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Types of Dirty Data Problems
• Separator Issues: e.g. CSV without respecting double quotes 

- 12, 13, "Doe, John", 45 

• Naming Conventions: NYC vs. New York 
• Missing required fields, e.g. key 
• Different representations: 2 vs. two 
• Truncated data: "Janice Keihanaikukauakahihuliheekahaunaele" 

becomes "Janice Keihanaikukauakahihuliheek" on Hawaii license 
• Redundant records: may be exactly the same or have some overlap 
• Formatting issues: 2017-11-07 vs. 07/11/2017 vs. 11/07/2017
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Dirty Data: Data Scientist's View
• Combination of: 
- Statistician's View: data has non-ideal samples for model 
- Database Expert's View: missing data, corrupted data 
- Domain Expert's View: data doesn't pass the smell test 

• All of the views present problems with the data 
• The goal may dictate the solutions: 
- Median value: don't worry too much about crazy outliers 
- Generally, aggregation is less susceptible by numeric errors 
- Be careful, the data may be correct…
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Be careful how you detect dirty data
• The appearance of a hole in the earth’s ozone layer over Antarctica, first 

detected in 1976, was so unexpected that scientists didn’t pay attention to 
what their instruments were telling them; they thought their instruments were 
malfunctioning.  
– National Center for Atmospheric Research  
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Wrangler
• Data cleaning takes a lot of time and human effort 
• "Tedium is the message" 
• Repeating this process on multiple data sets is even worse! 
• Solution: 
- interactive interface (mixed-initiative) 
- transformation language with natural language "translations" 
- suggestions + "programming by demonstration"
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Transform Definition
Format φ(R, i, f) = {(a1, . . . , ai−1, ai+1, . . . , an, f(ai)) | (a1, . . . , an) ∈ R}
Add α(R, x) = {(a1, . . . , an, x) | (a1, . . . , an) ∈ R}
Drop π(R, i) = {(a1, . . . , ai−1, ai+1, . . . , an) | (a1, . . . , an) ∈ R}
Copy κ((a1, . . . , an), i) = {(a1, . . . , an, ai) | (a1, . . . , an) ∈ R}
Merge µ((a1, . . . , an), i, j, glue) = {(a1, . . . , ai−1, ai+1, . . . , aj−1, aj+1, . . . , an, ai ⊕ glue⊕ aj) | (a1, . . . , an) ∈ R}
Split ω((a1, . . . , an), i, splitter) = {(a1, . . . , ai−1, ai+1, . . . , an, left(ai, splitter), right(ai, splitter)) | (a1, . . . , an) ∈ R}
Divide δ((a1, . . . , an), i, pred) = {(a1, . . . , ai−1, ai+1, . . . , an, ai, null) | (a1, . . . , an) ∈ R ∧ pred(ai)} ∪

{(a1, . . . , ai−1, ai+1, . . . , an, null, ai) | (a1, . . . , an) ∈ R ∧ ¬pred(ai)}
Fold λ(R, i1, i2, . . . ik) = {(a1, . . . , ai1−1, ai1+1, . . . , ai2−1, ai2+1, . . . , aik−1, aik+1, . . . , an, ail) |

(a1, . . . , an) ∈ R ∧ 1 ≤ l ≤ k}
Select σ(R, pred) = {(a1, . . . , an) | (a1, . . . , an) ∈ R ∧ pred((a1, . . . , an))}

Notation: R is a relation with n columns. i, j are column indices and ai represents the value of a column in a row. x and glue are
values. f is a function mapping values to values. x ⊕ y concatenates x and y. splitter is a position in a string or a regular expression,
left(x, splitter) is the left part of x after splitting by splitter. pred is a function returning a boolean.

Table 1: Definitions of the various transforms. Unfold is defined in the full paper [22].
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Figure 6: Using Format, Merge and Split to clean name for-
mat differences
Value Translation
The Format transform applies a function to every value in
a column. We provide built-in functions for common oper-
ations like regular-expression based substitutions and arith-
metic operations, but also allow user defined functions. Col-
umn and table names can be demoted into column values us-
ing special characters in regular expressions; these are useful
in conjunction with the Fold transform described below.
One-to-one Mappings of Rows
One-to-one transforms are column operations that transform
individual rows. As illustrated in Figures 6 and 7, they can
be used to unify data collected from different sources.
TheMerge transform concatenates values in two columns,

optionally interposing a constant (the delimiter) in the mid-
dle, to form a single new column. Split splits a column into
two or more parts, and is used typically to parse a value into
its constituent parts. The split positions are often difficult
to specify if the data is not well structured. We allow split-
ting by specifying character positions, regular expressions,
or by interactively performing splits on example values (Sec-
tion 4.3).

Drop, Copy, and Add allow users to drop or copy a col-
umn, or add a new column. Occasionally, logically different
values (maybe from multiple sources) are bunched into the
same column, and we want to transform only some of them.
Divide conditionally divides a column, sending values into
one of two new columns based on a predicate.
Many-to-Many Mappings of Rows
Many-to-Many transforms help to tackle higher-order
schematic heterogeneities [18] where information is stored

partly in data values, and partly in the schema, as shown in
Figure 8. Fold ”flattens” tables by converting one row into
multiple rows, folding a set of columns together into one col-
umn and replicating the rest. Conversely Unfold ”unflattens”
tables; it takes two columns, collects rows that have the same
values for all the other columns, and unfolds the two chosen
columns. Values in one column are used as column names to
align the values in the other column. Figures 8 and 9 show
an example with student grades where the subject names are
demoted into the row via Format, grades are Folded together,
and then Split to separate the subject from the grade. Fold
and UnFold are adapted from the restructuring operators of
SchemaSQL [16], and are discussed in more detail in the
full paper [22].
Power of Transforms: As we prove in the full paper [22],
these transforms can be used to perform all one-to-many row
mappings of rows. Fold andUnfold can also be used to f latten
tables, converting them to a form where column and table
names are all literals and do not have data values. For a for-
mal definition of (un)flattening and an analysis of the power
of Fold and Unfold, see [16].

4.2 Interactive Application of Transforms
We want to apply the transforms on tuples incrementally, as
they stream in, so that the effects of transforms can be imme-
diately shown on tuples visible on the screen of the UI. It also
lets the system pipeline discrepancy detection on the results
of the transforms, thereby giving the interactivity advantages
described in the introduction.
Among the transforms discussed above, all the one-to-one

transforms as well as the Fold transform are functions on a
single row. Hence they are easy to apply incrementally.
However Unfold operates on a set of rows with match-

ing values. Since this could potentially involve scanning the
entire data, we do not allow Unfold to be specified graphi-
cally. For displaying records on the screen we can avoid this
problem by not showing a complete row but instead show-
ing more and more columns as distinct values are found, and
filling data values in these columns as the corresponding in-
put rows are read. Such progressive column addition in the
spreadsheet interface could confuse the user; hence we plan
to implement an abstraction interface where all newly cre-
ated columns are shown as one rolled up column. When

Potter's Wheel: Example
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Transform Definition
Format φ(R, i, f) = {(a1, . . . , ai−1, ai+1, . . . , an, f(ai)) | (a1, . . . , an) ∈ R}
Add α(R, x) = {(a1, . . . , an, x) | (a1, . . . , an) ∈ R}
Drop π(R, i) = {(a1, . . . , ai−1, ai+1, . . . , an) | (a1, . . . , an) ∈ R}
Copy κ((a1, . . . , an), i) = {(a1, . . . , an, ai) | (a1, . . . , an) ∈ R}
Merge µ((a1, . . . , an), i, j, glue) = {(a1, . . . , ai−1, ai+1, . . . , aj−1, aj+1, . . . , an, ai ⊕ glue⊕ aj) | (a1, . . . , an) ∈ R}
Split ω((a1, . . . , an), i, splitter) = {(a1, . . . , ai−1, ai+1, . . . , an, left(ai, splitter), right(ai, splitter)) | (a1, . . . , an) ∈ R}
Divide δ((a1, . . . , an), i, pred) = {(a1, . . . , ai−1, ai+1, . . . , an, ai, null) | (a1, . . . , an) ∈ R ∧ pred(ai)} ∪

{(a1, . . . , ai−1, ai+1, . . . , an, null, ai) | (a1, . . . , an) ∈ R ∧ ¬pred(ai)}
Fold λ(R, i1, i2, . . . ik) = {(a1, . . . , ai1−1, ai1+1, . . . , ai2−1, ai2+1, . . . , aik−1, aik+1, . . . , an, ail) |

(a1, . . . , an) ∈ R ∧ 1 ≤ l ≤ k}
Select σ(R, pred) = {(a1, . . . , an) | (a1, . . . , an) ∈ R ∧ pred((a1, . . . , an))}

Notation: R is a relation with n columns. i, j are column indices and ai represents the value of a column in a row. x and glue are
values. f is a function mapping values to values. x ⊕ y concatenates x and y. splitter is a position in a string or a regular expression,
left(x, splitter) is the left part of x after splitting by splitter. pred is a function returning a boolean.

Table 1: Definitions of the various transforms. Unfold is defined in the full paper [22].
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Figure 6: Using Format, Merge and Split to clean name for-
mat differences
Value Translation
The Format transform applies a function to every value in
a column. We provide built-in functions for common oper-
ations like regular-expression based substitutions and arith-
metic operations, but also allow user defined functions. Col-
umn and table names can be demoted into column values us-
ing special characters in regular expressions; these are useful
in conjunction with the Fold transform described below.
One-to-one Mappings of Rows
One-to-one transforms are column operations that transform
individual rows. As illustrated in Figures 6 and 7, they can
be used to unify data collected from different sources.
TheMerge transform concatenates values in two columns,

optionally interposing a constant (the delimiter) in the mid-
dle, to form a single new column. Split splits a column into
two or more parts, and is used typically to parse a value into
its constituent parts. The split positions are often difficult
to specify if the data is not well structured. We allow split-
ting by specifying character positions, regular expressions,
or by interactively performing splits on example values (Sec-
tion 4.3).

Drop, Copy, and Add allow users to drop or copy a col-
umn, or add a new column. Occasionally, logically different
values (maybe from multiple sources) are bunched into the
same column, and we want to transform only some of them.
Divide conditionally divides a column, sending values into
one of two new columns based on a predicate.
Many-to-Many Mappings of Rows
Many-to-Many transforms help to tackle higher-order
schematic heterogeneities [18] where information is stored

partly in data values, and partly in the schema, as shown in
Figure 8. Fold ”flattens” tables by converting one row into
multiple rows, folding a set of columns together into one col-
umn and replicating the rest. Conversely Unfold ”unflattens”
tables; it takes two columns, collects rows that have the same
values for all the other columns, and unfolds the two chosen
columns. Values in one column are used as column names to
align the values in the other column. Figures 8 and 9 show
an example with student grades where the subject names are
demoted into the row via Format, grades are Folded together,
and then Split to separate the subject from the grade. Fold
and UnFold are adapted from the restructuring operators of
SchemaSQL [16], and are discussed in more detail in the
full paper [22].
Power of Transforms: As we prove in the full paper [22],
these transforms can be used to perform all one-to-many row
mappings of rows. Fold andUnfold can also be used to f latten
tables, converting them to a form where column and table
names are all literals and do not have data values. For a for-
mal definition of (un)flattening and an analysis of the power
of Fold and Unfold, see [16].

4.2 Interactive Application of Transforms
We want to apply the transforms on tuples incrementally, as
they stream in, so that the effects of transforms can be imme-
diately shown on tuples visible on the screen of the UI. It also
lets the system pipeline discrepancy detection on the results
of the transforms, thereby giving the interactivity advantages
described in the introduction.
Among the transforms discussed above, all the one-to-one

transforms as well as the Fold transform are functions on a
single row. Hence they are easy to apply incrementally.
However Unfold operates on a set of rows with match-

ing values. Since this could potentially involve scanning the
entire data, we do not allow Unfold to be specified graphi-
cally. For displaying records on the screen we can avoid this
problem by not showing a complete row but instead show-
ing more and more columns as distinct values are found, and
filling data values in these columns as the corresponding in-
put rows are read. Such progressive column addition in the
spreadsheet interface could confuse the user; hence we plan
to implement an abstraction interface where all newly cre-
ated columns are shown as one rolled up column. When

Potter's Wheel: Transforms
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Interface
• Automated Transformation Suggestions 
• Editable Natural Language Explanations 

• Visual Transformation Previews 
• Transformation History
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intended to enhance analysts’ ability to review and refine
transformation steps. Textual annotations enable communi-
cation of analyst intent. Wrangler also couples verification
(run in the background as data is transformed) with visual-
ization to help users discover data quality issues.

