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DataFrame Access and Manipulation
• df.values → 2D NumPy array 

• Accessing a column: 
- df["<column>"] 

- df.<column> 

- Both return Series 
- Dot syntax only works when the column is a valid identifier 

• Assigning to a column: 
- df["<column>"] = <scalar> # all cells set to same value 

- df["<column>"] = <array>  # values set in order 

- df["<column>"] = <series> # values set according to match 
                          # between df and series indexes
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Indexing
• Same as with NumPy arrays but can use Series's index labels 
• Slicing with labels: NumPy is exclusive, Pandas is inclusive! 

- s = Series(np.arange(4)) 
s[0:2] # gives two values like numpy 

- s = Series(np.arange(4), index=['a', 'b', 'c', 'd']) 
s['a':'c'] # gives three values, not two! 

• Obtaining data subsets 
- []: get columns by label 
- loc: get rows/cols by label 
- iloc: get rows/cols by position (integer index) 

- For single cells (scalars), also have at and iat
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Filtering
• Same as with numpy arrays but allows use of column-based criteria 

- data[data < 5] = 0 

- data[data['three'] > 5] 

- data < 5 → boolean data frame, can be used to select specific elements
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Arithmetic
• Add, subtract, multiply, and divide are element-wise like numpy 
• …but use labels to align 
• …and missing labels lead to NaN (not a number) values 

• also have .add, .subtract, … that allow fill_value argument 
• obj3.add(obj4, fill_value=0)
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When only passing a dict, the index in the resulting Series will have the dict’s keys in
sorted order.

In [22]: states = ['California', 'Ohio', 'Oregon', 'Texas']

In [23]: obj4 = Series(sdata, index=states)

In [24]: obj4
Out[24]: 
California      NaN
Ohio          35000
Oregon        16000
Texas         71000
dtype: float64

In this case, 3 values found in sdata were placed in the appropriate locations, but since
no value for 'California' was found, it appears as NaN (not a number) which is con-
sidered in pandas to mark missing or NA values. I will use the terms “missing” or “NA”
to refer to missing data. The isnull and notnull functions in pandas should be used to
detect missing data:

In [25]: pd.isnull(obj4)      In [26]: pd.notnull(obj4)
Out[25]:                      Out[26]:                 
California     True           California    False      
Ohio          False           Ohio           True      
Oregon        False           Oregon         True      
Texas         False           Texas          True      
dtype: bool                   dtype: bool 

Series also has these as instance methods:

In [27]: obj4.isnull()
Out[27]: 
California     True
Ohio          False
Oregon        False
Texas         False
dtype: bool

I discuss working with missing data in more detail later in this chapter.

A critical Series feature for many applications is that it automatically aligns differently-
indexed data in arithmetic operations:

In [28]: obj3          In [29]: obj4      
Out[28]:               Out[29]:           
Ohio      35000        California      NaN
Oregon    16000        Ohio          35000
Texas     71000        Oregon        16000
Utah       5000        Texas         71000
dtype: int64           dtype: float64     
                                          
In [30]: obj3 + obj4
Out[30]: 
California       NaN
Ohio           70000
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Oregon         32000
Texas         142000
Utah             NaN
dtype: float64

Data alignment features are addressed as a separate topic.

Both the Series object itself and its index have a name attribute, which integrates with
other key areas of pandas functionality:

In [31]: obj4.name = 'population'

In [32]: obj4.index.name = 'state'

In [33]: obj4
Out[33]: 
state
California      NaN
Ohio          35000
Oregon        16000
Texas         71000
Name: population, dtype: float64

A Series’s index can be altered in place by assignment:

In [34]: obj.index = ['Bob', 'Steve', 'Jeff', 'Ryan']

In [35]: obj
Out[35]: 
Bob      4
Steve    7
Jeff    -5
Ryan     3
dtype: int64

DataFrame
A DataFrame represents a tabular, spreadsheet-like data structure containing an or-
dered collection of columns, each of which can be a different value type (numeric,
string, boolean, etc.). The DataFrame has both a row and column index; it can be
thought of as a dict of Series (one for all sharing the same index). Compared with other
such DataFrame-like structures you may have used before (like R’s data.frame), row-
oriented and column-oriented operations in DataFrame are treated roughly symmet-
rically. Under the hood, the data is stored as one or more two-dimensional blocks rather
than a list, dict, or some other collection of one-dimensional arrays. The exact details
of DataFrame’s internals are far outside the scope of this book.

