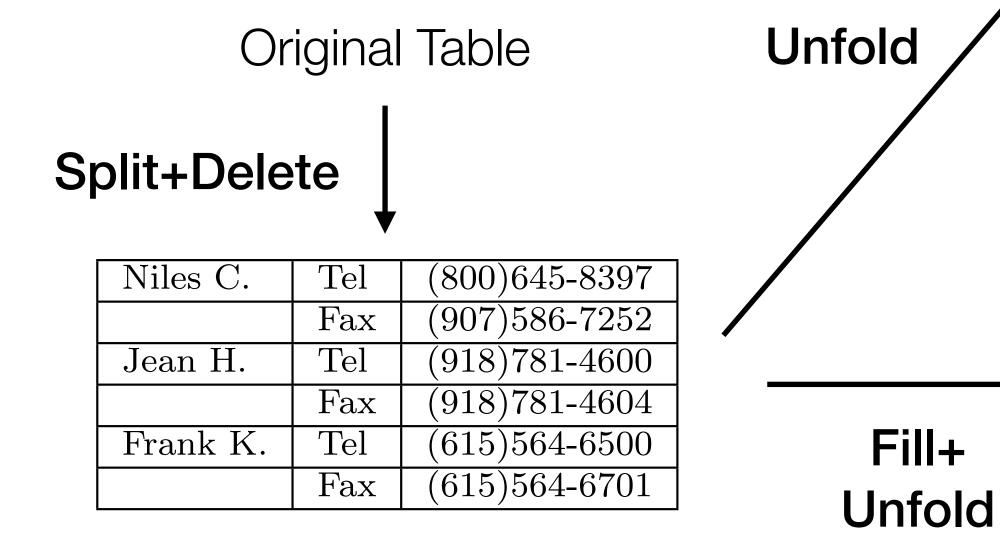
id	date	element	value	id	date	tmax	tmin
MX17004	2010-01-30	tmax	27.8	MX17004	2010-01-30	27.8	14.5
MX17004	2010-01-30	tmin	14.5	MX17004	2010-02-02	27.3	14.4
MX17004	2010-02-02	tmax	27.3	MX17004	2010-02-03	24.1	14.4
MX17004	2010-02-02	tmin	14.4	MX17004	2010-02-11	29.7	13.4
MX17004	2010-02-03	tmax	24.1	MX17004	2010-02-23	29.9	10.7
MX17004	2010-02-03	tmin	14.4	MX17004	2010-03-05	32.1	14.2
MX17004	2010-02-11	tmax	29.7	MX17004	2010-03-10	34.5	16.8
MX17004	2010-02-11	tmin	13.4	MX17004	2010-03-16	31.1	17.6
MX17004	2010-02-23	tmax	29.9	MX17004	2010-04-27	36.3	16.7
MX17004	2010-02-23	tmin	10.7	MX17004	2010-05-27	33.2	18.2

(a) Molten data

D. Koop, CSCI 680/490, Spring 2022

Tidy data (b)

[H. Wickham, 2014]

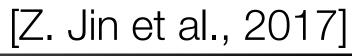


Getting Lost in Transformations

Bureau of I.A.	
Regional Director	Numbers
Niles C.	Tel: (800)645-8397
	Fax: (907)586-7252
Jean H.	Tel: (918)781-4600
	Fax: (918)781-4604
Frank K.	Tel: $(615)564-6500$
	Fax: (615)564-6701