Basic Interactions
The Wrangler interface supports six basic interactions within
the data table. Users can select rows, select columns, click
bars in the data quality meter, select text within a cell, edit
data values within the table (for mass editing [14, 19]), and
assign column names, data types or semantic roles. Users
can also choose transforms from the menu or refine sugges-
tions by editing transform descriptions as described below.

Automated Transformation Suggestions
As a user interacts with data, Wrangler generates a list of
suggested transforms. In some cases the set of possible sug-
gestions is large (in the hundreds), but we wish to show only
a relevant handful to avoid overload. Instead of enumerat-
ing the entire suggestion space, users can prune and reorder
the space in three ways. First, users can provide more exam-
ples to disambiguate input to the inference engine. Providing
examples is especially effective for text selections needed
for splitting, extraction, and reformatting; two or three well-
chosen examples typically suffice. Second, users can filter
the space of transforms by selecting an operator from the
transform menu. Third, users can edit a transform by alter-
ing the parameters of a transform to a desired state.

Wrangler does not immediately execute a selected sugges-
tion. Instead, Wrangler makes it the current working trans-
form. The user can edit this transform directly; as a user edits
parameters, the suggestion space updates to reflect these ed-
its. Also, a user can instead interact with the table to generate
new suggestions that use the working transform as context.

Natural Language Descriptions
To aid apprehension of suggested transforms, Wrangler gen-
erates short natural language descriptions of the transform
type and parameters. These descriptions are editable, with
parameters presented as bold hyperlinks (Fig. 8). Clicking
a link reveals an in-place editor appropriate to the parameter
(Fig. 8b). Enumerable variables (such as the direction of a
fill) are mapped to drop-down menus while free-form text
parameters are mapped to text editors with autocomplete.

We designed these descriptions to be concise; default param-
eters that are not critical to understanding may be omitted.
For example, the unless between parameter for split opera-
tions indicates regions of text to ignore while splitting. In
most cases, this parameter is left undefined and including it
would bloat the description. To edit hidden parameters, users
can click the expansion arrow to the left of the description,
revealing an editor with entries for all possible parameters.

We also sought to make parameters within descriptions read-
able by non-experts. For instance, we translate regular ex-
pressions into natural language via pattern substitution (e.g.,
(\d+) to ‘number’). This translation can make some descrip-
tions less concise but increases readability. Translation is

Figure 8. Editable Natural Language Descriptions. (a) An example of

an editable description; highlighted text indicates editable parameters.

(b) Clicking on a parameter reveals an in-place editor. (c) After editing,

the description may update to include new parameters. In this case, a

new window size parameter is displayed for the moving average.

only performed with regular expressions generated by the
Wrangler inference engine. If a user types in a custom ex-
pression, Wrangler will reflect their input.

Visual Transformation Previews
Wrangler uses visual previews to enable users to quickly
evaluate the effect of a transform. For most transforms, Wran-
gler displays these previews in the source data, and not as
a separate visualization (e.g., side-by-side before and after
views). In-place previews provide a visual economy that
serves a number of goals. First, displaying two versions of
a table inherently forces both versions to be small, which
is particularly frustrating when the differences are sparse.
Second, presenting in-place modifications draws user atten-
tion to the effect of the transformation in its original context,
without requiring a shift in focus across multiple tables. As
we discuss next, in-place previews better afford direct ma-
nipulation for users to revise the current transform.

Wrangler maps transforms to at least one of five preview
classes: selection, deletion, update, column and table. In
defining these mappings, we attempted to convey a trans-
form’s effect with minimum displacement of the original
data. This stability allows users to continue interacting with
the original data, e.g., to provide new selection examples.

Selection previews highlight relevant regions of text in all
affected cells (Fig. 3). Deletion previews color to-be-deleted
cells in red (Fig. 2). Update previews overwrite values in a
column and indicate differences with yellow highlights (Fig.
4). Column previews display new derived columns, e.g., as
results from an extract operation (Fig. 3). We show a side-
by-side display of versions when previewing fold and unfold
transforms. These alter the structure of the table to such an
extent that the best preview is to show another table (Fig.
6, 9). These table previews use color highlights to match
input data to their new locations in the output table. Some
transforms map to multiple classes; e.g., extract transforms
use both selection and column previews.

When possible, previews also indicate where the user can
modify the transform through either direct manipulation or
description refinement. Highlighting selected text or cells
works well for certain transformations. For example, by
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Figure 9. Visual preview of a fold operation. For transforms that rear-

range table layout, Wrangler previews the output table and uses color

highlights to show the correspondence of values across table states.

highlighting the text selected by a regular expression in each
cell, users can determine which examples they need to fix.
For reshape transforms, Wrangler highlights the input data
in the same color as the corresponding output in the sec-
ondary table. For instance, in a fold operation, data values
that will become keys are colored to match the keys in the
output table (Fig. 9). Wrangler also highlights the param-
eters in the transform description using the same colors as
those generated in previews (Fig. 3–6). The consistent use
of colors allows users to associate clauses in a description
with their effects in the table.

Transformation Histories and Export
As successive transforms are applied, Wrangler adds their
descriptions to an interactive transformation history viewer.
Users can edit individual transform descriptions and selec-
tively enable and disable prior transforms. Upon changes,
Wrangler runs the edited script and updates the data table.
Toggling or editing a transform may result in downstream er-
rors; Wrangler highlights broken transforms in red and pro-
vides an error message to aid debugging.

Wrangler scripts also support lightweight text annotations.
Analysts can use annotations to document their rationale for
a particular transform and may help future users better un-
derstand data provenance. To annotate a transform, users can
click the edit icon next to the desired transform and write
their annotation in the resulting text editor. Users can view
an annotation by mousing over the same edit icon. These
annotations appear as comments in code-generated scripts.
Users can export both generated scripts and transformed data;
clicking the Export button in the transform history invokes
export options. Analysts can later run saved or exported
scripts on new data sources, modifying the script as needed.

TYPES, ROLES, AND VERIFICATION
It is often difficult to discover data quality issues and there-
fore difficult to address them by constructing the appropri-
ate transform. Wrangler aids discovery of data quality issues
through the use of data types and semantic roles.

As users transform data, Wrangler attempts to infer the data
type and semantic role for each column. Wrangler applies
validation functions to a sample of a column’s data to infer

these types, assigning the type that validates for over half of
the non-missing values. When multiple types satisfy this cri-
teria, Wrangler assigns the more specific one (e.g., integer is
more specific than double). Wrangler infers semantic roles
analogously. An icon in the column header indicates the se-
mantic role of the column, or the underlying data type if no
role has been assigned. Clicking the icon reveals a menu
with which users can manually assign a type or role.

Above each column is a data quality meter: a divided bar
chart that indicates the proportion of values in the column
that verify completely. Values that parse successfully are in-
dicated in green; values that match the type but do not match
the role (e.g., a 6 digit zip code) are shown in yellow; those
that do not match the type (e.g., ‘One’ does not parse as an
integer) are shown in red; and missing data are shown in
gray. Clicking a bar generates suggested transforms for that
category. For instance, clicking the missing values bar will
suggest transforms to fill in missing values or delete those
rows. Clicking the fails role bar will suggest transforms such
as a similarity join on misspelled country names.

THE WRANGLER INFERENCE ENGINE
We now present the design of the Wrangler inference engine,
which is responsible for generating a ranked list of suggested
transforms. Inputs to the engine consist of user interactions;
the current working transform; data descriptions such as col-
umn data types, semantic roles, and summary statistics; and
a corpus of historical usage statistics. Transform sugges-
tion proceeds in three phases: inferring transform parame-
ters from user interactions, generating candidate transforms
from inferred parameters, and finally ranking the results.

Usage Corpus and Transform Equivalence
To generate and rank transforms, Wrangler’s inference en-
gine relies on a corpus of usage statistics. The corpus con-
sists of frequency counts of transform descriptors and initi-
ating interactions. We built our initial corpus by wrangling
our collection of gathered data sets. The corpus updates over
time as more analysts use Wrangler.

For any given transform, we are unlikely to find an exact
match in the corpus. For instance, an analyst may perform
a fold operation over a combination of columns and rows
that does not appear in the corpus. In order to get useful
transform frequencies, we define a relaxed matching routine:
two transforms are considered equivalent in our corpus if (a)
they have an identical transform type (e.g., extract or fold)
and (b) they have equivalent parameters as defined below.

Wrangler transforms accept four basic types of parameters:
row, column or text selections and enumerables. We treat
two row selections as equivalent if they both (a) contain fil-
tering conditions (either index- or predicate-based) or (b)
match all rows in a table. Column selections are equivalent
if they refer to columns with the same data type or semantic
role. We based this rule on the observation that transforms
that operate on identical data types are more likely to be
similar. Text selections are equivalent if both (a) are index-
based selections or (b) contain regular expressions. We con-
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Figure 1. The Wrangler Interface. The left panel contains (from top-to-bottom) a history of transforms, a transform selection menu, and automat-

ically suggested transforms based on the current selection. Bold text within the transform descriptions indicate parameters that can be clicked and

revised. The right panel contains an interactive data table; above each column is a data quality meter.

short natural language descriptions—which users can refine
via interactive parameters—and visual previews of transform
results. These techniques enable analysts to rapidly navigate
and assess the space of viable transforms.

As analysts transform data, their steps are recorded in a script
to facilitate reuse and provide documentation of data prove-
nance. Wrangler’s interactive history viewer supports re-
view, refinement, and annotation of these scripts. Wran-
gler’s high-level language supports a variety of runtime plat-
forms: Wrangler scripts can be run in a web browser using
JavaScript or translated into MapReduce or Python code.

We also present a controlled user study comparing Wran-
gler and Excel across a set of data wrangling tasks. We find
that Wrangler significantly reduces specification time and
promotes the use of robust transforms rather than manual
editing. Wrangler is one piece of a larger effort to address
bottlenecks in the data lifecycle by integrating insights and
methods from the HCI and database communities.

RELATED WORK
The database and machine learning communities have con-
tributed a number of algorithmic techniques for aiding data
cleaning and integration. These techniques include meth-
ods for detecting erroneous values [10, 11], information ex-
traction [1, 25], entity resolution [6], type inference [7], and
schema matching [9, 21]. In the Wrangler interface we seek
to surface such techniques in an accessible manner.

A number of commercial and research systems provide graph-
ical interfaces leveraging the above methods. Many of these
tools provide interfaces for schema matching or entity reso-
lution [3, 9, 16, 23]. Toped++ [24] is an interface for creating
Topes, objects that validate and transform data. Topes sup-
port transformations such as text formatting and lookups, but
provide little support for filtering, reshaping, or aggregation.
Bellman [5] helps users understand the structure and quality
of a database, but does not enable transformations.

Many data cleaning applications apply direct manipulation
and programming-by-demonstration (PBD) methods to spe-
cific cleaning tasks. Users of SWYN [2] build regular ex-
pressions by providing example text selections and can eval-
uate their effect in visual previews. Potluck [14] applies si-
multaneous text editing [19] to merge data sources. Karma
[26] infers text extractors and transformations for web data
from examples entered in a table. Vegemite [18] applies
PBD to integrate web data, automates the use of web ser-
vices, and generates shareable scripts. Other interfaces [15]
apply PBD to data integration via copy and paste actions.

Wrangler applies a number of these techniques: it infers reg-
ular expressions from example selections [2] and supports
mass editing [14, 19]. Wrangler uses semantic roles akin
to Topes [24] and provides natural language descriptions of
transforms [18]. However, Wrangler differs in important
ways. PBD data tools support text extraction or data integra-
tion, but lack operations such as reshaping, aggregation, and
missing value imputation. Prior tools (except for Vegemite
[18]) also do not generate scripts to document provenance.