While DataFrame stores the data internally in a two-dimensional for-
mat, you can easily represent much higher-dimensional data in a tabular
format using hierarchical indexing, a subject of a later section and a key
ingredient in many of the more advanced data-handling features in pan-
das.
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Mutating Dataframes
• assign allows new columns to be created, returns "new" dataframe 

- df2 = df.assign(Total=df.Points1 + df.Points2) 

• More reusable: 
- df2 = df.assign(Total=lambda df: df.Points1 + df.Points2) 

• If you have columns that are not proper identifiers, can use **kwargs 
- df2 = df.assign(**{"Total Points": lambda df: df.Points1 + 
df.Points2})
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Sorting by Value (sort_values)
• sort_values method on series 

- obj.sort_values() 

• Missing values (NaN) are at the end by default (na_position controls, can be 
first) 

• sort_values on DataFrame: 
- df.sort_values(<list-of-columns>) 

- df.sort_values(by=['a', 'b']) 

- Can also use axis=1 to sort by index labels
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String Methods
• Can manipulate columns of strings 
- Use the .str modifier 

• Most string and regex operations are available 
• Examples: 

- df.first_name.str.startswith("Jo") 

- df.name.str.split(' ')
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DuckDB
• SQL syntax with extras 

- read_csv_auto 
- similar string, datetime, array functions to pandas
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Ibis
• More Pythonic interface to database or dataframe systems 
• Uses DuckDB as default backend, can be configured to use others 
• Syntax aligns better with SQL, potentially clearer 
- select 
- filter 
- mutate 
- group_by 
- order_by 
- unnest
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Assignment 2
• Assignment 1 Questions with pandas, DuckDB, and Ibis 
• CS 640 students do all, CS 490 do pandas & DuckDB (Ibis is EC) 
• Can work by framework or by query 
• Most questions can be answered with a single statement… but that 

statement can take a while to write 
- Read documentation 
- Check hints
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Test 1
• Monday, Feb. 27 
• In-class, 9:30-10:45am 
• Format: 
- Multiple Choice 
- Free Response 

• Information will be posted online
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Statistics
• sum: column sums (axis=1 gives sums over rows) 
• missing values are excluded unless the whole slice is NaN 
• idxmax, idxmin are like argmax, argmin (return index) 
• describe: shortcut for easy stats!
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    one  two
a  1.40  NaN
b  8.50 -4.5
c   NaN  NaN
d  9.25 -5.8

Another type of method is neither a reduction nor an accumulation. describe is one
such example, producing multiple summary statistics in one shot:

In [204]: df.describe()
Out[204]: 
            one       two
count  3.000000  2.000000
mean   3.083333 -2.900000
std    3.493685  2.262742
min    0.750000 -4.500000
25%    1.075000 -3.700000
50%    1.400000 -2.900000
75%    4.250000 -2.100000
max    7.100000 -1.300000

On non-numeric data, describe produces alternate summary statistics:

In [205]: obj = Series(['a', 'a', 'b', 'c'] * 4)

In [206]: obj.describe()
Out[206]: 
count     16
unique     3
top        a
freq       8
dtype: object

See Table 5-10 for a full list of summary statistics and related methods.

Table 5-10. Descriptive and summary statistics

Method Description

count Number of non-NA values

describe Compute set of summary statistics for Series or each DataFrame column

min, max Compute minimum and maximum values

argmin, argmax Compute index locations (integers) at which minimum or maximum value obtained, respectively

idxmin, idxmax Compute index values at which minimum or maximum value obtained, respectively

quantile Compute sample quantile ranging from 0 to 1

sum Sum of values

mean Mean of values

median Arithmetic median (50% quantile) of values

mad Mean absolute deviation from mean value

var Sample variance of values

std Sample standard deviation of values
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Statistics
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Method Description

skew Sample skewness (3rd moment) of values

kurt Sample kurtosis (4th moment) of values

cumsum Cumulative sum of values

cummin, cummax Cumulative minimum or maximum of values, respectively

cumprod Cumulative product of values

diff Compute 1st arithmetic difference (useful for time series)

pct_change Compute percent changes

Correlation and Covariance
Some summary statistics, like correlation and covariance, are computed from pairs of
arguments. Let’s consider some DataFrames of stock prices and volumes obtained from
Yahoo! Finance:

import pandas.io.data as web

all_data = {}
for ticker in ['AAPL', 'IBM', 'MSFT', 'GOOG']:
    all_data[ticker] = web.get_data_yahoo(ticker)

price = DataFrame({tic: data['Adj Close']
                   for tic, data in all_data.iteritems()})
volume = DataFrame({tic: data['Volume']
                    for tic, data in all_data.iteritems()})

I now compute percent changes of the prices:

In [208]: returns = price.pct_change()