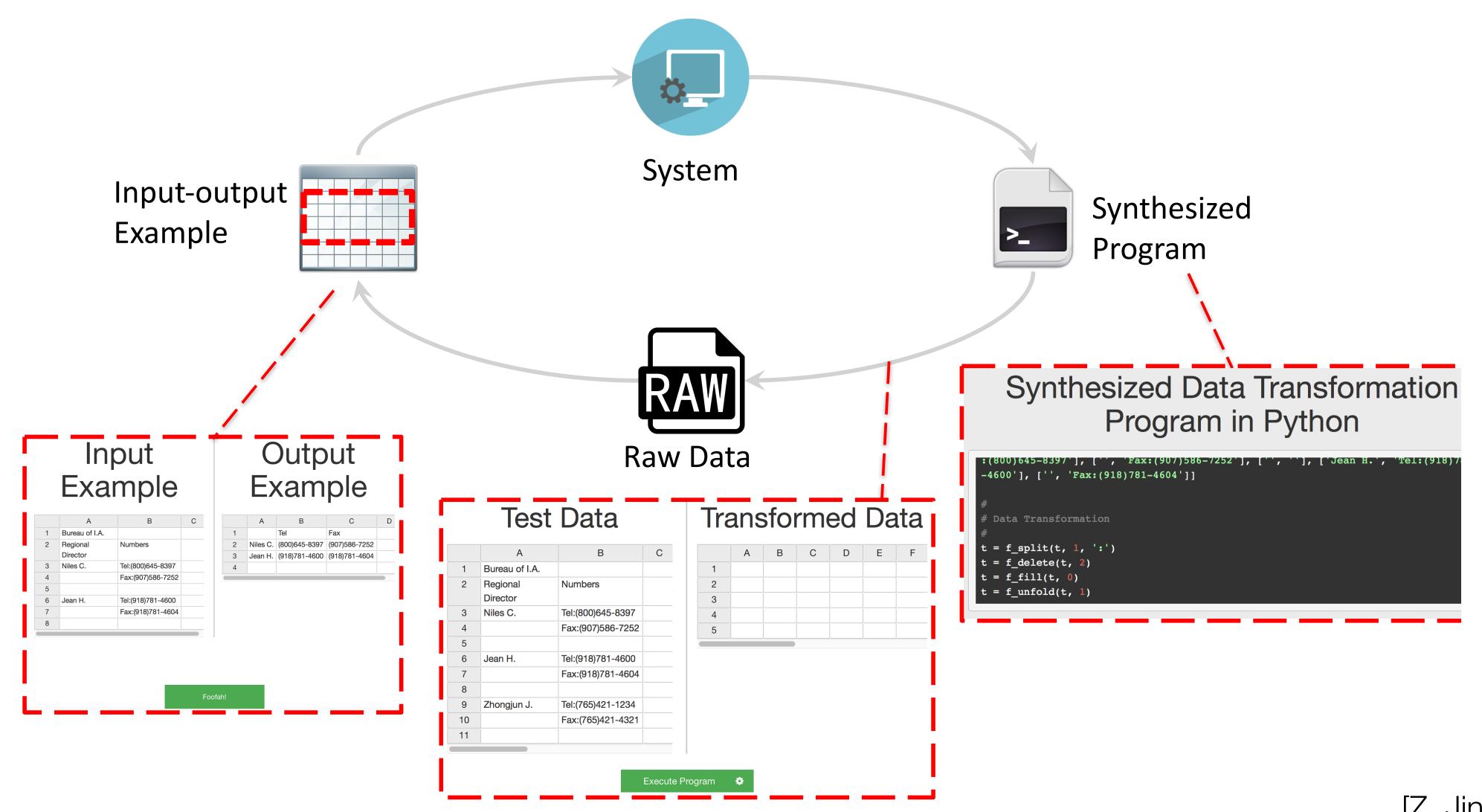
Intermediate Table

D. Koop, CSCI 680/490, Spring 2022


	Tel	Fax
Niles C.	(800)645-8397	
		(615)564-6701
Jean H.	(918)781-4600	
Frank K.	(615)564-6500	

Problem Table

		Tel	Fax
•	Niles C.	(800)645-8397	(907)586-7252
	Jean H.	(918)781-4600	(918)781-4604
+	Frank K.	(615)564-6500	(615)564-6701


Desired Solution

Foofah Design: Programming by Example

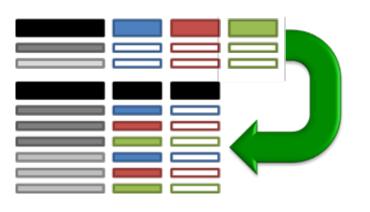
Input, Output, and Transformations

Fax:(918)781-4604

Raw Data:

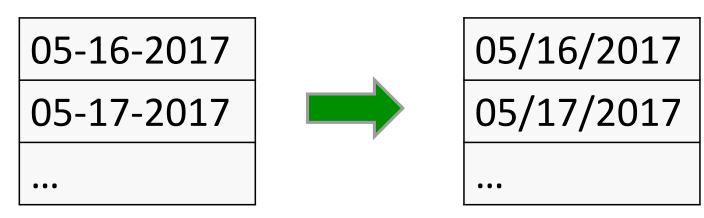
- A grid of values, i.e., spreadsheets "Somewhat" structured - must have some regular structure or is automatically generated.

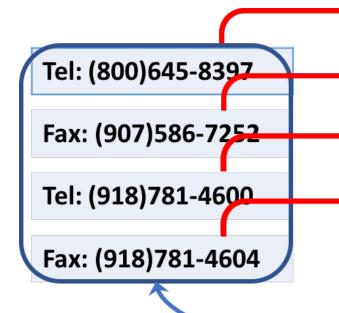
User Input:


 Sample from raw data Transformed view of the sample

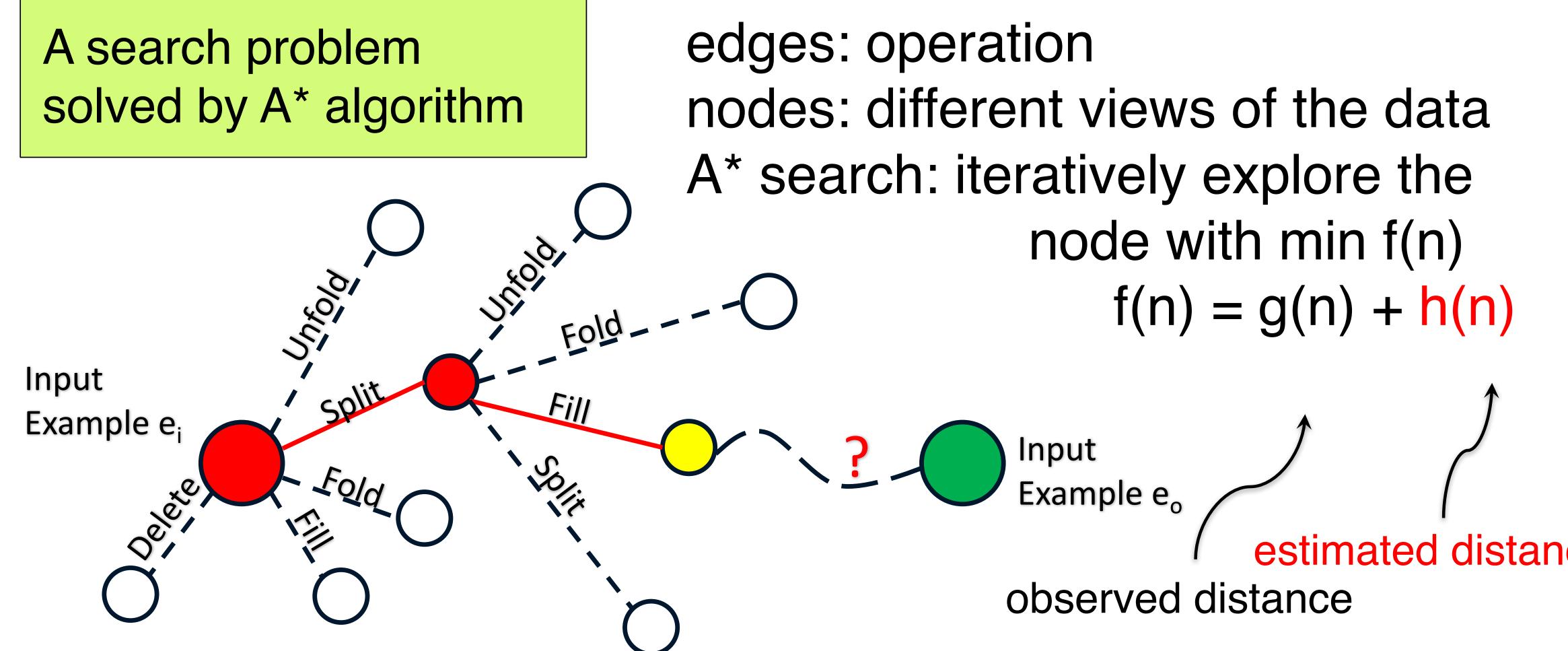
Tel:(800)645-839

Program to synthesize: A loop-free Potter's Wheel [2] program

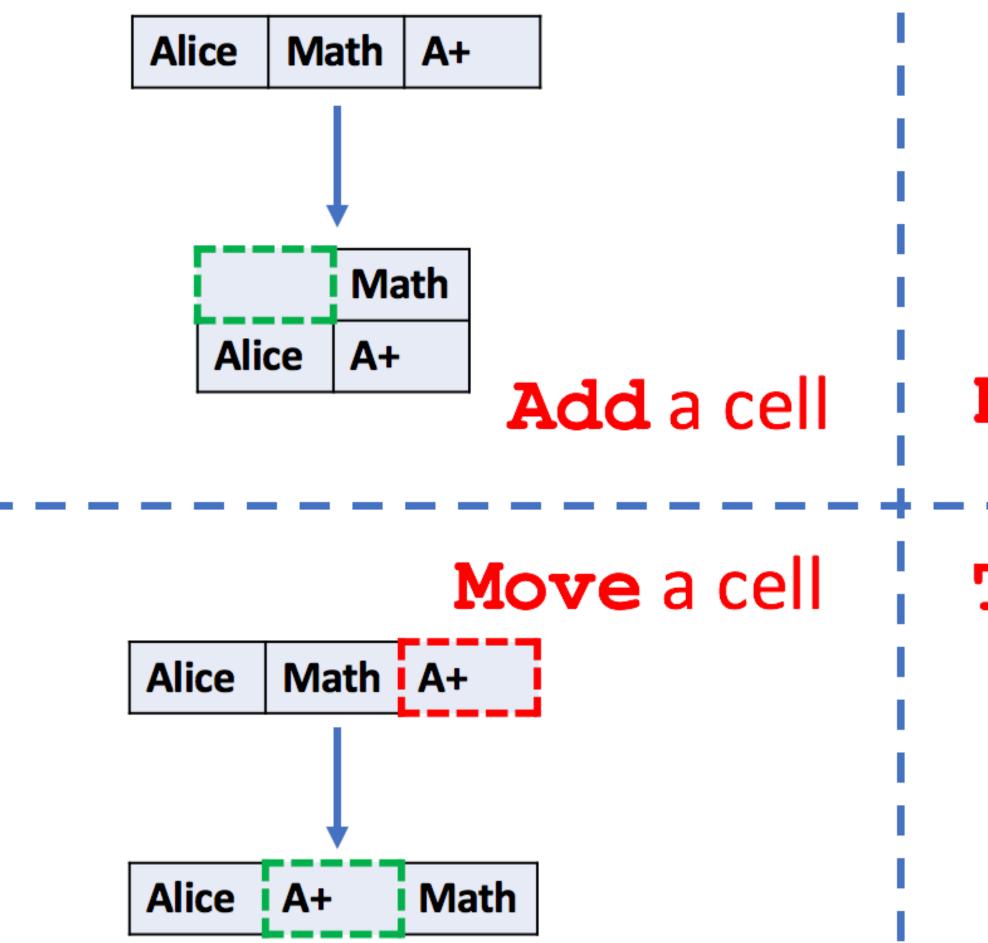

Transformations Targeted: 1. Layout transformation



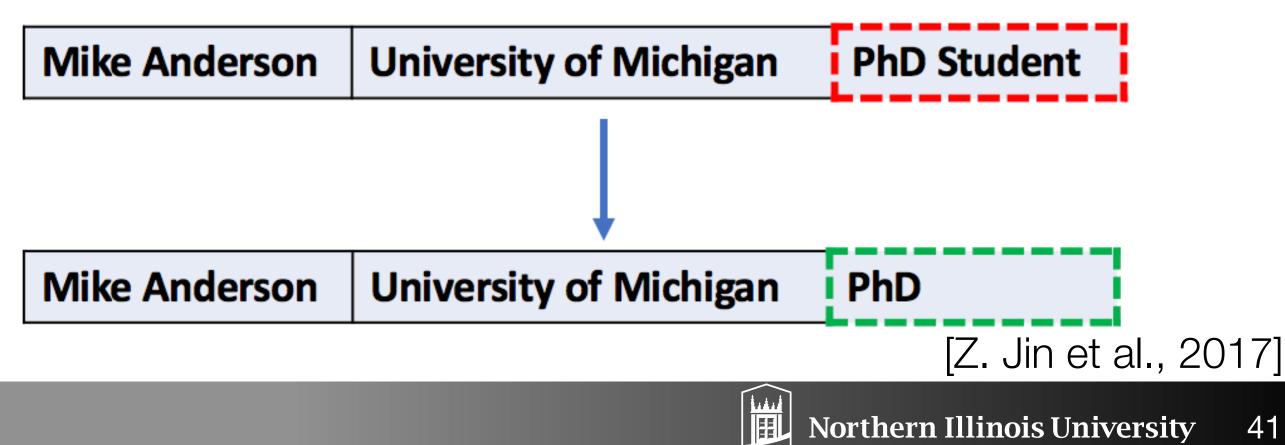
D. Koop, CSCI 680/490, Spring 2022



Foofah Solution

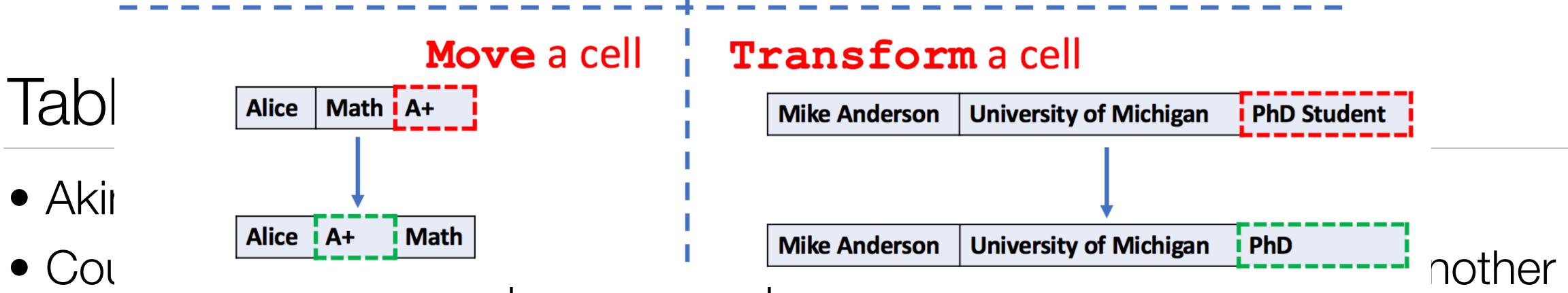


Need a Heuristic Function to Prune


D. Koop, CSCI 680/490, Spring 2022

Most transformations are composed of cell-based operations

Mike Anderson	Univers	sity of Michigan	PhD Student
			6
Mike And	lerson	University of N	lichigan


Remove a cell

Transform a cell

NIU

Use Add/Remove/Modify + Move

Table Edit Distance (TED) Definition: The cost of transforming Table T_1 to Table T_2 using the cell-level operators Add/Remove/Move/Transform cell.