Most closely related to Wrangler is prior work on interactive
data cleaning. Potter’s Wheel [22] provides a transformation
language for data formatting and outlier detection. Wrangler
extends the Potter’s Wheel language with key differences
discussed later. Ajax [8] also provides an interface to spec-
ify transforms, with advanced facilities for entity resolution.
Neither tool provides much support for direct manipulation:
interaction is largely restricted to menu-based commands or
entering programming statements. Google Refine [13] (for-
merly Freebase GridWorks) leverages Freebase to enable en-
tity resolution and discrepancy detection. It provides sum-
marization and filtering support through faceted histograms.
Though users can specify some commands graphically, oth-
ers must be written in a command language. Moreover, the
system assumes that input data arrives in a proper tabular
format, limiting the forms of data to which it can be applied.

http://vis.stanford.edu/wrangler/app/


Evaluation
• Compare with Excel 
• Tests: 
- Extract text from a single string entry 
- Fill in missing values with estimates 
- Reshape tables 

• Allowed users to ask questions about Excel, not Wrangler 
• Found significant effect of tool and users found previews and suggestions 

helpful 
• Complaint: No manual fallback, make implications of user choices more 

obvious for users

10D. Koop, CSCI 640/490, Spring 2023



COMPARATIVE EVALUATION WITH EXCEL
As an initial evaluation of Wrangler, we conducted a com-
parative user study with Microsoft Excel. Subjects performed
three common data cleaning tasks: value extraction, missing
value imputation, and table reshaping. Our goal was to com-
pare task completion times and observe data cleaning strate-
gies. We chose Excel because it is the most popular data ma-
nipulation tool and provides an ecologically valid baseline
for comparison: all subjects use it regularly and half self-
report as experts. Excel also supports our chosen tasks. Nei-
ther Potter’s Wheel [22] (no support for fill) nor Google Re-
fine [13] (lack of reshaping) support the full set. In contrast,
Excel includes specific tools for each task (text-to-columns,
goto-special & pivot tables) in addition to manual editing.

Participants and Methods
We recruited 12 participants, all professional analysts or grad-
uate students who regularly work with data. Subjects rated
their prior experience with Excel on a 10-point scale (1 be-
ing basic knowledge and 10 being expert); the median score
was 5. Participants had never used the Wrangler interface.

We first presented a 10 minute Wrangler tutorial describ-
ing how to create, edit, and execute transforms. We then
asked subjects to complete three tasks (described below) us-
ing both Wrangler and Excel. We randomized the presenta-
tion of tasks and tools across subjects. In each task, we asked
subjects to transform a data set into a new format, presented
to them as a picture of the final data table.

Task 1: Extract Text. In this task, we asked users to ex-
tract the number of bedrooms and housing price from hous-
ing listings on craigslist. The original data set contained one
cell for each listing, with all the information in a text string.
The target data set consisted of two columns: one for the
number of bedrooms and one for the housing price.

Task 2: Fill Missing Values. We gave users data containing
year-by-year agricultural data for three countries. Some of
the values in the data set were blank. The target data set con-
tained the same data with all missing values replaced with
the closest non-empty value from a previous year.1

Task 3: Reshape Table Structure. Users started with three
columns of housing data: year, month, and price. The target
data set contained the same data formatted as a cross-tab: the
data contained one row for each year, with the 12 months as
column headers and housing prices as cell values.

When using Excel, we allowed subjects to ask for references
to functions they could describe concretely (e.g., we would
answer “how do I split a cell?” but not “how do I get the
number of bedrooms out?”). For Wrangler tasks, we did not
respond to user inquiries. We permitted a maximum of 10
minutes per task. Each data set had at most 30 rows and 4
columns; complete manual manipulation in Excel was eas-
ily attainable within the time limits. Afterwards, each user
completed a post-study questionnaire.
1We acknowledge that this is not an ideal cleaning solution for the
data, but it nonetheless served as a useful test.

0 1 2 3 4 5 6 7 8 9 10

T1

T2

T3

User Study Task Completion Time (minutes) Wrangler Excel

Figure 11. Task completion times. Black bars indicate median values.

Median Wrangler performance is over twice as fast in all tasks.

Wrangler Accelerates Transform Specification
We performed a repeated-measures ANOVA of completion
times with task, tool, and Excel novice/expert2 as indepen-
dent factors; we log-transformed responses to better approx-
imate a normal distribution. We found a significant main
effect of tool (F1,54 = 23.65, p < 0.001), but no main effect
of task (F1,54 = 0.01, p = 0.943) or expertise (F1,54 = 0.30,
p = 0.596). We found a significant interaction effect of task
and expertise (F1,54 = 11.10, p < 0.002) driven by improved
performance by experts (regardless of tool) in the reshaping
task (T3). No other interactions were significant.

Across all tasks, median performance in Wrangler was over
twice as fast as Excel (Fig. 11). Users completed the clean-
ing tasks significantly more quickly with Wrangler than with
Excel, and this speed-up benefitted novice and expert Excel
users alike. Moreover, the user study tasks involved small
data sets amenable to manual manipulation. As data set size
grows, we expect the benefits of Wrangler to come into even
sharper relief. Of course, larger data sets might complicate
the process of assessing transform effects and so may benefit
from additional validation and visualization techniques.

Strategies for Navigating Suggestion Space
When working with Wrangler, users applied different nav-
igation strategies for different tasks. These strategies were
largely consistent across users. For text selection, users fre-
quently provided multiple examples. For other operations,
users performed an initial selection and then previewed each
suggestion. One subject noted, “I just look at the picture.”
Users with a programming background spent time reading
transform descriptions, whereas the other users relied almost
entirely on the previews. When users did not find a transform
among the initial suggestions, they most often filtered the
suggestions by selecting a transform type from the menu. If
only imperfect matches were found, users then selected the
nearest transform and edited its parameters. In other words,
users turned to manual parameterization only as a last resort.

Our post-study questionnaire asked users to rate automated
suggestions, visual previews, and direct editing of transforms
on a scale from 1 (not useful) to 5 (most useful). We per-
formed an ANOVA and found a significant difference among
the ratings (F2,33 = 17.33, p < 0.001). Users rated previews
(µ = 4.8) and suggestions (µ = 4.3) significantly more use-
ful than direct editing (µ = 2.5) (p < 0.001 in both cases by

2We divided subjects into “novices” and “experts” according to
their median self-reported expertise rating (5).

Task Completion Times
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Figure 1: Predictive Interaction for text pattern specification. The left image shows the interface after the user has highlighted the

string mobile in line 34. The right shows the interface after one more gesture: highlighting the string dynamic in line 31. Note

that the top-ranked suggested transform changes after the second highlight, and hence so do the Source and Preview contents.

Figure 2: A ranked list of regular expressions.

a visual rendering of their data in a familiar tabular grid. They can
guide the system by highlighting substrings in the table, which are
added to an example set. Based on this set, an inference algorithm
produces a ranked list of suggested text patterns that model the set
well. For the top-ranked pattern, the table renderer highlights any
matches found, and shows how those matches will be used.

Figure 1 shows the states of the interface after the user makes each
of two guiding interactions: first, highlighting the string mobile
in row 34, and then highlighting the additional string dynamic in
row 31. The user interface shows the highlighted patterns in the
source (blue), and the outcome of a text extraction transform in a
preview column (tan). The user can choose to view the outputs of
other suggested transforms by clicking on them in the top panel;
they can also edit the patterns directly in a Transform Editor. When
the user decides on the best pattern, they can click the “plus” (+) to
the right of the transform to add it to a DSL script.

In our initial prototype the suggested transforms looked different
than what is shown in Figure 1. Originally, users would see a
ranked list of REs in a traditional syntax, as shown in Figure 2
(corresponding to the ranked list of suggested transforms on the
right of Figure 1). In user studies we found that even experienced
programmers had difficulty deciding quickly and accurately among
alternative REs. It seems that RE syntax is better suited to writing
patterns than to reading them. Hence we changed our DSL to a new
pattern language (compilable to REs) that is better suited to rapid
disambiguation among options.

In essence, we evolved our DSL design to simplify the way that
users can interact with automated predictions. Although simple, this
example illustrates some of the subtleties involved in co-designing
Predictive Interaction across the three streams of traditional research
mentioned above. The visualization has to be informative and the
affordances for user guidance clear; the predictive model has to
receive information-rich guidance from the interactions, and do a
good job of surfacing probable but diverse choices; the DSL has
to be expressive yet sufficiently small for tractable inference and
simple user interaction.

In the remainder of the paper, we provide a general framework for
Predictive Interaction, putting it in context with previous approaches
to visual languages for managing data, and highlighting research

X Y

Z

f

h g compilation

DSL

(a) (b)

Data Results

interactionData Vis Visual Results

visualization

Figure 3: Lifts. A traditional lift (a): given a map f : X !
Y , and a map g : Z ! Y , the lifting problem is to find a

map h : X ! Z such that g � h = f . Lifting in the context

of visual specifications (b): rather than write expressions in a

textual DSL, we define a lift to a domain of data visualization

and interactions, such that the interactions in that domain lead

to final outputs: compilation � interaction � visualization = DSL
programming.

Figure 1 1  Qualified  retrieval 

EMP NAME SAL MGR DEPT 

Figure 12 Partially  underlined 
qualified  retrieval 
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Qualijied  retrieval. Print  the  names of the  employees  who  work 
in the toy department  and  earn  more  than $10000. This is shown 
in Figure 11. Note  the specification of the  condition  “more  than 
$lQl&)O.” One has  the  option  of using any of the following in- 
equality  operators: #, >, >=, <, <=. If no inequality operator is 
used’  as  a prefix, equality is implied. The symbol # can  be  re- 
placed by 1 or I=. 

Partially  underlined  qualijied  retrieval. Print  the  green items that 
start with the  letter I .  This is found in Figure 12. The I in IKE is 
not  underlined,  and it is a  constant.  Therefore,  the  system  prints 
all the  green  items  that  start with the  letter I .  The  user can  par- 
tially underline at  the beginning, middle or end of a word, a sen- 
tence,  or a  paragraph, as in the  example, XPAY, which means 
find a word, a sentence  or a paragraph such that  somewhere in 
that  sentence  or  paragraph  there  exist  the  letters PA. Since an 
example  element  can  be blank, then it word, a sentence,  or a 
paragraph  that  starts  or  ends with the  letters PA also qualifies. 

The partial underline  feature is useful if an  entry is a  sentence  or 
text  and  the  user wishes to  search to find all examples  that  con- 
tain a special word or  root.  If,  for  example,  the  query is to find 
entries with the word Texas,  the formulation’ of this  query is P. x 
TEXAS Y. 

- 
- 

Qualijied  retrieval using links. Print all the  green  items sold by 
the  toy  department.  This is shown in Figure 13.  In this  case,  the 
user  displays  both  the TYPE table  and  the SALES table by gener- 
3ting two blank skeletons on the  screen  and filling them in with 
beadings and with required entries. The significance of the  ex- 
ample  element is best  illustrated in this  query. Here,  the same 
example  element must be used in both  tables, indicating that if 
an  example item such as N U T  is green,  that  same item is also 
sold by  the toy department.  Only if these  conditions are met 
simultaneously does  the item qualify as a  solution. The manual 
equivalent is to  scan  the TYPE table  to find a green item and  then 
scan the SALES table  to  check  whether  that  same item is also 
sold by the toy department.  Since  there is no specification of 
how the  query is to  be  processed or where  the  scan is to start, 
the formulation of this  query is neutral  and  symmetric. 

Figure 13 Qualified  retrieval using links ‘“7-1 
P . E T  GREEN - 

Once  the  concept of a linking example  element is understood, 
the  user can link any  number of tables and  any  number of rows 
within a single table, as in the following examples. 

ZLOOF IBM SYST J 

Figure 4: Query By Example: qualified retrieval using

links [32].

challenges and opportunities for the community.

2. LIFTING TO VISUAL LANGUAGES

To set the stage for our discussion, we re-examine the more
traditional integration of two of our three themes: visualization
and data-centric languages. There are a number of influential prior
efforts along these lines, including Query-By-Example (QBE) [32],
Microsoft Access, and Tableau. These interfaces take a textual data
manipulation language (e.g., relational calculus) and “lift” it into
an isomorphic higher-level visual language intended to be more
natural for users. Given a visual specification of a query, a system
can translate (“ground”) to the domain of the textual language for
processing. Lifting is a basic idea from category theory, sometimes
used in the design of functional programming languages (Figure 3).

Lifting to a visual domain has proven to be useful for the specifi-
cation of standard select-project-join-aggregate queries. As illustra-
tion, we review two influential systems: QBE and Tableau.