In [209]: returns.tail()
Out[209]: 
                AAPL      GOOG       IBM      MSFT
Date                                              
2014-07-07  0.020632 -0.004241 -0.002599  0.004545
2014-07-08 -0.006460 -0.019167 -0.004361 -0.005001
2014-07-09  0.000420  0.008738  0.006410 -0.002633
2014-07-10 -0.003669 -0.008645 -0.003821  0.000480
2014-07-11  0.001894  0.014148  0.001598  0.009595

The corr method of Series computes the correlation of the overlapping, non-NA,
aligned-by-index values in two Series. Relatedly, cov computes the covariance:

In [210]: returns.MSFT.corr(returns.IBM)
Out[210]: 0.51360438136345077

In [211]: returns.MSFT.cov(returns.IBM)
Out[211]: 8.4825099973219876e-05

DataFrame’s corr and cov methods, on the other hand, return a full correlation or
covariance matrix as a DataFrame, respectively:
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Unique Values and Value Counts
• unique returns an array with only the unique values (no index) 

- s = Series(['c','a','d','a','a','b','b','c','c']) 
s.unique() # array(['c', 'a', 'd', 'b']) 

• Data Frames use drop_duplicates 
• value_counts returns a Series with index frequencies: 

- s.value_counts() # Series({'c': 3,'a': 3,'b': 2,'d': 1})
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1    False
2     True
3    False
dtype: bool

I do not claim that pandas’s NA representation is optimal, but it is simple and reason-
ably consistent. It’s the best solution, with good all-around performance characteristics
and a simple API, that I could concoct in the absence of a true NA data type or bit
pattern in NumPy’s data types. Ongoing development work in NumPy may change this
in the future.

Table 5-12. NA handling methods

Argument Description

dropna Filter axis labels based on whether values for each label have missing data, with varying thresholds for how much
missing data to tolerate.

fillna Fill in missing data with some value or using an interpolation method such as 'ffill' or 'bfill'.

isnull Return like-type object containing boolean values indicating which values are missing / NA.

notnull Negation of isnull.

Filtering Out Missing Data
You have a number of options for filtering out missing data. While doing it by hand is
always an option, dropna can be very helpful. On a Series, it returns the Series with only
the non-null data and index values:

In [233]: from numpy import nan as NA

In [234]: data = Series([1, NA, 3.5, NA, 7])

In [235]: data.dropna()
Out[235]: 
0    1.0
2    3.5
4    7.0
dtype: float64

Naturally, you could have computed this yourself by boolean indexing:

In [236]: data[data.notnull()]
Out[236]: 
0    1.0
2    3.5
4    7.0
dtype: float64

With DataFrame objects, these are a bit more complex. You may want to drop rows
or columns which are all NA or just those containing any NAs. dropna by default drops
any row containing a missing value:
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Handling Missing Data
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What if data isn't correct/trustworthy/in the right format?
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Dirty Data
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Geolocation Errors
• Maxmind helps companies determine where users are located based on IP 

address 
• "How a quiet Kansas home wound up with 600 million IP addresses and a 

world of trouble" [Washington Post, 2016]
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Numeric Outliers 

Adapted from Joe Hellerstein’s  2012 CS 194 Guest Lecture 

Numeric Outliers
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6F INDINGS

we got about the future of the data science, 

the most salient takeaway was how excited our 

respondents were about the evolution of the 

field. They cited things in their own practice, how 

they saw their jobs getting more interesting and 

less repetitive, all while expressing a real and 

broad enthusiasm about the value of the work in 

their organization. 

As data science becomes more commonplace and 

simultaneously a bit demystified, we expect this

trend to continue as well. After all, last year’s 

respondents were just as excited about their 

work (about 79% were “satisfied” or better).

How a Data Scientist Spends Their Day

Here’s where the popular view of data scientists diverges pretty significantly from reality. Generally, 

we think of data scientists building algorithms, exploring data, and doing predictive analysis. That’s 

actually not what they spend most of their time doing, however.

     

As you can see from the chart above, 3 out of every 5 data scientists we surveyed actually spend the 

most time cleaning and organizing data. You may have heard this referred to as “data wrangling” or 

compared to digital janitor work. Everything from list verification to removing commas to debugging 

databases–that time adds up and it adds up immensely. Messy data is by far the more time- consuming 

aspect of the typical data scientist’s work flow. And nearly 60% said they simply spent too much

time doing it.