$$\mathrm{TED}(T_1,T_2) = ($$

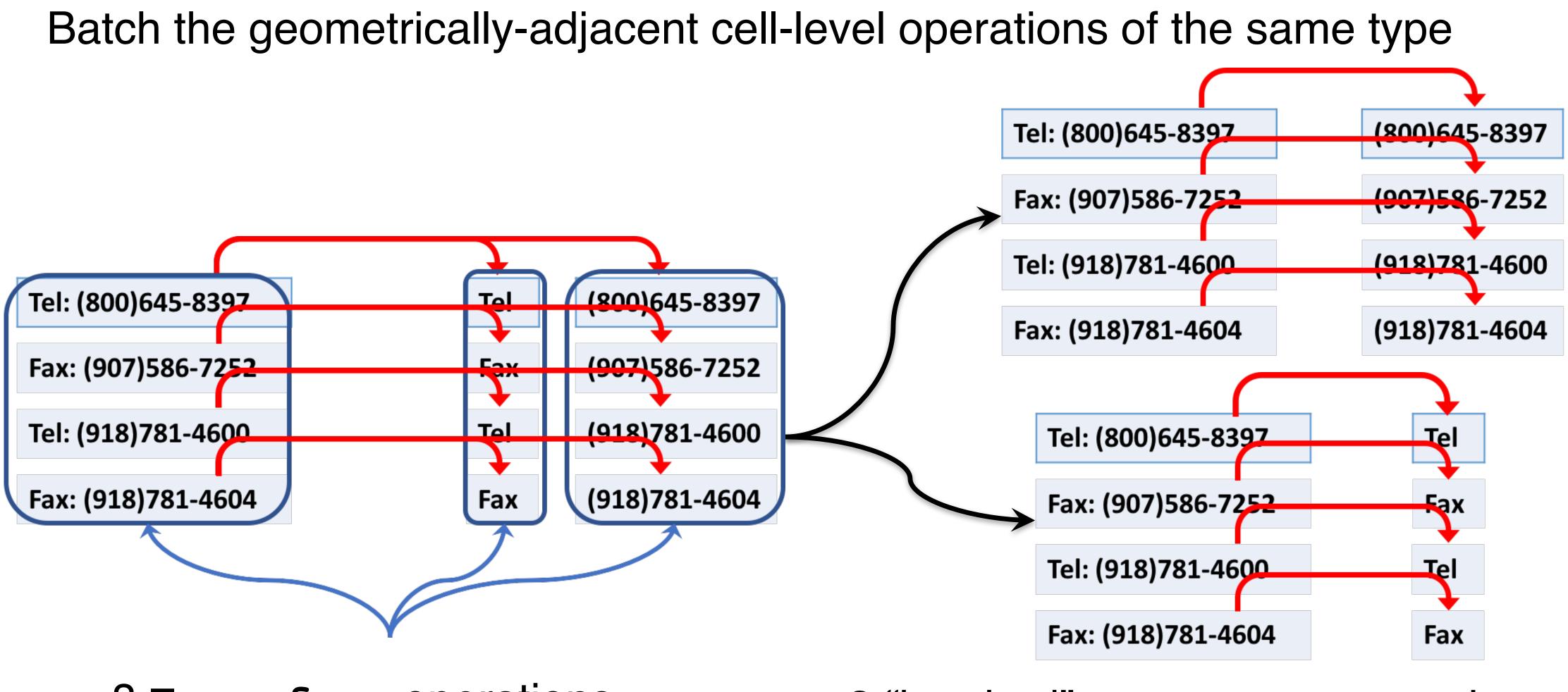

 $\min_{(p_1,...,p_k)\in P(T_1,T_2)}\sum_{i=0}^{\cdot} cost(p_i)$ • $P(T_1, T_2)$: Set of all "paths" transforming T_1 to T_2 using cell-level operators

Table Edit Distance Batch

8 Transform operations

D. Koop, CSCI 680/490, Spring 2022

2 "batched" Transform operations [Z. Jin et al., 2017]

Geometric Patterns Used to Batch

Pattern	Formulation $(X \text{ is a table edit})$
Horizontal to Horizontal Horizontal to Vertical Vertical to Horizontal Vertical to Vertical One to Horizontal One to Vertical Remove Horizontal Remove Vertical	$ \{X((x_i, y_i), (x_j, y_j)), X((x_i, y_i - \{X((x_i, y_i), (x_j, y_j)), X((x_i, y_i - \{X((x_i, y_i), (x_j, y_j)), X((x_i + 1 - \{X((x_i, y_i), (x_j, y_j)), X((x_i + 1 - \{X((x_i, y_i), (x_j, y_j)), X((x_i, y_i) - \{X((x_i, y_i), (x_j, y_j)), X((x_i, y_i) - \{X((x_i, y_i)), X((x_i, y_i + 1)), \dots, \{X((x_i, y_i)), X((x_i + 1, y_i)), \dots, \{X((x_i, y_i)), X((x_i + 1, y_i)), \dots \} \} $

operator)	Related Operators
$ + 1), (x_{j}, y_{j} + 1)), \dots \} $ $ + 1), (x_{j} + 1, y_{j})), \dots \} $ $ -, y_{i}), (x_{j}, y_{j} + 1)), \dots \} $ $ +, (x_{j}, y_{j} + 1)), \dots \} $ $ +, (x_{j} + 1, y_{j})), \dots \} $ $ +, \{x_{j} + 1, y_{j})), \dots \} $	Delete(Possibly) Fold, Transpose Unfold,Transpose Move, Copy, Merge, Split, Extract, Drop Fold(Possibly), Fill(Possibly) Fold, Fill Delete Drop, Unfold