Example 1: QBE. The main idea in QBE is to lift the database

Improvements in Prediction
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Update suggestions when given more information



Data Wrangling Tasks
• Unboxing: Discovery & Assessment: What's in there? (types, distribution) 
• Structuring: Restructure data (table, nested data, pivot tables) 
• Cleaning: does data match expectations (often involves user) 
• Enriching & Blending: Adding new data 
• Optimizing & Publishing: Structure for storage or visualization

13
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Differences with Extract-Transform-Load (ETL)
• ETL: 
- Who: IT Professionals 
- Why: Create static data pipeline 
- What: Structured data 
- Where: Data centers 

• "Modern Data Preparation": 
- Who: Analysts 
- Why: Solve problems by designing recipes to use data 
- What: Original, custom data blended with other data 
- Where: Cloud, desktop

14
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Trifacta Wrangler
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https://www.trifacta.com/start-wrangling/


Test 1
• Monday, Feb. 27 
• In-class, 9:30-10:45am 
• Format: 
- Multiple Choice 
- Free Response 

• Information will be posted online

16D. Koop, CSCI 640/490, Spring 2023

https://faculty.cs.niu.edu/~dakoop/cs640-2023sp/test1.html


Remote Office Hours Today
• Due to family illness, need to conduct office hours remotely today (Zoom) 
• Please email me with questions or for appointments

17D. Koop, CSCI 640/490, Spring 2023



Reading Wednesday
• Read the paper 
• Write a critique (like I did for Trifacta) 
• Think about differences from transformations to reformating 

18D. Koop, CSCI 640/490, Spring 2023
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Comma-separated values (CSV) Format
• Comma is a field separator, newlines denote records 

- a,b,c,d,message 
1,2,3,4,hello 
5,6,7,8,world 
9,10,11,12,foo 

• May have a header (a,b,c,d,message), but not required 
• No type information: we do not know what the columns are (numbers, 

strings, floating point, etc.) 
- Default: just keep everything as a string 
- Type inference: Figure out the type to make each column based on values 

• What about commas in a value? → double quotes
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Delimiter-separated Values
• Comma is a delimiter, specifies boundary between fields 
• Could be a tab, pipe (|), or perhaps spaces instead 
• All of these follow similar styles to CSV

21D. Koop, CSCI 680/490, Spring 2022



Fixed-width Format
• Old school 
• Each field gets a certain number of spots in the file 
• Example: 

- id8141    360.242940   149.910199   11950.7 
id1594    444.953632   166.985655   11788.4 
id1849    364.136849   183.628767   11806.2 
id1230    413.836124   184.375703   11916.8 
id1948    502.953953   173.237159   12468.3 

• Specify exact character ranges for each field, e.g. 0-6 is the id

22D. Koop, CSCI 680/490, Spring 2022
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Reading & Writing Data
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Reading Data in Python
• Use the open() method to open a file for reading 

- f = open('huck-finn.txt') 

• Usually, add an 'r' as the second parameter to indicate "read" 
• Can iterate through the file (think of the file as a collection of lines): 

- f = open('huck-finn.txt', 'r') 
for line in f: 
    if 'Huckleberry' in line: 
        print(line.strip()) 

• Using line.strip() because the read includes the newline, and print 
writes a newline so we would have double-spaced text 

• Closing the file: f.close()

24D. Koop, CSCI 680/490, Spring 2022



With Statement: Improved File Handling
• With statement does "enter" and "exit" handling (similar to the finally clause): 
• In the previous example, we need to remember to call f.close() 
• Using a with statement, this is done automatically: 

- with open('huck-finn.txt', 'r') as f: 
    for line in f: 
        if 'Huckleberry' in line: 
            print(line.strip()) 

• This is more important for writing files! 
- with open('output.txt', 'w') as f: 
    for k, v in counts.items(): 
        f.write(k + ': ' + v + '\n') 

• Without with, we need f.close()

25D. Koop, CSCI 680/490, Spring 2022



Reading & Writing Data in Pandas
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Format 
Type

Data Description Reader Writer
text CSV read_csv to_csv
text Fixed-Width Text File read_fwf
text JSON read_json to_json
text HTML read_html to_html
text Local clipboard read_clipboard to_clipboard

MS Excel read_excel to_excel
binary OpenDocument read_excel
binary HDF5 Format read_hdf to_hdf
binary Feather Format read_feather to_feather
binary Parquet Format read_parquet to_parquet
binary ORC Format read_orc
binary Msgpack read_msgpack to_msgpack
binary Stata read_stata to_stata
binary SAS read_sas
binary SPSS read_spss
binary Python Pickle Format read_pickle to_pickle
SQL SQL read_sql to_sql
SQL Google BigQuery read_gbq to_gbq

https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html
https://en.wikipedia.org/wiki/Comma-separated_values
https://www.json.org/
https://en.wikipedia.org/wiki/HTML
https://en.wikipedia.org/wiki/Microsoft_Excel
http://www.opendocumentformat.org/
https://support.hdfgroup.org/HDF5/whatishdf5.html
https://github.com/wesm/feather
https://parquet.apache.org/
https://https//orc.apache.org/
https://msgpack.org/index.html
https://en.wikipedia.org/wiki/Stata
https://en.wikipedia.org/wiki/SAS_(software)
https://en.wikipedia.org/wiki/SPSS
https://docs.python.org/3/library/pickle.html
https://en.wikipedia.org/wiki/SQL
https://en.wikipedia.org/wiki/BigQuery


Types of arguments for readers
• Indexing: choose a column to index the data, get column names from file or user 
• Type inference and data conversion: automatic or user-defined 
• Datetime parsing: can combine information from multiple columns 
• Iterating: deal with very large files 
• Unclean Data: skip rows (e.g. comments) or deal with formatted numbers 

(e.g. 1,000,345)
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read_csv
• Convenient method to read csv files 
• Lots of different options to help get data into the desired format 
• Basic: df = pd.read_csv(fname) 
• Parameters: 

- path: where to read the data from  
- sep (or delimiter): the delimiter (',', ' ', '\t', '\s+') 
- header: if None, no header 
- index_col: which column to use as the row index 
- names: list of header names (e.g. if the file has no header) 
- skiprows: number of list of lines to skip

28D. Koop, CSCI 680/490, Spring 2022



Argument Description
skiprows Number of rows at beginning of !le to ignore or list of row numbers (starting from 0) to skip.
na_values Sequence of values to replace with NA.
comment Character(s) to split comments o" the end of lines.
parse_dates Attempt to parse data to datetime; False by default. If True, will attempt to parse all columns.

Otherwise can specify a list of column numbers or name to parse. If element of list is tuple or list, will
combine multiple columns together and parse to date (e.g., if date/time split across two columns).

keep_date_col If joining columns to parse date, keep the joined columns; False by default.
converters Dict containing column number of name mapping to functions (e.g., {'foo': f} would apply the

function f to all values in the 'foo' column).
dayfirst When parsing potentially ambiguous dates, treat as international format (e.g., 7/6/2012 -> June 7,

2012); False by default.
date_parser Function to use to parse dates.
nrows Number of rows to read from beginning of !le.
iterator Return a TextParser object for reading !le piecemeal.
chunksize For iteration, size of !le chunks.
skip_footer Number of lines to ignore at end of !le.
verbose Print various parser output information, like the number of missing values placed in non-numeric

columns.
encoding Text encoding for Unicode (e.g., 'utf-8' for UTF-8 encoded text).
squeeze If the parsed data only contains one column, return a Series.
thousands Separator for thousands (e.g., ',' or '.').

Reading Text Files in Pieces
When processing very large files or figuring out the right set of arguments to cor‐
rectly process a large file, you may only want to read in a small piece of a file or iterate
through smaller chunks of the file.

Before we look at a large file, we make the pandas display settings more compact:
In [33]: pd.options.display.max_rows = 10

Now we have:
In [34]: result = pd.read_csv('examples/ex6.csv')

In [35]: result
Out[35]: 
           one       two     three      four key
0     0.467976 -0.038649 -0.295344 -1.824726   L
1    -0.358893  1.404453  0.704965 -0.200638   B
2    -0.501840  0.659254 -0.421691 -0.057688   G
3     0.204886  1.074134  1.388361 -0.982404   R
4     0.354628 -0.133116  0.283763 -0.837063   Q
...        ...       ...       ...       ...  ..
9995  2.311896 -0.417070 -1.409599 -0.515821   L

6.1 Reading and Writing Data in Text Format | 173

More read_csv/read_tables arguments
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Chunked Reads
• With very large files, we may not want to read the entire file 
• Why? 
- Time 
- Want to understand part of data before processing all of it 

• Reading only a few rows: 
- df = pd.read_csv('example.csv', nrows=5) 

• Reading chunks: 
- Get an iterator that returns the next chunk of the file 
- chunker = pd.read_csv('example.csv', chunksize=1000) 

- for piece in chunker: 
    process_data(piece)

30D. Koop, CSCI 680/490, Spring 2022



Writing CSV data with pandas
• Basic: df.to_csv(<fname>) 
• Change delimiter with sep kwarg: 

- df.to_csv('example.dsv', sep='|') 

• Change missing value representation 
- df.to_csv('example.dsv', na_rep='NULL') 

• Don't write row or column labels: 
- df.to_csv('example.csv', index=False, header=False) 

• Series may also be written to csv
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Reading/Writing CSV Data with DuckDB
• Importing: 

- read_csv method with parameters for delimter, header, etc. 
- read_csv_auto automatically infer these parameters 
- CREATE TABLE ontime AS SELECT * FROM 
read_csv_auto('flights.csv'); 

• Exporting: 
- Use the COPY function 
- COPY tbl TO 'output.csv' (HEADER, DELIMITER ',');
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eXtensible Markup Language (XML)
• Older, self-describing format with nesting; each field has tags 
• Example: 

- <INDICATOR> 
  <INDICATOR_SEQ>373889</INDICATOR_SEQ> 
  <PARENT_SEQ></PARENT_SEQ> 
  <AGENCY_NAME>Metro-North Railroad</AGENCY_NAME> 
  <INDICATOR_NAME>Escalator Avail.</INDICATOR_NAME> 
  <PERIOD_YEAR>2011</PERIOD_YEAR> 
  <PERIOD_MONTH>12</PERIOD_MONTH> 
  <CATEGORY>Service Indicators</CATEGORY> 
  <FREQUENCY>M</FREQUENCY> 
  <YTD_TARGET>97.00</YTD_TARGET> 
</INDICATOR> 

• Top element is the root
33D. Koop, CSCI 680/490, Spring 2022



XML
• No built-in method 
• Use lxml library (also can use ElementTree) 
• from lxml import objectify  
path = 'datasets/mta_perf/Performance_MNR.xml' 
parsed = objectify.parse(open(path)) 
root = parsed.getroot() 
data = [] 
skip_fields = ['PARENT_SEQ', 'INDICATOR_SEQ', 
               'DESIRED_CHANGE','DECIMAL_PLACES'] 
for elt in root.INDICATOR: 
    el_data = {}  
    for child in elt.getchildren(): 
        if child.tag in skip_fields:  
            continue  
        el_data[child.tag] = child.pyval 
    data.append(el_data) 
perf = pd.DataFrame(data)
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JavaScript Object Notation (JSON)
• A format for web data 
• Looks very similar to python dictionaries and lists 
• Example: 

- {"name": "Wes",  
 "places_lived": ["United States", "Spain", "Germany"],  
 "pet": null, 
 "siblings": [{"name": "Scott", "age": 25, "pet": "Zuko"},  
             {"name": "Katie", "age": 33, "pet": "Cisco"}] } 

• Only contains literals (no variables) but allows null 
• Values: strings, arrays, dictionaries, numbers, booleans, or null 
- Dictionary keys must be strings 
- Quotation marks help differentiate string or numeric values
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What is the problem with reading this data?
• [{"name": "Wes",  
  "places_lived": ["United States", "Spain", "Germany"],  
  "pet": null, 
  "siblings": [ 
     {"name": "Scott", "age": 25, "pet": "Zuko"},  
     {"name": "Katie", "age": 33, "pet": "Cisco"}]  
 }, 
 {"name": "Nia", 
  "address": {"street": "143 Main", 
              "city": "New York",  
              "state": "New York"}, 
  "pet": "Fido", 
  "siblings": [ 
     {"name": "Jacques", "age": 15, "pet": "Fido"}] 
 }, 
… 
]
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Reading JSON data
• Python has a built-in json module 

- with open('example.json') as f: 
    data = json.load(f) 

- Can also load/dump to strings: 
• json.loads, json.dumps 

• Pandas has read_json, to_json methods
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JSON Orientation
• Indication of expected JSON string format. Compatible JSON strings can be 

produced by to_json() with a corresponding orient value. The set of 
possible orients is: 