Data scientist job satisfaction

60%

19%

9%

4%
5%3%

       Building training sets: 3%

       Cleaning and organizing data: 60%

       Collecting data sets; 19%

       Mining data for patterns: 9%

       Refining algorithms: 4%

       Other: 5%

What data scientists spend the most time doing

4.0
5

4

3

2

1

35%

47%

12%

6%

1%

This takes a lot of time!
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7F INDINGS

Why That’s a Problem

Simply put, data wrangling isn’t fun. It takes forever. In fact, a few years back, the New York Times

estimated that up to 80% of a data scientist’s time is spent doing this sort of work.

Here, it’s necessary to point out that data cleaning is incredibly important. You can’t do the sort of 

work data scientists truly enjoy doing with messy data. It needs to be cleaned, labeled, and enriched 

before you can trust the output.

The problem here is two fold. One: data scientists simply don’t like doing this kind of work, and,

as mentioned, this kind of work takes up most of their time. We asked our respondents what

was the least enjoyable part of their job.

They had this to say:

Note how those last two charts mirror each other. The things data scientists do most are the

things they enjoy least. Last year, we found that respondents far prefer doing the more creative,

interesting parts of their job, things like predictive analysis and mining data for patterns. That’s

where the real value comes. But again, you simply can’t do that work unless the data is properly

labeled. And nobody likes labeling data.

Do Data Scientists Have What They Need?

With a shortage of data scientists out there in the world, we wanted to find out if they thought

they were properly supported in their job. After all, when you need more data scientists, you’ll

often find a single person doing the work of several.

       Building training sets: 10%

       Cleaning and organizing data: 57%

       Collecting data sets: 21%

       Mining data for patterns: 3%

       Refining algorithms: 4%

       Other: 5%

57%

21%

10%

5%
4%3% What’s the least enjoyable part of data science?

…and it isn't the most fun thing to do
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Dirty Data: Statistician's View
• Some process produces the data 
• Want a model but have non-ideal samples: 
- Distortion: some samples corrupted by a process 
- Selection bias: likelihood of a sample depends on its value 
- Left and right censorship: users come and go from scrutiny 
- Dependence: samples are not independent (e.g. social networks) 

• You can add/augment models for different problems, but cannot model 
everything 

• Trade-off between accuracy and simplicity
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Dirty Data: Database Expert's View
• Got a dataset 
• Some values are missing, corrupted, wrong, duplicated 
• Results are absolute (relational model) 
• Better answers come from improving the quality of values in the dataset
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Dirty Data: Domain Expert's View
• Data doesn't look right 
• Answer doesn't look right 
• What happened? 
• Domain experts carry an implicit model of the data they test against 
• You don't always need to be a domain expert to do this 
- Can a person run 50 miles an hour? 
- Can a mountain on Earth be 50,000 feet above sea level? 
- Use common sense
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Dirty Data: Data Scientist's View
• Combination of the previous three views 
• All of the views present problems with the data 
• The goal may dictate the solutions: 
- Median value: don't worry too much about crazy outliers 
- Generally, aggregation is less susceptible by numeric errors 
- Be careful, the data may be correct…
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Be careful how you detect dirty data
• The appearance of a hole in the earth’s ozone layer over Antarctica, first 

detected in 1976, was so unexpected that scientists didn’t pay attention to 
what their instruments were telling them; they thought their instruments were 
malfunctioning.  
– National Center for Atmospheric Research  
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Where does dirty data originate?
• Source data is bad, e.g. person entered it incorrectly 
• Transformations corrupt the data, e.g. certain values processed incorrectly 

due to a software bug 
• Integration of different datasets causes problems 
• Error propagation: one error is magnified
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Types of Dirty Data Problems
• Separator Issues: e.g. CSV without respecting double quotes 

- 12, 13, "Doe, John", 45 

• Naming Conventions: NYC vs. New York 
• Missing required fields, e.g. key 
• Different representations: 2 vs. two 
• Truncated data: "Janice Keihanaikukauakahihuliheekahaunaele" 

becomes "Janice Keihanaikukauakahihuliheek" on Hawaii license 
• Redundant records: may be exactly the same or have some overlap 
• Formatting issues: 2017-11-07 vs. 07/11/2017 vs. 11/07/2017
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Data Wrangling
• Data wrangling: transform raw data to a more meaningful format that can be 

better analyzed 
• Data cleaning: getting rid of inaccurate data 
• Data transformations: changing the data from one representation to another 
• Data reshaping: reorganizing the data 
• Data merging: combining two datasets
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Data Cleaning
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Wrangler: Interactive Visual Specification of Data 
Transformation Scripts