Other Pruning Rules

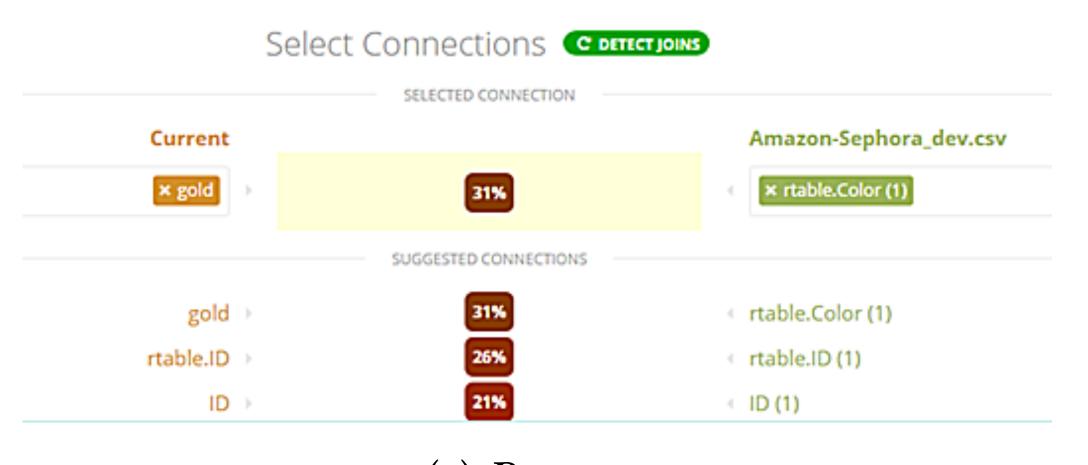

- Global:
 - Missing Alphanumerics: check that character maintained
 - No effect: meaningless operation
 - Introducing Novel Symbols: check that no new characters added
- Property-specific:
 - Generating Empty Columns
 - Null in Column

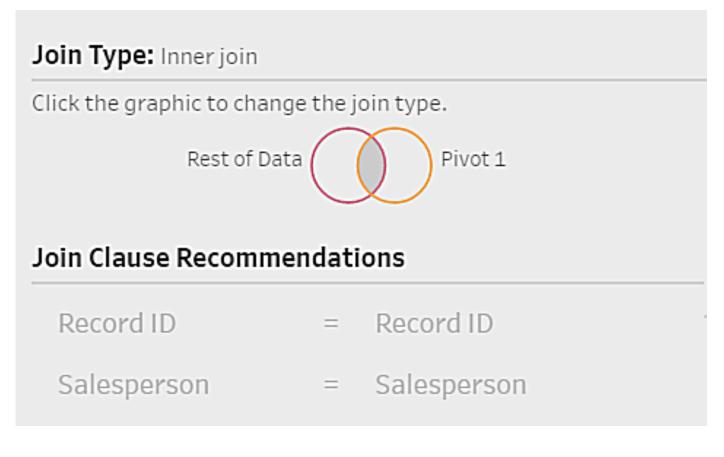
AutoSuggest

Comments/Questions?

Goal

- Automate "Complex" Data Preparation steps Focus on frame transformations (not per-cell transformations)
- Learn from Jupyter Notebooks
- Use interactive methods to help users select from top-k options

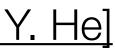




Join Wizards

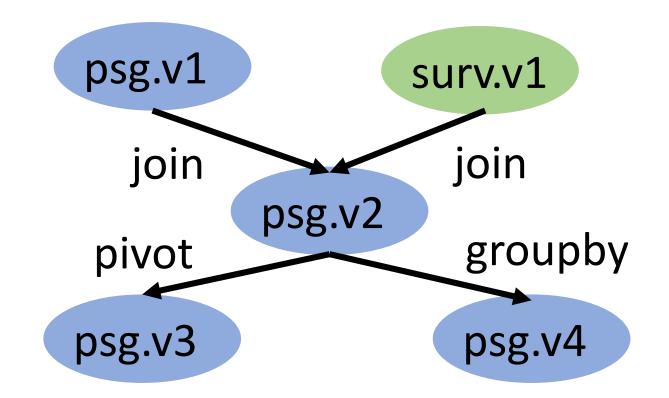
(a) Paxata

(b) Tableau Prep


D. Koop, CSCI 640/490, Spring 2023

< Join Cone	ditions
Join type	required
Inner	~
Join keys ⑦	Add
●○ RBC Itable.ID	
 Equal to) RBC Itable.ID 	Suggested Q 56% match