- split: dict like {index -> [index],  
             columns -> [columns],  
             data -> [values]} 

- records: list like [{column -> value}, ... , {column -> value}] 
- index: dict like {index -> {column -> value}} 
- columns: dict like {column -> {index -> value}} 
- values: just the values array
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Binary Formats
• CSV, JSON, and XML are all text formats 
• What is a binary format? 
• Pickle: Python's built-in serialization 
• HDF5: Library for storing large scientific data 
- Hierarchical Data Format, supports compression 
- Interfaces in C, Java, MATLAB, etc. 
- Use pd.HDFStore to access 
- Shortcuts: read_hdf/to_hdf, need to specify object 

• Excel: need to specify sheet when a spreadsheet has multiple sheets 
- pd.ExcelFile or pd.read_excel
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Parquet
• "Open source, column-oriented data file format designed for efficient data 

storage and retrieval" [parquet.apache.org] 
• Available in multiple languages including python 
• Binary format 
• Column-oriented: can read a column at a time (e.g. from the cloud) 
• Self-describing (schema can be embedded) 
• Supports compression 
• Also supported via Apache Arrow (pyarrow in python) with zero-copy reads

40D. Koop, CSCI 640/490, Spring 2023

http://parquet.apache.org


Parquet/CSV Comparison
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Parquet Support
• Pandas: 
- Install pyarrow 
- df = pd.read_parquet('input.parquet') 

- df.to_parquet('output.parquet') 

• DuckDB 
- CREATE TABLE new_tbl AS SELECT * FROM 
read_parquet('input.parquet'); 

- COPY tbl TO 'output.parquet' (FORMAT PARQUET);
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Wrangler
• Have to know what operations to apply 
• What about an example-based approach instead?
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Figure 2: TDE transformation for date-time. (Left): user provides two desired output examples in column-D,
for the input data in column-C. (Right): After clicking on the “Get Transformation” button, TDE synthesizes
programs consistent with the given examples, and return them as a ranked list within a few seconds. Hovering
over the first program (using System.DateTime.Parse) gives a preview of all results (shaded in green).

Figure 3: (Left): transformation for names. The first three values in column-D are provided as output
examples. The desired first-names and last-names are marked in bold for ease of reading. A composed
program using library CSharpNameParser from GitHub is returned. (Right): transformations for addresses.
The first two values are provided as output examples to produce city, state, and zip-code. Note that some of
these info are missing from the input. A program invoking Bing Maps API is returned as the top result.

entered. For instance, in the first column dates are rep-
resented in many di↵erent formats. In the second column,
some customer names have first-name followed by last-name,
while others are last-name followed by comma, then first-
name, with various salutations (Mr., Dr., etc.) and su�xes
(II, Jr., etc.). Phone numbers are also inconsistent, with
various international calling codes (+1) and extensions (ext
2001), etc. Addresses in the last column are also not clean,
often with missing state and zip-code information.

This data in Figure 1 is clearly not ready for analysis
yet – an analyst wanting to figure out which day-of-the-
week has the most sales, for instance, cannot find it out
by executing a SQL query: the date column needs to be
transformed to day-of-the-week first, which however is non-
trivial even for programmers. Similarly the analyst may
want to analyze sales by area-code (which can be extracted
from phone-numbers), or by zip-code (from addresses), both
of which again require non-trivial data transformations.

In a separate scenario, suppose one would like identified
possible duplicate customer records in Figure 1, by first stan-
dardizing customer names into a format with only last and
first names (e.g., both the first two records will convert into
“Doe, John”). This again requires complex transformations.

Data transformation is clearly di�cult. However, our ob-
servation is that these domain-specific transformation prob-
lems like name parsing and address standardization are re-
ally not new – for decades developers have built custom
code libraries to solve them in a variety of domains, and
shared their code in places like GitHub. In a recent crawl,
we obtained over 1.8M functions extracted from code li-
braries crawled from GitHub, and over 2M code snippets
from StackOverflow, some of which specifically written to
handle data transformations in a variety of domains.

Transform-Data-by-Example. The overarching goal of
the project is to build a search engine for end-users to eas-
ily reuse code for transformations from existing sources.
Specifically, we adopt the by-example paradigm and build a
production-quality system called Transform-Data-by-Example
(TDE). The front-end of TDE is an Excel add-in, currently
in beta and available from O�ce Store [7]. From the Excel
add-in, users can find transformations by providing a few in-
put/output examples. In Figure 2(left), a user provides two
output examples to specify the desired output. Once she
clicks on the “Get Suggestions” button, the front-end talks
to the TDE back-end service running on Microsoft Azure
cloud, which searches over thousands of indexed functions,
to on-the-fly synthesize new programs consistent with all
examples. In the right part of Figure 2, a ranked list of pro-
grams are returned based on program complexity. The top-
ranked program uses the System.DateTime.Parse() func-
tion from the .Net system library to generate correct output
for all input. Figure 3 shows additional examples for trans-
forming names and addresses using the data in Figure 1.
TDE has a number of unique features, which we believe

are important first steps towards realizing self-service data
transformation.
• Search-by-Example. TDE works like a search engine, which
allows end-users to search transformations by just a few ex-
amples, a paradigm known as program-by-example (PBE) [23]
that was also used by FlashFill [16] for data transformation
with much success. Compared to existing PBE systems such
as FlashFill that compose a small number of string primi-
tives predefined in a Domain Specific Language (DSL), TDE
synthesizes programs from a much larger search space (tens
of thousands of functions). We develop novel algorithms to
make it possible at an interactive speed.
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Figure 2: TDE transformation for date-time. (Left): user provides two desired output examples in column-D,
for the input data in column-C. (Right): After clicking on the “Get Transformation” button, TDE synthesizes
programs consistent with the given examples, and return them as a ranked list within a few seconds. Hovering
over the first program (using System.DateTime.Parse) gives a preview of all results (shaded in green).

Figure 3: (Left): transformation for names. The first three values in column-D are provided as output
examples. The desired first-names and last-names are marked in bold for ease of reading. A composed
program using library CSharpNameParser from GitHub is returned. (Right): transformations for addresses.
The first two values are provided as output examples to produce city, state, and zip-code. Note that some of
these info are missing from the input. A program invoking Bing Maps API is returned as the top result.

entered. For instance, in the first column dates are rep-
resented in many di↵erent formats. In the second column,
some customer names have first-name followed by last-name,
while others are last-name followed by comma, then first-
name, with various salutations (Mr., Dr., etc.) and su�xes
(II, Jr., etc.). Phone numbers are also inconsistent, with
various international calling codes (+1) and extensions (ext
2001), etc. Addresses in the last column are also not clean,
often with missing state and zip-code information.

This data in Figure 1 is clearly not ready for analysis
yet – an analyst wanting to figure out which day-of-the-
week has the most sales, for instance, cannot find it out
by executing a SQL query: the date column needs to be
transformed to day-of-the-week first, which however is non-
trivial even for programmers. Similarly the analyst may
want to analyze sales by area-code (which can be extracted
from phone-numbers), or by zip-code (from addresses), both
of which again require non-trivial data transformations.

In a separate scenario, suppose one would like identified
possible duplicate customer records in Figure 1, by first stan-
dardizing customer names into a format with only last and
first names (e.g., both the first two records will convert into
“Doe, John”). This again requires complex transformations.

Data transformation is clearly di�cult. However, our ob-
servation is that these domain-specific transformation prob-
lems like name parsing and address standardization are re-
ally not new – for decades developers have built custom
code libraries to solve them in a variety of domains, and
shared their code in places like GitHub. In a recent crawl,
we obtained over 1.8M functions extracted from code li-
braries crawled from GitHub, and over 2M code snippets
from StackOverflow, some of which specifically written to
handle data transformations in a variety of domains.

Transform-Data-by-Example. The overarching goal of
the project is to build a search engine for end-users to eas-
ily reuse code for transformations from existing sources.
Specifically, we adopt the by-example paradigm and build a
production-quality system called Transform-Data-by-Example
(TDE). The front-end of TDE is an Excel add-in, currently
in beta and available from O�ce Store [7]. From the Excel
add-in, users can find transformations by providing a few in-
put/output examples. In Figure 2(left), a user provides two
output examples to specify the desired output. Once she
clicks on the “Get Suggestions” button, the front-end talks
to the TDE back-end service running on Microsoft Azure
cloud, which searches over thousands of indexed functions,
to on-the-fly synthesize new programs consistent with all
examples. In the right part of Figure 2, a ranked list of pro-
grams are returned based on program complexity. The top-
ranked program uses the System.DateTime.Parse() func-
tion from the .Net system library to generate correct output
for all input. Figure 3 shows additional examples for trans-
forming names and addresses using the data in Figure 1.
TDE has a number of unique features, which we believe

are important first steps towards realizing self-service data
transformation.
• Search-by-Example. TDE works like a search engine, which
allows end-users to search transformations by just a few ex-
amples, a paradigm known as program-by-example (PBE) [23]
that was also used by FlashFill [16] for data transformation
with much success. Compared to existing PBE systems such
as FlashFill that compose a small number of string primi-
tives predefined in a Domain Specific Language (DSL), TDE
synthesizes programs from a much larger search space (tens
of thousands of functions). We develop novel algorithms to
make it possible at an interactive speed.
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Figure 2: TDE transformation for date-time. (Left): user provides two desired output examples in column-D,
for the input data in column-C. (Right): After clicking on the “Get Transformation” button, TDE synthesizes
programs consistent with the given examples, and return them as a ranked list within a few seconds. Hovering
over the first program (using System.DateTime.Parse) gives a preview of all results (shaded in green).

Figure 3: (Left): transformation for names. The first three values in column-D are provided as output
examples. The desired first-names and last-names are marked in bold for ease of reading. A composed
program using library CSharpNameParser from GitHub is returned. (Right): transformations for addresses.
The first two values are provided as output examples to produce city, state, and zip-code. Note that some of
these info are missing from the input. A program invoking Bing Maps API is returned as the top result.

entered. For instance, in the first column dates are rep-
resented in many di↵erent formats. In the second column,
some customer names have first-name followed by last-name,
while others are last-name followed by comma, then first-
name, with various salutations (Mr., Dr., etc.) and su�xes
(II, Jr., etc.). Phone numbers are also inconsistent, with
various international calling codes (+1) and extensions (ext
2001), etc. Addresses in the last column are also not clean,
often with missing state and zip-code information.

This data in Figure 1 is clearly not ready for analysis
yet – an analyst wanting to figure out which day-of-the-
week has the most sales, for instance, cannot find it out
by executing a SQL query: the date column needs to be
transformed to day-of-the-week first, which however is non-
trivial even for programmers. Similarly the analyst may
want to analyze sales by area-code (which can be extracted
from phone-numbers), or by zip-code (from addresses), both
of which again require non-trivial data transformations.

In a separate scenario, suppose one would like identified
possible duplicate customer records in Figure 1, by first stan-
dardizing customer names into a format with only last and
first names (e.g., both the first two records will convert into
“Doe, John”). This again requires complex transformations.

Data transformation is clearly di�cult. However, our ob-
servation is that these domain-specific transformation prob-
lems like name parsing and address standardization are re-
ally not new – for decades developers have built custom
code libraries to solve them in a variety of domains, and
shared their code in places like GitHub. In a recent crawl,
we obtained over 1.8M functions extracted from code li-
braries crawled from GitHub, and over 2M code snippets
from StackOverflow, some of which specifically written to
handle data transformations in a variety of domains.

Transform-Data-by-Example. The overarching goal of
the project is to build a search engine for end-users to eas-
ily reuse code for transformations from existing sources.
Specifically, we adopt the by-example paradigm and build a
production-quality system called Transform-Data-by-Example
(TDE). The front-end of TDE is an Excel add-in, currently
in beta and available from O�ce Store [7]. From the Excel
add-in, users can find transformations by providing a few in-
put/output examples. In Figure 2(left), a user provides two
output examples to specify the desired output. Once she
clicks on the “Get Suggestions” button, the front-end talks
to the TDE back-end service running on Microsoft Azure
cloud, which searches over thousands of indexed functions,
to on-the-fly synthesize new programs consistent with all
examples. In the right part of Figure 2, a ranked list of pro-
grams are returned based on program complexity. The top-
ranked program uses the System.DateTime.Parse() func-
tion from the .Net system library to generate correct output
for all input. Figure 3 shows additional examples for trans-
forming names and addresses using the data in Figure 1.
TDE has a number of unique features, which we believe

are important first steps towards realizing self-service data
transformation.
• Search-by-Example. TDE works like a search engine, which
allows end-users to search transformations by just a few ex-
amples, a paradigm known as program-by-example (PBE) [23]
that was also used by FlashFill [16] for data transformation
with much success. Compared to existing PBE systems such
as FlashFill that compose a small number of string primi-
tives predefined in a Domain Specific Language (DSL), TDE
synthesizes programs from a much larger search space (tens
of thousands of functions). We develop novel algorithms to
make it possible at an interactive speed.
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Figure 13: Produce desired output from input in TDE : a function invocation followed by program synthesis.

