
Advanced Data Management (CSCI 680/490)

Data Transformation

Dr. David Koop

D. Koop, CSCI 680/490, Spring 2022

Comma-separated values (CSV) Format
• Comma is a field separator, newlines denote records

- a,b,c,d,message
1,2,3,4,hello
5,6,7,8,world
9,10,11,12,foo

• May have a header (a,b,c,d,message), but not required
• No type information: we do not know what the columns are (numbers,

strings, floating point, etc.)
- Default: just keep everything as a string
- Type inference: Figure out the type to make each column based on values

• What about commas in a value? → double quotes

2D. Koop, CSCI 680/490, Spring 2022

Reading/Writing CSV with pandas
• Read: df = pd.read_csv(<path>)
• Write: df.to_csv(<path>)
• Parameters:

- sep (or delimiter): the delimiter (',', ' ', '\t', '\s+')
- header: if None, no header
- names: list of header names (e.g. if the file has no header)
- skiprows: number of list of lines to skip

3D. Koop, CSCI 680/490, Spring 2022

Reading/Writing CSV with DuckDB
• Importing:

- read_csv method with parameters for delimter, header, etc.
- read_csv_auto automatically infer these parameters
- CREATE TABLE ontime AS SELECT * FROM
read_csv_auto('flights.csv');

• Exporting:
- Use the COPY function
- COPY tbl TO 'output.csv' (HEADER, DELIMITER ',');

4D. Koop, CSCI 640/490, Spring 2023

JavaScript Object Notation (JSON)
• A format for web data
• Looks very similar to python dictionaries and lists
• Example:

- {"name": "Wes",
 "places_lived": ["United States", "Spain", "Germany"],
 "pet": null,
 "siblings": [{"name": "Scott", "age": 25, "pet": "Zuko"},
 {"name": "Katie", "age": 33, "pet": "Cisco"}] }

• Only contains literals (no variables) but allows null
• Values: strings, arrays, dictionaries, numbers, booleans, or null
- Dictionary keys must be strings
- Quotation marks help differentiate string or numeric values

5D. Koop, CSCI 680/490, Spring 2022

Parquet
• "Open source, column-oriented data file format designed for efficient data

storage and retrieval" [parquet.apache.org]
• Available in multiple languages including python
• Binary format
• Column-oriented: can read a column at a time (e.g. from the cloud)
• Self-describing (schema can be embedded)
• Supports compression

6

[T. Spicer]
D. Koop, CSCI 640/490, Spring 2023

http://parquet.apache.org
https://blog.openbridge.com/how-to-be-a-hero-with-powerful-parquet-google-and-amazon-f2ae0f35ee04

Parquet Support
• Pandas:
- Install pyarrow
- df = pd.read_parquet('input.parquet')

- df.to_parquet('output.parquet')

• DuckDB
- CREATE TABLE new_tbl AS SELECT * FROM
read_parquet('input.parquet');

- COPY tbl TO 'output.parquet' (FORMAT PARQUET);

7D. Koop, CSCI 640/490, Spring 2023

Figure 2: TDE transformation for date-time. (Left): user provides two desired output examples in column-D,
for the input data in column-C. (Right): After clicking on the “Get Transformation” button, TDE synthesizes
programs consistent with the given examples, and return them as a ranked list within a few seconds. Hovering
over the first program (using System.DateTime.Parse) gives a preview of all results (shaded in green).

Figure 3: (Left): transformation for names. The first three values in column-D are provided as output
examples. The desired first-names and last-names are marked in bold for ease of reading. A composed
program using library CSharpNameParser from GitHub is returned. (Right): transformations for addresses.
The first two values are provided as output examples to produce city, state, and zip-code. Note that some of
these info are missing from the input. A program invoking Bing Maps API is returned as the top result.

entered. For instance, in the first column dates are rep-
resented in many di↵erent formats. In the second column,
some customer names have first-name followed by last-name,
while others are last-name followed by comma, then first-
name, with various salutations (Mr., Dr., etc.) and su�xes
(II, Jr., etc.). Phone numbers are also inconsistent, with
various international calling codes (+1) and extensions (ext
2001), etc. Addresses in the last column are also not clean,
often with missing state and zip-code information.

This data in Figure 1 is clearly not ready for analysis
yet – an analyst wanting to figure out which day-of-the-
week has the most sales, for instance, cannot find it out
by executing a SQL query: the date column needs to be
transformed to day-of-the-week first, which however is non-
trivial even for programmers. Similarly the analyst may
want to analyze sales by area-code (which can be extracted
from phone-numbers), or by zip-code (from addresses), both
of which again require non-trivial data transformations.

In a separate scenario, suppose one would like identified
possible duplicate customer records in Figure 1, by first stan-
dardizing customer names into a format with only last and
first names (e.g., both the first two records will convert into
“Doe, John”). This again requires complex transformations.

Data transformation is clearly di�cult. However, our ob-
servation is that these domain-specific transformation prob-
lems like name parsing and address standardization are re-
ally not new – for decades developers have built custom
code libraries to solve them in a variety of domains, and
shared their code in places like GitHub. In a recent crawl,
we obtained over 1.8M functions extracted from code li-
braries crawled from GitHub, and over 2M code snippets
from StackOverflow, some of which specifically written to
handle data transformations in a variety of domains.

Transform-Data-by-Example. The overarching goal of
the project is to build a search engine for end-users to eas-
ily reuse code for transformations from existing sources.
Specifically, we adopt the by-example paradigm and build a
production-quality system called Transform-Data-by-Example
(TDE). The front-end of TDE is an Excel add-in, currently
in beta and available from O�ce Store [7]. From the Excel
add-in, users can find transformations by providing a few in-
put/output examples. In Figure 2(left), a user provides two
output examples to specify the desired output. Once she
clicks on the “Get Suggestions” button, the front-end talks
to the TDE back-end service running on Microsoft Azure
cloud, which searches over thousands of indexed functions,
to on-the-fly synthesize new programs consistent with all
examples. In the right part of Figure 2, a ranked list of pro-
grams are returned based on program complexity. The top-
ranked program uses the System.DateTime.Parse() func-
tion from the .Net system library to generate correct output
for all input. Figure 3 shows additional examples for trans-
forming names and addresses using the data in Figure 1.
TDE has a number of unique features, which we believe

are important first steps towards realizing self-service data
transformation.
• Search-by-Example. TDE works like a search engine, which
allows end-users to search transformations by just a few ex-
amples, a paradigm known as program-by-example (PBE) [23]
that was also used by FlashFill [16] for data transformation
with much success. Compared to existing PBE systems such
as FlashFill that compose a small number of string primi-
tives predefined in a Domain Specific Language (DSL), TDE
synthesizes programs from a much larger search space (tens
of thousands of functions). We develop novel algorithms to
make it possible at an interactive speed.

1166

TDE: Transform Data by Example

8

[Y. He et al., 2018]
D. Koop, CSCI 680/490, Spring 2022

Figure 2: Two tables R and S with schema (time-stamps,
phone-number, geo-coordinates). Integrating the two would
require values to be reformatted using transformations.

invokes the TBE feature, and enters two output examples
(1997-01-12 and 1997-02-02) in the “Custom” column on the
right, to demonstrates a desired transformation. In response
to user input, the system synthesizes a transformation pro-
gram consistent with the two given input/output examples,
which is shown at the top of the figure (this program invokes
a total of 7 functions, including Text.Combine, Date.ToText,
etc.). Furthermore, a preview of remaining output values
is shown in gray (beneath user-provided examples), which
helps users to verify the correctness of the suggested trans-
formation.

Transform-by-Pattern (TBP). The by-example TBE
paradigm is clearly an excellent fit for Excel-like spread-
sheet environments. As we will see below, however, in other
settings it may not be as easy to invoke TBE, for it can
be hard for users to identify columns requiring transforma-
tions, and then provide paired input/output examples. We
in this work propose an alternative Transform-by-Pattern
(TBP) paradigm to complement the TBE approach, which
can proactively suggest relevant transformations based only
on input/output data patterns (with no paired examples).

More concretely, each TBP program is a triple (Ps, Pt,
T), where Ps and Pt are data “patterns” (e.g., in regex)
describing the source and target column, for which the cor-
responding program T is applicable.

Table 1 shows a list of example TBP programs (we will
discuss how to harvest them in detail). Each row here is a
TBP program that consists of a triple (Ps, Pt, T). For the
TBP program labeled as TBP-1 in the first row, its source
pattern Ps is: “<letter>{3}. <digit>{2}, <digit>{4}” and
target pattern Pt is: “<digit>{4}-<digit>{2}-<digit>{2}”.
Note that these two patterns can be used to describe the
example TBE case shown in Figure 1; the corresponding
transformation program (shown at the top of Figure 1) can
be “memorized” in the last column T of Table 1 (omitted in
the table in the interest of space).

In the following, we use two concrete applications, Auto-
Unify and Auto-Repair, to demonstrate that such TBP pro-
grams can enable scenarios complementary to TBE. We em-
phasize that TBP is not meant to replace the general-purpose
TBE, especially in spreadsheet settings where users can eas-
ily identify target output and enter examples.

TBP for “Auto-Unify”. Data transformation is of-
ten required in applications like ETL and data integration,
where data of di�erent formats from multiple sources need
to be unified and standardized.

Figure 2 shows two example tables denoted by R and S,

both containing telemetry data of the form: (time-stamp,
cellular-device-numbers, geo-coordinates). As is often the
case in the real world, R and S are formatted di�erently
(e.g., the telemetry may be generated by di�erent types of
devices, or di�erent versions of programs), and need to be
integrated, which is a common task in ETL [26, 44].

Today, data engineers need to first identify such issues like
in Figure 2 (a time-consuming task when there are many
such feeds and columns). They would then write ad-hoc
transformation scripts, in order to unify each pair of incom-
patible data columns.

We argue that armed with a repository of TBP programs
like in Table 1, the task of identifying and addressing afore-
mentioned issues can be partially automated. Specifically,
given that R-timestamp and S-timestamp need to be merged,
based on the patterns of values in these two columns, we can
suggest TBP-1 in Table 1 to be used, because its source pat-
tern Ps = “<letter>{3}. <digit>{2}, <digit>{4}” and tar-
get pattern Pt = “<digit>{4}-<digit>{2}-<digit>{2}” match
with R-timestamp and S-timestamp, respectively. This allows
us to proactively suggest the corresponding T to perform
this transformation.

Similarly, the patterns Ps and Pt in TBP-2 and TBP-3 from
Table 1 would match with column-pairs (S-phone, R-phone)
and (S-coordinates, R-coordinates) in Figure 2, respectively,
suggesting two additional transformations that can be per-
formed. It should be noted that TBE typically requires
paired examples and would not apply here.

TBP for “Auto-Repair”. As an additional example
application, we show that TBP can also help to identify and
fix inconsistent data values in tables. Figure 3 shows real
data quality issues in Wikipedia tables that are identified
and fixed by TBP programs produced in this work.

For instance, in Figure 3(a), using TBP we can detect
that values in the Date column have two distinct patterns:
“<digit>{4}-<digit>{2}-<digit>{2}” (e.g., “1997-06-04”) as
well as “<letter>+ <digit>{2}, <digit>{4}” (“January 12,
1997”). Since these two patterns match with Ps and Pt of
a TBP program in Table 1, it likely indicates data inconsis-
tency. With TBP, we could bring these two groups of values
to users attention, and propose fixes by applying the cor-
responding T (e.g., transforming “1997-06-04” to “June 4,
1997”).

We note that the TBP framework is general and applies
to diverse types of transformations, including data in dif-
ferent languages (e.g., Spanish, Chinese, etc.), and data in
di�erent domains (e.g., chemical, financial, etc.). For exam-
ple, some of the cases in Figure 3 require transformations in
languages other than English, such as Figure 3(e) (fixable
by TBP-15), and Figure 3(l) (fixable by TBP-16), etc. These
are all real TBP programs harvested from di�erent table
corpora (e.g., Wikipedia tables in di�erent languages). Our
evaluation suggests that these TBP programs can detect and
fix thousands of real issues across di�erent languages.

For non-technical users working on spreadsheet data (e.g.,
in Microsoft Excel or Tableau), TBP makes it possible to au-
tomatically flag and repair a subclass of data format issues.
We note that TBP once again complements traditional TBE
approaches, which would require explicit paired-examples in
order to suggest transformations.

In short, TBP can program a rich class of transformations,
creating opportunities to simplify data transformation in ap-
plications such as Auto-Repair and Auto-Unify.

2369

Transform by Pattern (TBP)
• Focus on non-technical users
• More general than Transform by Example
• No need for paired examples
• Use Cases:
- Auto-Unify: Unify data in different formats
- Auto-Repair: Fix data quality issues

• Example (Auto-Unify):
- PS = <letter>{3}. <digit>{2},
<digit>{4}

- PT = <digit>{4}-<digit>{2}-<digit>{2}

9

[Jin et al.]
D. Koop, CSCI 640/490, Spring 2023

http://www.vldb.org/pvldb/vol13/p2368-he.pdf

TBP Use Cases
• Auto-Unify

• Auto-Repair

10

[Jin et al.]
D. Koop, CSCI 640/490, Spring 2023

(a) EN-Wiki: Dates (b) EN-Wiki: Currency values (c) EN-

wiki:time

(d) EN-Wiki: Date

(e) ZH-Wiki: Units (f) ZH-Wiki: Ordinals (g) ZH-Wiki: Date (h) JA-Wiki: Year

(i) JA-Wiki: Date (j) ES-Wiki: Numbers (k) ES-Wiki: Numbers (l) ES-Wiki: Date

Figure 3: Auto-Repair: Real quality issues (in red boxes) from Wikipedia tables that are fixable by TBP programs. Note
that the examples span di�erent languages (English, Chinese, Japanese, Spanish, etc.)

2. SYSTEM ARCHITECTURE
Figure 6 gives a high-level overview of the architecture

of our system. There are three main components, which
are all o�ine processing steps. The first component takes a
large corpus of tables (e.g., web tables or enterprise spread-
sheets), find related tables, link/join records across tables
(like shown in Figure 4 and Figure 5), to produce paired
columns (C, CÕ) like in Table 2 (Section 3).

The second component uses paired columns (C, CÕ) as if
they are input/output columns in a transformation task, and
invokes TBE to find possible transformation T consistent
with all examples in (C, CÕ). If TBE synthesizes such a T ,
the (C, CÕ, T) triple is populated in Table 2 (Section 4).

In the last stage, we analyze (C, CÕ, T) triples in Table 2
in a global manner, in order to identify TBP programs that
are both commonly-used and highly-accurate. We formulate
an automated approach to harvest such programs, as well
as a human-curated variant that can leverage human labels
e�ectively (Section 5).

We now discuss each component in turn.

3. PAIR COLUMNS WITH LINKED ROWS
In this section, we discuss the first part of our system,

which takes a large collection of tables T as input, and pro-

duces pairs of columns that are linked row-by-row. In this
section, we discuss 3 di�erent ways to achieve this in turn,
using a corpus of over 100M web tables [18]6

3.1 Pair Columns by Search Engine
Our first approach leverages search engines, utilizing the

observation that pages returned for the same keyword query
often contain related tables. We perform 3 steps here: pair-
ing tables, linking rows, and pairing columns.

Pairing tables. We take the query-logs of a commercial
search engine, and first use a production classifier [18] to
select queries known as “table-intent queries” [18], which are
data-seeking queries such as “list of us presidents”, “list
of national parks”, “list of chemical elements”, etc. We
obtain a total of 16M table-intent queries, denoted by Q.

For each query q œ Q, we retrieve all web tables in the
top-20 pages returned by the search engine, denoted by Tq,
which contains tables related to query q. For example, ta-
bles in Figure 4 are all retrieved for the query “list of us
presidents”. We can then pair such tables in Tq to produce
table-pairs PQ = {(T, T Õ)|T œ Tq, T Õ œ Tq, T ”= T Õ, q œ Q}.

Linking rows. Recall that in order to utilize TBE to
generate programs, we need paired input/output examples.
6Similar web-table data sets are publicly available in [2, 8].

2371

Figure 2: Two tables R and S with schema (time-stamps,
phone-number, geo-coordinates). Integrating the two would
require values to be reformatted using transformations.

invokes the TBE feature, and enters two output examples
(1997-01-12 and 1997-02-02) in the “Custom” column on the
right, to demonstrates a desired transformation. In response
to user input, the system synthesizes a transformation pro-
gram consistent with the two given input/output examples,
which is shown at the top of the figure (this program invokes
a total of 7 functions, including Text.Combine, Date.ToText,
etc.). Furthermore, a preview of remaining output values
is shown in gray (beneath user-provided examples), which
helps users to verify the correctness of the suggested trans-
formation.

Transform-by-Pattern (TBP). The by-example TBE
paradigm is clearly an excellent fit for Excel-like spread-
sheet environments. As we will see below, however, in other
settings it may not be as easy to invoke TBE, for it can
be hard for users to identify columns requiring transforma-
tions, and then provide paired input/output examples. We
in this work propose an alternative Transform-by-Pattern
(TBP) paradigm to complement the TBE approach, which
can proactively suggest relevant transformations based only
on input/output data patterns (with no paired examples).

More concretely, each TBP program is a triple (Ps, Pt,
T), where Ps and Pt are data “patterns” (e.g., in regex)
describing the source and target column, for which the cor-
responding program T is applicable.

Table 1 shows a list of example TBP programs (we will
discuss how to harvest them in detail). Each row here is a
TBP program that consists of a triple (Ps, Pt, T). For the
TBP program labeled as TBP-1 in the first row, its source
pattern Ps is: “<letter>{3}. <digit>{2}, <digit>{4}” and
target pattern Pt is: “<digit>{4}-<digit>{2}-<digit>{2}”.
Note that these two patterns can be used to describe the
example TBE case shown in Figure 1; the corresponding
transformation program (shown at the top of Figure 1) can
be “memorized” in the last column T of Table 1 (omitted in
the table in the interest of space).

In the following, we use two concrete applications, Auto-
Unify and Auto-Repair, to demonstrate that such TBP pro-
grams can enable scenarios complementary to TBE. We em-
phasize that TBP is not meant to replace the general-purpose
TBE, especially in spreadsheet settings where users can eas-
ily identify target output and enter examples.

TBP for “Auto-Unify”. Data transformation is of-
ten required in applications like ETL and data integration,
where data of di�erent formats from multiple sources need
to be unified and standardized.

Figure 2 shows two example tables denoted by R and S,

both containing telemetry data of the form: (time-stamp,
cellular-device-numbers, geo-coordinates). As is often the
case in the real world, R and S are formatted di�erently
(e.g., the telemetry may be generated by di�erent types of
devices, or di�erent versions of programs), and need to be
integrated, which is a common task in ETL [26, 44].

Today, data engineers need to first identify such issues like
in Figure 2 (a time-consuming task when there are many
such feeds and columns). They would then write ad-hoc
transformation scripts, in order to unify each pair of incom-
patible data columns.

We argue that armed with a repository of TBP programs
like in Table 1, the task of identifying and addressing afore-
mentioned issues can be partially automated. Specifically,
given that R-timestamp and S-timestamp need to be merged,
based on the patterns of values in these two columns, we can
suggest TBP-1 in Table 1 to be used, because its source pat-
tern Ps = “<letter>{3}. <digit>{2}, <digit>{4}” and tar-
get pattern Pt = “<digit>{4}-<digit>{2}-<digit>{2}” match
with R-timestamp and S-timestamp, respectively. This allows
us to proactively suggest the corresponding T to perform
this transformation.

Similarly, the patterns Ps and Pt in TBP-2 and TBP-3 from
Table 1 would match with column-pairs (S-phone, R-phone)
and (S-coordinates, R-coordinates) in Figure 2, respectively,
suggesting two additional transformations that can be per-
formed. It should be noted that TBE typically requires
paired examples and would not apply here.

TBP for “Auto-Repair”. As an additional example
application, we show that TBP can also help to identify and
fix inconsistent data values in tables. Figure 3 shows real
data quality issues in Wikipedia tables that are identified
and fixed by TBP programs produced in this work.

For instance, in Figure 3(a), using TBP we can detect
that values in the Date column have two distinct patterns:
“<digit>{4}-<digit>{2}-<digit>{2}” (e.g., “1997-06-04”) as
well as “<letter>+ <digit>{2}, <digit>{4}” (“January 12,
1997”). Since these two patterns match with Ps and Pt of
a TBP program in Table 1, it likely indicates data inconsis-
tency. With TBP, we could bring these two groups of values
to users attention, and propose fixes by applying the cor-
responding T (e.g., transforming “1997-06-04” to “June 4,
1997”).

We note that the TBP framework is general and applies
to diverse types of transformations, including data in dif-
ferent languages (e.g., Spanish, Chinese, etc.), and data in
di�erent domains (e.g., chemical, financial, etc.). For exam-
ple, some of the cases in Figure 3 require transformations in
languages other than English, such as Figure 3(e) (fixable
by TBP-15), and Figure 3(l) (fixable by TBP-16), etc. These
are all real TBP programs harvested from di�erent table
corpora (e.g., Wikipedia tables in di�erent languages). Our
evaluation suggests that these TBP programs can detect and
fix thousands of real issues across di�erent languages.

For non-technical users working on spreadsheet data (e.g.,
in Microsoft Excel or Tableau), TBP makes it possible to au-
tomatically flag and repair a subclass of data format issues.
We note that TBP once again complements traditional TBE
approaches, which would require explicit paired-examples in
order to suggest transformations.

In short, TBP can program a rich class of transformations,
creating opportunities to simplify data transformation in ap-
plications such as Auto-Repair and Auto-Unify.

2369

http://www.vldb.org/pvldb/vol13/p2368-he.pdf

TBP Programs and Triples

11

[Jin et al.]
D. Koop, CSCI 640/490, Spring 2023

Table 1: An example repository of TBP programs (Ps, Pt, T), where each line is a TBP program. The first three programs
can be used to auto-unify the two tables shown in Figure 2.

TBP-id Source-pattern (Ps) Target-pattern (Pt) (T)

TBP-1 <letter>{3}. <digit>{2}, <digit>{4} <digit>{4}-<digit>{2}-<digit>{2} ...

TBP-2 (<digit>{3}) <digit>{3}-<digit>{4} <letter>{3}-<digit>{3}-<digit>{4} ...

TBP-3 (<digit>+¶<num>’<letter>{1}, <digit>+¶<num>’<letter>{1}) <letter>{1}<digit>+¶<num>’ <letter>{1}<digit>+¶<num>’ ...

...

TBP-7 <digit>{4}/<digit>{2}/<digit>{2} <letter>{3} <digit>{2} ...

TBP-8 <num> kg <num> lb ...

TBP-9 <num> lb <num> lb <num> oz ...

...

TBP-15 <num> kg <num>l§ ...

TBP-16 <letter>+ de <digit>{4} <digit>{4} ...

...

Table 2: Example table with (C, CÕ, T) triples, where (C, CÕ) are paired columns, and T is a synthesized program that can
transform C to CÕ. The first triple CCT-1 corresponds to the column-pair (“Born”, “Date of birth”) in Figure 4, with an
inferred program in Listing 1. CCT-4 shows another pair of columns with similar data format and an identical program. Not
all column-pairs have programmatic relationships, such as CCT-9, leading to an empty program.

CCT-id Input-column (C) Output-column (CÕ
) Program (T)

CCT-1 (C1) “Born” = {“02/22/1732”, “10/30/1735”, ... } (CÕ
1) “Date of birth” = {“February 22, 1732”, ... } Listing 1

CCT-2 (C2) “Date of birth” = {“February 22, 1732”, ... } (CÕ
2) “Born” = {“02/22/1732”, “10/30/1735”, ... } ...

CCT-3 (C3) “Died” = {“02/14/1799”, “07/04/1826”, ... } (CÕ
3) “Date of birth” = {“February 22, 1732”, ... } ...

CCT-4 (C4) “Date” = {“11/01/2019”, “12/01/2019”, ... } (CÕ
4) “Date-2” = {“November 01, 2019”, ... } Listing 1

...

CCT-9 (C9) “Name” = {“Washington, George”, “Adam, John”, ... } (CÕ
9) “Date of birth” = {“February 22, 1732”, ... } ÿ

...

“Learned” TBP programs from TBE query logs.
Given the benefit of TBP, we set out to harvest such pro-
grams at scale (as manually curating them would not scale).

One possible approach is to leverage the “query-logs” of
a TBE system. This is analogous to search engines like
Google and Bing, which have long used their query logs con-
taining (keyword-query, user-clicked-document) to improve
search relevance. We argue that the same is true for TBE
systems – specifically, since we have developed TDE [33]
and deployed a version of the system as an Excel add-in,
we are able to collect telemetry of TBE tasks submitted
by Excel users. We should emphasize that we could not
log user data in any form due to legal and compliance rea-
sons – we only collect high-level statistics such as whether a
top-ranked transformation program suggested by TDE is ac-
cepted. Hypothetically, imagine that we could fully log users
input/output data sets, then like search engines we could
leverage the logs to identify common (input-data-pattern,
output-data-pattern, program) triples that are likely good
TBP programs.

Because we are not able to obtain detailed logs in spread-
sheet programs, in this work we develop alternative ap-
proaches to harvest TBP programs.

“Learned” TBP programs from tables. In this work
we propose to harvest TBP transformations from a large
collection of tables. Specifically, we develop techniques to
automatically “link” together table columns with related
content, from which we can exploit content redundancy to
“learn” common transformations.

Figure 4 shows 6 example web tables about US presidents.
We develop techniques to link them together at a row-level
– e.g., the first row of each table corresponds to “George
Washington” and will link/join. After rows are linked, we
can pair columns together “as if” they are input/output
columns, to see if any transformation can be learned us-
ing TBE – for example, the “Born” column {“02/22/1732”,
“10/30/1735”, . . . } in T1 can be paired with the “Date of

birth” column {“February 22, 1732”, “October 30, 1735”,
. . . } from T2, etc. Table 2 shows this column-pair, in row
CCT-1, as well as many other column pairs so produced.These
column pairs are then fed into a TBE system (in our case,
TDE [33]) to learn possible transformation programs, which
are stored in the last column of the table. Notice that given
6 di�erent date-formats used by 6 tables for date-of-birth
in Figure 4, we can already construct a total of 2

!6
2
"

= 30
distinct pairs of formats and their corresponding transfor-
mations, which are all validate TBP programs.