S. Kandel, A. Paepcke, J. Hellerstein, J. Heer

D. Koop, CSCI 640/490, Spring 2023



Wrangler
• Data cleaning takes a lot of time and human effort 
• "Tedium is the message" 
• Repeating this process on multiple data sets is even worse! 
• Solution: 
- interactive interface (mixed-initiative) 
- transformation language with natural language "translations" 
- suggestions + "programming by demonstration"
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Example Critique
• Summary: Wrangler tackles data wrangling tasks by combining a language 

for specifying operations with an interface allowing users to specify the types 
of changes they are interested; the system can then generate suggested 
operations and demonstrates them on demand 

• Critique: The suggestions may lead to states that a user cannot recover from 
easily. Suppose a suggestion looks like it works well, but a user later realizes 
was incorrect. They can backtrack, but it's often unclear where to and which 
other path to take. In addition, a user has to have some idea of the 
constructs of the language in order to edit parameters. Without a good idea 
of the impact of the parameters, the work may become as tedious as manual 
correction. Perhaps a more example-based strategy could help.
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Previous Work: Potter's Wheel
• V. Raman and J. Hellerstein, 2001 
• Defines structure extractions for identifying fields 
• Defines transformations on the data 
• Allows user interaction
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/** Enumerate all structures of domains ds1 . . . dsp

that can be used to match a value vi. */
void enumerate(vi , d1, . . . dp) {
Let vi be a string of characters w1 . . . wm

for all domains dmatching prefixw1 . . . wk of vi

do enumerate(wk+1 . . . wm , ds1 , . . . dsp )
– avoid structures beginning with domains

d′ that satisfy d′.isRedundantAfter(d)
prepend d to all structures enumerated above

}
Figure 4: Enumerating various structures for a set
of values

Example Column Value # Structures Final Structure Chosen
(Example erroneous values) Enumerated (Punc = Punctuation)
-60 5 Integer
UNITED, DELTA, AMERICAN etc. 5 IspellWord
SFO, LAX etc. (JFK to OAK) 12 AllCapsWord
1998/01/12 9 Int Punc(/) Int Punc(/) Int
M, Tu, Thu etc. 5 Capitalized Word
06:22 5 Int(len 2) Punc(:) Int(len 2)
12.8.15.147 (ferret03.webtop.com) 9 Double Punc(’.’) Double
”GET\b (\b) 5 Punc(”) IspellWord Punc(\)
/postmodern/lecs/xia/sld013.htm 4 ξ∗

HTTP 3 AllCapsWord(HTTP)
/1.0 6 Punc(/) Double(1.0)

Figure 5: Structures extracted for different kinds of columns, using the default
domains listed in Section 3.1. Structure parameterizations are given in parenthesis.

with values of constant length. Such parameterized struc-
tures are especially useful for automatically parsing the val-
ues in a column, when inferring Split transforms by example
(Section 4.3).
In addition, users can define domains that infer custom

parameterizations, using the updateStatsmethod. These do-
mains could use specialized algorithms to further refine the
structure of the sub-components that fall within their domain.
For example, the default Integer domain in Potter’s Wheel
computes the mean and standard deviation of its values and
uses these as parameters, to flag values that are more than 2
standard deviations away as potential anomalies. Likewise
a domain can accept all strings by default, but parameterize
itself by inferring a regular expression that matches the sub-
component values.
The description length for values using a structure often

reduces when the structure is parameterized. For the default
parameterizations of constant values and constant lengths it
is easy to adjust the formulas given in the previous section.
For custom parameterizations like the regular expression in-
ference discussed above, the user must define the cardinality
function based on the parameterization.

3.4 Example Structures Extracted
Consider the snapshot shown in Figure 1 containing flight
delay statistics. Figure 5 shows the structures extracted for
some of its column values, and also for some columns from a
web access log. We see that the dominant structure is chosen
even in the face of inconsistencies; thereby the system can
flag these structural inconsistencies as errors to the user, and
parse and apply suitable detection algorithms for other values
that match the structure.
Using these the system flags several discrepancies that we

had earlier added to the data. For example, the system flags
dates such as 19998/05/31 in the date column of Figure 1 as
anomalies because the Integer domain for the year column
parameterizes with a mean of 2043.5 and a standard devia-
tion of 909.2. It finds the poor mapping in the Source and
Destination columns of Figure 1 as structural anomalies.
Figure 5 also shows that a column of IP addresses with

values like 12.8.15.147 has its structure inferred as Dou-
ble.Double, rather than Integer.Integer.Integer.Integer. This
arises because Double is a more concise structure than
Integer.Integer. This could be avoided either by defin-

ing a Short domain for values less than 255 (to form
Short.Short.Short.Short), or even by allowing a parameter-
ization of the form Integer (len ≤ 3).
An interesting example of over-fitting is the choice of

IspellWord for flight carriers. Although most flight carrier
names occur in the ispell dictionary, some like TWA do not.
Still IspellWord is chosen because it is cheaper to encode
TWA explicitly with a ξ∗ structure than to encode all carri-
ers with the next best structure, AllCapsWord. The system
flags TWA as an anomaly – the user could choose to ignore
this, or specify a minimum Recall threshold to avoid over-
fitting. In any case, this example highlights the importance
of involving the user in the data cleaning process.
Figure 10 gives more examples of inferred structures.