Given the intermediate tables with rich semantic informa-
tion derived from the input values, the task now is to “as-
sembly” bits and pieces in them to produce target T.O[i].
We illustrate it with an example below.

Example 4. In Figure 13, given that the target output
is 2011-01-12 (Wed) and 2011-09-15 (Thu), it can be seen
that they can be produced by concatenating relevant fields
from the intermediate tables. Specifically, if we concatenate
the Year field with a “-”, then append with the Month field
followed by a “-”, then with the Day field followed by a “ (”,
then with the first three characters of the Day-of-week field,
and finally append with a closing parenthesis “)”. It can
be verified that this synthesized program produce the desired
target output for both input strings.

Suppose the desired output is instead 2011-Jan-12 (Wed)
and 2011-Sep-15 (Thu). Note that the required months are
now Jan and Sep, which cannot be produced from the Month
column. For this we take the column corresponding to the
output of method ToLongDateString(), and perform the fol-
lowing operations: We split each value using “,”, and take
the second component from the split (the substring after the
first comma), from which we take a substring of length 3
starting at the second character. This would produce the de-
sired Jan and Sep; all other operations in this synthesized
program will remain the same as the previous example.

This example shows the power of synthesis using inter-
mediate results from member properties and methods – by
being able to synthesize multi-step sequences, we produce
powerful and expressive programs to match user output.

We note that similar techniques for generating string trans-
formation programs in this step have been the focus of FlashFill-
like PBE systems [16, 20, 26]. However, the requirement of
TDE is unique, because the intermediate tables shown in
Figure 13 (from which results are synthesized) can often be
very “wide” with hundreds of columns for complex objects.
Furthermore, the synthesis algorithm needs to be invoked
for hundreds of times for each function returned by the L1
ranker. Given that TDE needs to be interactive, the syn-
thesis algorithm is required to be highly e�cient. In par-
ticular, we find existing approaches such as [16] insu�cient
for TDE. We develop new algorithms based on a recursive
greedy search. A basic version of this synthesis algorithm
was described in [32] (used for a di↵erent purpose, which
is to auto-join tables). Compared to prior work, our syn-
thesis is (1) substantially more e�cient; and (2) provides
probabilistic guarantees of success under certain assump-
tions ([32]). We defer details to a full version of the paper.
5.2.2 Parameter learning in multi-function synthesis
In the previous example, when executing a top-ranked

function f 2 RK , we use reflection to not only consider
all member properties, but also member methods that are
parameter-less, since it is straightforward to execute them.
However, there are also many parameterized member meth-
ods that are useful for transformations. For instance, con-
sider the Ttime shown in Figure 14, where the task is to

Figure 14: TDE transformation between timezones.

convert input time in US western timezone, to US eastern
time. Note that this ”+3 hours” operation can lead to a
change in the day, month, and year, as shown in the figure.
This transformation would require not only using relevant

methods but also appropriate parameters (”+3 hours”). TDE
performs this transformation by synthesizing the following
program: it first invokes System.DateTime.Parse() to con-
vert each input string into a DateTime object, whose member
method DateTime.Add(Timespan) is then invoked using a
parameter of type Timespan corresponding to 3 hours. This
leads to a new DateTime object, from which we can synthe-
size the target output as described in Section 5.2.1. The key
challenge here is parameterization, or finding an appropri-
ate Timespan object as parameter – exhaustive enumeration
would not work as the parameter space is infinite.
For parameterization, in TDE we perform o✏ine learn-

ing for relationships between functions in same classes, to
discover concepts such as inverse relationships. Specifically,
we first identify functions f1 and f2 as a candidate pair, if
the result of f1 is of the same type as the parameter of f2.
In the example above, in the class DateTime we have the
function TimeSpan DateTime.Subtract(DateTime) that re-
turns an object of type TimeSpan, and we also have function
DateTime DateTime.Add(Timespan) taking a parameter of
type TimeSpan. We thus treat the two as a candidate pair.
We then instantiate pairs of DateTime objects o1, o2 (with
suitable parameters obtained from indexes in Figure 8), and
invoke o1.Subtract(o2) to produce a TimeSpan object t12.
To test if the inverse relationship holds, we then invoke
o1.Add(t12) to produce o02, and see if o02 is identical to o2.
Since this holds true for all pairs of o1, o2 tested, we can
infer that the two are inverse functions.
With the inverse relationship, given Ttime at run time, we

can use Ttime.I[i] as o1 and Ttime.O[i] as o2, and compute
t12 = o2.Subtract(o1), which turns out to be 3 hours con-
sistently for all i 2 {1, 2, 3}. We can thus produce a correct
program with right parameters as described above.
Another type of parameterized functions we can invoke is

the ones that have parameters with limited cardinality. For
example, the function DateTime.ToString(string format)

accepts a parameter with a limited number of formats (e.g.,
“MM/dd/yyyy”, etc.). Using the index in Figure 8, if we de-
termine a parameter of f to be of small cardinality, we treat
it as an “enum” type and “memorize” all its possible values,
which we then use to exhaustively invoke f . This allows us
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TDE: Transform Data by Example
• Row-to-row translation only 
• Search System, GitHub, and StackOverflow for functions 
• Given dataset with examples 
- Use L1 from library 
- Compose synthesized programs (L2) 
- Rank best transformations
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TDE Benchmarks

• TDE and FlashFill focused on row-to-row transformations 
• Foofah considers a wider range of transformations (table reformatting)
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Table 3: Precision of benchmark cases, reported as precentage of cases solved (number of cases in parenthesis).
System Total cases (239) FF-GR-Trifacta (46) Head cases (44) StackOverflow (49) BingQL-Unit (50) BingQL-Other (50)

TDE 72% (173) 91% (42) 82% (36) 63% (31) 96% (48) 32% (16)
TDE -NF 53% (128) 87% (40) 41% (18) 35% (17) 96% (48) 10% (5)
FlashFill 23% (56) 57% (26) 34% (15) 31% (15) 0% (0) 0% (0)
Foofah 3% (7) 9% (4) 2% (1) 4% (2) 0% (0) 0% (0)

DataXFormer-UB 38% (90) 7% (3) 36% (16) 35% (17) 62% (31) 46% (23)
System-A 13% (30) 52% (24) 2% (1) 10% (5) 0% (0) 0% (0)

OpenRefine-Menu8 4% (9) 13% (6) 2% (1) 4% (2) 0% (0) 0% (0)

reasonably well in all sub-categories except BingQL-Other,
where the coverage is 36%. This category contains diverse
transformations (e.g., conversion of color encoding, geo co-
ordinates, etc.) that are di�cult. We find the C# code
crawled from GitHub lack many such functionalities, which
however are often available in other languages (e.g., Python).
Extending TDE with other languages would clearly help.

TDE -NF uses no external functions and can be considered
as a traditional PBE system. Its overall result is reasonable,
but it clearly falls short on cases requiring more complex
transformations that are di�cult to synthesize from scratch.

Both FlashFill and Foofah lag behind TDE/TDE -NF. We
would like to note that while both FlashFill and TDE work
in the same space of row-to-row transformation, which is
exactly what our benchmark is designed to evaluate, the
benchmark is unfavorable to Foofah, as it is more focused
on orthogonal tasks such as table reformatting (e.g., pivot
and un-pivot)10. Unifying Foofah-like capabilities with row-
to-row transformation is interesting future work.

DataXFormer-UB solves 90 out of the 239 test cases (38%),
showing the power of search engines and web services, which
however is limited by the lack of program-synthesis. When
nontrivial synthesis is required (e.g., output date-time in a
specific format, or rounding numbers to a specific precision),
vanilla web services can often fall short. In addition, We find
that certain classes of transformations, such as names and
date-time, are not typically handled by online web services.

System-A can handle 30 (13%) cases. We find System-
A’s approach the most e↵ective when a test case requires
extracting common sub-components from input. Such op-
erations can be more easily predicted and are often solved
correctly. However, there are many cases where selection
alone is insu�cient to fully specify the desired transforma-
tion (e.g., add 3 hours for time-zone conversion, switch the
order of last/first name, etc.), which is an inherent short-
coming of predicting transformations using input only.

OpenRefine solves only 9 test cases (e.g., upper-casing) us-
ing built-in transformations from its menus. This is not en-
tirely surprising, as the types of transformations supported
by menu options are typically limited.

L1-Function-ranking. Recall that TDE uses L1-rankers
(Section 5.1) to select a small set of promising functions from
all functions its indexes, so that it can execute and synthe-
size them at an interactive speed. L1-ranking is a critical
component for performance(the better we rank, the faster
TDE can synthesize relevant programs).

Figure 15 evaluates the e↵ectiveness of our two L1-rankers,
where y-axis shows the percentage of cases that can be
solved using only top-K functions from L1-rankers, and x-
axis shows the number K, which a↵ects response time. As
we can see, the two L1-rankers are complementary, and their
union is substantially better. Overall around 70% cases can
be solved with top-200 functions, and that number goes up

10Despite the di↵erence we evaluate Foofah as requested.

Figure 15: E↵ectiveness of ranking.

to 90% for top-1000 functions (which corresponds to a re-
sponse time of around 5 seconds on our machine).
E�ciency. The average end-to-end latency to produce

the first correct program (including function ranking, ex-
ecution and synthesis) is 3.4 seconds, which is reasonably
interactive. We note that TDE streams back results as they
are found – once a worker finds a program it will show up
on the right-pane for users to inspect.

9.3 Analysis of real usage logs
Since TDE is used by real Excel users, it provides an op-

portunity to understand how TDE performs on real tasks
by analyzing user query logs. We use logs collected over sev-
eral days to obtain 1244 unique transformation tasks (users
have to “opt in” for TDE to log their queries – the default
is opt-out). We manually inspect each query.
For 910 out of the 1244 tasks, TDE returns at least one

synthesized program consistent with all input/output. We
manually inspect users’ input/output examples to under-
stand the intent, and then verify the correctness of the re-
sult. Out of these, 496 tasks (39.8%) are verified to be cor-
rect for the rank-1 program produced (of which 153 invoke at
least one function, and 343 use pure string transformations).
Verifying lower-ranked programs (e.g. top-10) is more labor-
intensive but should lead to a higher success rate.
For the tasks that TDE fails (defined as either having

no programs produced, or the rank-1 program is judged to
be incorrect), we analyze the underlying cause. For 206
tasks (16.5%), users provide only 1 or 2 output examples to
demonstrate the task (we recommend 3), which makes the
tasks di�cult and even ambiguous. For 170 tasks (13.6%),
we find the task itself to be ill-formed, due to bad input
(e.g., users not understanding this feature and provide only
one column of data), input/output in languages other than
English (currently not supported), and tasks with unclear
intent. For about 40 tasks (3%), a mapping relationship is
needed not indexed. The remaining tasks (around 27%) fail
mostly due to missing functionalities in TDE index.
While our initial experience with TDE reveals a number

of areas for improvement, it also shows the promise of TDE
in solving complex transformations using existing domain-
specific logic. Just like Google and Bing were not perfect
in finding relevant documents in their early days, we hope
TDE will continue to improve as a “search engine” for data
transformation, by growing its index and improving its al-
gorithms using logged user interactions.
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(a) EN-Wiki: Dates (b) EN-Wiki: Currency values (c) EN-

wiki:time

(d) EN-Wiki: Date

(e) ZH-Wiki: Units (f) ZH-Wiki: Ordinals (g) ZH-Wiki: Date (h) JA-Wiki: Year

(i) JA-Wiki: Date (j) ES-Wiki: Numbers (k) ES-Wiki: Numbers (l) ES-Wiki: Date

Figure 3: Auto-Repair: Real quality issues (in red boxes) from Wikipedia tables that are fixable by TBP programs. Note
that the examples span di�erent languages (English, Chinese, Japanese, Spanish, etc.)