(c) Trifacta

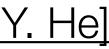


Programmatic Operators

- Crawl, reapply, and analyze data piplelines from Jupyter+pandas
- 7 API calls: concat, dropna, fillna, groupby, melt, merge, pivot

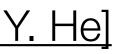
Logical Operator	Join	Pivot	Unpivot	Groupby	Relationalize JSON
Pandas Operator	merge[17]	pivot[18]	melt[16]	groupby[14]	json_normalize[15]
#nb crawled w/ the operator	209.9K	68.9K	16.8K	364.3K	8.3K


```
1 import pandas as pd
2
3 psg=pd.read_csv('passenger_data.csv')
4 surv=pd.read_csv('survive.csv')
5 psg=psg.merge(surv,on='PassengerId',
         how='left')
6 psg.pivot(header=['Survived, Pclass'],
         index='Sex', aggrfunc='count')
7 psg.groupby('Sex',aggrfunc='count')
```

Recommendation Tasks

- Single-Operator Prediction: Given two tables and an operation, decide how to best apply the operation (what are the parameters)
- Next-Operator Prediction: Given all operations performed so far, predict the next one

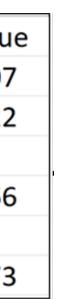


Join Prediction

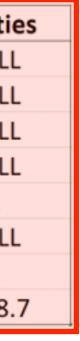
- Predict columns
 - Use features of columns: value-overlap, "left-ness", statistics
- Predict join type
 - Inner join is the default (also 78% of cases in data)
 - "Central" table vs. "filtering"

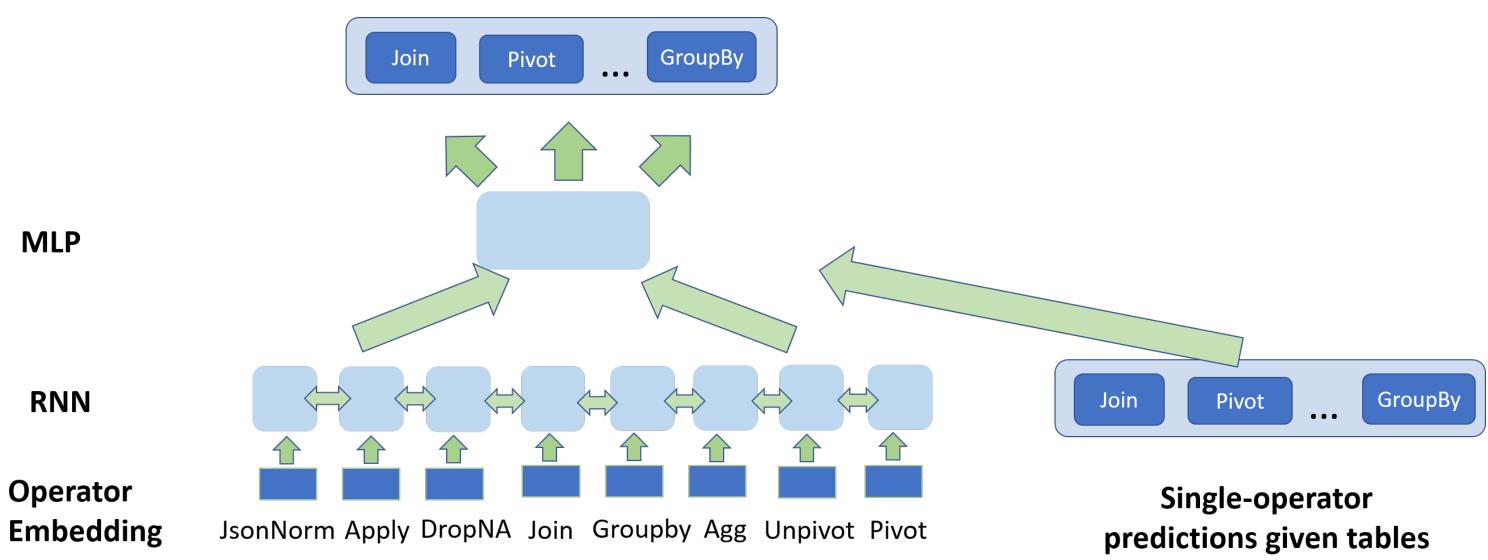
Pivot/Unpivot

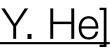
- Pivot is hard to get right
 - Index
 - Header
 - Aggregation Function
 - Aggregation Columns
- Use GroupBy Prediction
- Look for NULLs and use affiinity
- Affinity-Maximizing Pivot Table
- Unpivot requires compatibility