4 Interactive Transformation
Having seen how Potter’s Wheel infers structures and iden-
tifies discrepancies, we turn our attention to its support for
interactive transformation. We want users to construct trans-
formations gradually, adjusting them based on continual
feedback. This breaks down into the following sub-goals:
Ease of specification: Transforms must be specifiable
through graphical operations rather than custom program-
ming. Moreover, in these operations, we want to avoid use
of regular-expressions or grammars and instead allow users
to specify transforms by example as far as possible.
Ease of interactive application: Once the user has specified
a transform, they must be given immediate feedback on the
results of its application so that they can correct it.
Undos and Data Lineage: Users must be able to easily undo
transforms after seeing their effect. In addition, the lineage
of errors must be clear – i.e., errors intrinsic to the data must
be differentiable from those resulting from other transforms.

4.1 Transforms supported in Potter’s Wheel
The transforms used in Potter’s Wheel are adapted from ex-
isting literature on transformation languages (e.g. [16, 7]).
We describe them briefly here before proceeding to discuss
their interactive application and graphical specification. Ta-
ble 1 gives formal definitions for these transforms. Addi-
tional illustrative examples and proofs of expressive power
are given in the full version of the paper [22].

Potter's Wheel: Structure Extraction
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Transform Definition
Format φ(R, i, f) = {(a1, . . . , ai−1, ai+1, . . . , an, f(ai)) | (a1, . . . , an) ∈ R}
Add α(R, x) = {(a1, . . . , an, x) | (a1, . . . , an) ∈ R}
Drop π(R, i) = {(a1, . . . , ai−1, ai+1, . . . , an) | (a1, . . . , an) ∈ R}
Copy κ((a1, . . . , an), i) = {(a1, . . . , an, ai) | (a1, . . . , an) ∈ R}
Merge µ((a1, . . . , an), i, j, glue) = {(a1, . . . , ai−1, ai+1, . . . , aj−1, aj+1, . . . , an, ai ⊕ glue⊕ aj) | (a1, . . . , an) ∈ R}
Split ω((a1, . . . , an), i, splitter) = {(a1, . . . , ai−1, ai+1, . . . , an, left(ai, splitter), right(ai, splitter)) | (a1, . . . , an) ∈ R}
Divide δ((a1, . . . , an), i, pred) = {(a1, . . . , ai−1, ai+1, . . . , an, ai, null) | (a1, . . . , an) ∈ R ∧ pred(ai)} ∪

{(a1, . . . , ai−1, ai+1, . . . , an, null, ai) | (a1, . . . , an) ∈ R ∧ ¬pred(ai)}
Fold λ(R, i1, i2, . . . ik) = {(a1, . . . , ai1−1, ai1+1, . . . , ai2−1, ai2+1, . . . , aik−1, aik+1, . . . , an, ail) |

(a1, . . . , an) ∈ R ∧ 1 ≤ l ≤ k}
Select σ(R, pred) = {(a1, . . . , an) | (a1, . . . , an) ∈ R ∧ pred((a1, . . . , an))}

Notation: R is a relation with n columns. i, j are column indices and ai represents the value of a column in a row. x and glue are
values. f is a function mapping values to values. x ⊕ y concatenates x and y. splitter is a position in a string or a regular expression,
left(x, splitter) is the left part of x after splitting by splitter. pred is a function returning a boolean.

Table 1: Definitions of the various transforms. Unfold is defined in the full paper [22].
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Figure 6: Using Format, Merge and Split to clean name for-
mat differences
Value Translation
The Format transform applies a function to every value in
a column. We provide built-in functions for common oper-
ations like regular-expression based substitutions and arith-
metic operations, but also allow user defined functions. Col-
umn and table names can be demoted into column values us-
ing special characters in regular expressions; these are useful
in conjunction with the Fold transform described below.
One-to-one Mappings of Rows
One-to-one transforms are column operations that transform
individual rows. As illustrated in Figures 6 and 7, they can
be used to unify data collected from different sources.
TheMerge transform concatenates values in two columns,

optionally interposing a constant (the delimiter) in the mid-
dle, to form a single new column. Split splits a column into
two or more parts, and is used typically to parse a value into
its constituent parts. The split positions are often difficult
to specify if the data is not well structured. We allow split-
ting by specifying character positions, regular expressions,
or by interactively performing splits on example values (Sec-
tion 4.3).