2. SYSTEM ARCHITECTURE
Figure 6 gives a high-level overview of the architecture

of our system. There are three main components, which
are all o�ine processing steps. The first component takes a
large corpus of tables (e.g., web tables or enterprise spread-
sheets), find related tables, link/join records across tables
(like shown in Figure 4 and Figure 5), to produce paired
columns (C, CÕ) like in Table 2 (Section 3).

The second component uses paired columns (C, CÕ) as if
they are input/output columns in a transformation task, and
invokes TBE to find possible transformation T consistent
with all examples in (C, CÕ). If TBE synthesizes such a T ,
the (C, CÕ, T ) triple is populated in Table 2 (Section 4).

In the last stage, we analyze (C, CÕ, T ) triples in Table 2
in a global manner, in order to identify TBP programs that
are both commonly-used and highly-accurate. We formulate
an automated approach to harvest such programs, as well
as a human-curated variant that can leverage human labels
e�ectively (Section 5).

We now discuss each component in turn.

3. PAIR COLUMNS WITH LINKED ROWS
In this section, we discuss the first part of our system,

which takes a large collection of tables T as input, and pro-

duces pairs of columns that are linked row-by-row. In this
section, we discuss 3 di�erent ways to achieve this in turn,
using a corpus of over 100M web tables [18]6

3.1 Pair Columns by Search Engine
Our first approach leverages search engines, utilizing the

observation that pages returned for the same keyword query
often contain related tables. We perform 3 steps here: pair-
ing tables, linking rows, and pairing columns.

Pairing tables. We take the query-logs of a commercial
search engine, and first use a production classifier [18] to
select queries known as “table-intent queries” [18], which are
data-seeking queries such as “list of us presidents”, “list
of national parks”, “list of chemical elements”, etc. We
obtain a total of 16M table-intent queries, denoted by Q.

For each query q œ Q, we retrieve all web tables in the
top-20 pages returned by the search engine, denoted by Tq,
which contains tables related to query q. For example, ta-
bles in Figure 4 are all retrieved for the query “list of us
presidents”. We can then pair such tables in Tq to produce
table-pairs PQ = {(T, T Õ)|T œ Tq, T Õ œ Tq, T ”= T Õ, q œ Q}.

Linking rows. Recall that in order to utilize TBE to
generate programs, we need paired input/output examples.
6Similar web-table data sets are publicly available in [2, 8].
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Figure 2: Two tables R and S with schema (time-stamps,
phone-number, geo-coordinates). Integrating the two would
require values to be reformatted using transformations.

invokes the TBE feature, and enters two output examples
(1997-01-12 and 1997-02-02) in the “Custom” column on the
right, to demonstrates a desired transformation. In response
to user input, the system synthesizes a transformation pro-
gram consistent with the two given input/output examples,
which is shown at the top of the figure (this program invokes
a total of 7 functions, including Text.Combine, Date.ToText,
etc.). Furthermore, a preview of remaining output values
is shown in gray (beneath user-provided examples), which
helps users to verify the correctness of the suggested trans-
formation.

Transform-by-Pattern (TBP). The by-example TBE
paradigm is clearly an excellent fit for Excel-like spread-
sheet environments. As we will see below, however, in other
settings it may not be as easy to invoke TBE, for it can
be hard for users to identify columns requiring transforma-
tions, and then provide paired input/output examples. We
in this work propose an alternative Transform-by-Pattern
(TBP) paradigm to complement the TBE approach, which
can proactively suggest relevant transformations based only
on input/output data patterns (with no paired examples).

More concretely, each TBP program is a triple (Ps, Pt,
T ), where Ps and Pt are data “patterns” (e.g., in regex)
describing the source and target column, for which the cor-
responding program T is applicable.

Table 1 shows a list of example TBP programs (we will
discuss how to harvest them in detail). Each row here is a
TBP program that consists of a triple (Ps, Pt, T ). For the
TBP program labeled as TBP-1 in the first row, its source
pattern Ps is: “<letter>{3}. <digit>{2}, <digit>{4}” and
target pattern Pt is: “<digit>{4}-<digit>{2}-<digit>{2}”.
Note that these two patterns can be used to describe the
example TBE case shown in Figure 1; the corresponding
transformation program (shown at the top of Figure 1) can
be “memorized” in the last column T of Table 1 (omitted in
the table in the interest of space).

In the following, we use two concrete applications, Auto-
Unify and Auto-Repair, to demonstrate that such TBP pro-
grams can enable scenarios complementary to TBE. We em-
phasize that TBP is not meant to replace the general-purpose
TBE, especially in spreadsheet settings where users can eas-
ily identify target output and enter examples.

TBP for “Auto-Unify”. Data transformation is of-
ten required in applications like ETL and data integration,
where data of di�erent formats from multiple sources need
to be unified and standardized.

Figure 2 shows two example tables denoted by R and S,

both containing telemetry data of the form: (time-stamp,
cellular-device-numbers, geo-coordinates). As is often the
case in the real world, R and S are formatted di�erently
(e.g., the telemetry may be generated by di�erent types of
devices, or di�erent versions of programs), and need to be
integrated, which is a common task in ETL [26, 44].

Today, data engineers need to first identify such issues like
in Figure 2 (a time-consuming task when there are many
such feeds and columns). They would then write ad-hoc
transformation scripts, in order to unify each pair of incom-
patible data columns.

We argue that armed with a repository of TBP programs
like in Table 1, the task of identifying and addressing afore-
mentioned issues can be partially automated. Specifically,
given that R-timestamp and S-timestamp need to be merged,
based on the patterns of values in these two columns, we can
suggest TBP-1 in Table 1 to be used, because its source pat-
tern Ps = “<letter>{3}. <digit>{2}, <digit>{4}” and tar-
get pattern Pt = “<digit>{4}-<digit>{2}-<digit>{2}” match
with R-timestamp and S-timestamp, respectively. This allows
us to proactively suggest the corresponding T to perform
this transformation.

Similarly, the patterns Ps and Pt in TBP-2 and TBP-3 from
Table 1 would match with column-pairs (S-phone, R-phone)
and (S-coordinates, R-coordinates) in Figure 2, respectively,
suggesting two additional transformations that can be per-
formed. It should be noted that TBE typically requires
paired examples and would not apply here.

TBP for “Auto-Repair”. As an additional example
application, we show that TBP can also help to identify and
fix inconsistent data values in tables. Figure 3 shows real
data quality issues in Wikipedia tables that are identified
and fixed by TBP programs produced in this work.

For instance, in Figure 3(a), using TBP we can detect
that values in the Date column have two distinct patterns:
“<digit>{4}-<digit>{2}-<digit>{2}” (e.g., “1997-06-04”) as
well as “<letter>+ <digit>{2}, <digit>{4}” (“January 12,
1997”). Since these two patterns match with Ps and Pt of
a TBP program in Table 1, it likely indicates data inconsis-
tency. With TBP, we could bring these two groups of values
to users attention, and propose fixes by applying the cor-
responding T (e.g., transforming “1997-06-04” to “June 4,
1997”).

We note that the TBP framework is general and applies
to diverse types of transformations, including data in dif-
ferent languages (e.g., Spanish, Chinese, etc.), and data in
di�erent domains (e.g., chemical, financial, etc.). For exam-
ple, some of the cases in Figure 3 require transformations in
languages other than English, such as Figure 3(e) (fixable
by TBP-15), and Figure 3(l) (fixable by TBP-16), etc. These
are all real TBP programs harvested from di�erent table
corpora (e.g., Wikipedia tables in di�erent languages). Our
evaluation suggests that these TBP programs can detect and
fix thousands of real issues across di�erent languages.

For non-technical users working on spreadsheet data (e.g.,
in Microsoft Excel or Tableau), TBP makes it possible to au-
tomatically flag and repair a subclass of data format issues.
We note that TBP once again complements traditional TBE
approaches, which would require explicit paired-examples in
order to suggest transformations.

In short, TBP can program a rich class of transformations,
creating opportunities to simplify data transformation in ap-
plications such as Auto-Repair and Auto-Unify.
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Figure 4: An example group of 6 web tables on US presidents, extracted from top-ranked documents for query “list of us
presidents”. Note that the same date-of-birth information is being represented in 6 di�erent formats, which can be used as
input/output examples for TBE to learn common TBP transformations.

Figure 5: An example group of 4 Wikipedia tables in di�erent languages (clockwise: English, Chinese, German, Spanish)
that we can link at a row-level (using Wiki inter-language links for pages with the same content). Note that the “date-in-o�ce”
is being represented in di�erent languages across 4 tables, providing examples to learn such transformations.

Figure 6: System Architecture: Learn TBP Programs.

So for a given pair (T, T Õ) œ PQ, we additionally need to
find row-level “links” between T and T Õ (e.g., the first row
of T1 in Figure 4 corresponds to the first row of T2, etc.).

In an ideal setting, such row-level links can be obtained by
equi-joins on key-columns. However, in practice equi-joins
typically fail, because values are often coded/formatted dif-
ferently between tables in the wild – e.g., names of presidents
are formatted di�erently as shown in Figure 4.

To account for syntactic variations in the key-columns, we
leverage an existing “auto-join” system [68]7 to automati-
cally identify join relationships. Specifically, given (T, T Õ) œ
PQ, we take two left-most non-numeric columns from T and

7
A variant of this system is publicly available in Azure ML Data

Prep: https://docs.microsoft.com/en-us/python/api/azureml-dataprep/azureml.dataprep.

api.builders.joinbuilder

T Õ (which likely include key columns), and invoke the “auto-
join” system to find possible joins.

Example 1. For T1, T2 in Figure 4, we use [68] to au-
tomatically infer a join-program J , which performs the fol-
lowing operations on the “Name” column of T1: (1) splitting
names like “Washington, George” by comma (producing an
array with two elements like [“Washington”, “George”]); (2)
concatenating the second element with the first element us-
ing a space (producing values like “George Washington”).

Note that applying J on the “Name” column in T1 produces
values like {“George Washington”, “John Adams”, . . . }, which
precisely match the key values in T2, such that an “equi-
join” can now be performed to link the two tables together.
We consider this J to be reliable, as most rows can be joined
1:1 using J .

The auto-join approach allows us to link rows together
between other table-pairs in Figure 4 similarly. We find this
approach produces substantially more links than equi-join,
which are also more accurate than fuzzy-join (because it
uses precise transformations). More details of this step can

2372

TBP Learning from Tables

55D. Koop, CSCI 640/490, Spring 2023

Figure 4: An example group of 6 web tables on US presidents, extracted from top-ranked documents for query “list of us
presidents”. Note that the same date-of-birth information is being represented in 6 di�erent formats, which can be used as
input/output examples for TBE to learn common TBP transformations.
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that we can link at a row-level (using Wiki inter-language links for pages with the same content). Note that the “date-in-o�ce”
is being represented in di�erent languages across 4 tables, providing examples to learn such transformations.
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So for a given pair (T, T Õ) œ PQ, we additionally need to
find row-level “links” between T and T Õ (e.g., the first row
of T1 in Figure 4 corresponds to the first row of T2, etc.).

In an ideal setting, such row-level links can be obtained by
equi-joins on key-columns. However, in practice equi-joins
typically fail, because values are often coded/formatted dif-
ferently between tables in the wild – e.g., names of presidents
are formatted di�erently as shown in Figure 4.

To account for syntactic variations in the key-columns, we
leverage an existing “auto-join” system [68]7 to automati-
cally identify join relationships. Specifically, given (T, T Õ) œ
PQ, we take two left-most non-numeric columns from T and

7
A variant of this system is publicly available in Azure ML Data

Prep: https://docs.microsoft.com/en-us/python/api/azureml-dataprep/azureml.dataprep.

api.builders.joinbuilder

T Õ (which likely include key columns), and invoke the “auto-
join” system to find possible joins.

Example 1. For T1, T2 in Figure 4, we use [68] to au-
tomatically infer a join-program J , which performs the fol-
lowing operations on the “Name” column of T1: (1) splitting
names like “Washington, George” by comma (producing an
array with two elements like [“Washington”, “George”]); (2)
concatenating the second element with the first element us-
ing a space (producing values like “George Washington”).

Note that applying J on the “Name” column in T1 produces
values like {“George Washington”, “John Adams”, . . . }, which
precisely match the key values in T2, such that an “equi-
join” can now be performed to link the two tables together.
We consider this J to be reliable, as most rows can be joined
1:1 using J .