Figure 5 shows another group of 5 tables from Wikipedia,
each of which has a table for US presidents but in di�erent
languages. We develop methods to again automatically link
rows between these tables, and then construct column-pairs
for TBE systems to learn possible transformation programs
across di�erent languages (e.g., from “April 30, 1789” to
“30 de abril de 1789”).

By analyzing many such (Input-column, Output-column,
Transformation-program) triples in Table 2, we can identify
programs that are used repeatedly across the corpus – for
example, the same program (labeled as Listing 1 in Figure 2)
is being used by column-pair CCT-1, CCT-4 and many others,
suggesting that this is likely a good TBP program. In this
work, we develop methods to construct a large “transforma-
tion graph”, to reason about the goodness of TBP programs
in a global manner. TBP programs so produced can then
be used to enable applications like Auto-Repair.

Inter-operability of structured data. TBP is one
step toward achieving inter-operability of tabular data. We
note that by “lifting” data values from a “string” space into
a “program/code” space using TBP, values become inter-
operable (via programs). This is analogous to knowledge-
bases used in search engines, which also “lift” strings into
“entities” for richer experiences (e.g., knowledge cards and
related entities as opposed to 10 blue links). TBP can sim-
ilarly light up new experiences for tabular data like Auto-
Repair, and is a useful step toward inter-operability.

2370

Table 1: An example repository of TBP programs (Ps, Pt, T), where each line is a TBP program. The first three programs
can be used to auto-unify the two tables shown in Figure 2.

TBP-id Source-pattern (Ps) Target-pattern (Pt) (T)

TBP-1 <letter>{3}. <digit>{2}, <digit>{4} <digit>{4}-<digit>{2}-<digit>{2} ...

TBP-2 (<digit>{3}) <digit>{3}-<digit>{4} <letter>{3}-<digit>{3}-<digit>{4} ...

TBP-3 (<digit>+¶<num>’<letter>{1}, <digit>+¶<num>’<letter>{1}) <letter>{1}<digit>+¶<num>’ <letter>{1}<digit>+¶<num>’ ...

...

TBP-7 <digit>{4}/<digit>{2}/<digit>{2} <letter>{3} <digit>{2} ...

TBP-8 <num> kg <num> lb ...

TBP-9 <num> lb <num> lb <num> oz ...

...

TBP-15 <num> kg <num>l§ ...

TBP-16 <letter>+ de <digit>{4} <digit>{4} ...

...

Table 2: Example table with (C, CÕ, T) triples, where (C, CÕ) are paired columns, and T is a synthesized program that can
transform C to CÕ. The first triple CCT-1 corresponds to the column-pair (“Born”, “Date of birth”) in Figure 4, with an
inferred program in Listing 1. CCT-4 shows another pair of columns with similar data format and an identical program. Not
all column-pairs have programmatic relationships, such as CCT-9, leading to an empty program.

CCT-id Input-column (C) Output-column (CÕ
) Program (T)

CCT-1 (C1) “Born” = {“02/22/1732”, “10/30/1735”, ... } (CÕ
1) “Date of birth” = {“February 22, 1732”, ... } Listing 1

CCT-2 (C2) “Date of birth” = {“February 22, 1732”, ... } (CÕ
2) “Born” = {“02/22/1732”, “10/30/1735”, ... } ...

CCT-3 (C3) “Died” = {“02/14/1799”, “07/04/1826”, ... } (CÕ
3) “Date of birth” = {“February 22, 1732”, ... } ...

CCT-4 (C4) “Date” = {“11/01/2019”, “12/01/2019”, ... } (CÕ
4) “Date-2” = {“November 01, 2019”, ... } Listing 1

...

CCT-9 (C9) “Name” = {“Washington, George”, “Adam, John”, ... } (CÕ
9) “Date of birth” = {“February 22, 1732”, ... } ÿ

...

“Learned” TBP programs from TBE query logs.
Given the benefit of TBP, we set out to harvest such pro-
grams at scale (as manually curating them would not scale).

One possible approach is to leverage the “query-logs” of
a TBE system. This is analogous to search engines like
Google and Bing, which have long used their query logs con-
taining (keyword-query, user-clicked-document) to improve
search relevance. We argue that the same is true for TBE
systems – specifically, since we have developed TDE [33]
and deployed a version of the system as an Excel add-in,
we are able to collect telemetry of TBE tasks submitted
by Excel users. We should emphasize that we could not
log user data in any form due to legal and compliance rea-
sons – we only collect high-level statistics such as whether a
top-ranked transformation program suggested by TDE is ac-
cepted. Hypothetically, imagine that we could fully log users
input/output data sets, then like search engines we could
leverage the logs to identify common (input-data-pattern,
output-data-pattern, program) triples that are likely good
TBP programs.

Because we are not able to obtain detailed logs in spread-
sheet programs, in this work we develop alternative ap-
proaches to harvest TBP programs.

“Learned” TBP programs from tables. In this work
we propose to harvest TBP transformations from a large
collection of tables. Specifically, we develop techniques to
automatically “link” together table columns with related
content, from which we can exploit content redundancy to
“learn” common transformations.

Figure 4 shows 6 example web tables about US presidents.
We develop techniques to link them together at a row-level
– e.g., the first row of each table corresponds to “George
Washington” and will link/join. After rows are linked, we
can pair columns together “as if” they are input/output
columns, to see if any transformation can be learned us-
ing TBE – for example, the “Born” column {“02/22/1732”,
“10/30/1735”, . . . } in T1 can be paired with the “Date of

birth” column {“February 22, 1732”, “October 30, 1735”,
. . . } from T2, etc. Table 2 shows this column-pair, in row
CCT-1, as well as many other column pairs so produced.These
column pairs are then fed into a TBE system (in our case,
TDE [33]) to learn possible transformation programs, which
are stored in the last column of the table. Notice that given
6 di�erent date-formats used by 6 tables for date-of-birth
in Figure 4, we can already construct a total of 2

!6
2
"

= 30
distinct pairs of formats and their corresponding transfor-
mations, which are all validate TBP programs.

Figure 5 shows another group of 5 tables from Wikipedia,
each of which has a table for US presidents but in di�erent
languages. We develop methods to again automatically link
rows between these tables, and then construct column-pairs
for TBE systems to learn possible transformation programs
across di�erent languages (e.g., from “April 30, 1789” to
“30 de abril de 1789”).

By analyzing many such (Input-column, Output-column,
Transformation-program) triples in Table 2, we can identify
programs that are used repeatedly across the corpus – for
example, the same program (labeled as Listing 1 in Figure 2)
is being used by column-pair CCT-1, CCT-4 and many others,
suggesting that this is likely a good TBP program. In this
work, we develop methods to construct a large “transforma-
tion graph”, to reason about the goodness of TBP programs
in a global manner. TBP programs so produced can then
be used to enable applications like Auto-Repair.

Inter-operability of structured data. TBP is one
step toward achieving inter-operability of tabular data. We
note that by “lifting” data values from a “string” space into
a “program/code” space using TBP, values become inter-
operable (via programs). This is analogous to knowledge-
bases used in search engines, which also “lift” strings into
“entities” for richer experiences (e.g., knowledge cards and
related entities as opposed to 10 blue links). TBP can sim-
ilarly light up new experiences for tabular data like Auto-
Repair, and is a useful step toward inter-operability.

2370

http://www.vldb.org/pvldb/vol13/p2368-he.pdf

Learning TBP Programs
• User Logs
- Similar to Search Engines
- (Privacy Issues)

• Tables
- Find common tables whose rows can be linked
- Link Wikipedia tables across languages
- Obtain different data formats and abbreviations that can be used as

patterns

12

[Jin et al.]
D. Koop, CSCI 640/490, Spring 2023

http://www.vldb.org/pvldb/vol13/p2368-he.pdf

Figure 4: An example group of 6 web tables on US presidents, extracted from top-ranked documents for query “list of us
presidents”. Note that the same date-of-birth information is being represented in 6 di�erent formats, which can be used as
input/output examples for TBE to learn common TBP transformations.

Figure 5: An example group of 4 Wikipedia tables in di�erent languages (clockwise: English, Chinese, German, Spanish)
that we can link at a row-level (using Wiki inter-language links for pages with the same content). Note that the “date-in-o�ce”
is being represented in di�erent languages across 4 tables, providing examples to learn such transformations.

Figure 6: System Architecture: Learn TBP Programs.

So for a given pair (T, T Õ) œ PQ, we additionally need to
find row-level “links” between T and T Õ (e.g., the first row
of T1 in Figure 4 corresponds to the first row of T2, etc.).

In an ideal setting, such row-level links can be obtained by
equi-joins on key-columns. However, in practice equi-joins
typically fail, because values are often coded/formatted dif-
ferently between tables in the wild – e.g., names of presidents
are formatted di�erently as shown in Figure 4.

To account for syntactic variations in the key-columns, we
leverage an existing “auto-join” system [68]7 to automati-
cally identify join relationships. Specifically, given (T, T Õ) œ
PQ, we take two left-most non-numeric columns from T and

7
A variant of this system is publicly available in Azure ML Data

Prep: https://docs.microsoft.com/en-us/python/api/azureml-dataprep/azureml.dataprep.

api.builders.joinbuilder

T Õ (which likely include key columns), and invoke the “auto-
join” system to find possible joins.

Example 1. For T1, T2 in Figure 4, we use [68] to au-
tomatically infer a join-program J , which performs the fol-
lowing operations on the “Name” column of T1: (1) splitting
names like “Washington, George” by comma (producing an
array with two elements like [“Washington”, “George”]); (2)
concatenating the second element with the first element us-
ing a space (producing values like “George Washington”).

Note that applying J on the “Name” column in T1 produces
values like {“George Washington”, “John Adams”, . . . }, which
precisely match the key values in T2, such that an “equi-
join” can now be performed to link the two tables together.
We consider this J to be reliable, as most rows can be joined
1:1 using J .

The auto-join approach allows us to link rows together
between other table-pairs in Figure 4 similarly. We find this
approach produces substantially more links than equi-join,
which are also more accurate than fuzzy-join (because it
uses precise transformations). More details of this step can

2372

TBP Learning from Tables

13

[Jin et al.]
D. Koop, CSCI 640/490, Spring 2023

Figure 4: An example group of 6 web tables on US presidents, extracted from top-ranked documents for query “list of us
presidents”. Note that the same date-of-birth information is being represented in 6 di�erent formats, which can be used as
input/output examples for TBE to learn common TBP transformations.

Figure 5: An example group of 4 Wikipedia tables in di�erent languages (clockwise: English, Chinese, German, Spanish)
that we can link at a row-level (using Wiki inter-language links for pages with the same content). Note that the “date-in-o�ce”
is being represented in di�erent languages across 4 tables, providing examples to learn such transformations.

Figure 6: System Architecture: Learn TBP Programs.

So for a given pair (T, T Õ) œ PQ, we additionally need to
find row-level “links” between T and T Õ (e.g., the first row
of T1 in Figure 4 corresponds to the first row of T2, etc.).

In an ideal setting, such row-level links can be obtained by
equi-joins on key-columns. However, in practice equi-joins
typically fail, because values are often coded/formatted dif-
ferently between tables in the wild – e.g., names of presidents
are formatted di�erently as shown in Figure 4.

To account for syntactic variations in the key-columns, we
leverage an existing “auto-join” system [68]7 to automati-
cally identify join relationships. Specifically, given (T, T Õ) œ
PQ, we take two left-most non-numeric columns from T and

7
A variant of this system is publicly available in Azure ML Data

Prep: https://docs.microsoft.com/en-us/python/api/azureml-dataprep/azureml.dataprep.

api.builders.joinbuilder

T Õ (which likely include key columns), and invoke the “auto-
join” system to find possible joins.

Example 1. For T1, T2 in Figure 4, we use [68] to au-
tomatically infer a join-program J , which performs the fol-
lowing operations on the “Name” column of T1: (1) splitting
names like “Washington, George” by comma (producing an
array with two elements like [“Washington”, “George”]); (2)
concatenating the second element with the first element us-
ing a space (producing values like “George Washington”).

Note that applying J on the “Name” column in T1 produces
values like {“George Washington”, “John Adams”, . . . }, which
precisely match the key values in T2, such that an “equi-
join” can now be performed to link the two tables together.
We consider this J to be reliable, as most rows can be joined
1:1 using J .

The auto-join approach allows us to link rows together
between other table-pairs in Figure 4 similarly. We find this
approach produces substantially more links than equi-join,
which are also more accurate than fuzzy-join (because it
uses precise transformations). More details of this step can

2372

http://www.vldb.org/pvldb/vol13/p2368-he.pdf

Generating Patterns
• Generate potential regex patterns
• Want more general patterns
• (<digits>/<digits>/<digits> vs. <digits>/<digits>/17<digits>)
• Can be too general: <num><symbol><num><symbol><num>
• Want high "coverage" and high "accuracy"
•

14

[Jin et al.]
D. Koop, CSCI 640/490, Spring 2023

http://www.vldb.org/pvldb/vol13/p2368-he.pdf

Graph Pattern Relationships
• Lossless inverses: can go back and forth
• Triangular equivalent programs: applying one transformation on a column

matches the output of apply two other transformations in sequence

15

[Jin et al.]
D. Koop, CSCI 640/490, Spring 2023

Figure 9: An example TBP graph (with some edges omitted to avoid clutter). Each vertex corresponds to a data pattern
P , and each edge (P, P Õ, T) is a program between two patterns P and P Õ. (We use short-hand notation of pattern tokens,
such as <d>, <l> and <n> that stand for <digit>, <letter> and <num>, respectively).

lossless and can corroborate each other. Spurious programs
“over-fitted” on limited examples in the TBE step would
often fail the test.

Triangular equivalent programs. Because not all trans-
formations are lossless (a prerequisite for inverse-programs),
we also consider a second type of triangular relationship be-
tween programs.

Definition 5. Three programs (P, P ÕÕ, T), (P, P Õ, T Õ) and
(P Õ, P ÕÕ, T ÕÕ) are defined as triangular equivalent programs,
if applying T on column C matching P (or P œ P(C)) pro-
duces output T (C), which is identical to applying T Õ fol-
lowed by T ÕÕ sequentially on C, or T ÕÕ(T Õ(C)) = T (C).

Example 8. Consider the triangle between P5, P6 and P7
in Figure 9. It can be seen that the program T67 is lossy
(the time part is dropped after the transformation), and
thus cannot be part of an inverse program.

However, applying T67 on suitable input (e.g. 07:38AM, 30
December 2019) produces output (Dec. 2019) that is identi-
cal to applying T65 followed by T57, suggesting a triangular
relationship, which can be used as a piece of evidence to
substantiate the validity of T65.

Like inverse-programs, we test each triple (P, P ÕÕ, T), (P,
P Õ, T Õ) and (P Õ, P ÕÕ, T ÕÕ), by performing tests on column data
in TCCT . The success rate Stri can be calculated as:

|{(C, CÕÕ, T) œ TCCT , P œ P(C), P ÕÕ œ P(CÕÕ
), T ÕÕ

(T Õ
(C)) = CÕÕ}|

|{(C, CÕÕ, T) œ TCCT , P œ P(C), P ÕÕ œ P(CÕÕ), T (C) = CÕÕ}|
(4)We consider triangular-equivalence to hold on a program-

triple, if the test above holds on most column pairs from
TCCT (e.g., Stri > 0.8).

Harvest TBP programs by program relationships.

We note that because the program relationships above can
identify high-quality TBP programs, this provides an auto-
mated approach to harvest TBP programs. We implement
tests of inverse and triangular relationships as Map-Reduce
style jobs, using success-rates defined in Equation (3) and
Equation (4).
5.4 Harvest TBP programs by curation

We note that there are many application scenarios where
suggested TBP-transformations are required to be close to
100% correct (e.g., suggesting data-repairs in Excel or Google
Sheets). Such TBP programs need to be manually inspected
and verified beforehand.

As a result, we also consider a problem variant where TBP
programs have to be verified by human curators, who can
inspect and verify up to k candidate programs, and label
them as correct or incorrect. The key technical challenge is
to select programs of high “impact” for humans to verify, so
that the benefit of the k labels can be maximized.

For this task, we start with the graph where edges/pro-
grams are already verified as inverse or triangular. Recall
that each edge/program has a “coverage” score Cov(P, P Õ, T),
indicating the popularity/importance of the program. Intu-
itively, frequently-used transformations (e.g., for common
date-time formats) have high coverage scores and are more
important to be verified first. Our overall objective is thus
to maximize total coverage scores of edges/programs given
a budget of k labels.

Our observation here is that because of relationships be-
tween programs, verifying a program on one edge can have
super-modular benefits, as shown in the example below.

Example 9. In the curation setting, each edge/program in
Figure 9 needs to be verified and has an associated coverage
score. Observe that if a human curator can verify T89 to
be correct, then the inverse T98 is verified implicitly and
be assumed correct. We thus “gain” the coverage-scores
on both T89 and T98 by verifying one edge. Similarly, if
both T65 and T57 are verified as correct, T67 is also likely
correct (because of the triangular relationship), allowing us
to obtain the coverage score on T67 without labeling it.

Given that we try to maximize total coverage scores, and
the inverse/triangular relationships that we can leverage
(e.g., verifying an edge also implicitly verifies the inverse
of the edge), the incremental benefit of labeling an edge is
“super-modular” in regions of the graph with a dense cluster
of edges (e.g., the middle part of Figure 9). In comparison,
verifying an edge not well-connected to other nodes would
have reduced impact.

We formulate this as an optimization problem. Given a
TBP graph G = (V, E), where each edge e œ E has a cover-
age score Cov(e). Our objective is to find a subset of edges
Es µ E to verify, with |Es| Æ k, such that the total coverage
score of these verified programs, together with ones implic-
itly verified through program relationships, is maximized.

We write this in an ILP formulation, termed as CMPS
(coverage-maximizing program selection) below:

(CMPS) max
ÿ

eiœE

Cov(ei)vi (5)

s.t.
ÿ

eiœE

xi Æ k (6)

ym Æ xi + xj , ’ Invm(ei, ej) œ Inv(G) (7)
zn Æ xi + xj + xl ≠ 1, ’Trin(ei, ej , el) œ Tri(G) (8)

vi Æ xi +
ÿ

eiœInvm

ym +
ÿ

eiœTrin

zn, ’ei œ E (9)

vi, xi, ym, zn œ {0, 1} (10)

2376

http://www.vldb.org/pvldb/vol13/p2368-he.pdf

(a) Wiki-en (b) Wiki-zh (c) Wiki-ja (d) Wiki-es
Figure 10: Quality of repairs on Wiki-en, Wiki-zh, Wiki-ja, Wiki-es, using TBP programs learned from corresponding corpus.

(a) Web-en (b) Wiki-zh (c) Wiki-ja (d) Wiki-es
Figure 11: Quality of TBP programs produced on Web-en, Wiki-zh, Wiki-ja, Wiki-es, respectively.

“123.456.7890” to “123-456-7890”), so is splitting (e.g., from
“1234567890” to “123-456-7890”), etc. (2) “Datetime Con-
version”: if a column is recognized as datetime (based on
known date-time formats), then datetime-specific rules kick
in, which allow transformations on up to two token-groups
(e.g., from “Jan 1, 1981” to “01/01/1981”), but not more
than two (e.g., from “Jan 1, 1981” to “01/01/81”).

While these curated rules provide a strong baseline that
handles many common transformations, they can also pro-
duce false-positives that are not entirely intuitive to humans
– for example, in a column with <alpha>+ (<digit>.<digit>)
(e.g. “Washington (8.5)”) and <alpha>+ (<digit>{2}) (e.g.,
“Washington (12)”), a suggestion to transform “Washington
(8.5)” into “Washington (85)” will be produced. This is be-
cause dropping the symbol “.” is allowed by rule, even
though it is not semantically meaningful.
• Syntactic-Generic. This is Syntactic but with only generic
conversion rules as defined in System-A documentation. We
ran both Syntactic and Syntactic-Generic on the entire test
corpus, and label their respective top-K results.
• Grok-Types. An alternative to repairing data format
issues in columns, is to use predefined regex patterns to de-
tect known data-types (e.g., date-time, email, url, ip, etc.).
If more than one known pattern/format is detected in the
same column (e.g., date-format-1 and date-format-2), it is
likely a format issue that needs to be fixed.

We use Grok-patterns [3] for type-detection, which has
over 70 curated regex patterns for common data-types. For
each repair from Auto-Transform, we evaluate if the same
issue can be detected by Grok (by testing if there are two
Grok patterns in the column), and if so we mark it as “fix-
able” by Grok (even though no repair exists in Grok). We
report the total number of fixable issues for Grok.
• Excel-Types. Observing that Excel can auto-format data
of certain known types (e.g., date-time and currency) into
standard formats [1], we simulate the Excel logic from [5]

(which has over 110 date-time formats for “en-us” alone).
Like in Grok-Types, this is to understand the potential cov-
erage of Excel types – specifically, for each real issue detected
by Auto-Transform, we check if Excel type-detection logic
can discover two known formats mixed in the same col-
umn. We again report the fraction of issues fixed by Auto-
Transform that are also fixable by Excel.
• Functional Dependency (FD). First-order logic like
FD is widely used for error detection and repair (e.g., [11,
13, 23]), which conceptually addresses an orthogonal type of
errors manifested as inconsistency across multiple columns
(whereas TBP leverage information within single columns).

Even though the errors addressed by the two are largely
complementary, we nevertheless perform a comparison to
quantify the possible overlap between FD-based approaches
and TBP-based methods. Specifically, if the column C of
tuple t (written as C(t)) is fixed by Auto-Transform from
v to v̄, we check whether there is any approximate FD: Cl æ
C in the same table (with column Cl being the LHS), that
can possibly fix v to v̄. Namely, we check if there exists
another tuple tÕ with Cl(tÕ) = Cl(t) and C(tÕ) = v̄, which
would make the fix v æ v̄ possible. We report the fraction
of issues fixed by Auto-Transform that are fixable by FD.

6.3 Experiment Results
TBP-based Data Repairs. Figure 10 shows the qual-

ity of top-K repairs generated on Web-en, Wiki-zh, Wiki-ja,
Wiki-es, respectively, using TBP programs generated from
corresponding corpora listed in Table 4.

Overall the trend is consistent across the 4 test corpora.
Auto-Transform can generate high-quality repairs across
di�erent languages (examples of which are shown in Fig-
ure 3). Note that these TBP programs are harvested us-
ing the graph-based analysis without human curation (Sec-
tion 5.3). This experiment shows that our approach can
indeed generalize across di�erent types of table corpora (in

2378

Experiment Results

16

[Jin et al.]
D. Koop, CSCI 640/490, Spring 2023

http://www.vldb.org/pvldb/vol13/p2368-he.pdf

Questions/Discussion?

17D. Koop, CSCI 640/490, Spring 2023

Questions/Discussion?
• Strong focus on dates in examples
• Does this help the analyst who has specific types of data and formats?
• How does this relate to programmatic means of wrangling?

18D. Koop, CSCI 640/490, Spring 2023

Test 1
• Monday, Feb. 27
• In-class, 9:30-10:45am
• Format:
- Multiple Choice
- Free Response

• Information will be posted online

19D. Koop, CSCI 640/490, Spring 2023

https://faculty.cs.niu.edu/~dakoop/cs640-2023sp/test1.html

20

Data Transformation

D. Koop, CSCI 640/490, Spring 2023

Pandas Transformations
• Split: str.split
• Fold/Unfold: stack/unstack
• Merge, join, and concatenate documentation:
- https://pandas.pydata.org/pandas-docs/stable/merging.html

21D. Koop, CSCI 680/490, Spring 2022

https://pandas.pydata.org/pandas-docs/stable/merging.html

Tidy Data
• Dataset contain values: quantitative and categorical/qualitative
• Value is either:
- variable: all values that measure the same underlying attribute
- observation: all values measured on the same unit across attributes

22

[H. Wickham, 2014]
D. Koop, CSCI 680/490, Spring 2022

Three Ways to Present the Same Data

23

[H. Wickham, 2014]
D. Koop, CSCI 680/490, Spring 2022

Journal of Statistical Software 3

2.1. Data structure

Most statistical datasets are rectangular tables made up of rows and columns. The columns
are almost always labelled and the rows are sometimes labelled. Table 1 provides some data
about an imaginary experiment in a format commonly seen in the wild. The table has two
columns and three rows, and both rows and columns are labelled.

treatmenta treatmentb

John Smith — 2
Jane Doe 16 11
Mary Johnson 3 1

Table 1: Typical presentation dataset.

There are many ways to structure the same underlying data. Table 2 shows the same data
as Table 1, but the rows and columns have been transposed. The data is the same, but the
layout is di↵erent. Our vocabulary of rows and columns is simply not rich enough to describe
why the two tables represent the same data. In addition to appearance, we need a way to
describe the underlying semantics, or meaning, of the values displayed in table.

John Smith Jane Doe Mary Johnson

treatmenta — 16 3
treatmentb 2 11 1

Table 2: The same data as in Table 1 but structured di↵erently.

2.2. Data semantics

A dataset is a collection of values, usually either numbers (if quantitative) or strings (if
qualitative). Values are organised in two ways. Every value belongs to a variable and an
observation. A variable contains all values that measure the same underlying attribute (like
height, temperature, duration) across units. An observation contains all values measured on
the same unit (like a person, or a day, or a race) across attributes.

Table 3 reorganises Table 1 to make the values, variables and obserations more clear. The
dataset contains 18 values representing three variables and six observations. The variables
are:

1. person, with three possible values (John, Mary, and Jane).

2. treatment, with two possible values (a and b).

3. result, with five or six values depending on how you think of the missing value (-, 16,
3, 2, 11, 1).

The experimental design tells us more about the structure of the observations. In this exper-
iment, every combination of of person and treatment was measured, a completely crossed
design. The experimental design also determines whether or not missing values can be safely

Journal of Statistical Software 3

2.1. Data structure

Most statistical datasets are rectangular tables made up of rows and columns. The columns
are almost always labelled and the rows are sometimes labelled. Table 1 provides some data
about an imaginary experiment in a format commonly seen in the wild. The table has two
columns and three rows, and both rows and columns are labelled.

treatmenta treatmentb

John Smith — 2
Jane Doe 16 11
Mary Johnson 3 1

Table 1: Typical presentation dataset.