_							
	Sector	Ticker	Company	Year	Quarter	Market Cap	Revenu
	Aerospace	AJRD	AEROJET ROCKETD	2006	Q1	1442.67	472.07
	Aerospace	AJRD	AEROJET ROCKETD	2006	Q2	1514.80	489.22
	Aerospace	BA	BOEING CO	2006	Q1	343.41	210.66
	Utilities	YORW	YORK WATER CO	2008	Q4	600.19	271.73

Sector	Ticker	Company	2006	2007	2008
Aerospace	AJRD	AEROJET ROCKETD	6218.09	6342.45	7088.62
	ATRO	ASTRONICS CORP	1050.97	1071.99	1198.11
Business Services	HHS	HARTE-HANKS INC	2473.75	2523.22	2820.07
	NCMI	NATL CINEMEDIA	856.92	874.06	976.89
Consumer Staples	YTEN	TIELD10 BIOSCI	533.13	543.79	607.77
Utilities	YORW	YORK WATER CO	1902.37	1940.42	2168.70


Ticker	Company	Year	Aerospace	Business Services	 Utiliti
AJRD	AEROJET ROCKETD	2006	6218.09	NULL	 NUL
AJRD	AEROJET ROCKETD	2007	6342.45	NULL	 NUL
AJRD	AEROJET ROCKETD	2008	7088.62	NULL	 NUL
ATRO	ASTRONICS CORP	2006	1050.97	NULL	 NUL
HHS	HARTE-HANKS INC	2006	NULL	2473.75	 NUL
YORW	YORK WATER CO	2008	NULL	NULL	 2168




Predict Next Operator

- Two Signals:
 - Use past information (latent sequential connections)
 - Use table characteristics

Evaluation

• Data

- Jupyter Notebooks with working operations

operator	join	pivot	unpivot	groupby	normalize JSON
#nb crawled	209.9K	68.9K	16.8K	364.3K	8.3K
#nb sampled	80K	68.9K	16.8K	80K	8.3K
#nb replayed	12.6K	16.1K	5.7K	9.6K	3.2K
#operator replayed	58.3K	79K	7.2K	70.9K	4.3K
#operator post-filtering	11.2K	7.7K	2.9K	8.9K	1.9K

- Metrics:
 - Precision@K: Proportion of relevant results in the top K
 - ideal relevance on a per item basis

- NDCG@K (Normalized Discounted Cumulative Gain): ratio of relevance to

Results

method (all data)	prec@1	prec@2	ndcg@1	ndcg@2
Auto-Suggest	0.89	0.92	0.89	0.93
ML- FK	0.84	0.87	0.84	0.87
PowerPivot	0.31	0.44	0.31	0.48
Multi	0.33	0.4	0.33	0.41
Holistic	0.57	0.63	0.57	0.65
max-overlap	0.53	0.61	0.53	0.63
method (sampled data)	prec@1	prec@2	ndcg@1	ndcg@2
Auto-Suggest	0.92	_	0.92	-
Vendor-A	0.76	-	0.76	-
Vendor-C	0.42	_	0.42	-
Vendor-B	0.33	_	0.33	-

Table 3: Evaluation of Join column prediction. (Top) methods from the literature, evaluated on all test data. (Bottom): Comparisons with commercial systems on a random sample of 200 cases.

D. Koop, CSCI 640/490, Spring 2023

footuro	left-	val-range-	distinct-	val-
feature	ness	overlap	val-ratio	overlap
importance	0.35	0.35	0.11	0.05
feature	single-col-	col-val-	table-	sorted-
leature	candidate	types	stats	ness
importance	0.04	0.01	0.01	0.01

Table 4: Importance of Feature Groups for Join

method	prec@1
Auto-Suggest	0.88
Vendor-A	0.78

Table 5: Join type prediction.

Results

method	full-accuracy	Rand-Index (RI)
Auto-Suggest	77%	0.87
Affinity	42%	0.56
Type-Rules	19%	0.55
Min-Emptiness	46%	0.70
Balanced-Cut	14%	0.55

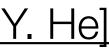
Table 8: Pivot: splitting index/header columns.

method	full	column	column	column
methou	accuracy	precision	recall	F1
Auto-Suggest	67%	0.93	0.96	0.94
Pattern-similarity	21%	0.64	0.46	0.54
Col-name-similarity	27%	0.71	0.53	0.61
Data-type	44%	0.87	0.92	0.89
Contiguous-type	46%	0.80	0.83	0.81

 Table 9: Unpivot: Column prediction.

D. Koop, CSCI 640/490, Spring 2023

operator	groupby	join	concat	dropna	fillna	pivot	unpivot
percentage	33.3%	27.6%	12.2%	10.8%	9.6%	4.1%	2.4%


Table 10: Distribution of operators in data flows.

method	prec@1	prec@2	recall@1	recall@2
Auto-Suggest	0.72	0.79	0.72	0.85
RNN	0.56	0.68	0.56	0.77
N-gram model	0.40	0.53	0.40	0.66
Single-Operators	0.32	0.41	0.32	0.50
Random	0.23	0.35	0.24	0.42

Table 11: Precision for next operator prediction.