The auto-join approach allows us to link rows together
between other table-pairs in Figure 4 similarly. We find this
approach produces substantially more links than equi-join,
which are also more accurate than fuzzy-join (because it
uses precise transformations). More details of this step can
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Table 1: An example repository of TBP programs (Ps, Pt, T ), where each line is a TBP program. The first three programs
can be used to auto-unify the two tables shown in Figure 2.

TBP-id Source-pattern (Ps) Target-pattern (Pt) (T )

TBP-1 <letter>{3}. <digit>{2}, <digit>{4} <digit>{4}-<digit>{2}-<digit>{2} ...

TBP-2 (<digit>{3}) <digit>{3}-<digit>{4} <letter>{3}-<digit>{3}-<digit>{4} ...

TBP-3 (<digit>+¶<num>’<letter>{1}, <digit>+¶<num>’<letter>{1}) <letter>{1}<digit>+¶<num>’ <letter>{1}<digit>+¶<num>’ ...

... ... ... ...

TBP-7 <digit>{4}/<digit>{2}/<digit>{2} <letter>{3} <digit>{2} ...

TBP-8 <num> kg <num> lb ...

TBP-9 <num> lb <num> lb <num> oz ...

... ... ... ...

TBP-15 <num> kg <num>l§ ...

TBP-16 <letter>+ de <digit>{4} <digit>{4} ...

... ... ... ...

Table 2: Example table with (C, CÕ, T ) triples, where (C, CÕ) are paired columns, and T is a synthesized program that can
transform C to CÕ. The first triple CCT-1 corresponds to the column-pair (“Born”, “Date of birth”) in Figure 4, with an
inferred program in Listing 1. CCT-4 shows another pair of columns with similar data format and an identical program. Not
all column-pairs have programmatic relationships, such as CCT-9, leading to an empty program.

CCT-id Input-column (C) Output-column (CÕ
) Program (T )

CCT-1 (C1) “Born” = {“02/22/1732”, “10/30/1735”, ... } (CÕ
1) “Date of birth” = {“February 22, 1732”, ... } Listing 1

CCT-2 (C2) “Date of birth” = {“February 22, 1732”, ... } (CÕ
2) “Born” = {“02/22/1732”, “10/30/1735”, ... } ...

CCT-3 (C3) “Died” = {“02/14/1799”, “07/04/1826”, ... } (CÕ
3) “Date of birth” = {“February 22, 1732”, ... } ...

CCT-4 (C4) “Date” = {“11/01/2019”, “12/01/2019”, ... } (CÕ
4) “Date-2” = {“November 01, 2019”, ... } Listing 1

... ... ... ...

CCT-9 (C9) “Name” = {“Washington, George”, “Adam, John”, ... } (CÕ
9) “Date of birth” = {“February 22, 1732”, ... } ÿ

... ... ... ...

“Learned” TBP programs from TBE query logs.
Given the benefit of TBP, we set out to harvest such pro-
grams at scale (as manually curating them would not scale).

One possible approach is to leverage the “query-logs” of
a TBE system. This is analogous to search engines like
Google and Bing, which have long used their query logs con-
taining (keyword-query, user-clicked-document) to improve
search relevance. We argue that the same is true for TBE
systems – specifically, since we have developed TDE [33]
and deployed a version of the system as an Excel add-in,
we are able to collect telemetry of TBE tasks submitted
by Excel users. We should emphasize that we could not
log user data in any form due to legal and compliance rea-
sons – we only collect high-level statistics such as whether a
top-ranked transformation program suggested by TDE is ac-
cepted. Hypothetically, imagine that we could fully log users
input/output data sets, then like search engines we could
leverage the logs to identify common (input-data-pattern,
output-data-pattern, program) triples that are likely good
TBP programs.

Because we are not able to obtain detailed logs in spread-
sheet programs, in this work we develop alternative ap-
proaches to harvest TBP programs.

“Learned” TBP programs from tables. In this work
we propose to harvest TBP transformations from a large
collection of tables. Specifically, we develop techniques to
automatically “link” together table columns with related
content, from which we can exploit content redundancy to
“learn” common transformations.

Figure 4 shows 6 example web tables about US presidents.
We develop techniques to link them together at a row-level
– e.g., the first row of each table corresponds to “George
Washington” and will link/join. After rows are linked, we
can pair columns together “as if” they are input/output
columns, to see if any transformation can be learned us-
ing TBE – for example, the “Born” column {“02/22/1732”,
“10/30/1735”, . . . } in T1 can be paired with the “Date of

birth” column {“February 22, 1732”, “October 30, 1735”,
. . . } from T2, etc. Table 2 shows this column-pair, in row
CCT-1, as well as many other column pairs so produced.These
column pairs are then fed into a TBE system (in our case,
TDE [33]) to learn possible transformation programs, which
are stored in the last column of the table. Notice that given
6 di�erent date-formats used by 6 tables for date-of-birth
in Figure 4, we can already construct a total of 2
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= 30
distinct pairs of formats and their corresponding transfor-
mations, which are all validate TBP programs.

Figure 5 shows another group of 5 tables from Wikipedia,
each of which has a table for US presidents but in di�erent
languages. We develop methods to again automatically link
rows between these tables, and then construct column-pairs
for TBE systems to learn possible transformation programs
across di�erent languages (e.g., from “April 30, 1789” to
“30 de abril de 1789”).

By analyzing many such (Input-column, Output-column,
Transformation-program) triples in Table 2, we can identify
programs that are used repeatedly across the corpus – for
example, the same program (labeled as Listing 1 in Figure 2)
is being used by column-pair CCT-1, CCT-4 and many others,
suggesting that this is likely a good TBP program. In this
work, we develop methods to construct a large “transforma-
tion graph”, to reason about the goodness of TBP programs
in a global manner. TBP programs so produced can then
be used to enable applications like Auto-Repair.

Inter-operability of structured data. TBP is one
step toward achieving inter-operability of tabular data. We
note that by “lifting” data values from a “string” space into
a “program/code” space using TBP, values become inter-
operable (via programs). This is analogous to knowledge-
bases used in search engines, which also “lift” strings into
“entities” for richer experiences (e.g., knowledge cards and
related entities as opposed to 10 blue links). TBP can sim-
ilarly light up new experiences for tabular data like Auto-
Repair, and is a useful step toward inter-operability.
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Table 1: An example repository of TBP programs (Ps, Pt, T ), where each line is a TBP program. The first three programs
can be used to auto-unify the two tables shown in Figure 2.

TBP-id Source-pattern (Ps) Target-pattern (Pt) (T )

TBP-1 <letter>{3}. <digit>{2}, <digit>{4} <digit>{4}-<digit>{2}-<digit>{2} ...

TBP-2 (<digit>{3}) <digit>{3}-<digit>{4} <letter>{3}-<digit>{3}-<digit>{4} ...

TBP-3 (<digit>+¶<num>’<letter>{1}, <digit>+¶<num>’<letter>{1}) <letter>{1}<digit>+¶<num>’ <letter>{1}<digit>+¶<num>’ ...

... ... ... ...

TBP-7 <digit>{4}/<digit>{2}/<digit>{2} <letter>{3} <digit>{2} ...

TBP-8 <num> kg <num> lb ...

TBP-9 <num> lb <num> lb <num> oz ...

... ... ... ...

TBP-15 <num> kg <num>l§ ...

TBP-16 <letter>+ de <digit>{4} <digit>{4} ...

... ... ... ...

Table 2: Example table with (C, CÕ, T ) triples, where (C, CÕ) are paired columns, and T is a synthesized program that can
transform C to CÕ. The first triple CCT-1 corresponds to the column-pair (“Born”, “Date of birth”) in Figure 4, with an
inferred program in Listing 1. CCT-4 shows another pair of columns with similar data format and an identical program. Not
all column-pairs have programmatic relationships, such as CCT-9, leading to an empty program.

CCT-id Input-column (C) Output-column (CÕ
) Program (T )

CCT-1 (C1) “Born” = {“02/22/1732”, “10/30/1735”, ... } (CÕ
1) “Date of birth” = {“February 22, 1732”, ... } Listing 1

CCT-2 (C2) “Date of birth” = {“February 22, 1732”, ... } (CÕ
2) “Born” = {“02/22/1732”, “10/30/1735”, ... } ...

CCT-3 (C3) “Died” = {“02/14/1799”, “07/04/1826”, ... } (CÕ
3) “Date of birth” = {“February 22, 1732”, ... } ...

CCT-4 (C4) “Date” = {“11/01/2019”, “12/01/2019”, ... } (CÕ
4) “Date-2” = {“November 01, 2019”, ... } Listing 1

... ... ... ...

CCT-9 (C9) “Name” = {“Washington, George”, “Adam, John”, ... } (CÕ
9) “Date of birth” = {“February 22, 1732”, ... } ÿ

... ... ... ...

“Learned” TBP programs from TBE query logs.
Given the benefit of TBP, we set out to harvest such pro-
grams at scale (as manually curating them would not scale).

One possible approach is to leverage the “query-logs” of
a TBE system. This is analogous to search engines like
Google and Bing, which have long used their query logs con-
taining (keyword-query, user-clicked-document) to improve
search relevance. We argue that the same is true for TBE
systems – specifically, since we have developed TDE [33]
and deployed a version of the system as an Excel add-in,
we are able to collect telemetry of TBE tasks submitted
by Excel users. We should emphasize that we could not
log user data in any form due to legal and compliance rea-
sons – we only collect high-level statistics such as whether a
top-ranked transformation program suggested by TDE is ac-
cepted. Hypothetically, imagine that we could fully log users
input/output data sets, then like search engines we could
leverage the logs to identify common (input-data-pattern,
output-data-pattern, program) triples that are likely good
TBP programs.

Because we are not able to obtain detailed logs in spread-
sheet programs, in this work we develop alternative ap-
proaches to harvest TBP programs.

“Learned” TBP programs from tables. In this work
we propose to harvest TBP transformations from a large
collection of tables. Specifically, we develop techniques to
automatically “link” together table columns with related
content, from which we can exploit content redundancy to
“learn” common transformations.

Figure 4 shows 6 example web tables about US presidents.
We develop techniques to link them together at a row-level
– e.g., the first row of each table corresponds to “George
Washington” and will link/join. After rows are linked, we
can pair columns together “as if” they are input/output
columns, to see if any transformation can be learned us-
ing TBE – for example, the “Born” column {“02/22/1732”,
“10/30/1735”, . . . } in T1 can be paired with the “Date of

birth” column {“February 22, 1732”, “October 30, 1735”,
. . . } from T2, etc. Table 2 shows this column-pair, in row
CCT-1, as well as many other column pairs so produced.These
column pairs are then fed into a TBE system (in our case,
TDE [33]) to learn possible transformation programs, which
are stored in the last column of the table. Notice that given
6 di�erent date-formats used by 6 tables for date-of-birth
in Figure 4, we can already construct a total of 2
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distinct pairs of formats and their corresponding transfor-
mations, which are all validate TBP programs.

Figure 5 shows another group of 5 tables from Wikipedia,
each of which has a table for US presidents but in di�erent
languages. We develop methods to again automatically link
rows between these tables, and then construct column-pairs
for TBE systems to learn possible transformation programs
across di�erent languages (e.g., from “April 30, 1789” to
“30 de abril de 1789”).

By analyzing many such (Input-column, Output-column,
Transformation-program) triples in Table 2, we can identify
programs that are used repeatedly across the corpus – for
example, the same program (labeled as Listing 1 in Figure 2)
is being used by column-pair CCT-1, CCT-4 and many others,
suggesting that this is likely a good TBP program. In this
work, we develop methods to construct a large “transforma-
tion graph”, to reason about the goodness of TBP programs
in a global manner. TBP programs so produced can then
be used to enable applications like Auto-Repair.

Inter-operability of structured data. TBP is one
step toward achieving inter-operability of tabular data. We
note that by “lifting” data values from a “string” space into
a “program/code” space using TBP, values become inter-
operable (via programs). This is analogous to knowledge-
bases used in search engines, which also “lift” strings into
“entities” for richer experiences (e.g., knowledge cards and
related entities as opposed to 10 blue links). TBP can sim-
ilarly light up new experiences for tabular data like Auto-
Repair, and is a useful step toward inter-operability.

2370



Comments/Critique?

57D. Koop, CSCI 640/490, Spring 2023