There are many ways to structure the same underlying data. Table 2 shows the same data
as Table 1, but the rows and columns have been transposed. The data is the same, but the
layout is di↵erent. Our vocabulary of rows and columns is simply not rich enough to describe
why the two tables represent the same data. In addition to appearance, we need a way to
describe the underlying semantics, or meaning, of the values displayed in table.

John Smith Jane Doe Mary Johnson

treatmenta — 16 3
treatmentb 2 11 1

Table 2: The same data as in Table 1 but structured di↵erently.

2.2. Data semantics

A dataset is a collection of values, usually either numbers (if quantitative) or strings (if
qualitative). Values are organised in two ways. Every value belongs to a variable and an
observation. A variable contains all values that measure the same underlying attribute (like
height, temperature, duration) across units. An observation contains all values measured on
the same unit (like a person, or a day, or a race) across attributes.

Table 3 reorganises Table 1 to make the values, variables and obserations more clear. The
dataset contains 18 values representing three variables and six observations. The variables
are:

1. person, with three possible values (John, Mary, and Jane).

2. treatment, with two possible values (a and b).

3. result, with five or six values depending on how you think of the missing value (-, 16,
3, 2, 11, 1).

The experimental design tells us more about the structure of the observations. In this exper-
iment, every combination of of person and treatment was measured, a completely crossed
design. The experimental design also determines whether or not missing values can be safely

4 Tidy Data

dropped. In this experiment, the missing value represents an observation that should have
been made, but wasn’t, so it’s important to keep it. Structural missing values, which represent
measurements that can’t be made (e.g., the count of pregnant males) can be safely removed.

name trt result

John Smith a —
Jane Doe a 16
Mary Johnson a 3
John Smith b 2
Jane Doe b 11
Mary Johnson b 1

Table 3: The same data as in Table 1 but with variables in columns and observations in rows.

For a given dataset, it’s usually easy to figure out what are observations and what are variables,
but it is surprisingly di�cult to precisely define variables and observations in general. For
example, if the columns in the Table 1 were height and weight we would have been happy
to call them variables. If the columns were height and width, it would be less clear cut, as
we might think of height and width as values of a dimension variable. If the columns were
home phone and work phone, we could treat these as two variables, but in a fraud detection
environment we might want variables phone number and number type because the use of one
phone number for multiple people might suggest fraud. A general rule of thumb is that it is
easier to describe functional relationships between variables (e.g., z is a linear combination
of x and y, density is the ratio of weight to volume) than between rows, and it is easier
to make comparisons between groups of observations (e.g., average of group a vs. average of
group b) than between groups of columns.

In a given analysis, there may be multiple levels of observation. For example, in a trial of new
allergy medication we might have three observational types: demographic data collected from
each person (age, sex, race), medical data collected from each person on each day (number
of sneezes, redness of eyes), and meterological data collected on each day (temperature,
pollen count).

2.3. Tidy data

Tidy data is a standard way of mapping the meaning of a dataset to its structure. A dataset is
messy or tidy depending on how rows, columns and tables are matched up with observations,
variables and types. In tidy data:

1. Each variable forms a column.

2. Each observation forms a row.

3. Each type of observational unit forms a table.

This is Codd’s 3rd normal form (Codd 1990), but with the constraints framed in statistical
language, and the focus put on a single dataset rather than the many connected datasets
common in relational databases. Messy data is any other other arrangement of the data.

Initial Data

Transpose

Tidy Data

Tidy Data Principles
• Tidy Data: Codd's 3rd Normal Form (Databases)
1. Each variable forms a column
2. Each observation forms a row
3. Each type of observational unit forms a table (DataFrame)

• Other structures are messy data

24

[H. Wickham, 2014]
D. Koop, CSCI 680/490, Spring 2022

Tidy Data
• Benefits:
- Easy for analyst to extract variables
- Works well for vectorized programming

• Organize variables by their role
- Fixed variables: describe experimental design, known in advance
- Measured variables: what is measured in study

• Variables also known as dimensions and measures

25

[H. Wickham, 2014]
D. Koop, CSCI 680/490, Spring 2022

Messy Dataset Problems
• Column headers are values, not variable names
• Multiple variables are stored in one column
• Variables are stored in both rows and columns
• Multiple types of observational units are stored in the same table
• A single observational unit is stored in multiple tables

26D. Koop, CSCI 680/490, Spring 2022

6 Tidy Data

I would call this arrangement messy, in some cases it can be extremely useful. It provides
e�cient storage for completely crossed designs, and it can lead to extremely e�cient compu-
tation if desired operations can be expressed as matrix operations. This issue is discussed in
depth in Section 6.

Table 4 shows a subset of a typical dataset of this form. This dataset explores the relationship
between income and religion in the US. It comes from a report1 produced by the Pew Research
Center, an American think-tank that collects data on attitudes to topics ranging from religion
to the internet, and produces many reports that contain datasets in this format.

religion <$10k $10-20k $20-30k $30-40k $40-50k $50-75k

Agnostic 27 34 60 81 76 137
Atheist 12 27 37 52 35 70
Buddhist 27 21 30 34 33 58
Catholic 418 617 732 670 638 1116
Don’t know/refused 15 14 15 11 10 35
Evangelical Prot 575 869 1064 982 881 1486
Hindu 1 9 7 9 11 34
Historically Black Prot 228 244 236 238 197 223
Jehovah’s Witness 20 27 24 24 21 30
Jewish 19 19 25 25 30 95

Table 4: The first ten rows of data on income and religion from the Pew Forum. Three columns,
$75-100k, $100-150k and >150k, have been omitted

This dataset has three variables, religion, income and frequency. To tidy it, we need
to melt, or stack it. In other words, we need to turn columns into rows. While this is
often described as making wide datasets long or tall, I will avoid those terms because they are
imprecise. Melting is parameterised by a list of columns that are already variables, or colvars
for short. The other columns are converted into two variables: a new variable called column

that contains repeated column headings and a new variable called value that contains the
concatenated data values from the previously separate columns. This is illustrated in Table 5
with a toy dataset. The result of melting is a molten dataset.

The Pew dataset has one colvar, religion, and melting yields Table 6. To better reflect
their roles in this dataset, the variable column has been renamed to income, and the value
column to freq. This form is tidy because each column represents a variable and each row
represents an observation, in this case a demographic unit corresponding to a combination of
religion and income.

Another common use of this data format is to record regularly spaced observations over time.
For example, the Billboard dataset shown in Table 7 records the date a song first entered the
Billboard Top 100. It has variables for artist, track, date.entered, rank and week. The
rank in each week after it enters the top 100 is recorded in 75 columns, wk1 to wk75. If a song
is in the Top 100 for less than 75 weeks the remaining columns are filled with missing values.
This form of storage is not tidy, but it is useful for data entry. It reduces duplication since

1http://religions.pewforum.org/pdf/comparison-Income%20Distribution%20of%20Religious%
20Traditions.pdf

Problem: Column Headers are Values

27

[H. Wickham, 2014]
D. Koop, CSCI 680/490, Spring 2022

Income and Religion, Pew Forum

6 Tidy Data

I would call this arrangement messy, in some cases it can be extremely useful. It provides
e�cient storage for completely crossed designs, and it can lead to extremely e�cient compu-
tation if desired operations can be expressed as matrix operations. This issue is discussed in
depth in Section 6.

Table 4 shows a subset of a typical dataset of this form. This dataset explores the relationship
between income and religion in the US. It comes from a report1 produced by the Pew Research
Center, an American think-tank that collects data on attitudes to topics ranging from religion
to the internet, and produces many reports that contain datasets in this format.

religion <$10k $10-20k $20-30k $30-40k $40-50k $50-75k

Agnostic 27 34 60 81 76 137
Atheist 12 27 37 52 35 70
Buddhist 27 21 30 34 33 58
Catholic 418 617 732 670 638 1116
Don’t know/refused 15 14 15 11 10 35
Evangelical Prot 575 869 1064 982 881 1486
Hindu 1 9 7 9 11 34
Historically Black Prot 228 244 236 238 197 223
Jehovah’s Witness 20 27 24 24 21 30
Jewish 19 19 25 25 30 95

Table 4: The first ten rows of data on income and religion from the Pew Forum. Three columns,
$75-100k, $100-150k and >150k, have been omitted

This dataset has three variables, religion, income and frequency. To tidy it, we need
to melt, or stack it. In other words, we need to turn columns into rows. While this is
often described as making wide datasets long or tall, I will avoid those terms because they are
imprecise. Melting is parameterised by a list of columns that are already variables, or colvars
for short. The other columns are converted into two variables: a new variable called column

that contains repeated column headings and a new variable called value that contains the
concatenated data values from the previously separate columns. This is illustrated in Table 5
with a toy dataset. The result of melting is a molten dataset.

The Pew dataset has one colvar, religion, and melting yields Table 6. To better reflect
their roles in this dataset, the variable column has been renamed to income, and the value
column to freq. This form is tidy because each column represents a variable and each row
represents an observation, in this case a demographic unit corresponding to a combination of
religion and income.

Another common use of this data format is to record regularly spaced observations over time.
For example, the Billboard dataset shown in Table 7 records the date a song first entered the
Billboard Top 100. It has variables for artist, track, date.entered, rank and week. The
rank in each week after it enters the top 100 is recorded in 75 columns, wk1 to wk75. If a song
is in the Top 100 for less than 75 weeks the remaining columns are filled with missing values.
This form of storage is not tidy, but it is useful for data entry. It reduces duplication since

1http://religions.pewforum.org/pdf/comparison-Income%20Distribution%20of%20Religious%
20Traditions.pdf

Problem: Column Headers are Values

27

[H. Wickham, 2014]
D. Koop, CSCI 680/490, Spring 2022

Income and Religion, Pew Forum

Variables: religion, income, frequency

Journal of Statistical Software 7

row a b c

A 1 4 7
B 2 5 8
C 3 6 9

(a) Raw data

row column value

A a 1
B a 2
C a 3
A b 4
B b 5
C b 6
A c 7
B c 8
C c 9

(b) Molten data

Table 5: A simple example of melting. (a) is melted with one colvar, row, yielding the molten dataset
(b). The information in each table is exactly the same, just stored in a di↵erent way.

religion income freq

Agnostic <$10k 27
Agnostic $10-20k 34
Agnostic $20-30k 60
Agnostic $30-40k 81
Agnostic $40-50k 76
Agnostic $50-75k 137
Agnostic $75-100k 122
Agnostic $100-150k 109
Agnostic >150k 84
Agnostic Don’t know/refused 96

Table 6: The first ten rows of the tidied Pew survey dataset on income and religion. The column has
been renamed to income, and value to freq.

Solution: Melt Data
• Turn columns into rows
• One or more columns become rows

under a new column (column)
• Values become a new column

(value)
• After melt, data is molten
• AKA pivot_longer
• Inverse of pivot

28

[H. Wickham, 2014]
D. Koop, CSCI 680/490, Spring 2022

Solution: Molten Data

29

[H. Wickham, 2014]
D. Koop, CSCI 680/490, Spring 2022

6 Tidy Data

I would call this arrangement messy, in some cases it can be extremely useful. It provides
e�cient storage for completely crossed designs, and it can lead to extremely e�cient compu-
tation if desired operations can be expressed as matrix operations. This issue is discussed in
depth in Section 6.

Table 4 shows a subset of a typical dataset of this form. This dataset explores the relationship
between income and religion in the US. It comes from a report1 produced by the Pew Research
Center, an American think-tank that collects data on attitudes to topics ranging from religion
to the internet, and produces many reports that contain datasets in this format.

religion <$10k $10-20k $20-30k $30-40k $40-50k $50-75k

Agnostic 27 34 60 81 76 137
Atheist 12 27 37 52 35 70
Buddhist 27 21 30 34 33 58
Catholic 418 617 732 670 638 1116
Don’t know/refused 15 14 15 11 10 35
Evangelical Prot 575 869 1064 982 881 1486
Hindu 1 9 7 9 11 34
Historically Black Prot 228 244 236 238 197 223
Jehovah’s Witness 20 27 24 24 21 30
Jewish 19 19 25 25 30 95

Table 4: The first ten rows of data on income and religion from the Pew Forum. Three columns,
$75-100k, $100-150k and >150k, have been omitted

This dataset has three variables, religion, income and frequency. To tidy it, we need
to melt, or stack it. In other words, we need to turn columns into rows. While this is
often described as making wide datasets long or tall, I will avoid those terms because they are
imprecise. Melting is parameterised by a list of columns that are already variables, or colvars
for short. The other columns are converted into two variables: a new variable called column

that contains repeated column headings and a new variable called value that contains the
concatenated data values from the previously separate columns. This is illustrated in Table 5
with a toy dataset. The result of melting is a molten dataset.

The Pew dataset has one colvar, religion, and melting yields Table 6. To better reflect
their roles in this dataset, the variable column has been renamed to income, and the value
column to freq. This form is tidy because each column represents a variable and each row
represents an observation, in this case a demographic unit corresponding to a combination of
religion and income.

Another common use of this data format is to record regularly spaced observations over time.
For example, the Billboard dataset shown in Table 7 records the date a song first entered the
Billboard Top 100. It has variables for artist, track, date.entered, rank and week. The
rank in each week after it enters the top 100 is recorded in 75 columns, wk1 to wk75. If a song
is in the Top 100 for less than 75 weeks the remaining columns are filled with missing values.
This form of storage is not tidy, but it is useful for data entry. It reduces duplication since

1http://religions.pewforum.org/pdf/comparison-Income%20Distribution%20of%20Religious%
20Traditions.pdf

Journal of Statistical Software 7

row a b c

A 1 4 7
B 2 5 8
C 3 6 9

(a) Raw data

row column value

A a 1
B a 2
C a 3
A b 4
B b 5
C b 6
A c 7
B c 8
C c 9

(b) Molten data

Table 5: A simple example of melting. (a) is melted with one colvar, row, yielding the molten dataset
(b). The information in each table is exactly the same, just stored in a di↵erent way.

religion income freq

Agnostic <$10k 27
Agnostic $10-20k 34
Agnostic $20-30k 60
Agnostic $30-40k 81
Agnostic $40-50k 76
Agnostic $50-75k 137
Agnostic $75-100k 122
Agnostic $100-150k 109
Agnostic >150k 84
Agnostic Don’t know/refused 96

Table 6: The first ten rows of the tidied Pew survey dataset on income and religion. The column has
been renamed to income, and value to freq.Original Molten (first 10 rows)

Melting: Billboard Top Hits

30

[Wickham, 2014]
D. Koop, CSCI 680/490, Spring 2022

8 Tidy Data

otherwise each song in each week would need its own row, and song metadata like title and
artist would need to be repeated. This issue will be discussed in more depth in Section 3.4.

year artist track time date.entered wk1 wk2 wk3

2000 2 Pac Baby Don’t Cry 4:22 2000-02-26 87 82 72
2000 2Ge+her The Hardest Part Of ... 3:15 2000-09-02 91 87 92
2000 3 Doors Down Kryptonite 3:53 2000-04-08 81 70 68
2000 98^0 Give Me Just One Nig... 3:24 2000-08-19 51 39 34
2000 A*Teens Dancing Queen 3:44 2000-07-08 97 97 96
2000 Aaliyah I Don’t Wanna 4:15 2000-01-29 84 62 51
2000 Aaliyah Try Again 4:03 2000-03-18 59 53 38
2000 Adams, Yolanda Open My Heart 5:30 2000-08-26 76 76 74

Table 7: The first eight Billboard top hits for 2000. Other columns not shown are wk4, wk5, ..., wk75.

This dataset has colvars year, artist, track, time, and date.entered. Melting yields
Table 8. I have also done a little cleaning as well as tidying: column has been converted to
week by extracting the number, and date has been computed from date.entered and week.

year artist time track date week rank

2000 2 Pac 4:22 Baby Don’t Cry 2000-02-26 1 87
2000 2 Pac 4:22 Baby Don’t Cry 2000-03-04 2 82
2000 2 Pac 4:22 Baby Don’t Cry 2000-03-11 3 72
2000 2 Pac 4:22 Baby Don’t Cry 2000-03-18 4 77
2000 2 Pac 4:22 Baby Don’t Cry 2000-03-25 5 87
2000 2 Pac 4:22 Baby Don’t Cry 2000-04-01 6 94
2000 2 Pac 4:22 Baby Don’t Cry 2000-04-08 7 99
2000 2Ge+her 3:15 The Hardest Part Of ... 2000-09-02 1 91
2000 2Ge+her 3:15 The Hardest Part Of ... 2000-09-09 2 87
2000 2Ge+her 3:15 The Hardest Part Of ... 2000-09-16 3 92
2000 3 Doors Down 3:53 Kryptonite 2000-04-08 1 81
2000 3 Doors Down 3:53 Kryptonite 2000-04-15 2 70
2000 3 Doors Down 3:53 Kryptonite 2000-04-22 3 68
2000 3 Doors Down 3:53 Kryptonite 2000-04-29 4 67
2000 3 Doors Down 3:53 Kryptonite 2000-05-06 5 66

Table 8: First fifteen rows of the tidied billboard dataset. The date column does not appear in the
original table, but can be computed from date.entered and week.

3.2. Multiple variables stored in one column

After melting, the column variable names often becomes a combination of multiple underlying
variable names. This is illustrated by the tuberculosis (TB) dataset, a sample of which is
shown in Table 9. This dataset comes from the World Health Organisation, and records
the counts of confirmed tuberculosis cases by country, year, and demographic group. The
demographic groups are broken down by sex (m, f) and age (0–14, 15–25, 25–34, 35–44,

8 Tidy Data

otherwise each song in each week would need its own row, and song metadata like title and
artist would need to be repeated. This issue will be discussed in more depth in Section 3.4.

year artist track time date.entered wk1 wk2 wk3

2000 2 Pac Baby Don’t Cry 4:22 2000-02-26 87 82 72
2000 2Ge+her The Hardest Part Of ... 3:15 2000-09-02 91 87 92
2000 3 Doors Down Kryptonite 3:53 2000-04-08 81 70 68
2000 98^0 Give Me Just One Nig... 3:24 2000-08-19 51 39 34
2000 A*Teens Dancing Queen 3:44 2000-07-08 97 97 96
2000 Aaliyah I Don’t Wanna 4:15 2000-01-29 84 62 51
2000 Aaliyah Try Again 4:03 2000-03-18 59 53 38
2000 Adams, Yolanda Open My Heart 5:30 2000-08-26 76 76 74

Table 7: The first eight Billboard top hits for 2000. Other columns not shown are wk4, wk5, ..., wk75.

This dataset has colvars year, artist, track, time, and date.entered. Melting yields
Table 8. I have also done a little cleaning as well as tidying: column has been converted to
week by extracting the number, and date has been computed from date.entered and week.

year artist time track date week rank

2000 2 Pac 4:22 Baby Don’t Cry 2000-02-26 1 87
2000 2 Pac 4:22 Baby Don’t Cry 2000-03-04 2 82
2000 2 Pac 4:22 Baby Don’t Cry 2000-03-11 3 72
2000 2 Pac 4:22 Baby Don’t Cry 2000-03-18 4 77
2000 2 Pac 4:22 Baby Don’t Cry 2000-03-25 5 87
2000 2 Pac 4:22 Baby Don’t Cry 2000-04-01 6 94
2000 2 Pac 4:22 Baby Don’t Cry 2000-04-08 7 99
2000 2Ge+her 3:15 The Hardest Part Of ... 2000-09-02 1 91
2000 2Ge+her 3:15 The Hardest Part Of ... 2000-09-09 2 87
2000 2Ge+her 3:15 The Hardest Part Of ... 2000-09-16 3 92
2000 3 Doors Down 3:53 Kryptonite 2000-04-08 1 81
2000 3 Doors Down 3:53 Kryptonite 2000-04-15 2 70
2000 3 Doors Down 3:53 Kryptonite 2000-04-22 3 68
2000 3 Doors Down 3:53 Kryptonite 2000-04-29 4 67
2000 3 Doors Down 3:53 Kryptonite 2000-05-06 5 66

Table 8: First fifteen rows of the tidied billboard dataset. The date column does not appear in the
original table, but can be computed from date.entered and week.

3.2. Multiple variables stored in one column

After melting, the column variable names often becomes a combination of multiple underlying
variable names. This is illustrated by the tuberculosis (TB) dataset, a sample of which is
shown in Table 9. This dataset comes from the World Health Organisation, and records
the counts of confirmed tuberculosis cases by country, year, and demographic group. The
demographic groups are broken down by sex (m, f) and age (0–14, 15–25, 25–34, 35–44,

Melting
• Pandas also has a melt function:

In [41]: cheese = pd.DataFrame({'first' : ['John', 'Mary'],
 : 'last' : ['Doe', 'Bo'],
 : 'height' : [5.5, 6.0],
 : 'weight' : [130, 150]})
 :

In [42]: cheese
Out[42]:
 first height last weight
0 John 5.5 Doe 130
1 Mary 6.0 Bo 150

In [43]: cheese.melt(id_vars=['first', 'last'])
Out[43]:
 first last variable value
0 John Doe height 5.5
1 Mary Bo height 6.0
2 John Doe weight 130.0
3 Mary Bo weight 150.0

In [44]: cheese.melt(id_vars=['first', 'last'], var_name='quantity')
Out[44]:
 first last quantity value
0 John Doe height 5.5
1 Mary Bo height 6.0
2 John Doe weight 130.0
3 Mary Bo weight 150.0

31D. Koop, CSCI 680/490, Spring 2022

Journal of Statistical Software 9

45–54, 55–64, unknown).

country year m014 m1524 m2534 m3544 m4554 m5564 m65 mu f014

AD 2000 0 0 1 0 0 0 0 — —
AE 2000 2 4 4 6 5 12 10 — 3
AF 2000 52 228 183 149 129 94 80 — 93
AG 2000 0 0 0 0 0 0 1 — 1
AL 2000 2 19 21 14 24 19 16 — 3
AM 2000 2 152 130 131 63 26 21 — 1
AN 2000 0 0 1 2 0 0 0 — 0
AO 2000 186 999 1003 912 482 312 194 — 247
AR 2000 97 278 594 402 419 368 330 — 121
AS 2000 — — — — 1 1 — — —

Table 9: Original TB dataset. Corresponding to each ‘m’ column for males, there is also an ‘f’ column
for females, f1524, f2534 and so on. These are not shown to conserve space. Note the mixture of 0s
and missing values (—). This is due to the data collection process and the distinction is important for
this dataset.

Column headers in this format are often separated by some character (., -, _, :). While the
string can be broken into pieces using that character as a divider, in other cases, such as for
this dataset, more careful string processing is required. For example, the variable names can
be matched to a lookup table that converts single compound value into multiple component
values.

Table 10(a) shows the results of melting the TB dataset, and Table 10(b) shows the results
of splitting the single column column into two real variables: age and sex.

Storing the values in this form resolves another problem in the original data. We want to
compare rates, not counts. But to compute rates, we need to know the population. In the
original format, there is no easy way to add a population variable. It has to be stored in a
separate table, which makes it hard to correctly match populations to counts. In tidy form,
adding variables for population and rate is easy. They are just additional columns.

3.3. Variables are stored in both rows and columns

The most complicated form of messy data occurs when variables are stored in both rows and
columns. Table 11 shows daily weather data from the Global Historical Climatology Network
for one weather station (MX17004) in Mexico for five months in 2010. It has variables in
individual columns (id, year, month), spread across columns (day, d1–d31) and across rows
(tmin, tmax) (minimum and maximum temperature). Months with less than 31 days have
structural missing values for the last day(s) of the month. The element column is not a
variable; it stores the names of variables.

To tidy this dataset we first melt it with colvars id, year, month and the column that contains
variable names, element. This yields Table 12(a). For presentation, we have dropped the
missing values, making them implicit rather than explicit. This is permissible because we know
how many days are in each month and can easily reconstruct the explicit missing values.

This dataset is mostly tidy, but we have two variables stored in rows: tmin and tmax, the

Problem: Multiple variables stored in one column

32

[H. Wickham, 2014]
D. Koop, CSCI 680/490, Spring 2022

Tuberculosis Data, World Health Organization

Journal of Statistical Software 9

45–54, 55–64, unknown).

country year m014 m1524 m2534 m3544 m4554 m5564 m65 mu f014

AD 2000 0 0 1 0 0 0 0 — —
AE 2000 2 4 4 6 5 12 10 — 3
AF 2000 52 228 183 149 129 94 80 — 93
AG 2000 0 0 0 0 0 0 1 — 1
AL 2000 2 19 21 14 24 19 16 — 3
AM 2000 2 152 130 131 63 26 21 — 1
AN 2000 0 0 1 2 0 0 0 — 0
AO 2000 186 999 1003 912 482 312 194 — 247
AR 2000 97 278 594 402 419 368 330 — 121
AS 2000 — — — — 1 1 — — —

Table 9: Original TB dataset. Corresponding to each ‘m’ column for males, there is also an ‘f’ column
for females, f1524, f2534 and so on. These are not shown to conserve space. Note the mixture of 0s
and missing values (—). This is due to the data collection process and the distinction is important for
this dataset.

Column headers in this format are often separated by some character (., -, _, :). While the
string can be broken into pieces using that character as a divider, in other cases, such as for
this dataset, more careful string processing is required. For example, the variable names can
be matched to a lookup table that converts single compound value into multiple component
values.

Table 10(a) shows the results of melting the TB dataset, and Table 10(b) shows the results
of splitting the single column column into two real variables: age and sex.

Storing the values in this form resolves another problem in the original data. We want to
compare rates, not counts. But to compute rates, we need to know the population. In the
original format, there is no easy way to add a population variable. It has to be stored in a
separate table, which makes it hard to correctly match populations to counts. In tidy form,
adding variables for population and rate is easy. They are just additional columns.

3.3. Variables are stored in both rows and columns

The most complicated form of messy data occurs when variables are stored in both rows and
columns. Table 11 shows daily weather data from the Global Historical Climatology Network
for one weather station (MX17004) in Mexico for five months in 2010. It has variables in
individual columns (id, year, month), spread across columns (day, d1–d31) and across rows
(tmin, tmax) (minimum and maximum temperature). Months with less than 31 days have
structural missing values for the last day(s) of the month. The element column is not a
variable; it stores the names of variables.