Drop, Copy, and Add allow users to drop or copy a col-
umn, or add a new column. Occasionally, logically different
values (maybe from multiple sources) are bunched into the
same column, and we want to transform only some of them.
Divide conditionally divides a column, sending values into
one of two new columns based on a predicate.
Many-to-Many Mappings of Rows
Many-to-Many transforms help to tackle higher-order
schematic heterogeneities [18] where information is stored

partly in data values, and partly in the schema, as shown in
Figure 8. Fold ”flattens” tables by converting one row into
multiple rows, folding a set of columns together into one col-
umn and replicating the rest. Conversely Unfold ”unflattens”
tables; it takes two columns, collects rows that have the same
values for all the other columns, and unfolds the two chosen
columns. Values in one column are used as column names to
align the values in the other column. Figures 8 and 9 show
an example with student grades where the subject names are
demoted into the row via Format, grades are Folded together,
and then Split to separate the subject from the grade. Fold
and UnFold are adapted from the restructuring operators of
SchemaSQL [16], and are discussed in more detail in the
full paper [22].
Power of Transforms: As we prove in the full paper [22],
these transforms can be used to perform all one-to-many row
mappings of rows. Fold andUnfold can also be used to f latten
tables, converting them to a form where column and table
names are all literals and do not have data values. For a for-
mal definition of (un)flattening and an analysis of the power
of Fold and Unfold, see [16].

4.2 Interactive Application of Transforms
We want to apply the transforms on tuples incrementally, as
they stream in, so that the effects of transforms can be imme-
diately shown on tuples visible on the screen of the UI. It also
lets the system pipeline discrepancy detection on the results
of the transforms, thereby giving the interactivity advantages
described in the introduction.
Among the transforms discussed above, all the one-to-one

transforms as well as the Fold transform are functions on a
single row. Hence they are easy to apply incrementally.
However Unfold operates on a set of rows with match-

ing values. Since this could potentially involve scanning the
entire data, we do not allow Unfold to be specified graphi-
cally. For displaying records on the screen we can avoid this
problem by not showing a complete row but instead show-
ing more and more columns as distinct values are found, and
filling data values in these columns as the corresponding in-
put rows are read. Such progressive column addition in the
spreadsheet interface could confuse the user; hence we plan
to implement an abstraction interface where all newly cre-
ated columns are shown as one rolled up column. When
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Transform Definition
Format φ(R, i, f) = {(a1, . . . , ai−1, ai+1, . . . , an, f(ai)) | (a1, . . . , an) ∈ R}
Add α(R, x) = {(a1, . . . , an, x) | (a1, . . . , an) ∈ R}
Drop π(R, i) = {(a1, . . . , ai−1, ai+1, . . . , an) | (a1, . . . , an) ∈ R}
Copy κ((a1, . . . , an), i) = {(a1, . . . , an, ai) | (a1, . . . , an) ∈ R}
Merge µ((a1, . . . , an), i, j, glue) = {(a1, . . . , ai−1, ai+1, . . . , aj−1, aj+1, . . . , an, ai ⊕ glue⊕ aj) | (a1, . . . , an) ∈ R}
Split ω((a1, . . . , an), i, splitter) = {(a1, . . . , ai−1, ai+1, . . . , an, left(ai, splitter), right(ai, splitter)) | (a1, . . . , an) ∈ R}
Divide δ((a1, . . . , an), i, pred) = {(a1, . . . , ai−1, ai+1, . . . , an, ai, null) | (a1, . . . , an) ∈ R ∧ pred(ai)} ∪

{(a1, . . . , ai−1, ai+1, . . . , an, null, ai) | (a1, . . . , an) ∈ R ∧ ¬pred(ai)}
Fold λ(R, i1, i2, . . . ik) = {(a1, . . . , ai1−1, ai1+1, . . . , ai2−1, ai2+1, . . . , aik−1, aik+1, . . . , an, ail) |

(a1, . . . , an) ∈ R ∧ 1 ≤ l ≤ k}
Select σ(R, pred) = {(a1, . . . , an) | (a1, . . . , an) ∈ R ∧ pred((a1, . . . , an))}

Notation: R is a relation with n columns. i, j are column indices and ai represents the value of a column in a row. x and glue are
values. f is a function mapping values to values. x ⊕ y concatenates x and y. splitter is a position in a string or a regular expression,
left(x, splitter) is the left part of x after splitting by splitter. pred is a function returning a boolean.