To tidy this dataset we first melt it with colvars id, year, month and the column that contains
variable names, element. This yields Table 12(a). For presentation, we have dropped the
missing values, making them implicit rather than explicit. This is permissible because we know
how many days are in each month and can easily reconstruct the explicit missing values.

This dataset is mostly tidy, but we have two variables stored in rows: tmin and tmax, the

Problem: Multiple variables stored in one column

32

[H. Wickham, 2014]
D. Koop, CSCI 680/490, Spring 2022

Tuberculosis Data, World Health Organization

Two variables in columns: age and sex

10 Tidy Data

country year column cases

AD 2000 m014 0
AD 2000 m1524 0
AD 2000 m2534 1
AD 2000 m3544 0
AD 2000 m4554 0
AD 2000 m5564 0
AD 2000 m65 0
AE 2000 m014 2
AE 2000 m1524 4
AE 2000 m2534 4
AE 2000 m3544 6
AE 2000 m4554 5
AE 2000 m5564 12
AE 2000 m65 10
AE 2000 f014 3

(a) Molten data

country year sex age cases

AD 2000 m 0-14 0
AD 2000 m 15-24 0
AD 2000 m 25-34 1
AD 2000 m 35-44 0
AD 2000 m 45-54 0
AD 2000 m 55-64 0
AD 2000 m 65+ 0
AE 2000 m 0-14 2
AE 2000 m 15-24 4
AE 2000 m 25-34 4
AE 2000 m 35-44 6
AE 2000 m 45-54 5
AE 2000 m 55-64 12
AE 2000 m 65+ 10
AE 2000 f 0-14 3

(b) Tidy data

Table 10: Tidying the TB dataset requires first melting, and then splitting the column column into
two variables: sex and age.

type of observation. Not shown in this example are the other meteorological variables prcp
(precipitation) and snow (snowfall). Fixing this requires the cast, or unstack, operation. This
performs the inverse of melting by rotating the element variable back out into the columns
(Table 12(b)). This form is tidy. There is one variable in each column, and each row represents
a day’s observations. The cast operation is described in depth in Wickham (2007).

3.4. Multiple types in one table

Datasets often involve values collected at multiple levels, on di↵erent types of observational
units. During tidying, each type of observational unit should be stored in its own table. This
is closely related to the idea of database normalisation, where each fact is expressed in only
one place. If this is not done, it’s possible for inconsistencies to occur.

The Billboard dataset described in Table 8 actually contains observations on two types of
observational units: the song and its rank in each week. This manifests itself through the
duplication of facts about the song: artist and time are repeated for every song in each
week. The billboard dataset needs to be broken down into two datasets: a song dataset
which stores artist, song name and time, and a ranking dataset which gives the rank of
the song in each week. Table 13 shows these two datasets. You could also imagine a week
dataset which would record background information about the week, maybe the total number
of songs sold or similar demographic information.

Normalisation is useful for tidying and eliminating inconsistencies. However, there are few
data analysis tools that work directly with relational data, so analysis usually also requires
denormalisation or the merging the datasets back into one table.

Solution: Melting + Splitting

33

[H. Wickham, 2014]
D. Koop, CSCI 680/490, Spring 2022

Journal of Statistical Software 11

id year month element d1 d2 d3 d4 d5 d6 d7 d8

MX17004 2010 1 tmax — — — — — — — —
MX17004 2010 1 tmin — — — — — — — —
MX17004 2010 2 tmax — 27.3 24.1 — — — — —
MX17004 2010 2 tmin — 14.4 14.4 — — — — —
MX17004 2010 3 tmax — — — — 32.1 — — —
MX17004 2010 3 tmin — — — — 14.2 — — —
MX17004 2010 4 tmax — — — — — — — —
MX17004 2010 4 tmin — — — — — — — —
MX17004 2010 5 tmax — — — — — — — —
MX17004 2010 5 tmin — — — — — — — —

Table 11: Original weather dataset. There is a column for each possible day in the month. Columns
d9 to d31 have been omitted to conserve space.

id date element value

MX17004 2010-01-30 tmax 27.8
MX17004 2010-01-30 tmin 14.5
MX17004 2010-02-02 tmax 27.3
MX17004 2010-02-02 tmin 14.4
MX17004 2010-02-03 tmax 24.1
MX17004 2010-02-03 tmin 14.4
MX17004 2010-02-11 tmax 29.7
MX17004 2010-02-11 tmin 13.4
MX17004 2010-02-23 tmax 29.9
MX17004 2010-02-23 tmin 10.7

(a) Molten data

id date tmax tmin

MX17004 2010-01-30 27.8 14.5
MX17004 2010-02-02 27.3 14.4
MX17004 2010-02-03 24.1 14.4
MX17004 2010-02-11 29.7 13.4
MX17004 2010-02-23 29.9 10.7
MX17004 2010-03-05 32.1 14.2
MX17004 2010-03-10 34.5 16.8
MX17004 2010-03-16 31.1 17.6
MX17004 2010-04-27 36.3 16.7
MX17004 2010-05-27 33.2 18.2

(b) Tidy data

Table 12: (a) Molten weather dataset. This is almost tidy, but instead of values, the element column
contains names of variables. Missing values are dropped to conserve space. (b) Tidy weather dataset.
Each row represents the meteorological measurements for a single day. There are two measured
variables, minimum (tmin) and maximum (tmax) temperature; all other variables are fixed.

Problem: Variables stored in both rows & columns

34

[H. Wickham, 2014]
D. Koop, CSCI 680/490, Spring 2022

Mexico Weather, Global Historical Climatology Network

Journal of Statistical Software 11

id year month element d1 d2 d3 d4 d5 d6 d7 d8

MX17004 2010 1 tmax — — — — — — — —
MX17004 2010 1 tmin — — — — — — — —
MX17004 2010 2 tmax — 27.3 24.1 — — — — —
MX17004 2010 2 tmin — 14.4 14.4 — — — — —
MX17004 2010 3 tmax — — — — 32.1 — — —
MX17004 2010 3 tmin — — — — 14.2 — — —
MX17004 2010 4 tmax — — — — — — — —
MX17004 2010 4 tmin — — — — — — — —
MX17004 2010 5 tmax — — — — — — — —
MX17004 2010 5 tmin — — — — — — — —

Table 11: Original weather dataset. There is a column for each possible day in the month. Columns
d9 to d31 have been omitted to conserve space.

id date element value

MX17004 2010-01-30 tmax 27.8
MX17004 2010-01-30 tmin 14.5
MX17004 2010-02-02 tmax 27.3
MX17004 2010-02-02 tmin 14.4
MX17004 2010-02-03 tmax 24.1
MX17004 2010-02-03 tmin 14.4
MX17004 2010-02-11 tmax 29.7
MX17004 2010-02-11 tmin 13.4
MX17004 2010-02-23 tmax 29.9
MX17004 2010-02-23 tmin 10.7

(a) Molten data

id date tmax tmin

MX17004 2010-01-30 27.8 14.5
MX17004 2010-02-02 27.3 14.4
MX17004 2010-02-03 24.1 14.4
MX17004 2010-02-11 29.7 13.4
MX17004 2010-02-23 29.9 10.7
MX17004 2010-03-05 32.1 14.2
MX17004 2010-03-10 34.5 16.8
MX17004 2010-03-16 31.1 17.6
MX17004 2010-04-27 36.3 16.7
MX17004 2010-05-27 33.2 18.2

(b) Tidy data

Table 12: (a) Molten weather dataset. This is almost tidy, but instead of values, the element column
contains names of variables. Missing values are dropped to conserve space. (b) Tidy weather dataset.
Each row represents the meteorological measurements for a single day. There are two measured
variables, minimum (tmin) and maximum (tmax) temperature; all other variables are fixed.

Problem: Variables stored in both rows & columns

34

[H. Wickham, 2014]
D. Koop, CSCI 680/490, Spring 2022

Mexico Weather, Global Historical Climatology Network

Variable in columns: day; Variable in rows: tmax/tmin

Pivot
• Sometimes, we have data that is given in "long" format and we would like

"wide" format (AKA pivot_wider)
• Long format: column names are data values…
• Wide format: more like spreadsheet format
• Example:

35

[W. McKinney, Python for Data Analysis]
D. Koop, CSCI 680/490, Spring 2022

 two 1 6
 three 2 7
Colorado one 3 8
 two 4 9
 three 5 10

In [109]: df.unstack('state') In [110]: df.unstack('state').stack('side')
Out[109]: Out[110]:
side left right state Ohio Colorado
state Ohio Colorado Ohio Colorado number side
number one left 0 3
one 0 3 5 8 right 5 8
two 1 4 6 9 two left 1 4
three 2 5 7 10 right 6 9
 three left 2 5
 right 7 10

Pivoting “long” to “wide” Format
A common way to store multiple time series in databases and CSV is in so-called long
or stacked format:

data = pd.read_csv('ch07/macrodata.csv')
periods = pd.PeriodIndex(year=data.year, quarter=data.quarter, name='date')
data = DataFrame(data.to_records(),
 columns=pd.Index(['realgdp', 'infl', 'unemp'], name='item'),
 index=periods.to_timestamp('D', 'end'))

ldata = data.stack().reset_index().rename(columns={0: 'value'})

In [116]: ldata[:10]
Out[116]:
 date item value
0 1959-03-31 realgdp 2710.349
1 1959-03-31 infl 0.000
2 1959-03-31 unemp 5.800
3 1959-06-30 realgdp 2778.801
4 1959-06-30 infl 2.340
5 1959-06-30 unemp 5.100
6 1959-09-30 realgdp 2775.488
7 1959-09-30 infl 2.740
8 1959-09-30 unemp 5.300
9 1959-12-31 realgdp 2785.204

Data is frequently stored this way in relational databases like MySQL as a fixed schema
(column names and data types) allows the number of distinct values in the item column
to increase or decrease as data is added or deleted in the table. In the above example
date and item would usually be the primary keys (in relational database parlance),
offering both relational integrity and easier joins and programmatic queries in many
cases. The downside, of course, is that the data may not be easy to work with in long
format; you might prefer to have a DataFrame containing one column per distinct

190 | Chapter 7: Data Wrangling: Clean, Transform, Merge, Reshape

item value indexed by timestamps in the date column. DataFrame’s pivot method per-
forms exactly this transformation:

In [117]: pivoted = ldata.pivot('date', 'item', 'value')

In [118]: pivoted.head()
Out[118]:
item infl realgdp unemp
date
1959-03-31 0.00 2710.349 5.8
1959-06-30 2.34 2778.801 5.1
1959-09-30 2.74 2775.488 5.3
1959-12-31 0.27 2785.204 5.6
1960-03-31 2.31 2847.699 5.2

The first two values passed are the columns to be used as the row and column index,
and finally an optional value column to fill the DataFrame. Suppose you had two value
columns that you wanted to reshape simultaneously:

In [119]: ldata['value2'] = np.random.randn(len(ldata))

In [120]: ldata[:10]
Out[120]:
 date item value value2
0 1959-03-31 realgdp 2710.349 1.669025
1 1959-03-31 infl 0.000 -0.438570
2 1959-03-31 unemp 5.800 -0.539741
3 1959-06-30 realgdp 2778.801 0.476985
4 1959-06-30 infl 2.340 3.248944
5 1959-06-30 unemp 5.100 -1.021228
6 1959-09-30 realgdp 2775.488 -0.577087
7 1959-09-30 infl 2.740 0.124121
8 1959-09-30 unemp 5.300 0.302614
9 1959-12-31 realgdp 2785.204 0.523772

By omitting the last argument, you obtain a DataFrame with hierarchical columns:

In [121]: pivoted = ldata.pivot('date', 'item')

In [122]: pivoted[:5]
Out[122]:
 value value2
item infl realgdp unemp infl realgdp unemp
date
1959-03-31 0.00 2710.349 5.8 -0.438570 1.669025 -0.539741
1959-06-30 2.34 2778.801 5.1 3.248944 0.476985 -1.021228
1959-09-30 2.74 2775.488 5.3 0.124121 -0.577087 0.302614
1959-12-31 0.27 2785.204 5.6 0.000940 0.523772 1.343810
1960-03-31 2.31 2847.699 5.2 -0.831154 -0.713544 -2.370232

In [123]: pivoted['value'][:5]
Out[123]:
item infl realgdp unemp
date
1959-03-31 0.00 2710.349 5.8
1959-06-30 2.34 2778.801 5.1

Reshaping and Pivoting | 191

.pivot('date', 'item', 'value')

Journal of Statistical Software 11

id year month element d1 d2 d3 d4 d5 d6 d7 d8

MX17004 2010 1 tmax — — — — — — — —
MX17004 2010 1 tmin — — — — — — — —
MX17004 2010 2 tmax — 27.3 24.1 — — — — —
MX17004 2010 2 tmin — 14.4 14.4 — — — — —
MX17004 2010 3 tmax — — — — 32.1 — — —
MX17004 2010 3 tmin — — — — 14.2 — — —
MX17004 2010 4 tmax — — — — — — — —
MX17004 2010 4 tmin — — — — — — — —
MX17004 2010 5 tmax — — — — — — — —
MX17004 2010 5 tmin — — — — — — — —

Table 11: Original weather dataset. There is a column for each possible day in the month. Columns
d9 to d31 have been omitted to conserve space.

id date element value

MX17004 2010-01-30 tmax 27.8
MX17004 2010-01-30 tmin 14.5
MX17004 2010-02-02 tmax 27.3
MX17004 2010-02-02 tmin 14.4
MX17004 2010-02-03 tmax 24.1
MX17004 2010-02-03 tmin 14.4
MX17004 2010-02-11 tmax 29.7
MX17004 2010-02-11 tmin 13.4
MX17004 2010-02-23 tmax 29.9
MX17004 2010-02-23 tmin 10.7

(a) Molten data

id date tmax tmin

MX17004 2010-01-30 27.8 14.5
MX17004 2010-02-02 27.3 14.4
MX17004 2010-02-03 24.1 14.4
MX17004 2010-02-11 29.7 13.4
MX17004 2010-02-23 29.9 10.7
MX17004 2010-03-05 32.1 14.2
MX17004 2010-03-10 34.5 16.8
MX17004 2010-03-16 31.1 17.6
MX17004 2010-04-27 36.3 16.7
MX17004 2010-05-27 33.2 18.2

(b) Tidy data

Table 12: (a) Molten weather dataset. This is almost tidy, but instead of values, the element column
contains names of variables. Missing values are dropped to conserve space. (b) Tidy weather dataset.
Each row represents the meteorological measurements for a single day. There are two measured
variables, minimum (tmin) and maximum (tmax) temperature; all other variables are fixed.

Solution: Melting + Pivot

36

[H. Wickham, 2014]
D. Koop, CSCI 680/490, Spring 2022

Getting Lost in Transformations

37

[Z. Jin et al., 2017]
D. Koop, CSCI 680/490, Spring 2022

Foofah: Transforming Data By Example

Zhongjun Jin Michael R. Anderson Michael Cafarella H. V. Jagadish
University of Michigan, Ann Arbor

{markjin,mrander,michjc,jag}@umich.edu

ABSTRACT
Data transformation is a critical first step in modern data
analysis: before any analysis can be done, data from a va-
riety of sources must be wrangled into a uniform format
that is amenable to the intended analysis and analytical
software package. This data transformation task is tedious,
time-consuming, and often requires programming skills be-
yond the expertise of data analysts. In this paper, we develop
a technique to synthesize data transformation programs by
example, reducing this burden by allowing the analyst to de-
scribe the transformation with a small input-output example
pair, without being concerned with the transformation steps
required to get there. We implemented our technique in a
system, Foofah, that e�ciently searches the space of pos-
sible data transformation operations to generate a program
that will perform the desired transformation. We experimen-
tally show that data transformation programs can be created
quickly with Foofah for a wide variety of cases, with 60%
less user e↵ort than the well-known Wrangler system.

Keywords
Data Transformation; Program Synthesis; Programming By
Example; A* algorithm; Heuristic

1. INTRODUCTION
The many fields that depend on data for decision making

have at least one thing in common: raw data is often in a non-
relational or poorly structured form, possibly with extraneous
information, and cannot be directly used by a downstream
information system, like a database or visualization system.
Figure 1 from [16] is a good example of such raw data.
In modern data analytics, data transformation (or data
wrangling) is usually a crucial first step that reorganizes
raw data into a more desirable format that can be easily
consumed by other systems. Figure 2 showcases a relational
form obtained by transforming Figure 1.

Traditionally, domain experts handwrite task specific scripts
to transform unstructured data—a task that is often labor-

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SIGMOD’17, May 14-19, 2017, Chicago, IL, USA

c� 2017 ACM. ISBN 978-1-4503-4197-4/17/05. . . $15.00

DOI: http://dx.doi.org/10.1145/3035918.3064034

Bureau of I.A.
Regional Director Numbers
Niles C. Tel: (800)645-8397

Fax: (907)586-7252

Jean H. Tel: (918)781-4600
Fax: (918)781-4604

Frank K. Tel: (615)564-6500
Fax: (615)564-6701

. . .
Figure 1: A spreadsheet of business contact information

Tel Fax
Niles C. (800)645-8397 (907)586-7252
Jean H. (918)781-4600 (918)781-4604
Frank K. (615)564-6500 (615)564-6701

. . .
Figure 2: A relational form of Figure 1

intensive and tedious. The requirement for programming
hamstrings data users that are capable analysts but have
limited coding skills. Even worse, these scripts are tailored to
particular data sources and cannot adapt when new sources
are acquired. People normally spend more time preparing
data than analyzing it; up to 80% of a data scientist’s time
can be spent on transforming data into a usable state [28].

Recent research into automated and assisted data transfor-
mation systems have tried to reduce the need of a program-
ming background for users, with some success [19, 22, 41].
These tools help users generate reusable data transformation
programs, but they still require users to know which data
transformation operations are needed and in what order they
should be applied. Current tools still require some level of im-
perative programming, placing a significant burden on data
users. Take Wrangler [22], for example, where a user must
select the correct operators and parameters to complete a
data transformation task. This is often challenging if the user
has no experience in data transformation or programming.

In general, existing data transformation tools are di�cult
to use due to two usability issues:

• High Skill : Users must be familiar with the often compli-
cated transformation operations and then decide which
operations to use and in what order.

• High E↵ort : The amount of user e↵ort increases as the
data transformation program gets lengthy.

To resolve the above usability issues, we envision a data
transformation program synthesizer that can be successfully
used by people without a programming background and that
requires minimal user e↵ort. Unlike Wrangler, which asks

the user for procedural hints, this system should allow the
user to specify a desired transformation simply by providing
an input-output example: the user only needs to know how
to describe the transformed data, as opposed to knowing any
particular transformation operation that must be performed.

Our Approach — In this paper, we solve the data trans-
formation program synthesis problem using a Programming
By Example (PBE) approach. Our proposed technique aims
to help an unsophisticated user easily generate a quality
data transformation program using purely input-output ex-
amples. The synthesized program is designed to be easy-to-
understand (it is a straight-line program comprised of simple
primitives), so an unsophisticated user can understand the
semantics of the program and validate it. Because it is often
infeasible to examine and approve a very large transformed
dataset synthesizing a readable transformation program is
preferred over performing an opaque transformation.

We model program synthesis as a search problem in a state
space graph and use a heuristic search approach based on
the classic A* algorithm to synthesize the program. A major
challenge in applying A* to program synthesis is to create a
heuristic function estimating the cost of any proposed par-
tial solution. Unlike robotic path planning, where a metric
like Euclidean distance naturally serves as a good heuristic
function, there is no straightforward heuristic for data trans-
formation. In this work, we define an e↵ective A* heuristic
for data transformation, as well as lossless pruning rules that
significantly reduce the size of the search space. We have im-
plemented our methods in a prototype data transformation
program synthesizer called Foofah.

Organization — After motivating our problem with an
example in Section 2 and formally defining the problem in
Section 3, we discuss the following contributions:

• We present a PBE data transformation program syn-
thesis technique backed by an e�cient heuristic-search-
based algorithm inspired by the A* algorithm. It has a
novel, operator-independent heuristic, Table Edit Dis-
tance Batch, along with pruning rules designed specifi-
cally for data transformation (Section 4).

• We prototype our method in a system, Foofah, and
evaluate it with a comprehensive set of benchmark test
scenarios that show it is both e↵ective and e�cient in
synthesizing data transformation programs. We also
present a user study that shows Foofah requires about
60% less user e↵ort than Wrangler(Section 5).

We explore Related Work in Section 6 and finish with a
discussion of future work in Section 7

2. MOTIVATING EXAMPLE
Data transformation can be a tedious task involving the

application of complex operations that may be di�cult for
a näıve user to understand, as illustrated by the following
simple but realistic scenario:

Example 1. Bob wants to load a spreadsheet of business
contact information (Figure 1) into a database system. Un-
fortunately, the raw data cannot be loaded in its original
format, so Bob hopes to transform it into a relational format
(Figure 2). Manually transforming the data record-by-record
would be tedious and error-prone, so he uses the interactive
data cleaning tool Wrangler [22].

Niles C. Tel (800)645-8397
Fax (907)586-7252

Jean H. Tel (918)781-4600
Fax (918)781-4604

Frank K. Tel (615)564-6500
Fax (615)564-6701

Figure 3: Intermediate table state

Tel Fax
Niles C. (800)645-8397

(615)564-6701
Jean H. (918)781-4600
Frank K. (615)564-6500

Figure 4: Perform Unfold before Fill

Bob first removes the rows of irrelevant data (rows 1 and
2) and empty rows (rows 5, 8, and more). He then splits the
cells containing phone numbers on “:”, extracting the phone
numbers into a new column. Now that almost all the cells from
the desired table exist in the intermediate table (Figure 3),
Bob intends to perform a cross-tabulation operation that
tabulates phone numbers of each category against the human
names. He looks through Wrangler’s provided operations
and finally decides that Unfold should be used. But Unfold
does not transform the intermediate table correctly, since
there are missing values in the column of names, resulting
in “null” being the unique identifier for all rows without a
human name (Figure 4). Bob backtracks and performs a Fill
operation to fill in the empty cells with the appropriate names
before finally performing the Unfold operation. The final data
transformation program is shown in Figure 5.

The usability issues described in Section 1 have occurred in
this example. Lines 1–3 in Figure 5 are lengthy and repetitive
(High E↵ort). Lines 5–6 require a good understanding of the
Unfold operation, causing di�culty for the näıve user (High
Skill). Note that Deletes in Lines 1–2 are di↵erent from the
Delete in Line 3 in that the latter could apply to the entire file.
Non-savvy users may find such conditional usage of Delete
di�cult to discover, further illustrating the High Skill issue.
Consider another scenario where the same task becomes

much easier for Bob, our data analyst:

Example 2. Bob decides to use an alternative data transfor-
mation system, Foofah. To use Foofah, Bob simply needs
to choose a small sample of the raw data (Figure 1) and
describe what this sample should be after being transformed
(Figure 2). Foofah automatically infers the data transfor-
mation program in Figure 6 (which is semantically the same
as Figure 5, and even more succinct). Bob takes this inferred
program and executes it on the entire raw dataset and finds
that raw data are transformed exactly as desired.

The motivating example above gives an idea of the real-
world data transformation tasks our proposed technique
is designed to address. In general, we aim to transform a
poorly-structured grid of values (e.g., a spreadsheet table) to
a relational table with coherent rows and columns. Such a
transformation can be a combination of the following chores:

1. changing the structure of the table

2. removing unnecessary data fields

3. filling in missing values

4. extracting values from cells

5. creating new cell values out of several cell values

the user for procedural hints, this system should allow the
user to specify a desired transformation simply by providing
an input-output example: the user only needs to know how
to describe the transformed data, as opposed to knowing any
particular transformation operation that must be performed.

Our Approach — In this paper, we solve the data trans-
formation program synthesis problem using a Programming
By Example (PBE) approach. Our proposed technique aims
to help an unsophisticated user easily generate a quality
data transformation program using purely input-output ex-
amples. The synthesized program is designed to be easy-to-
understand (it is a straight-line program comprised of simple
primitives), so an unsophisticated user can understand the
semantics of the program and validate it. Because it is often
infeasible to examine and approve a very large transformed
dataset synthesizing a readable transformation program is
preferred over performing an opaque transformation.

We model program synthesis as a search problem in a state
space graph and use a heuristic search approach based on
the classic A* algorithm to synthesize the program. A major
challenge in applying A* to program synthesis is to create a
heuristic function estimating the cost of any proposed par-
tial solution. Unlike robotic path planning, where a metric
like Euclidean distance naturally serves as a good heuristic
function, there is no straightforward heuristic for data trans-
formation. In this work, we define an e↵ective A* heuristic
for data transformation, as well as lossless pruning rules that
significantly reduce the size of the search space. We have im-
plemented our methods in a prototype data transformation
program synthesizer called Foofah.

Organization — After motivating our problem with an
example in Section 2 and formally defining the problem in
Section 3, we discuss the following contributions:

• We present a PBE data transformation program syn-
thesis technique backed by an e�cient heuristic-search-
based algorithm inspired by the A* algorithm. It has a
novel, operator-independent heuristic, Table Edit Dis-
tance Batch, along with pruning rules designed specifi-
cally for data transformation (Section 4).

• We prototype our method in a system, Foofah, and
evaluate it with a comprehensive set of benchmark test
scenarios that show it is both e↵ective and e�cient in
synthesizing data transformation programs. We also
present a user study that shows Foofah requires about
60% less user e↵ort than Wrangler(Section 5).

We explore Related Work in Section 6 and finish with a
discussion of future work in Section 7

2. MOTIVATING EXAMPLE
Data transformation can be a tedious task involving the

application of complex operations that may be di�cult for
a näıve user to understand, as illustrated by the following
simple but realistic scenario:

Example 1. Bob wants to load a spreadsheet of business
contact information (Figure 1) into a database system. Un-
fortunately, the raw data cannot be loaded in its original
format, so Bob hopes to transform it into a relational format
(Figure 2). Manually transforming the data record-by-record
would be tedious and error-prone, so he uses the interactive
data cleaning tool Wrangler [22].

Niles C. Tel (800)645-8397
Fax (907)586-7252

Jean H. Tel (918)781-4600
Fax (918)781-4604

Frank K. Tel (615)564-6500
Fax (615)564-6701

Figure 3: Intermediate table state

Tel Fax
Niles C. (800)645-8397

(615)564-6701
Jean H. (918)781-4600
Frank K. (615)564-6500

Figure 4: Perform Unfold before Fill

Bob first removes the rows of irrelevant data (rows 1 and
2) and empty rows (rows 5, 8, and more). He then splits the
cells containing phone numbers on “:”, extracting the phone
numbers into a new column. Now that almost all the cells from
the desired table exist in the intermediate table (Figure 3),
Bob intends to perform a cross-tabulation operation that
tabulates phone numbers of each category against the human
names. He looks through Wrangler’s provided operations
and finally decides that Unfold should be used. But Unfold
does not transform the intermediate table correctly, since
there are missing values in the column of names, resulting
in “null” being the unique identifier for all rows without a
human name (Figure 4). Bob backtracks and performs a Fill
operation to fill in the empty cells with the appropriate names
before finally performing the Unfold operation. The final data
transformation program is shown in Figure 5.

The usability issues described in Section 1 have occurred in
this example. Lines 1–3 in Figure 5 are lengthy and repetitive
(High E↵ort). Lines 5–6 require a good understanding of the
Unfold operation, causing di�culty for the näıve user (High
Skill). Note that Deletes in Lines 1–2 are di↵erent from the
Delete in Line 3 in that the latter could apply to the entire file.
Non-savvy users may find such conditional usage of Delete
di�cult to discover, further illustrating the High Skill issue.
Consider another scenario where the same task becomes

much easier for Bob, our data analyst:

Example 2. Bob decides to use an alternative data transfor-
mation system, Foofah. To use Foofah, Bob simply needs
to choose a small sample of the raw data (Figure 1) and
describe what this sample should be after being transformed
(Figure 2). Foofah automatically infers the data transfor-
mation program in Figure 6 (which is semantically the same
as Figure 5, and even more succinct). Bob takes this inferred
program and executes it on the entire raw dataset and finds
that raw data are transformed exactly as desired.

The motivating example above gives an idea of the real-
world data transformation tasks our proposed technique
is designed to address. In general, we aim to transform a
poorly-structured grid of values (e.g., a spreadsheet table) to
a relational table with coherent rows and columns. Such a
transformation can be a combination of the following chores:

1. changing the structure of the table

2. removing unnecessary data fields

3. filling in missing values

4. extracting values from cells

5. creating new cell values out of several cell values

Foofah: Transforming Data By Example

Zhongjun Jin Michael R. Anderson Michael Cafarella H. V. Jagadish
University of Michigan, Ann Arbor

{markjin,mrander,michjc,jag}@umich.edu

ABSTRACT
Data transformation is a critical first step in modern data
analysis: before any analysis can be done, data from a va-
riety of sources must be wrangled into a uniform format
that is amenable to the intended analysis and analytical
software package. This data transformation task is tedious,
time-consuming, and often requires programming skills be-
yond the expertise of data analysts. In this paper, we develop
a technique to synthesize data transformation programs by
example, reducing this burden by allowing the analyst to de-
scribe the transformation with a small input-output example
pair, without being concerned with the transformation steps
required to get there. We implemented our technique in a
system, Foofah, that e�ciently searches the space of pos-
sible data transformation operations to generate a program
that will perform the desired transformation. We experimen-
tally show that data transformation programs can be created
quickly with Foofah for a wide variety of cases, with 60%
less user e↵ort than the well-known Wrangler system.

Keywords
Data Transformation; Program Synthesis; Programming By
Example; A* algorithm; Heuristic

1. INTRODUCTION
The many fields that depend on data for decision making

have at least one thing in common: raw data is often in a non-
relational or poorly structured form, possibly with extraneous
information, and cannot be directly used by a downstream
information system, like a database or visualization system.
Figure 1 from [16] is a good example of such raw data.
In modern data analytics, data transformation (or data
wrangling) is usually a crucial first step that reorganizes
raw data into a more desirable format that can be easily
consumed by other systems. Figure 2 showcases a relational
form obtained by transforming Figure 1.

Traditionally, domain experts handwrite task specific scripts
to transform unstructured data—a task that is often labor-

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SIGMOD’17, May 14-19, 2017, Chicago, IL, USA

c� 2017 ACM. ISBN 978-1-4503-4197-4/17/05. . . $15.00

DOI: http://dx.doi.org/10.1145/3035918.3064034

Bureau of I.A.
Regional Director Numbers
Niles C. Tel: (800)645-8397

Fax: (907)586-7252

Jean H. Tel: (918)781-4600
Fax: (918)781-4604

Frank K. Tel: (615)564-6500
Fax: (615)564-6701

. . .
Figure 1: A spreadsheet of business contact information

Tel Fax
Niles C. (800)645-8397 (907)586-7252
Jean H. (918)781-4600 (918)781-4604
Frank K. (615)564-6500 (615)564-6701

. . .
Figure 2: A relational form of Figure 1

intensive and tedious. The requirement for programming
hamstrings data users that are capable analysts but have
limited coding skills. Even worse, these scripts are tailored to
particular data sources and cannot adapt when new sources
are acquired. People normally spend more time preparing
data than analyzing it; up to 80% of a data scientist’s time
can be spent on transforming data into a usable state [28].

Recent research into automated and assisted data transfor-
mation systems have tried to reduce the need of a program-
ming background for users, with some success [19, 22, 41].
These tools help users generate reusable data transformation
programs, but they still require users to know which data
transformation operations are needed and in what order they
should be applied. Current tools still require some level of im-
perative programming, placing a significant burden on data
users. Take Wrangler [22], for example, where a user must
select the correct operators and parameters to complete a
data transformation task. This is often challenging if the user
has no experience in data transformation or programming.

In general, existing data transformation tools are di�cult
to use due to two usability issues:

• High Skill : Users must be familiar with the often compli-
cated transformation operations and then decide which
operations to use and in what order.

• High E↵ort : The amount of user e↵ort increases as the
data transformation program gets lengthy.

To resolve the above usability issues, we envision a data
transformation program synthesizer that can be successfully
used by people without a programming background and that
requires minimal user e↵ort. Unlike Wrangler, which asks

Original Table

Intermediate Table

Problem Table

Desired Solution

Split+Delete

Unfold

Fill+
Unfold

FOOFAH: A Programming-By-Example System for
Synthesizing Data Transformation Program

Zhongjun Jin, Michael R. Anderson, Michael Cafarella, H. V. Jagadish
University of Michigan

Most real-world data is unstructured and must be transformed
into a structured form to be used. Manual transformation (e.g.,
using Excel) requires too much user effort. Traditional
transformation often requires good programming skills beyond
most of the users. Data transformation tools, like Data
Wranger [1], often require repetitive and tedious work and a
depth of data transformation knowledge from the user.
Our goal: minimize a user's effort and reduce the required
background knowledge for data transformation tasks.

Motivation

Design of FOOFAH

Related Work

markjin@umich.edu w https://markjin1990.github.io w SIGMOD 2017

Our Solution

Proposed Heuristic Function

1. Kandel,	Sean,	et	al.	“Wrangler:	Interactive	visual	specification	of	data	transformation	scripts.” CHI,	2011.
2. V.	Raman	and	J.	M.	Hellerstein.	“Potter’s	Wheel:	An	interactive	data	cleaning	system”.	VLDB,	2001.
3. Gulwani,	Sumit.	"Automating	string	processing	in	spreadsheets	using	input-output	examples." ACM	SIGPLAN	Notices.	

Vol.	46.	No.	1.	ACM,	2011.
4. Harris,	William	R.,	and	Sumit Gulwani.	"Spreadsheet	table	transformations	from	examples." ACM	SIGPLAN	Notices.	Vol.	

46.	No.	6.	ACM,	2011.
5. Barowy,	Daniel	W.,	et	al.	"FlashRelate:	extracting	relational	data	from	semi-structured	spreadsheets	using	

examples." ACM	SIGPLAN	Notices.	Vol.	50.	No.	6.	ACM,	2015.
6. Guo,	Philip	J.,	et	al.	"Proactive	wrangling:	mixed-initiative	end-user	programming	of	data	transformation	

scripts." Proceedings	of	the	24th	annual	ACM	symposium	on	User	interface	software	and	technology.	ACM,	2011.

User Study

Our PBE technique prototype
FOOFAH:
1. can handle most test cases from

the benchmarks.
2. requires little user effort
3. generally efficient (low system

runtime)

Benchmark Tests

Tasks: 8 tasks from
benchmarks covering both
simple and complex tasks
Comparisons: Wrangler

• FOOFAH on average requires 60% less user effort than Wrangler

0
100
200
300
400
500
600

Task	completion	time:	Wrangler	vs	Foofah

Wrangler

Foofah

50.00% 40.00%

10.00%
0%

20%
40%
60%
80%

100%

1 2 Failure
#	OF	RECORDS

Sizes	of	input-output	examples	required	
for	benchmark	tests

74.00%
86.00% 88.00%

0%
20%
40%
60%
80%

100%

≤	1	sec ≤	5	sec ≤	30	secPE
RC

EN
T	
O
F	
TE
ST
	S
CE

N
A
RI
O
S

Worst-case	system	runtime	for	each	
synthesis	

Tasks: 50 test scenarios selected
from [1,2,4,6]
Test Approach: lazy approach [4]
Comparison: [1,3,4,5]

Input	
Example	ei Input	

Example	eo
?

A search problem
solved by A* algorithm

edges: operation
nodes: different views of the data
A* search: iteratively explore the

node with min f(n)
f(n) = g(n) + h(n)

observed distance
estimated distance

Intuition: Most data transformation operations can be seen as many
cell-level transformation operations

Solution: Table Edit Distance as the heuristic function

Table Edit Distance (TED) Definition:
The cost of transforming Table T1 to Table T2 using the cell-level
operators Add/Remove/Move/Transform cell.

TED $%, $' = min,-,… ,	,0 ∈2 3-,	34
56789 :;
<

;=>
• P(T1, T2): Set of all “paths” transforming T1 to T2 using cell-level operators

Batching: a remedy for Table Edit Distance to scale down heuristic

Batch the geometrically-adjacent cell-level operations of the same type

8 Transform operations 2 “batched” Transform operations

88.40% 97.70%
74.40%

55.80%

0%
20%
40%
60%
80%

100%

Success	rates	on pure layout
transformation	benchmark tasks

Foofah FlashRelate ProgFromEx Wrangler

100.00%

0.00% 0.00%

85.70%

0%
20%
40%
60%
80%

100%

Success	rates	on benchmark	tasks
requiring syntactic transformations

Foofah FlashRelate ProgFromEx Wrangler

Program to synthesize:
• A loop-free Potter’s Wheel [2] program

System
Input-output	
Example

Synthesized	
Program

Raw	Data

Programming-By-Example interaction model: User provides input-
output examples rather than demonstrating correct operations

Note:	Ideally,	Wrangler	should	be	able	
to	handle	same	tasks	as	FOOFAH

User Input:
• Sample from raw data
• Transformed view of the sample

Raw Data:
• A grid of values, i.e., spreadsheets
• “Somewhat” structured - must have some

regular structure or is automatically generated.

Transformations Targeted:
1. Layout transformation 2. String transformation

05/16/2017

05/17/2017

…

05-16-2017

05-17-2017

…

Foofah Design: Programming by Example

38

[Z. Jin et al., 2017]
D. Koop, CSCI 680/490, Spring 2022

FOOFAH: A Programming-By-Example System for
Synthesizing Data Transformation Program

Zhongjun Jin, Michael R. Anderson, Michael Cafarella, H. V. Jagadish
University of Michigan

Most real-world data is unstructured and must be transformed
into a structured form to be used. Manual transformation (e.g.,
using Excel) requires too much user effort. Traditional
transformation often requires good programming skills beyond
most of the users. Data transformation tools, like Data
Wranger [1], often require repetitive and tedious work and a
depth of data transformation knowledge from the user.
Our goal: minimize a user's effort and reduce the required
background knowledge for data transformation tasks.

Motivation

Design of FOOFAH

Related Work

markjin@umich.edu w https://markjin1990.github.io w SIGMOD 2017

Our Solution

Proposed Heuristic Function

1. Kandel,	Sean,	et	al.	“Wrangler:	Interactive	visual	specification	of	data	transformation	scripts.” CHI,	2011.
2. V.	Raman	and	J.	M.	Hellerstein.	“Potter’s	Wheel:	An	interactive	data	cleaning	system”.	VLDB,	2001.
3. Gulwani,	Sumit.	"Automating	string	processing	in	spreadsheets	using	input-output	examples." ACM	SIGPLAN	Notices.	

Vol.	46.	No.	1.	ACM,	2011.
4. Harris,	William	R.,	and	Sumit Gulwani.	"Spreadsheet	table	transformations	from	examples." ACM	SIGPLAN	Notices.	Vol.	

46.	No.	6.	ACM,	2011.
5. Barowy,	Daniel	W.,	et	al.	"FlashRelate:	extracting	relational	data	from	semi-structured	spreadsheets	using	

examples." ACM	SIGPLAN	Notices.	Vol.	50.	No.	6.	ACM,	2015.
6. Guo,	Philip	J.,	et	al.	"Proactive	wrangling:	mixed-initiative	end-user	programming	of	data	transformation	

scripts." Proceedings	of	the	24th	annual	ACM	symposium	on	User	interface	software	and	technology.	ACM,	2011.

User Study

Our PBE technique prototype
FOOFAH:
1. can handle most test cases from

the benchmarks.
2. requires little user effort
3. generally efficient (low system

runtime)

Benchmark Tests

Tasks: 8 tasks from
benchmarks covering both
simple and complex tasks
Comparisons: Wrangler

• FOOFAH on average requires 60% less user effort than Wrangler

0
100
200
300
400
500
600

Task	completion	time:	Wrangler	vs	Foofah

Wrangler

Foofah

50.00% 40.00%

10.00%
0%

20%
40%
60%
80%

100%

1 2 Failure
#	OF	RECORDS

Sizes	of	input-output	examples	required	
for	benchmark	tests

74.00%
86.00% 88.00%

0%
20%
40%
60%
80%

100%

≤	1	sec ≤	5	sec ≤	30	secPE
RC

EN
T	
O
F	
TE
ST
	S
CE

N
A
RI
O
S

Worst-case	system	runtime	for	each	
synthesis	

Tasks: 50 test scenarios selected
from [1,2,4,6]
Test Approach: lazy approach [4]
Comparison: [1,3,4,5]

Input	
Example	ei Input	

Example	eo
?

A search problem
solved by A* algorithm

edges: operation
nodes: different views of the data
A* search: iteratively explore the

node with min f(n)
f(n) = g(n) + h(n)

observed distance
estimated distance

Intuition: Most data transformation operations can be seen as many
cell-level transformation operations

Solution: Table Edit Distance as the heuristic function

Table Edit Distance (TED) Definition:
The cost of transforming Table T1 to Table T2 using the cell-level
operators Add/Remove/Move/Transform cell.

TED $%, $' = min,-,… ,	,0 ∈2 3-,	34
56789 :;
<

;=>
• P(T1, T2): Set of all “paths” transforming T1 to T2 using cell-level operators

Batching: a remedy for Table Edit Distance to scale down heuristic

Batch the geometrically-adjacent cell-level operations of the same type

8 Transform operations 2 “batched” Transform operations

88.40% 97.70%
74.40%

55.80%

0%
20%
40%
60%
80%

100%

Success	rates	on pure layout
transformation	benchmark tasks

Foofah FlashRelate ProgFromEx Wrangler

100.00%

0.00% 0.00%

85.70%

0%
20%
40%
60%
80%

100%

Success	rates	on benchmark	tasks
requiring syntactic transformations

Foofah FlashRelate ProgFromEx Wrangler

Program to synthesize:
• A loop-free Potter’s Wheel [2] program

System
Input-output	
Example

Synthesized	
Program

Raw	Data

Programming-By-Example interaction model: User provides input-
output examples rather than demonstrating correct operations

Note:	Ideally,	Wrangler	should	be	able	
to	handle	same	tasks	as	FOOFAH

User Input:
• Sample from raw data
• Transformed view of the sample

Raw Data:
• A grid of values, i.e., spreadsheets
• “Somewhat” structured - must have some

regular structure or is automatically generated.

Transformations Targeted:
1. Layout transformation 2. String transformation

05/16/2017

05/17/2017

…

05-16-2017

05-17-2017

…

Input, Output, and Transformations

39

[Z. Jin et al., 2017]
D. Koop, CSCI 680/490, Spring 2022

FOOFAH: A Programming-By-Example System for
Synthesizing Data Transformation Program

Zhongjun Jin, Michael R. Anderson, Michael Cafarella, H. V. Jagadish
University of Michigan

Most real-world data is unstructured and must be transformed
into a structured form to be used. Manual transformation (e.g.,
using Excel) requires too much user effort. Traditional
transformation often requires good programming skills beyond
most of the users. Data transformation tools, like Data
Wranger [1], often require repetitive and tedious work and a
depth of data transformation knowledge from the user.
Our goal: minimize a user's effort and reduce the required
background knowledge for data transformation tasks.

Motivation

Design of FOOFAH

Related Work

markjin@umich.edu w https://markjin1990.github.io w SIGMOD 2017

Our Solution

Proposed Heuristic Function

1. Kandel,	Sean,	et	al.	“Wrangler:	Interactive	visual	specification	of	data	transformation	scripts.” CHI,	2011.
2. V.	Raman	and	J.	M.	Hellerstein.	“Potter’s	Wheel:	An	interactive	data	cleaning	system”.	VLDB,	2001.
3. Gulwani,	Sumit.	"Automating	string	processing	in	spreadsheets	using	input-output	examples." ACM	SIGPLAN	Notices.	

Vol.	46.	No.	1.	ACM,	2011.
4. Harris,	William	R.,	and	Sumit Gulwani.	"Spreadsheet	table	transformations	from	examples." ACM	SIGPLAN	Notices.	Vol.	

46.	No.	6.	ACM,	2011.
5. Barowy,	Daniel	W.,	et	al.	"FlashRelate:	extracting	relational	data	from	semi-structured	spreadsheets	using	

examples." ACM	SIGPLAN	Notices.	Vol.	50.	No.	6.	ACM,	2015.
6. Guo,	Philip	J.,	et	al.	"Proactive	wrangling:	mixed-initiative	end-user	programming	of	data	transformation	

scripts." Proceedings	of	the	24th	annual	ACM	symposium	on	User	interface	software	and	technology.	ACM,	2011.

User Study

Our PBE technique prototype
FOOFAH:
1. can handle most test cases from

the benchmarks.
2. requires little user effort
3. generally efficient (low system

runtime)

Benchmark Tests

Tasks: 8 tasks from
benchmarks covering both
simple and complex tasks
Comparisons: Wrangler

• FOOFAH on average requires 60% less user effort than Wrangler

0
100
200
300
400
500
600

Task	completion	time:	Wrangler	vs	Foofah

Wrangler

Foofah

50.00% 40.00%

10.00%
0%

20%
40%
60%
80%

100%

1 2 Failure
#	OF	RECORDS

Sizes	of	input-output	examples	required	
for	benchmark	tests

74.00%
86.00% 88.00%

0%
20%
40%
60%
80%

100%

≤	1	sec ≤	5	sec ≤	30	secPE
RC

EN
T	
O
F	
TE
ST
	S
CE

N
A
RI
O
S

Worst-case	system	runtime	for	each	
synthesis	

Tasks: 50 test scenarios selected
from [1,2,4,6]
Test Approach: lazy approach [4]
Comparison: [1,3,4,5]

Input	
Example	ei Input	

Example	eo
?

A search problem
solved by A* algorithm

edges: operation
nodes: different views of the data
A* search: iteratively explore the

node with min f(n)
f(n) = g(n) + h(n)

observed distance
estimated distance

Intuition: Most data transformation operations can be seen as many
cell-level transformation operations

Solution: Table Edit Distance as the heuristic function

Table Edit Distance (TED) Definition:
The cost of transforming Table T1 to Table T2 using the cell-level
operators Add/Remove/Move/Transform cell.

TED $%, $' = min,-,… ,	,0 ∈2 3-,	34
56789 :;
<

;=>
• P(T1, T2): Set of all “paths” transforming T1 to T2 using cell-level operators

Batching: a remedy for Table Edit Distance to scale down heuristic

Batch the geometrically-adjacent cell-level operations of the same type

8 Transform operations 2 “batched” Transform operations

88.40% 97.70%
74.40%

55.80%

0%
20%
40%
60%
80%

100%

Success	rates	on pure layout
transformation	benchmark tasks

Foofah FlashRelate ProgFromEx Wrangler

100.00%

0.00% 0.00%

85.70%

0%
20%
40%
60%
80%

100%

Success	rates	on benchmark	tasks
requiring syntactic transformations

Foofah FlashRelate ProgFromEx Wrangler

Program to synthesize:
• A loop-free Potter’s Wheel [2] program

System
Input-output	
Example

Synthesized	
Program

Raw	Data

Programming-By-Example interaction model: User provides input-
output examples rather than demonstrating correct operations

Note:	Ideally,	Wrangler	should	be	able	
to	handle	same	tasks	as	FOOFAH

User Input:
• Sample from raw data
• Transformed view of the sample

Raw Data:
• A grid of values, i.e., spreadsheets
• “Somewhat” structured - must have some

regular structure or is automatically generated.

Transformations Targeted:
1. Layout transformation 2. String transformation

05/16/2017

05/17/2017

…

05-16-2017

05-17-2017

…

Foofah Solution

40

[Z. Jin et al., 2017]
D. Koop, CSCI 680/490, Spring 2022

FOOFAH: A Programming-By-Example System for
Synthesizing Data Transformation Program

Zhongjun Jin, Michael R. Anderson, Michael Cafarella, H. V. Jagadish
University of Michigan

Most real-world data is unstructured and must be transformed
into a structured form to be used. Manual transformation (e.g.,
using Excel) requires too much user effort. Traditional
transformation often requires good programming skills beyond
most of the users. Data transformation tools, like Data
Wranger [1], often require repetitive and tedious work and a
depth of data transformation knowledge from the user.
Our goal: minimize a user's effort and reduce the required
background knowledge for data transformation tasks.

Motivation

Design of FOOFAH

Related Work

markjin@umich.edu w https://markjin1990.github.io w SIGMOD 2017

Our Solution

Proposed Heuristic Function

1. Kandel,	Sean,	et	al.	“Wrangler:	Interactive	visual	specification	of	data	transformation	scripts.” CHI,	2011.
2. V.	Raman	and	J.	M.	Hellerstein.	“Potter’s	Wheel:	An	interactive	data	cleaning	system”.	VLDB,	2001.
3. Gulwani,	Sumit.	"Automating	string	processing	in	spreadsheets	using	input-output	examples." ACM	SIGPLAN	Notices.	

Vol.	46.	No.	1.	ACM,	2011.
4. Harris,	William	R.,	and	Sumit Gulwani.	"Spreadsheet	table	transformations	from	examples." ACM	SIGPLAN	Notices.	Vol.	

46.	No.	6.	ACM,	2011.
5. Barowy,	Daniel	W.,	et	al.	"FlashRelate:	extracting	relational	data	from	semi-structured	spreadsheets	using	

examples." ACM	SIGPLAN	Notices.	Vol.	50.	No.	6.	ACM,	2015.
6. Guo,	Philip	J.,	et	al.	"Proactive	wrangling:	mixed-initiative	end-user	programming	of	data	transformation	

scripts." Proceedings	of	the	24th	annual	ACM	symposium	on	User	interface	software	and	technology.	ACM,	2011.

User Study

Our PBE technique prototype
FOOFAH:
1. can handle most test cases from

the benchmarks.
2. requires little user effort
3. generally efficient (low system

runtime)

Benchmark Tests

Tasks: 8 tasks from
benchmarks covering both
simple and complex tasks
Comparisons: Wrangler

• FOOFAH on average requires 60% less user effort than Wrangler

0
100
200
300
400
500
600

Task	completion	time:	Wrangler	vs	Foofah

Wrangler

Foofah

50.00% 40.00%

10.00%
0%

20%
40%
60%
80%

100%

1 2 Failure
#	OF	RECORDS

Sizes	of	input-output	examples	required	
for	benchmark	tests

74.00%
86.00% 88.00%

0%
20%
40%
60%
80%

100%

≤	1	sec ≤	5	sec ≤	30	secPE
RC

EN
T	
O
F	
TE
ST
	S
CE

N
A
RI
O
S

Worst-case	system	runtime	for	each	
synthesis	

Tasks: 50 test scenarios selected
from [1,2,4,6]
Test Approach: lazy approach [4]
Comparison: [1,3,4,5]

Input	
Example	ei Input	

Example	eo
?

A search problem
solved by A* algorithm

edges: operation
nodes: different views of the data
A* search: iteratively explore the

node with min f(n)
f(n) = g(n) + h(n)

observed distance
estimated distance

Intuition: Most data transformation operations can be seen as many
cell-level transformation operations

Solution: Table Edit Distance as the heuristic function

Table Edit Distance (TED) Definition:
The cost of transforming Table T1 to Table T2 using the cell-level
operators Add/Remove/Move/Transform cell.

TED $%, $' = min,-,… ,	,0 ∈2 3-,	34
56789 :;
<

;=>
• P(T1, T2): Set of all “paths” transforming T1 to T2 using cell-level operators

Batching: a remedy for Table Edit Distance to scale down heuristic

Batch the geometrically-adjacent cell-level operations of the same type

8 Transform operations 2 “batched” Transform operations

88.40% 97.70%
74.40%

55.80%

0%
20%
40%
60%
80%

100%

Success	rates	on pure layout
transformation	benchmark tasks

Foofah FlashRelate ProgFromEx Wrangler

100.00%

0.00% 0.00%

85.70%

0%
20%
40%
60%
80%

100%

Success	rates	on benchmark	tasks
requiring syntactic transformations

Foofah FlashRelate ProgFromEx Wrangler

Program to synthesize:
• A loop-free Potter’s Wheel [2] program

System
Input-output	
Example

Synthesized	
Program

Raw	Data

Programming-By-Example interaction model: User provides input-
output examples rather than demonstrating correct operations

Note:	Ideally,	Wrangler	should	be	able	
to	handle	same	tasks	as	FOOFAH

User Input:
• Sample from raw data
• Transformed view of the sample

Raw Data:
• A grid of values, i.e., spreadsheets
• “Somewhat” structured - must have some

regular structure or is automatically generated.

Transformations Targeted:
1. Layout transformation 2. String transformation

05/16/2017

05/17/2017

…

05-16-2017

05-17-2017

…

Need a Heuristic Function to Prune

41

[Z. Jin et al., 2017]
D. Koop, CSCI 680/490, Spring 2022

Most transformations are composed of cell-based operations

Table Edit Distance
• Akin to Graph Edit Distance
• Count the number of operations required to transform one table to another
• Use Add/Remove/Modify + Move

42

[Z. Jin et al., 2017]
D. Koop, CSCI 680/490, Spring 2022

FOOFAH: A Programming-By-Example System for
Synthesizing Data Transformation Program

Zhongjun Jin, Michael R. Anderson, Michael Cafarella, H. V. Jagadish
University of Michigan

Most real-world data is unstructured and must be transformed
into a structured form to be used. Manual transformation (e.g.,
using Excel) requires too much user effort. Traditional
transformation often requires good programming skills beyond
most of the users. Data transformation tools, like Data
Wranger [1], often require repetitive and tedious work and a
depth of data transformation knowledge from the user.
Our goal: minimize a user's effort and reduce the required
background knowledge for data transformation tasks.

Motivation

Design of FOOFAH

Related Work

markjin@umich.edu w https://markjin1990.github.io w SIGMOD 2017

Our Solution

Proposed Heuristic Function

1. Kandel,	Sean,	et	al.	“Wrangler:	Interactive	visual	specification	of	data	transformation	scripts.” CHI,	2011.
2. V.	Raman	and	J.	M.	Hellerstein.	“Potter’s	Wheel:	An	interactive	data	cleaning	system”.	VLDB,	2001.
3. Gulwani,	Sumit.	"Automating	string	processing	in	spreadsheets	using	input-output	examples." ACM	SIGPLAN	Notices.	

Vol.	46.	No.	1.	ACM,	2011.
4. Harris,	William	R.,	and	Sumit Gulwani.	"Spreadsheet	table	transformations	from	examples." ACM	SIGPLAN	Notices.	Vol.	

46.	No.	6.	ACM,	2011.
5. Barowy,	Daniel	W.,	et	al.	"FlashRelate:	extracting	relational	data	from	semi-structured	spreadsheets	using	

examples." ACM	SIGPLAN	Notices.	Vol.	50.	No.	6.	ACM,	2015.
6. Guo,	Philip	J.,	et	al.	"Proactive	wrangling:	mixed-initiative	end-user	programming	of	data	transformation	

scripts." Proceedings	of	the	24th	annual	ACM	symposium	on	User	interface	software	and	technology.	ACM,	2011.

User Study

Our PBE technique prototype
FOOFAH:
1. can handle most test cases from

the benchmarks.
2. requires little user effort
3. generally efficient (low system

runtime)

Benchmark Tests

Tasks: 8 tasks from
benchmarks covering both
simple and complex tasks
Comparisons: Wrangler

• FOOFAH on average requires 60% less user effort than Wrangler

0
100
200
300
400
500
600

Task	completion	time:	Wrangler	vs	Foofah

Wrangler

Foofah

50.00% 40.00%

10.00%
0%

20%
40%
60%
80%

100%

1 2 Failure
#	OF	RECORDS

Sizes	of	input-output	examples	required	
for	benchmark	tests

74.00%
86.00% 88.00%

0%
20%
40%
60%
80%

100%

≤	1	sec ≤	5	sec ≤	30	secPE
RC

EN
T	
O
F	
TE
ST
	S
CE

N
A
RI
O
S

Worst-case	system	runtime	for	each	
synthesis	

Tasks: 50 test scenarios selected
from [1,2,4,6]
Test Approach: lazy approach [4]
Comparison: [1,3,4,5]

Input	
Example	ei Input	

Example	eo
?

A search problem
solved by A* algorithm

edges: operation
nodes: different views of the data
A* search: iteratively explore the

node with min f(n)
f(n) = g(n) + h(n)

observed distance
estimated distance

Intuition: Most data transformation operations can be seen as many
cell-level transformation operations

Solution: Table Edit Distance as the heuristic function

Table Edit Distance (TED) Definition:
The cost of transforming Table T1 to Table T2 using the cell-level
operators Add/Remove/Move/Transform cell.

TED $%, $' = min,-,… ,	,0 ∈2 3-,	34
56789 :;
<

;=>
• P(T1, T2): Set of all “paths” transforming T1 to T2 using cell-level operators

Batching: a remedy for Table Edit Distance to scale down heuristic

Batch the geometrically-adjacent cell-level operations of the same type

8 Transform operations 2 “batched” Transform operations

88.40% 97.70%
74.40%

55.80%

0%
20%
40%
60%
80%

100%

Success	rates	on pure layout
transformation	benchmark tasks

Foofah FlashRelate ProgFromEx Wrangler

100.00%

0.00% 0.00%

85.70%

0%
20%
40%
60%
80%

100%

Success	rates	on benchmark	tasks
requiring syntactic transformations

Foofah FlashRelate ProgFromEx Wrangler

Program to synthesize:
• A loop-free Potter’s Wheel [2] program

System
Input-output	
Example

Synthesized	
Program

Raw	Data

Programming-By-Example interaction model: User provides input-
output examples rather than demonstrating correct operations

Note:	Ideally,	Wrangler	should	be	able	
to	handle	same	tasks	as	FOOFAH

User Input:
• Sample from raw data
• Transformed view of the sample

Raw Data:
• A grid of values, i.e., spreadsheets
• “Somewhat” structured - must have some

regular structure or is automatically generated.

Transformations Targeted:
1. Layout transformation 2. String transformation

05/16/2017

05/17/2017

…

05-16-2017

05-17-2017

…

FOOFAH: A Programming-By-Example System for
Synthesizing Data Transformation Program

Zhongjun Jin, Michael R. Anderson, Michael Cafarella, H. V. Jagadish
University of Michigan

Most real-world data is unstructured and must be transformed
into a structured form to be used. Manual transformation (e.g.,
using Excel) requires too much user effort. Traditional
transformation often requires good programming skills beyond
most of the users. Data transformation tools, like Data
Wranger [1], often require repetitive and tedious work and a
depth of data transformation knowledge from the user.
Our goal: minimize a user's effort and reduce the required
background knowledge for data transformation tasks.

Motivation

Design of FOOFAH

Related Work

markjin@umich.edu w https://markjin1990.github.io w SIGMOD 2017

Our Solution

Proposed Heuristic Function

1. Kandel,	Sean,	et	al.	“Wrangler:	Interactive	visual	specification	of	data	transformation	scripts.” CHI,	2011.
2. V.	Raman	and	J.	M.	Hellerstein.	“Potter’s	Wheel:	An	interactive	data	cleaning	system”.	VLDB,	2001.
3. Gulwani,	Sumit.	"Automating	string	processing	in	spreadsheets	using	input-output	examples." ACM	SIGPLAN	Notices.	

Vol.	46.	No.	1.	ACM,	2011.
4. Harris,	William	R.,	and	Sumit Gulwani.	"Spreadsheet	table	transformations	from	examples." ACM	SIGPLAN	Notices.	Vol.	

46.	No.	6.	ACM,	2011.
5. Barowy,	Daniel	W.,	et	al.	"FlashRelate:	extracting	relational	data	from	semi-structured	spreadsheets	using	

examples." ACM	SIGPLAN	Notices.	Vol.	50.	No.	6.	ACM,	2015.
6. Guo,	Philip	J.,	et	al.	"Proactive	wrangling:	mixed-initiative	end-user	programming	of	data	transformation	

scripts." Proceedings	of	the	24th	annual	ACM	symposium	on	User	interface	software	and	technology.	ACM,	2011.

User Study

Our PBE technique prototype
FOOFAH:
1. can handle most test cases from

the benchmarks.
2. requires little user effort
3. generally efficient (low system

runtime)

Benchmark Tests

Tasks: 8 tasks from
benchmarks covering both
simple and complex tasks
Comparisons: Wrangler

• FOOFAH on average requires 60% less user effort than Wrangler

0
100
200
300
400
500
600

Task	completion	time:	Wrangler	vs	Foofah

Wrangler

Foofah

50.00% 40.00%

10.00%
0%

20%
40%
60%
80%

100%

1 2 Failure
#	OF	RECORDS

Sizes	of	input-output	examples	required	
for	benchmark	tests

74.00%
86.00% 88.00%

0%
20%
40%
60%
80%

100%

≤	1	sec ≤	5	sec ≤	30	secPE
RC

EN
T	
O
F	
TE
ST
	S
CE

N
A
RI
O
S

Worst-case	system	runtime	for	each	
synthesis	

Tasks: 50 test scenarios selected
from [1,2,4,6]
Test Approach: lazy approach [4]
Comparison: [1,3,4,5]

Input	
Example	ei Input	

Example	eo
?

A search problem
solved by A* algorithm

edges: operation
nodes: different views of the data
A* search: iteratively explore the

node with min f(n)
f(n) = g(n) + h(n)

observed distance
estimated distance

Intuition: Most data transformation operations can be seen as many
cell-level transformation operations

Solution: Table Edit Distance as the heuristic function

Table Edit Distance (TED) Definition:
The cost of transforming Table T1 to Table T2 using the cell-level
operators Add/Remove/Move/Transform cell.

TED $%, $' = min,-,… ,	,0 ∈2 3-,	34
56789 :;
<

;=>
• P(T1, T2): Set of all “paths” transforming T1 to T2 using cell-level operators

Batching: a remedy for Table Edit Distance to scale down heuristic

Batch the geometrically-adjacent cell-level operations of the same type

8 Transform operations 2 “batched” Transform operations

88.40% 97.70%
74.40%

55.80%

0%
20%
40%
60%
80%

100%

Success	rates	on pure layout
transformation	benchmark tasks

Foofah FlashRelate ProgFromEx Wrangler

100.00%

0.00% 0.00%

85.70%

0%
20%
40%
60%
80%

100%

Success	rates	on benchmark	tasks
requiring syntactic transformations

Foofah FlashRelate ProgFromEx Wrangler

Program to synthesize:
• A loop-free Potter’s Wheel [2] program

System
Input-output	
Example

Synthesized	
Program

Raw	Data

Programming-By-Example interaction model: User provides input-
output examples rather than demonstrating correct operations

Note:	Ideally,	Wrangler	should	be	able	
to	handle	same	tasks	as	FOOFAH

User Input:
• Sample from raw data
• Transformed view of the sample

Raw Data:
• A grid of values, i.e., spreadsheets
• “Somewhat” structured - must have some

regular structure or is automatically generated.

Transformations Targeted:
1. Layout transformation 2. String transformation

05/16/2017

05/17/2017

…

05-16-2017

05-17-2017

…

Table Edit Distance Batch

43

[Z. Jin et al., 2017]
D. Koop, CSCI 680/490, Spring 2022

Pattern Formulation (X is a table edit operator) Related Operators

Horizontal to Horizontal {X((xi, yi), (xj , yj)), X((xi, yi + 1), (xj , yj + 1)), . . . } Delete(Possibly)
Horizontal to Vertical {X((xi, yi), (xj , yj)), X((xi, yi + 1), (xj + 1, yj)), . . . } Fold, Transpose
Vertical to Horizontal {X((xi, yi), (xj , yj)), X((xi + 1, yi), (xj , yj + 1)), . . . } Unfold,Transpose
Vertical to Vertical {X((xi, yi), (xj , yj)), X((xi + 1, yi), (xj + 1, yj)), . . . } Move, Copy, Merge, Split, Extract, Drop
One to Horizontal {X((xi, yi), (xj , yj)), X((xi, yi), (xj , yj + 1)), . . . } Fold(Possibly), Fill(Possibly)
One to Vertical {X((xi, yi), (xj , yj)), X((xi, yi), (xj + 1, yj)), . . . } Fold, Fill
Remove Horizontal {X((xi, yi)), X((xi, yi + 1)), . . . } Delete
Remove Vertical {X((xi, yi)), X((xi + 1, yi)), . . . } Drop, Unfold

Table 4: Geometric patterns

Property-specific Pruning Rules — The properties of
certain operators allow us to define further pruning rules.

• Generating Empty Columns — Prune the operation if
it adds an empty column in the resulting state when it
should not. This applies to Split, Divide, Extract, and
Fold. For example, Split adds an empty column to a
table when parameterized by a delimiter not present in
the input column; this Split useless and can be pruned.

• Null In Column — Prune the operation if a column in
the parent state or resulting child state has null value
that would cause an error. This applies to Unfold, Fold
and Divide. For example, Unfold takes in one column
as header and one column as data values: if the header
column has null values, it means the operation is invalid,
since column headers should not be null values.

4.4 Complexity Analysis
The worst-case time complexity for our proposed program

synthesis technique is O((kmn)d), where m is the number
of cells in input example ei, n is the number of cells in
the output example eo, k is the number of candidate data
transformation operations for each intermediate table, and d
is the number of components in the final synthesized program.
In comparison, two of the previous works related to our
project, ProgFromEx and FlashRelate, have worst-case
time complexities that are exponential in the size of the
example the user provides. ProgFromEx’s worst-case time
complexity is O(mn), where m is the number of cells in the
input example and n is the number of cells in the output
example. FlashRelate’s worst-case complexity is O(tt�2),
where t is the number of columns in the output table.

In practice, we believe the complexity exponential in input
size will not cause a severe performance issue because none of
the three PBE techniques require large amount of user input.
However, if a new usage model arises in the future that allows
the user to provide a large example easily, ProgFromEx
might become impractical.

4.5 Synthesizing Perfect Programs
Since the input-output example E is the only clue about the

desired transformation provided by the user, the e↵ectiveness
of our technique could be greatly impacted by the quality of
E . We can consider its fidelity and representativeness.

Fidelity of E — The success of synthesizing a program
is premised on the fidelity of the user-specified example E :
the end user must not make any mistake while specifying E .
Some common mistakes a user might make are: typos, copy-
paste-mistakes, and loss of information. This last mistake
occurs when the user forgets to include important informa-
tion, such as column headers, when specifying E . When such
mistakes occur, our proposed technique is almost certain to

fail. However, the required user input is small, and, as we
show in Section 5.6, our system usually fails quickly. As a
result, it is easy for the user to fix any errors. In Section 7,
we describe future work that allows tolerance for user error.

Representativeness of E — Once a program P is gener-
ated given the user input, the synthesized program is guar-
anteed to be correct : P must transform the input example ei
to the output example eo. However, we do not promise that
P is perfect, or guarantees to transform the entire raw data
R as the user may expect. How well a synthesized program
generalizes to R relies heavily on the representativeness of E ,
or how accurately E reflects the desired transformation. Our
proposed synthesis technique requires the user to carefully
choose a representative sample from R as the input example
to formulate E . With a small sample from R, there is a risk
of synthesizing a P that will not generalize to R (similar
to overfitting when building a machine learning model with
too few training examples). Experimentally, however, we see
that a small number (e.g., 2 or 3) of raw data records usually
su�ces to formulate E (Section 5).

Validation — [C2] In Section 1, we mentioned that one way
the user can validate the synthesized program is by under-
standing the semantics of the program. Alternatively, the user
could follow the sampling-based lazy approach of Gulwani et
al. [17] To the best of our knowledge, no existing work in the
PBE area provides guarantees about the reliability of this
approach or how many samples it may require. Of course,
not only PBE systems, but work in machine learning and the
program test literature must wrestle with the same sampling
challenges. Our system neither exacerbates nor ameliorates
the situation, so we do not address these issues here.

5. EXPERIMENTS
In this section, we evaluate the e↵ectiveness and e�ciency

of our PBE data transformation synthesis technique and how
much user e↵ort it requires. We implemented our technique
in a system called Foofah. Foofah is written in Python
and C++ and runs on a 16-core (2.53GHz) Intel Xeon E5630
server with 120 GB RAM.

We first present our benchmarks and then evaluate Foofah
using the benchmarks to answer several questions:

• How generalizeable are the synthesized programs out-
put by Foofah? (Section 5.2)

• How e�cient is Foofah at synthesizing data transfor-
mation programs? (Section 5.2)

• How is the chosen search method using the TED Batch
heuristic better than other search strategies, including
BFS and a näıve rule-based heuristic? (Section 5.3)

• How e↵ectively do our pruning rules boost the search
speed? (Section 5.4)

Geometric Patterns Used to Batch

44

[Z. Jin et al., 2017]
D. Koop, CSCI 680/490, Spring 2022

Other Pruning Rules
• Global:
- Missing Alphanumerics: check that character maintained
- No effect: meaningless operation
- Introducing Novel Symbols: check that no new characters added

• Property-specific:
- Generating Empty Columns
- Null in Column

45D. Koop, CSCI 680/490, Spring 2022

46

AutoSuggest

D. Koop, CSCI 640/490, Spring 2023

47

Comments/Questions?

D. Koop, CSCI 640/490, Spring 2023

Goal
• Automate "Complex" Data Preparation steps
• Focus on frame transformations (not per-cell transformations)
• Learn from Jupyter Notebooks
• Use interactive methods to help users select from top-k options

48

[C. Yan & Y. He]
D. Koop, CSCI 640/490, Spring 2023

https://congyan.org/JupyterNotebooks.pdf

Join Wizards

49

[C. Yan & Y. He]
D. Koop, CSCI 640/490, Spring 2023

(a) Paxata (b) Tableau Prep (c) Trifacta

Figure 1: Joins recommendation UI in commercial systems: likely join columns are suggested in ranked lists.

Similar recommendation features are also available for a
few other simple operators, such as recommending GroupBy
and Aggregation columns as ranked lists, when users open
the GroupBy/Aggregation UI wizards.
While these recommendation features are clearly bene�-

cial, they are currently limited to operators for which simple
heuristics can be devised (e.g., high value-overlap for predict-
ing Join columns, and low-cardinality for GroupBy columns),
which our analysis suggests are not always accurate.

More importantly, there are no recommendation-based
features for a number of equally common but more com-
plex operators, such as Pivot and Unpivot in the vendors we
surveyed, presumably because these complex operations are
more di�cult to predict with simple heuristics. Given that
Pivot and Unpivot are signi�cant pain-points for users, as
evidenced by a large number of questions on user-forums [3,
21, 24, 25, 29], extending intelligent recommendation to these
complex operators is clearly important.

“Learn-to-recommend”withnotebooks +Pandas.We
in this work propose a data-driven approach to learn-to-
recommend data prep operations, by leveraging a large col-
lection data science notebooks. Speci�cally, computational
notebooks such as Jupyter [8] are increasingly popular and
have become a de-facto standard in data science. Moreover,
such notebooks have becomewidely available in public repos-
itories like GitHub – our crawl in Mar 2019 suggests that the
number of notebooks on GitHub is around 4.7 million. Anal-
ysis shows that these notebooks cover a variety of use cases,
ranging from data science projects (e.g., Kaggle), data-driven
journalism (e.g., ProPublica), to reproducible academic pub-
lications.
Furthermore, we leverage the fact that Python, as well

as a table manipulation API in Python called Pandas, are
particularly popular in these notebooks. Pandas can roughly
be thought of as a rich super-set of SQL, where some example
operators are listed in Table 1.

Figure 2 shows an example step in a Python notebook. This
code block calls the “merge” method in Pandas (equivalent
to Join), which joins two input tables (“result” and “devices”)
using speci�ed columns (“device” and “Model”), as a left-
outer join. The resulting table is shown after the code block.

Figure 2: Example step in notebook for merge (Join).
Logical
Operator Join Pivot Unpivot Groupby Relationalize

JSON
Pandas
Operator merge[17] pivot[18] melt[16] groupby[14] json_normalize[15]

#nb crawled
w/ the operator 209.9K 68.9K 16.8K 364.3K 8.3K

Table 1: Popular table-manipulation operators used in
the Pandas DataFrameAPI, and their “logical” counter-
parts (the entire API [13] has over 100 methods).

The fact that Jupyter notebooks and Pandas in Python
are de-facto standards gives us a unique opportunity to har-
vest a large number of data pipelines, with real invocations
of data preparation operators (Join, GroupBy, Pivot, Unpivot,
etc.) on diverse data sets. We build a system to crawl, re-
play, and analyze such pipelines in notebooks at scale, and
log detailed input/output tables (known as DataFrames in
Pandas) of each operator, as well as exact choices data scien-
tists make to manipulate tables (e.g., what columns are used
in Join, how are tables Pivoted/Unpivoted, etc.)
We note that the detailed “logs” of how data scientists

interact with diverse data sets is a treasure trove that allows
us to learn-to-recommend data preparation steps. This is in
essence analogous to the “click-through logs” used by search
engines to improve search relevance.

Recommendation Tasks. In this work, we consider two
types of recommendation tasks for data preparation:
• Single-Operator Prediction: Given input tables and a user-
speci�ed target operation (e.g. Pivot, Join, etc.), the task is
to recommend suitable parameterization for the operator
(e.g., how to Pivot and Join), based on characteristics of the
input data. Note that the target operator is known, as the
recommendation is triggered only after a user opens relevant
UI Wizards (e.g., Figure 1 for Join), which gives a clear intent
in terms of which operation the user wants to perform.

(a) Paxata (b) Tableau Prep (c) Trifacta

Figure 1: Joins recommendation UI in commercial systems: likely join columns are suggested in ranked lists.

Similar recommendation features are also available for a
few other simple operators, such as recommending GroupBy
and Aggregation columns as ranked lists, when users open
the GroupBy/Aggregation UI wizards.
While these recommendation features are clearly bene�-

cial, they are currently limited to operators for which simple
heuristics can be devised (e.g., high value-overlap for predict-
ing Join columns, and low-cardinality for GroupBy columns),
which our analysis suggests are not always accurate.

More importantly, there are no recommendation-based
features for a number of equally common but more com-
plex operators, such as Pivot and Unpivot in the vendors we
surveyed, presumably because these complex operations are
more di�cult to predict with simple heuristics. Given that
Pivot and Unpivot are signi�cant pain-points for users, as
evidenced by a large number of questions on user-forums [3,
21, 24, 25, 29], extending intelligent recommendation to these
complex operators is clearly important.

“Learn-to-recommend”withnotebooks +Pandas.We
in this work propose a data-driven approach to learn-to-
recommend data prep operations, by leveraging a large col-
lection data science notebooks. Speci�cally, computational
notebooks such as Jupyter [8] are increasingly popular and
have become a de-facto standard in data science. Moreover,
such notebooks have becomewidely available in public repos-
itories like GitHub – our crawl in Mar 2019 suggests that the
number of notebooks on GitHub is around 4.7 million. Anal-
ysis shows that these notebooks cover a variety of use cases,
ranging from data science projects (e.g., Kaggle), data-driven
journalism (e.g., ProPublica), to reproducible academic pub-
lications.
Furthermore, we leverage the fact that Python, as well

as a table manipulation API in Python called Pandas, are
particularly popular in these notebooks. Pandas can roughly
be thought of as a rich super-set of SQL, where some example
operators are listed in Table 1.

Figure 2 shows an example step in a Python notebook. This
code block calls the “merge” method in Pandas (equivalent
to Join), which joins two input tables (“result” and “devices”)
using speci�ed columns (“device” and “Model”), as a left-
outer join. The resulting table is shown after the code block.

Figure 2: Example step in notebook for merge (Join).
Logical
Operator Join Pivot Unpivot Groupby Relationalize

JSON
Pandas
Operator merge[17] pivot[18] melt[16] groupby[14] json_normalize[15]

#nb crawled
w/ the operator 209.9K 68.9K 16.8K 364.3K 8.3K

Table 1: Popular table-manipulation operators used in
the Pandas DataFrameAPI, and their “logical” counter-
parts (the entire API [13] has over 100 methods).

The fact that Jupyter notebooks and Pandas in Python
are de-facto standards gives us a unique opportunity to har-
vest a large number of data pipelines, with real invocations
of data preparation operators (Join, GroupBy, Pivot, Unpivot,
etc.) on diverse data sets. We build a system to crawl, re-
play, and analyze such pipelines in notebooks at scale, and
log detailed input/output tables (known as DataFrames in
Pandas) of each operator, as well as exact choices data scien-
tists make to manipulate tables (e.g., what columns are used
in Join, how are tables Pivoted/Unpivoted, etc.)
We note that the detailed “logs” of how data scientists

interact with diverse data sets is a treasure trove that allows
us to learn-to-recommend data preparation steps. This is in
essence analogous to the “click-through logs” used by search
engines to improve search relevance.

Recommendation Tasks. In this work, we consider two
types of recommendation tasks for data preparation:
• Single-Operator Prediction: Given input tables and a user-
speci�ed target operation (e.g. Pivot, Join, etc.), the task is
to recommend suitable parameterization for the operator
(e.g., how to Pivot and Join), based on characteristics of the
input data. Note that the target operator is known, as the
recommendation is triggered only after a user opens relevant
UI Wizards (e.g., Figure 1 for Join), which gives a clear intent
in terms of which operation the user wants to perform.

(a) Paxata (b) Tableau Prep (c) Trifacta

Figure 1: Joins recommendation UI in commercial systems: likely join columns are suggested in ranked lists.

Similar recommendation features are also available for a
few other simple operators, such as recommending GroupBy
and Aggregation columns as ranked lists, when users open
the GroupBy/Aggregation UI wizards.
While these recommendation features are clearly bene�-

cial, they are currently limited to operators for which simple
heuristics can be devised (e.g., high value-overlap for predict-
ing Join columns, and low-cardinality for GroupBy columns),
which our analysis suggests are not always accurate.

More importantly, there are no recommendation-based
features for a number of equally common but more com-
plex operators, such as Pivot and Unpivot in the vendors we
surveyed, presumably because these complex operations are
more di�cult to predict with simple heuristics. Given that
Pivot and Unpivot are signi�cant pain-points for users, as
evidenced by a large number of questions on user-forums [3,
21, 24, 25, 29], extending intelligent recommendation to these
complex operators is clearly important.

“Learn-to-recommend”withnotebooks +Pandas.We
in this work propose a data-driven approach to learn-to-
recommend data prep operations, by leveraging a large col-
lection data science notebooks. Speci�cally, computational
notebooks such as Jupyter [8] are increasingly popular and
have become a de-facto standard in data science. Moreover,
such notebooks have becomewidely available in public repos-
itories like GitHub – our crawl in Mar 2019 suggests that the
number of notebooks on GitHub is around 4.7 million. Anal-
ysis shows that these notebooks cover a variety of use cases,
ranging from data science projects (e.g., Kaggle), data-driven
journalism (e.g., ProPublica), to reproducible academic pub-
lications.
Furthermore, we leverage the fact that Python, as well

as a table manipulation API in Python called Pandas, are
particularly popular in these notebooks. Pandas can roughly
be thought of as a rich super-set of SQL, where some example
operators are listed in Table 1.

Figure 2 shows an example step in a Python notebook. This
code block calls the “merge” method in Pandas (equivalent
to Join), which joins two input tables (“result” and “devices”)
using speci�ed columns (“device” and “Model”), as a left-
outer join. The resulting table is shown after the code block.

Figure 2: Example step in notebook for merge (Join).
Logical
Operator Join Pivot Unpivot Groupby Relationalize

JSON
Pandas
Operator merge[17] pivot[18] melt[16] groupby[14] json_normalize[15]

#nb crawled
w/ the operator 209.9K 68.9K 16.8K 364.3K 8.3K

Table 1: Popular table-manipulation operators used in
the Pandas DataFrameAPI, and their “logical” counter-
parts (the entire API [13] has over 100 methods).

The fact that Jupyter notebooks and Pandas in Python
are de-facto standards gives us a unique opportunity to har-
vest a large number of data pipelines, with real invocations
of data preparation operators (Join, GroupBy, Pivot, Unpivot,
etc.) on diverse data sets. We build a system to crawl, re-
play, and analyze such pipelines in notebooks at scale, and
log detailed input/output tables (known as DataFrames in
Pandas) of each operator, as well as exact choices data scien-
tists make to manipulate tables (e.g., what columns are used
in Join, how are tables Pivoted/Unpivoted, etc.)
We note that the detailed “logs” of how data scientists

interact with diverse data sets is a treasure trove that allows
us to learn-to-recommend data preparation steps. This is in
essence analogous to the “click-through logs” used by search
engines to improve search relevance.

Recommendation Tasks. In this work, we consider two
types of recommendation tasks for data preparation:
• Single-Operator Prediction: Given input tables and a user-
speci�ed target operation (e.g. Pivot, Join, etc.), the task is
to recommend suitable parameterization for the operator
(e.g., how to Pivot and Join), based on characteristics of the
input data. Note that the target operator is known, as the
recommendation is triggered only after a user opens relevant
UI Wizards (e.g., Figure 1 for Join), which gives a clear intent
in terms of which operation the user wants to perform.

https://congyan.org/JupyterNotebooks.pdf

Programmatic Operators
• Crawl, reapply, and analyze data piplelines from Jupyter+pandas
• 7 API calls: concat, dropna, fillna, groupby, melt, merge, pivot

50

[C. Yan & Y. He]
D. Koop, CSCI 640/490, Spring 2023

(a) Paxata (b) Tableau Prep (c) Trifacta

Figure 1: Joins recommendation UI in commercial systems: likely join columns are suggested in ranked lists.

Similar recommendation features are also available for a
few other simple operators, such as recommending GroupBy
and Aggregation columns as ranked lists, when users open
the GroupBy/Aggregation UI wizards.
While these recommendation features are clearly bene�-

cial, they are currently limited to operators for which simple
heuristics can be devised (e.g., high value-overlap for predict-
ing Join columns, and low-cardinality for GroupBy columns),
which our analysis suggests are not always accurate.

More importantly, there are no recommendation-based
features for a number of equally common but more com-
plex operators, such as Pivot and Unpivot in the vendors we
surveyed, presumably because these complex operations are
more di�cult to predict with simple heuristics. Given that
Pivot and Unpivot are signi�cant pain-points for users, as
evidenced by a large number of questions on user-forums [3,
21, 24, 25, 29], extending intelligent recommendation to these
complex operators is clearly important.

“Learn-to-recommend”withnotebooks +Pandas.We
in this work propose a data-driven approach to learn-to-
recommend data prep operations, by leveraging a large col-
lection data science notebooks. Speci�cally, computational
notebooks such as Jupyter [8] are increasingly popular and
have become a de-facto standard in data science. Moreover,
such notebooks have becomewidely available in public repos-
itories like GitHub – our crawl in Mar 2019 suggests that the
number of notebooks on GitHub is around 4.7 million. Anal-
ysis shows that these notebooks cover a variety of use cases,
ranging from data science projects (e.g., Kaggle), data-driven
journalism (e.g., ProPublica), to reproducible academic pub-
lications.
Furthermore, we leverage the fact that Python, as well

as a table manipulation API in Python called Pandas, are
particularly popular in these notebooks. Pandas can roughly
be thought of as a rich super-set of SQL, where some example
operators are listed in Table 1.

Figure 2 shows an example step in a Python notebook. This
code block calls the “merge” method in Pandas (equivalent
to Join), which joins two input tables (“result” and “devices”)
using speci�ed columns (“device” and “Model”), as a left-
outer join. The resulting table is shown after the code block.

Figure 2: Example step in notebook for merge (Join).
Logical
Operator Join Pivot Unpivot Groupby Relationalize

JSON
Pandas
Operator merge[17] pivot[18] melt[16] groupby[14] json_normalize[15]

#nb crawled
w/ the operator 209.9K 68.9K 16.8K 364.3K 8.3K

Table 1: Popular table-manipulation operators used in
the Pandas DataFrameAPI, and their “logical” counter-
parts (the entire API [13] has over 100 methods).

The fact that Jupyter notebooks and Pandas in Python
are de-facto standards gives us a unique opportunity to har-
vest a large number of data pipelines, with real invocations
of data preparation operators (Join, GroupBy, Pivot, Unpivot,
etc.) on diverse data sets. We build a system to crawl, re-
play, and analyze such pipelines in notebooks at scale, and
log detailed input/output tables (known as DataFrames in
Pandas) of each operator, as well as exact choices data scien-
tists make to manipulate tables (e.g., what columns are used
in Join, how are tables Pivoted/Unpivoted, etc.)
We note that the detailed “logs” of how data scientists

interact with diverse data sets is a treasure trove that allows
us to learn-to-recommend data preparation steps. This is in
essence analogous to the “click-through logs” used by search
engines to improve search relevance.

Recommendation Tasks. In this work, we consider two
types of recommendation tasks for data preparation:
• Single-Operator Prediction: Given input tables and a user-
speci�ed target operation (e.g. Pivot, Join, etc.), the task is
to recommend suitable parameterization for the operator
(e.g., how to Pivot and Join), based on characteristics of the
input data. Note that the target operator is known, as the
recommendation is triggered only after a user opens relevant
UI Wizards (e.g., Figure 1 for Join), which gives a clear intent
in terms of which operation the user wants to perform.

notebooks. This is common because notebook authors of-
ten “hard-code” absolute paths of data �les in his/her local
environment, as shown below:
df = pd.read_csv(�D:\ my_project\titantic.csv�)

Such absolute paths are not valid in the GitHub repo or in
our local replay environment, and will thus fail. Our replay
system attempts to address missing data �les in a few ways:
(1) Given a �le path that we fail to load when executing a
notebook (e.g., D:\my_project\titantic.csv), we ignore
the path and search using the �le name (titantic.csv) in
the code repository, starting from the working directory;
(2) We look for URLs in comments and text cells adjacent to
the failed code cell, and attempt to download missing data
using the URLs extracted.
(3) Because many notebooks deal with data science chal-
lenges such as Kaggle [9], where the data sets are public
and may be hosted in online data repositories. We thus also
attempt to resolve missing data �les by programmatically
download using the Kaggle Dataset API [10] (e.g. command
kaggle datasets download -d titanic) to download
the missing dataset.
We are able to locate missing �les in most cases using a

combination of these methods.

3.3 Track Operator Sequences
In addition to instrumenting invocations of individual oper-
ators, we also keep track of the sequence of operations in
notebooks and reconstruct the data-�ow.

Speci�cally, we record input/output of 7 Pandas API calls
that take data-frames (tables) as parameters, or produce
data-frames as output. These are: concat, dropna, fillna,
groupby, melt, merge, and pivot. We record the unique
hash id of each data-frame, and trace input/output depen-
dencies between data-frames to construct data-�ow graphs
(even if dependencies are far apart in the notebook).

Figure 4 shows an example of the data-�ow graph for the
code snippet on the right. This code snippet �rst reads two
CSV �les into data-frames, before joining the two and saving
the result in psg. It then performs Pivot and GroupBy on psg
for exploratory data analysis. Figure 4 shows its correspond-
ing data-�ow graph we extract, where each node is a (ver-
sioned) data-frame variable, and each edge is an operation.
This allows us to construct operator sequences/pipelines, in
order to predict the “next operator”.

psg.v1 surv.v1

psg.v2

psg.v3 psg.v4

join join

pivot groupby

1 import pandas as pd
2
3 psg=pd.read_csv(‘passenger_data.csv’)
4 surv=pd.read_csv(‘survive.csv’)
5 psg=psg.merge(surv,on=‘PassengerId’,

how=‘left’)
6 psg.pivot(header=[‘Survived, Pclass’],

index=‘Sex’, aggrfunc=‘count’)
7 psg.groupby(‘Sex’,aggrfunc=‘count’)

Figure 4: Example code snippet and its data-�ow.

4 PREDICT SINGLE OPERATORS
Leveraging rich logs, we will �rst discuss “single-operator”
recommendations, using Join, GroupBy, Pivot and Unpivot as
example operators. Recommendation methods for additional
operators such as Normalize-Json can be found in a full
version of the paper.

Note that Join and GroupBy are relatively straightforward
as both can be modeled as simple feature-based machine-
learning. We start with the two nevertheless as they are
“building blocks” required for other operators.

Pivot and Unpivot are considerably more complex – we
formulate them as novel optimization problems and solve
them using custom-built algorithms.

4.1 Join Predictions

Figure 5: An example Join: The ground-truth is to join
using book-titles (in solid red boxes). Existing meth-
ods using heuristics tend to incorrectly pick columns
in dashed-boxes that have a higher value overlap.

Join is a widely-used operator that combines data from
multiple tables. Figure 5 shows an example taken from a real
notebook. The left table has a list of best-selling books, and
the right one has historical information about these books.
From our logs we observe that data scientists choose to left-
outer-join using “title” from the left and “title_on_list” from
the right (in solid boxes).

For Join we have two essential prediction tasks:
(1) Predict join columns: This is to decide which columns
should be used as join keys, which is a feature available
commercial systems (e.g., Figure 1), and has been studied
in the literature (e.g. [36, 56, 71, 83]).
(2) Predict join types: This predicts whether the join should
be inner/left-outer/right-outer/full-outer-join, etc. Since dif-
ferences between these choices can be subtle and not obvi-
ous to non-expert users, accurate predictions (with intuitive
explanations/visualization) would be bene�cial.
Join columnprediction.Given two tablesT andT 0, with

columns {C1, . . . ,Cn} 2 T and {C 0
1, . . . ,C

0
m} 2 T 0, our prob-

lem is to �nd two sets of columns (S , S 0) that are likely join
columns, with S ✓ T , S 0 ✓ T 0 and |S | = |S 0 | (note that this
can be single-column or multi-columns).

https://congyan.org/JupyterNotebooks.pdf

Recommendation Tasks
• Single-Operator Prediction: Given two tables and an operation, decide how

to best apply the operation (what are the parameters)
• Next-Operator Prediction: Given all operations performed so far, predict the

next one

51

[C. Yan & Y. He]
D. Koop, CSCI 640/490, Spring 2023

https://congyan.org/JupyterNotebooks.pdf

Join Prediction
• Predict columns
- Use features of columns: value-overlap, "left-ness", statistics

• Predict join type
- Inner join is the default (also 78% of cases in data)
- "Central" table vs. "filtering"

52

[C. Yan & Y. He]
D. Koop, CSCI 640/490, Spring 2023

https://congyan.org/JupyterNotebooks.pdf

Pivot/Unpivot
• Pivot is hard to get right
- Index
- Header
- Aggregation Function
- Aggregation Columns

• Use GroupBy Prediction
• Look for NULLs and use affiinity
• Affinity-Maximizing Pivot Table
• Unpivot requires compatibility

53

[C. Yan & Y. He]
D. Koop, CSCI 640/490, Spring 2023

Figure 7: Example Pivot operation that creates two-dimensional Pivot-table (right) from an input table (left).

Figure 8: Example of a “bad” Pivot-table (with many
NULLs) that uses the same dimensions as Figure 7.

Figure 9: UI Wizard to create Pivot-table in Excel. It
requires users to drag suitable columns into 4 possi-
ble buckets (shown at bottom) to properly con�gure
Pivot, which typically takes many trials to get right.
Creating Pivot in other systems is similarly complex.
essentially predicting GroupBy columns (both are dimension
attributes); while predicting aggregation-column in Pivot
is the same as predicting Aggregation (both are measures).
E������ 2. Observe that the input table for Pivot in Fig-

ure 7 and the input table for GroupBy in Figure 6 are identical.
Furthermore, the candidate GroupBy columns in Figure 6
(�rst 5 columns) are all reasonable choices as index/header
in a Pivot table. Similarly, the candidate Aggregation columns
in Figure 6 (“Market Cap” and “Revenue”) are all valid choices
for aggregation-column in Pivot.
We therefore directly apply the GroupBy/Aggregation

prediction in Section 4.2, which would determine “Market
Cap” and “Revenue” in Figure 7 as aggregation-column,
and the rest as index/header. From here, users can pick
columns of interest for the desired Pivot. In Figure 7, users
would pick “Sector”, “Ticker”, “Company”, “Year” as relevant
dimensions, and “Revenue” as the aggregation-column.

Predict to Split Index vs. Header. From user-selected
dimension columns, our second prediction task is to auto-
matically identify a “good” placement of these columns by
splitting them into index vs. header, which is di�cult for
users and typically require multiple trial-and-errors.

E������ 3. Users have selected { Sector, Ticker, Company,
Year } from Figure 7 as desired dimension columns. Since

they can either be arranged as index (on the left of the result-
ing Pivot) or header (on the top), there are a total of 24 = 16
possible choices to Pivot. Many of these arrangements are,
however, not ideal.
Figure 8 shows one such example. Observe that since

{ Company, Ticker, Year } are selected as index, while { Sec-
tor } as header, it creates a large number of “NULL” entries
in the resulting Pivot-table, because of a strong dependency
between “Sector” and “Company”. Splitting the two columns
with one at the top and one to the left of the resulting Pivot
would create a large number of empty cells (with 20 indus-
tries in the table, roughly 95% of the entries in the resulting
Pivot is empty).
Similarly arranging “Company” and “Ticker” to di�erent

sides of Pivot is also undesirable as it creates even more
number of empty cells.

These bad Pivots are unlikely to be selected by data scien-
tists and in the data we collect.

We formulate the problem of splitting dimension columns
into index vs. header as an optimization problem. Speci�-
cally, given columns C = {Ci } that users select as dimensions
for the desired Pivot, we need to partition them into index
vs. header. This requires us to consider desirable factors
such as minimizing emptiness, which we will �rst quantify.
Speci�cally, given two columns Ci ,Cj , we model their

“a�nity score”, denoted by a(Ci ,Cj), as the likelihood of
Ci ,Cj being on the same side of Pivot (both in index or
header), which can be seen as their conceptual “closeness”.
To do so, from a large number of Pivot-tables collected from
notebooks, we build a regression model to learn the a�nity
score between any pair of columns, using two features:
• Emptiness-reduction-ratio: This reduction ratio is de�ned
as | {u |u 2T (Ci)} | | {� |� 2T (Cj)} |

| {(u,�) |(u,�)2T (Ci ,Cj)} | , where T (C) denotes values in
column C 2 T . This ratio shows how much emptiness
we can “save” multiplicatively by arranging Ci and Cj
on the same side. For example, Figure 8 has 20 sectors
and 1000 companies, so the reduction-ratio for Sector and
Company is 20⇤1000

1000 = 20, which is signi�cant. However
the reduction-ratio between Year and Sector is 3⇤20

60 = 1,
indicating no saving. Attributes with higher reduction-
ratio should ideally be arranged on the same side to reduce
emptiness of the resulting Pivot.

• Column-position-di�erence: This is the relative di�erence of
positions betweenCi andCj inT . What we observe is that
columns that are close to each other in T are more likely

Figure 7: Example Pivot operation that creates two-dimensional Pivot-table (right) from an input table (left).

Figure 8: Example of a “bad” Pivot-table (with many
NULLs) that uses the same dimensions as Figure 7.

Figure 9: UI Wizard to create Pivot-table in Excel. It
requires users to drag suitable columns into 4 possi-
ble buckets (shown at bottom) to properly con�gure
Pivot, which typically takes many trials to get right.
Creating Pivot in other systems is similarly complex.
essentially predicting GroupBy columns (both are dimension
attributes); while predicting aggregation-column in Pivot
is the same as predicting Aggregation (both are measures).
E������ 2. Observe that the input table for Pivot in Fig-

ure 7 and the input table for GroupBy in Figure 6 are identical.
Furthermore, the candidate GroupBy columns in Figure 6
(�rst 5 columns) are all reasonable choices as index/header
in a Pivot table. Similarly, the candidate Aggregation columns
in Figure 6 (“Market Cap” and “Revenue”) are all valid choices
for aggregation-column in Pivot.
We therefore directly apply the GroupBy/Aggregation

prediction in Section 4.2, which would determine “Market
Cap” and “Revenue” in Figure 7 as aggregation-column,
and the rest as index/header. From here, users can pick
columns of interest for the desired Pivot. In Figure 7, users
would pick “Sector”, “Ticker”, “Company”, “Year” as relevant
dimensions, and “Revenue” as the aggregation-column.

Predict to Split Index vs. Header. From user-selected
dimension columns, our second prediction task is to auto-
matically identify a “good” placement of these columns by
splitting them into index vs. header, which is di�cult for
users and typically require multiple trial-and-errors.

E������ 3. Users have selected { Sector, Ticker, Company,
Year } from Figure 7 as desired dimension columns. Since

they can either be arranged as index (on the left of the result-
ing Pivot) or header (on the top), there are a total of 24 = 16
possible choices to Pivot. Many of these arrangements are,
however, not ideal.
Figure 8 shows one such example. Observe that since

{ Company, Ticker, Year } are selected as index, while { Sec-
tor } as header, it creates a large number of “NULL” entries
in the resulting Pivot-table, because of a strong dependency
between “Sector” and “Company”. Splitting the two columns
with one at the top and one to the left of the resulting Pivot
would create a large number of empty cells (with 20 indus-
tries in the table, roughly 95% of the entries in the resulting
Pivot is empty).
Similarly arranging “Company” and “Ticker” to di�erent

sides of Pivot is also undesirable as it creates even more
number of empty cells.

These bad Pivots are unlikely to be selected by data scien-
tists and in the data we collect.

We formulate the problem of splitting dimension columns
into index vs. header as an optimization problem. Speci�-
cally, given columns C = {Ci } that users select as dimensions
for the desired Pivot, we need to partition them into index
vs. header. This requires us to consider desirable factors
such as minimizing emptiness, which we will �rst quantify.
Speci�cally, given two columns Ci ,Cj , we model their

“a�nity score”, denoted by a(Ci ,Cj), as the likelihood of
Ci ,Cj being on the same side of Pivot (both in index or
header), which can be seen as their conceptual “closeness”.
To do so, from a large number of Pivot-tables collected from
notebooks, we build a regression model to learn the a�nity
score between any pair of columns, using two features:
• Emptiness-reduction-ratio: This reduction ratio is de�ned
as | {u |u 2T (Ci)} | | {� |� 2T (Cj)} |

| {(u,�) |(u,�)2T (Ci ,Cj)} | , where T (C) denotes values in
column C 2 T . This ratio shows how much emptiness
we can “save” multiplicatively by arranging Ci and Cj
on the same side. For example, Figure 8 has 20 sectors
and 1000 companies, so the reduction-ratio for Sector and
Company is 20⇤1000

1000 = 20, which is signi�cant. However
the reduction-ratio between Year and Sector is 3⇤20

60 = 1,
indicating no saving. Attributes with higher reduction-
ratio should ideally be arranged on the same side to reduce
emptiness of the resulting Pivot.

• Column-position-di�erence: This is the relative di�erence of
positions betweenCi andCj inT . What we observe is that
columns that are close to each other in T are more likely

Figure 7: Example Pivot operation that creates two-dimensional Pivot-table (right) from an input table (left).

Figure 8: Example of a “bad” Pivot-table (with many
NULLs) that uses the same dimensions as Figure 7.

Figure 9: UI Wizard to create Pivot-table in Excel. It
requires users to drag suitable columns into 4 possi-
ble buckets (shown at bottom) to properly con�gure
Pivot, which typically takes many trials to get right.
Creating Pivot in other systems is similarly complex.
essentially predicting GroupBy columns (both are dimension
attributes); while predicting aggregation-column in Pivot
is the same as predicting Aggregation (both are measures).
E������ 2. Observe that the input table for Pivot in Fig-

ure 7 and the input table for GroupBy in Figure 6 are identical.
Furthermore, the candidate GroupBy columns in Figure 6
(�rst 5 columns) are all reasonable choices as index/header
in a Pivot table. Similarly, the candidate Aggregation columns
in Figure 6 (“Market Cap” and “Revenue”) are all valid choices
for aggregation-column in Pivot.
We therefore directly apply the GroupBy/Aggregation

prediction in Section 4.2, which would determine “Market
Cap” and “Revenue” in Figure 7 as aggregation-column,
and the rest as index/header. From here, users can pick
columns of interest for the desired Pivot. In Figure 7, users
would pick “Sector”, “Ticker”, “Company”, “Year” as relevant
dimensions, and “Revenue” as the aggregation-column.

Predict to Split Index vs. Header. From user-selected
dimension columns, our second prediction task is to auto-
matically identify a “good” placement of these columns by
splitting them into index vs. header, which is di�cult for
users and typically require multiple trial-and-errors.

E������ 3. Users have selected { Sector, Ticker, Company,
Year } from Figure 7 as desired dimension columns. Since

they can either be arranged as index (on the left of the result-
ing Pivot) or header (on the top), there are a total of 24 = 16
possible choices to Pivot. Many of these arrangements are,
however, not ideal.
Figure 8 shows one such example. Observe that since

{ Company, Ticker, Year } are selected as index, while { Sec-
tor } as header, it creates a large number of “NULL” entries
in the resulting Pivot-table, because of a strong dependency
between “Sector” and “Company”. Splitting the two columns
with one at the top and one to the left of the resulting Pivot
would create a large number of empty cells (with 20 indus-
tries in the table, roughly 95% of the entries in the resulting
Pivot is empty).
Similarly arranging “Company” and “Ticker” to di�erent

sides of Pivot is also undesirable as it creates even more
number of empty cells.

These bad Pivots are unlikely to be selected by data scien-
tists and in the data we collect.

We formulate the problem of splitting dimension columns
into index vs. header as an optimization problem. Speci�-
cally, given columns C = {Ci } that users select as dimensions
for the desired Pivot, we need to partition them into index
vs. header. This requires us to consider desirable factors
such as minimizing emptiness, which we will �rst quantify.
Speci�cally, given two columns Ci ,Cj , we model their

“a�nity score”, denoted by a(Ci ,Cj), as the likelihood of
Ci ,Cj being on the same side of Pivot (both in index or
header), which can be seen as their conceptual “closeness”.
To do so, from a large number of Pivot-tables collected from
notebooks, we build a regression model to learn the a�nity
score between any pair of columns, using two features:
• Emptiness-reduction-ratio: This reduction ratio is de�ned
as | {u |u 2T (Ci)} | | {� |� 2T (Cj)} |

| {(u,�) |(u,�)2T (Ci ,Cj)} | , where T (C) denotes values in
column C 2 T . This ratio shows how much emptiness
we can “save” multiplicatively by arranging Ci and Cj
on the same side. For example, Figure 8 has 20 sectors
and 1000 companies, so the reduction-ratio for Sector and
Company is 20⇤1000

1000 = 20, which is signi�cant. However
the reduction-ratio between Year and Sector is 3⇤20

60 = 1,
indicating no saving. Attributes with higher reduction-
ratio should ideally be arranged on the same side to reduce
emptiness of the resulting Pivot.

• Column-position-di�erence: This is the relative di�erence of
positions betweenCi andCj inT . What we observe is that
columns that are close to each other in T are more likely

https://congyan.org/JupyterNotebooks.pdf

Predict Next Operator
• Two Signals:
- Use past information (latent sequential connections)
- Use table characteristics

54

[C. Yan & Y. He]
D. Koop, CSCI 640/490, Spring 2023

Figure 13: Model architecture to predict next operator.

Intuitively, we can leverage two main sources of signals:
(1) Since there are typically latent sequential correlations
between operators (e.g., an Aggregation is likely to follow
after GroupBy), we could leverage operators invoked in the
past to predict the next operator;
(2) The characteristics of input tables available at time-
stamp ti are also indicative of likely operations that will
follow. For example, a table Ti that “looks like” a pivot-
table (e.g., Figure 11) will likely see an Unpivot invoked. We
should note that such signals are implicitly captured in our
single-operator models – e.g., we obtain a large objective-
function value in CMUT, whenTi is appropriate for Unpivot.
Thus, invoking single-operator models for each operator
onTi would utilize the characteristics ofTi to produce addi-
tional signals of whether an operator may be invoked.
The sequence-based modeling in (1) above closely resem-

bles language-modeling problems in NLP [38], where a key
task is to predict the next word given a pre�x. We tested two
classical approaches to this problem: an N-gram language-
model from the statistical NLP literature [66], and a more
recent neural approach RNN [67]. As we will report in exper-
iments, We �nd RNN to be more e�ective in our task, which
we use as the starting point of our model.

In order to also leverage characteristics of Ti at time ti as
discussed in (2) above, we invoke single-operator prediction
onTi for each operator in Section 4, and concatenate the raw
scores of each operator with the continuous representation
produced by the RNN layer.We note that a concatenation like
this is widely used in deep models to combine information
from multiple sources [48].

Figure 13 shows the resulting architecture for our model.
The bottom layer on the left is an embedding layer that
activates based on the presence of an operator. This layer
gives a continuous representation of each operator after
training. These are then fed into an RNN layer (using ReLU
activation) that encodes operators invoked in the past, and
produces a representation that captures the current state
of the sequence at step ti . The output of the RNN layer is
then concatenated with prediction scores produced by single-
operator models on Ti (shown at the bottom right of the
�gure). The combined vector is �nally fed into an MLP layer

operator join pivot unpivot groupby normalize JSON
#nb crawled 209.9K 68.9K 16.8K 364.3K 8.3K
#nb sampled 80K 68.9K 16.8K 80K 8.3K
#nb replayed 12.6K 16.1K 5.7K 9.6K 3.2K

#operator replayed 58.3K 79K 7.2K 70.9K 4.3K
#operator post-�ltering 11.2K 7.7K 2.9K 8.9K 1.9K
Table 2: Statistics of data extracted from Notebooks.
(using Soft-max activation) to jointly produce the likelihood
score of the next operator.

6 EXPERIMENTS
6.1 Evaluation Datasets
We create our data set by replaying and instrumenting a
large number of Jupyter notebooks on GitHub. Table 2 shows
summary statistics of the data set. Because the number of
notebooks with certain popular operators (e.g., Join) is too
large, we sample a subset for replay in those cases.
We believe the data we collect is a representative re�ec-

tion of how data scientists manipulate data in the public
domain like Kaggle (there are many notebooks that we fail
to replay because of missing data �les, which may be propri-
etary enterprise data not uploaded to GitHub). We note that
our approach is generic and can be deployed in proprietary
domains like Enterprise Git [7], to learn from proprietary
notebooks and data in these enterprises, and produce models
that may be more tailored to these domains.

After a notebook is successfully replayed, we �lter invoca-
tions that are deemed as duplicate (e.g., identical invocation
on the same tables across notebooks, or repetitive invoca-
tions inside a loop that are similar), or uninformative (e.g.,
when input tables are trivially small with less than 5 rows).

The resulting data set is shown in the last line of Table 2. To
the best of our knowledge this is the �rst systematic attempt
at harvesting invocations of diverse table-manipulation oper-
ators in real pipelines, which we hope to open-source soon.
For each prediction task, we split the data 80%:20% into

train and test, while making sure that examples involving
the same �les/data-sets are either all in train or all in test to
avoid data leakage.

6.2 Methods Compared
For each prediction task, we compare the proposed A����
S������ with two main groups of methods:

https://congyan.org/JupyterNotebooks.pdf

Evaluation
• Data
- Jupyter Notebooks with working operations

• Metrics:
- Precision@K: Proportion of relevant results in the top K
- NDCG@K (Normalized Discounted Cumulative Gain): ratio of relevance to

ideal relevance on a per item basis

55

[C. Yan & Y. He]
D. Koop, CSCI 640/490, Spring 2023

Figure 13: Model architecture to predict next operator.

Intuitively, we can leverage two main sources of signals:
(1) Since there are typically latent sequential correlations
between operators (e.g., an Aggregation is likely to follow
after GroupBy), we could leverage operators invoked in the
past to predict the next operator;
(2) The characteristics of input tables available at time-
stamp ti are also indicative of likely operations that will
follow. For example, a table Ti that “looks like” a pivot-
table (e.g., Figure 11) will likely see an Unpivot invoked. We
should note that such signals are implicitly captured in our
single-operator models – e.g., we obtain a large objective-
function value in CMUT, whenTi is appropriate for Unpivot.
Thus, invoking single-operator models for each operator
onTi would utilize the characteristics ofTi to produce addi-
tional signals of whether an operator may be invoked.
The sequence-based modeling in (1) above closely resem-

bles language-modeling problems in NLP [38], where a key
task is to predict the next word given a pre�x. We tested two
classical approaches to this problem: an N-gram language-
model from the statistical NLP literature [66], and a more
recent neural approach RNN [67]. As we will report in exper-
iments, We �nd RNN to be more e�ective in our task, which
we use as the starting point of our model.

In order to also leverage characteristics of Ti at time ti as
discussed in (2) above, we invoke single-operator prediction
onTi for each operator in Section 4, and concatenate the raw
scores of each operator with the continuous representation
produced by the RNN layer.We note that a concatenation like
this is widely used in deep models to combine information
from multiple sources [48].

Figure 13 shows the resulting architecture for our model.
The bottom layer on the left is an embedding layer that
activates based on the presence of an operator. This layer
gives a continuous representation of each operator after
training. These are then fed into an RNN layer (using ReLU
activation) that encodes operators invoked in the past, and
produces a representation that captures the current state
of the sequence at step ti . The output of the RNN layer is
then concatenated with prediction scores produced by single-
operator models on Ti (shown at the bottom right of the
�gure). The combined vector is �nally fed into an MLP layer

operator join pivot unpivot groupby normalize JSON
#nb crawled 209.9K 68.9K 16.8K 364.3K 8.3K
#nb sampled 80K 68.9K 16.8K 80K 8.3K
#nb replayed 12.6K 16.1K 5.7K 9.6K 3.2K

#operator replayed 58.3K 79K 7.2K 70.9K 4.3K
#operator post-�ltering 11.2K 7.7K 2.9K 8.9K 1.9K
Table 2: Statistics of data extracted from Notebooks.
(using Soft-max activation) to jointly produce the likelihood
score of the next operator.

6 EXPERIMENTS
6.1 Evaluation Datasets
We create our data set by replaying and instrumenting a
large number of Jupyter notebooks on GitHub. Table 2 shows
summary statistics of the data set. Because the number of
notebooks with certain popular operators (e.g., Join) is too
large, we sample a subset for replay in those cases.
We believe the data we collect is a representative re�ec-

tion of how data scientists manipulate data in the public
domain like Kaggle (there are many notebooks that we fail
to replay because of missing data �les, which may be propri-
etary enterprise data not uploaded to GitHub). We note that
our approach is generic and can be deployed in proprietary
domains like Enterprise Git [7], to learn from proprietary
notebooks and data in these enterprises, and produce models
that may be more tailored to these domains.

After a notebook is successfully replayed, we �lter invoca-
tions that are deemed as duplicate (e.g., identical invocation
on the same tables across notebooks, or repetitive invoca-
tions inside a loop that are similar), or uninformative (e.g.,
when input tables are trivially small with less than 5 rows).

The resulting data set is shown in the last line of Table 2. To
the best of our knowledge this is the �rst systematic attempt
at harvesting invocations of diverse table-manipulation oper-
ators in real pipelines, which we hope to open-source soon.
For each prediction task, we split the data 80%:20% into

train and test, while making sure that examples involving
the same �les/data-sets are either all in train or all in test to
avoid data leakage.

6.2 Methods Compared
For each prediction task, we compare the proposed A����
S������ with two main groups of methods:

https://congyan.org/JupyterNotebooks.pdf

Results

56

[C. Yan & Y. He]
D. Koop, CSCI 640/490, Spring 2023

feature left-
ness

val-range-
overlap

distinct-
val-ratio

val-
overlap

importance 0.35 0.35 0.11 0.05

feature single-col-
candidate

col-val-
types

table-
stats

sorted-
ness

importance 0.04 0.01 0.01 0.01
Table 4: Importance of Feature Groups for Join

method prec@1
A����S������ 0.88

Vendor-A 0.78
Table 5: Join type prediction.

containment and similarity) may be the most important (for
database FKs), we �nd that for ad-hoc joins performed by
data-scientists in the wild, this feature group is substantially
less important than many other features, such as left-ness
and val-range-overlap. It is surprising to see that val-range-
overlap is signi�cantly more important than val-overlap, sug-
gesting that containment arising from accidental overlap
may be common in practice (like shown in Example 5), and
thus not always a reliable signal.

6.5.2 Predict Join Types.
For this task, we compare with Vendor-A/B/C, all of which
default to use inner-join as the join type (and ask users to
modify if needed). We note that this is a sensible choice since
it is by far the most common type of joins.
The result is shown in Table 5. Although most joins are

indeed inner-joins (78% of the cases), A����S������ shows
a substantial improvement over the default-choice. Interest-
ingly, we �nd features measuring the relative “shapes” of the
two input tables (e.g., ratio of row-counts in two tables) to
be most useful in predicting outer-join vs. inner-joins.

6.5.3 Predict GroupBy Columns.
This task predicts GroupBy column (Section 4.2). We com-
pare with the following methods.
• SQL-history [60]. SnipSuggest [60] is an in�uential ap-
proach that suggests likely SQL snippets based on his-
torical queries. We adapt this to suggest GroupBy based
on the frequency of columns used in the past (training)
data.

• Coarse-grained-types [68]. This approach leverages a heuris-
tic that numerical attributes (including strings that can be
parsed as numbers) are likely Aggregation columns, while
categorical attributes are likely GroupBy columns.

• Fine-grained-types [2, 65]. This approach improves upon
the method above, by de�ning �ne-grained types and as-
signing them as measures (Aggregation) and dimensions
(GroupBy). For example, date-time and zip-code are likely
for GroupBy, even if they are numbers.

• Min-Cardinality. This heuristic approach picks columns
with low cardinality as GroupBy columns.

• Vendors-B/C. These are commercial systems that use pro-
prietary algorithms.

method prec@1 prec@2 ndcg@1 ndcg@2 full-accuracy
A����S������ 0.95 0.97 0.95 0.98 93%
SQL-history 0.58 0.61 0.58 0.63 53%

Coarse-grained-types 0.47 0.52 0.47 0.54 46%
Fine-grained-types 0.31 0.4 0.31 0.42 38%
Min-Cardinality 0.68 0.83 0.68 0.86 68%

Vendor-B 0.56 0.71 0.56 0.75 45%
Vendor-C 0.71 0.82 0.71 0.85 67%

Table 6: GroupBy column prediction.
feature col-

type
col-name-

freq
distinct-

val
val-
range

importance 0.78 0.11 0.06 0.02

feature left-
ness

peak-
freq

empti-
ness

importance 0.01 0.01 0.01
Table 7: Importance of Feature Groups for GroupBy
Table 6 shows the comparison. Prediction from A����

S������ is highly accurate, with a precision of 0.95 and 0.97
for the �rst 2 suggestions. Min-Cardinality performs sur-
prisingly well, as it typically picks string-columns with low
cardinality (numeric-columns tend to have high cardinality),
which are often good choices. SQL-history also performs rea-
sonably well, but would fail on cases where no prior SQL
history can be observed. While type-based heuristics may
seem reasonable, they do not work as reliably, showing the
complexity of the GroupBy task.
Note that the prediction of whether each column is used

as GroupBy vs. Aggregation, is a unit of evaluation in the
result above. In order to get a big picture of the overall
accuracy at the table-level (each table may have multiple
GroupBy columns), we additionally report the full-accuracy
at the table-level, which is de�ned as the fraction of table for
which we can predict completely correctly (i.e., all GroupBy
columns are ranked ahead of Aggregation columns).
This full-accuracy number is reported in the last column

of Table 6. Note that we can predict GroupBy/Aggregation
for 93% tables completely correctly, which is quite accurate.
Min-Cardinality is again the second-best approach when
accuracy is measured at the table-level.

The importance of features is reported in Table 7.While we
expect col-type to be important, it is interesting to see that col-
name-freq is the second-most important feature. Intuitively,
as humans we have prior knowledge of what columns are
likely GroupBy columns – e.g., “year”, “department-id”, etc.,
even if values in these columns are numbers. The col-name-
freq feature works similarly – after seeing enough example
column-names used as GroupBy in the training data, it can
predict such cases accurately (e.g., columns named “year”
are likely GroupBy and not Aggregation).

6.5.4 Predict Pivot: Index/header split.
For Pivot we focus on the task of splitting index vs. header
columns, which we solve using an optimization formulation

(1) Existing features available from commercial vendors,
which are often strong baselines but black-box algorithms.
We anonymize their names as Vendor-A, Vendor-B, etc., in
accordance with their EULAs that explicitly prevent any
benchmarking numbers to be revealed. We note that this is
in keeping with the tradition in the database benchmarking
literature [33, 42, 44, 62, 73].
(2) Related methods from the literature. These are white-box
methods that we will describe separately in each task.

6.3 Experimental Setup
All experiments are performed on a Linux VM on the cloud,
with 16 virtual CPU, and 64 GB memory. A����S������ and
alternative methods are implemented in Python 3.7.

6.4 Evaluation metric
Since most of our problems require a ranked list of sugges-
tions, we use ranking metrics from the Information Retrieval
(IR) literature [74] to evaluate suggestion quality.

Precision@K. De�ned as the proportion of relevant pre-
dictions in the top-K, or #-relevant-in-K

K . After all relevant items
in ground-truth have been correctly identi�ed, we do not
penalize additional predictions at lower-ranked positions.

NDCG@K. NDCG (Normalized Discounted Cumulative
Gain) is a popular metric in IR [74]. Intuitively, it computes a
relevance score called DCGK for the top-K ranked items, and
compare with the score of the ideal top-K, IDCGK . NDCG
at position K is then de�ned as NDCGK =

DCGK
IDCGK , where

DCGK =
ÕK

i=1
reli

log2 (i+1)
, in which reli is the relevance label

of prediction at position i (in our case 0 or 1), and IDCGK is
the DCG score of the ideal ranked list at position K .
Like Precision@K, NDCG@K is in the range of [0, 1],

where a higher score is more desirable.

6.5 Predict Single-Operators
We �rst evaluate the quality of all prediction tasks studied.

6.5.1 Predict Joins Columns.
We compare with the following methods:
• ML-FK [71]. This is an in�uential approach that uses ma-
chine learning and a large number of features to discover
foreign-key joins.

• PowerPivot [36]. PowerPivot [36] employs heuristic rules
to prune away unlikely join columns (e.g., boolean and
numbers), and leverages content similarity to discover
foreign-key joins.

• Multi [83]. This approach leverages distributional distances
between columns (e.g., EMD) to discover multi-column
foreign-keys.

• Holistic [56]. This recent approach proposes to combine
distributional distances like [83], with other features.

method (all data) prec@1 prec@2 ndcg@1 ndcg@2
A����S������ 0.89 0.92 0.89 0.93

ML-FK 0.84 0.87 0.84 0.87
PowerPivot 0.31 0.44 0.31 0.48

Multi 0.33 0.4 0.33 0.41
Holistic 0.57 0.63 0.57 0.65

max-overlap 0.53 0.61 0.53 0.63
method (sampled data) prec@1 prec@2 ndcg@1 ndcg@2

A����S������ 0.92 - 0.92 -
Vendor-A 0.76 - 0.76 -
Vendor-C 0.42 - 0.42 -
Vendor-B 0.33 - 0.33 -

Table 3: Evaluation of Join column prediction. (Top)
methods from the literature, evaluated on all test data.
(Bottom): Comparisons with commercial systems on a
random sample of 200 cases.
• Max-Overlap. This is a common heuristic widely used (e.g.,
in [39] and [36]) to predict join-columns based on value-
overlap (e.g., measured in Jaccard Similarity).

• Vendors-A/B/C. These are commercial systems that use pro-
prietary algorithms. Because there are no programmatic
methods to test their capabilities, we report results on 200
randomly sampled cases.
We should note thatmost existingmethods likeML-FK [71],

PowerPivot [36], Multi [83], and Holistic [56] were devel-
oped speci�cally for foreign-key (FK) joins, and thus impose
(semi)-strict checks of Uniqueness and Inclusion-Dependency.
While these requirements are perfectly reasonable in a cu-
rated database setting, for the join cases we collect from data
science notebooks, only 68% are strict foreign-key joins –
suggesting that these joins “in the wild” are more ad-hoc
than typical database joins. We thus relax the Inclusion-
Dependency requirements of these FK methods when appro-
priate, which yields better results for these methods.

Table 3 shows a comparison of the prediction quality. On
all test cases, A����S������ is able to predict correctly 89%
and 92% of joins at top-1 and top-2 ranked suggestions, re-
spectively, substantially more accurate than other methods.
We should note that this task is not trivial – on average 148
candidate join-columns are considered for each pair of tables,
thus the low scores for some of the alternative methods.
ML-FK employs a large number of carefully engineered

features, and produces strong quality results. Less sophisti-
cated methods that use only one or two factors (e.g., only
content-overlap) tend to be less accurate, suggesting that
these join cases tested are likely complex, making them in-
teresting test-beds for future research.
The bottom of Table 3 shows the comparison with com-

mercial systems on a sample of 200 test cases, where A����
S������ again outperforms alternatives.
The importance scores of features used are reported in

Table 4. Contrary to conventional wisdom in the foreign-
key (FK) discovery literature that value-overlap (e.g., Jaccard

https://congyan.org/JupyterNotebooks.pdf

Results

57

[C. Yan & Y. He]
D. Koop, CSCI 640/490, Spring 2023

We additionally evaluate the precision/recall/F1 of the
columns predicted to Unpivot/Collapse, by comparing with
the ground-truth. These results are shown in the last three
columns of Table 9. It can be seen that over 90% of columns
that we predict to Unpivot overlap with the ground-truth,
suggesting that while our approach only gets 67% cases fully
correct, many of the incorrect ones are mostly partially cor-
rect. From the suggested Unpivot, users may be able to use
drag/drop to add/remove columns from the suggested list to
quickly converge to the desired result.

6.6 Predict Next Operator

operator groupby join concat dropna �llna pivot unpivot
percentage 33.3% 27.6% 12.2% 10.8% 9.6% 4.1% 2.4%

Table 10: Distribution of operators in data �ows.

method prec@1 prec@2 recall@1 recall@2
A����S������ 0.72 0.79 0.72 0.85

RNN 0.56 0.68 0.56 0.77
N-gram model 0.40 0.53 0.40 0.66
Single-Operators 0.32 0.41 0.32 0.50

Random 0.23 0.35 0.24 0.42

Table 11: Precision for next operator prediction.

We now describe an evaluation of the next-operator pre-
diction task (Section 5). The distribution of operators in the
crawled pipelines is shown in Table 10.

We compare results between the following methods.
• A����S������. This is the proposed approach using a
deep model architecture in Figure 13 (implemented using
Keras [11]), which combines signals from both sequence
modeling using RNN, as well as the characteristics of input
tables captured by single-operator predictions (Section 4).

• RNN [67]. We also compare with a neural RNN model,
which is e�ective for language modeling tasks in NLP
(given a pre�x of words, predict the next likely word). This
approach uses sequence information only.

• N-gram language model. N-gram [66] is another popular
language modeling approach for sequence prediction. Like
RNN, this uses sequence only. We implement this using
the popular NLTK [64], with trigrams and MLE estimator.

• Single-Operators. In addition to sequence-based models,
we also compare with a baseline that combines predictions
from all single-operator models on given table Ti . Such an
approach makes predictions using only the characteristics
of input tables, without considering operators invoked in
the past. It provides a reference point to see how much
additional bene�t can be obtained by using the sequence
history.
Table 11 shows the comparison. A����S������ clearly

improves over other approaches, and can predict the next
operator correctly 72% of the times at top-1, which we think

is reasonable given that there are 7 possible operators in the
candidate space.

Among sequence-based approaches, RNN is substantially
more accurate than N-gram, showing its strength in mod-
eling sequences, and is the reason we chose RNN as the
starting point of our model in Figure 13. There is a sizable
gap between A����S������ and RNN, showing a substantial
bene�t by considering the characteristics of the input table
(e.g., when the input table looks like a Pivot table, the single-
operator Unpivot-predictor would give a strong con�dence
score, boosting our next-operator prediction to be Unpivot).
Single-Operators uses only information from input tables

and not the sequence, which is also less accurate, showing
the need to take into account both sequences and the input
tables, as is the approach we take in A����S������.

7 RELATEDWORKS
The research community has played a signi�cant role in
thought-leadership that has in�uenced the �eld of self-service
data preparation. Prominent examples include the line of
work started by Wrangler [59] and its commercial instantia-
tion Trifacta [28]. Various methods have been proposed in
the literature to automate di�erent data preparation steps,
some of which we will brie�y review here.
Data transformation is a common data preparation step.

Recent progress includes the use of the program-by-example
paradigm, which signi�cantly lowers the barrier to perform-
ing data transformations. Systems like FlashFill [49] and
Transform-Data-by-Example (TDE) [51] allow users to pro-
vide input/output examples to specify desired transforma-
tions. Transformation programs consistent with the given
examples are then synthesized using DSL [49, 76], or code
on GitHub [51]. This line of work has signi�cant impacts on
commercial systems (e.g. FlashFill is available in Excel [4],
TDE is used in Power BI [1, 27], etc.).

Signi�cant progress has also been made towards automat-
ing a variety of other important operators, such as data-
extraction [37, 41, 45, 61, 69], transformation-join [52, 81, 84],
table restructuring [35, 57, 75], error-detection [54, 55, 80, 82],
etc. Some of these advances have already in�uenced the
commercial space and given rise to new features in existing
commercial systems.

8 CONCLUSIONS
We in this work propose a data-driven approach to “learn”
how data scientists manipulate diverse data sets in Jupyter
notebooks, whose best-practices are then captured as predic-
tive models to recommend data-preparation steps for less-
technical users in self-service data prep software. We show
the promise of such an approach, and believe that leveraging
notebooks is a promising direction for future research.

AMPT (Section 4.3).4 Since we �nd no recommendation fea-
tures for Pivot in commercial systems, we compare with a
few related methods studied in other contexts.
• A�nity [65]. ShowMe [65] is an in�uential approach from
the Visualization literature that studies best practices to
present data based on the type of visualization. For “cross-
tab” (which is similar to Pivot in spirit), an a�nity heuristic
is proposed to group together attributes with hierarchical
relationships (e.g., FD-like attributes).

• Type-Rules [43](Page 33, Section II). This patent publication
touches on a few simple heuristics that can be used to
automatically place attributes in a pivot table based on
data types (e.g., date-time, numeric attributes, etc.).

• Min-Emptiness. This is one of the signals considered in
our AMPT, which utilizes the observation that columns
with strong semantic dependency (e.g., “Ticker” and “Com-
pany”) should be arranged to the same side to reduce empty
cells in the resulting Pivot. We develop a greedy base-
line that minimizes the fraction of empty cells (by itera-
tively merging pairs of columns with maximum emptiness-
reduction-ratio).

• Balanced-Split. Since pivot-tables are often balanced in
terms of width vs. height, this approach cuts given index/-
header columns in a balanced manner.
Table 8 shows the quality comparison. When evaluated

using full-accuracy (i.e. the split has to be completely identi-
cal to the ground-truth), our approach gets 77% of the cases
correct. Both Min-Emptiness and A�nity are quite compet-
itive, showing that minimizing empty cells is a reasonably
e�ective approach to producing Pivot tables (which is a fac-
tor considered by AMPT). Type-Rules uses a static rule-based
heuristics, which performs substantially worse, showing that
it cannot handle diverse Pivot cases in practice.
In addition to full-accuracy, we also measure how close

the predicted split is to the ground-truth. Here, we use the
Rand-Index (RI) from the clustering literature [70] to evaluate
result quality, where RI = #-correct-edges

#-total-edges , in which an edge e
is deemed correct if the assignments of two vertices incident
to e are the same in the prediction and the ground-truth (e.g.,
the two are in the same cluster or not). RI gives partial-credit
to predictions that are close enough to the ground-truth,
where full-accuracy only produces 0/1 scores.

We report RI numbers in the second column of Table 8,
which are consistent with the full-accuracy evaluation. This
again shows the bene�t of AMPT that uses a principled
optimization-based formulation.
6.5.5 Predict Columns to Unpivot.
For Unpivot, recall that the prediction task is to select the
set of columns to “collapse” into two new columns.

4We omit details on predicting Index/header columns, as it is identical to
GroupBy column prediction, and our approach has high accuracy (0.96).

method full-accuracy Rand-Index (RI)
A����S������ 77% 0.87

A�nity 42% 0.56
Type-Rules 19% 0.55

Min-Emptiness 46% 0.70
Balanced-Cut 14% 0.55

Table 8: Pivot: splitting index/header columns.
method full

accuracy
column
precision

column
recall

column
F1

A����S������ 67% 0.93 0.96 0.94
Pattern-similarity 21% 0.64 0.46 0.54
Col-name-similarity 27% 0.71 0.53 0.61

Data-type 44% 0.87 0.92 0.89
Contiguous-type 46% 0.80 0.83 0.81
Table 9: Unpivot: Column prediction.

We observe that input tables in the Unpivot operations
we collect are typically wide, with 183 columns on average.
Furthermore, 170 out of the 183 columns need to be collapsed
in Unpivot on average, leaving the remaining 13 columns
untouched. Given the large number of choices this presents,
it is clearly a di�cult prediction task.
Like Pivot, there are no recommendation-based features

in the commercial systems we surveyed. There is also no
existing methods in the literature that directly address the
problem of predicting Unpivot. We therefore compare A����
S������with a few related methods that are studied in other
contexts.
• Pattern-similarity [58]. In studying methods to restructure
tables, the authors in [58] use a heuristic to Unpivot related
columns, which is measured by a form of pattern similarity
that they de�ne.

• Col-name-similarity [79]. This patent publication studies
data deduplication, and proposes a few heuristics to �nd
similar columns that can be collapsed/Unpivoted, the �rst
of which is based on column-name similarity (measured
in Jaccard). We implement it as the col-name-similarity
baseline.

• Data-type [79]. A second heuristic proposed in [79] uses
data types (e.g., string vs. numbers) to �nd related columns,
and is also a baseline we compare with.

• Contiguous-type [79]. This improves on Data-type method
above, by additionally requiring Unpivot columns to be
contiguous in input table T .
Table 9 shows the comparison of prediction quality. When

evaluated using full-accuracy (the full set of columns pre-
dicted for Unpivot has to be identical to ground-truth),A����
S������ uses the CMUT formulation and can correctly solve
67% of the cases, substantially better than other methods.
While there is clearly room for improvement in the future,
the fact that input tables for Unpivot have 183 columns on
average makes us believe that it is a really challenging task.

We note that other methods are substantially less accurate,
with Contiguous-type being the second-best approach.

https://congyan.org/JupyterNotebooks.pdf