Table 1: Definitions of the various transforms. Unfold is defined in the full paper [22].
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Figure 6: Using Format, Merge and Split to clean name for-
mat differences
Value Translation
The Format transform applies a function to every value in
a column. We provide built-in functions for common oper-
ations like regular-expression based substitutions and arith-
metic operations, but also allow user defined functions. Col-
umn and table names can be demoted into column values us-
ing special characters in regular expressions; these are useful
in conjunction with the Fold transform described below.
One-to-one Mappings of Rows
One-to-one transforms are column operations that transform
individual rows. As illustrated in Figures 6 and 7, they can
be used to unify data collected from different sources.
TheMerge transform concatenates values in two columns,

optionally interposing a constant (the delimiter) in the mid-
dle, to form a single new column. Split splits a column into
two or more parts, and is used typically to parse a value into
its constituent parts. The split positions are often difficult
to specify if the data is not well structured. We allow split-
ting by specifying character positions, regular expressions,
or by interactively performing splits on example values (Sec-
tion 4.3).

Drop, Copy, and Add allow users to drop or copy a col-
umn, or add a new column. Occasionally, logically different
values (maybe from multiple sources) are bunched into the
same column, and we want to transform only some of them.
Divide conditionally divides a column, sending values into
one of two new columns based on a predicate.
Many-to-Many Mappings of Rows
Many-to-Many transforms help to tackle higher-order
schematic heterogeneities [18] where information is stored

partly in data values, and partly in the schema, as shown in
Figure 8. Fold ”flattens” tables by converting one row into
multiple rows, folding a set of columns together into one col-
umn and replicating the rest. Conversely Unfold ”unflattens”
tables; it takes two columns, collects rows that have the same
values for all the other columns, and unfolds the two chosen
columns. Values in one column are used as column names to
align the values in the other column. Figures 8 and 9 show
an example with student grades where the subject names are
demoted into the row via Format, grades are Folded together,
and then Split to separate the subject from the grade. Fold
and UnFold are adapted from the restructuring operators of
SchemaSQL [16], and are discussed in more detail in the
full paper [22].
Power of Transforms: As we prove in the full paper [22],
these transforms can be used to perform all one-to-many row
mappings of rows. Fold andUnfold can also be used to f latten
tables, converting them to a form where column and table
names are all literals and do not have data values. For a for-
mal definition of (un)flattening and an analysis of the power
of Fold and Unfold, see [16].

4.2 Interactive Application of Transforms
We want to apply the transforms on tuples incrementally, as
they stream in, so that the effects of transforms can be imme-
diately shown on tuples visible on the screen of the UI. It also
lets the system pipeline discrepancy detection on the results
of the transforms, thereby giving the interactivity advantages
described in the introduction.
Among the transforms discussed above, all the one-to-one

transforms as well as the Fold transform are functions on a
single row. Hence they are easy to apply incrementally.
However Unfold operates on a set of rows with match-

ing values. Since this could potentially involve scanning the
entire data, we do not allow Unfold to be specified graphi-
cally. For displaying records on the screen we can avoid this
problem by not showing a complete row but instead show-
ing more and more columns as distinct values are found, and
filling data values in these columns as the corresponding in-
put rows are read. Such progressive column addition in the
spreadsheet interface could confuse the user; hence we plan
to implement an abstraction interface where all newly cre-
ated columns are shown as one rolled up column. When
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Example Values Split By User Inferred Structure Comments
(| is user specified split position)

Taylor, Jane |, $52,072
Blair, John |, $73,238
Tony Smith |, $1,00,533

(< ξ∗ > < ’,’ Money >)

Parsing is doable despite no good de-
limiter. A regular expression domain
can infer a structure of $[0-9,]* for
last component.

MAA |to| SIN
JFK |to| SFO
LAX |–| ORD
SEA |/| OAK

(<len 3 identifier> < ξ∗ >
< len 3 identifier> )

Parsing is possible despite multiple
delimiters.

321 Blake #7 |, Berkeley |, CA 94720
719 MLK Road |, Fremont |, CA 95743

(<number ξ∗ > < ’,’ word>
<’,’ (2 letter word) (5 letter integer)>)

Parsing is easy because of consistent
delimiter.

Figure 10: Parse structures inferred from various split-by-examples

ate substrings) of the example values using the structure. The
less specific structures need to be used only after the value
has been decomposed into much smaller substrings, and the
splitting is not too expensive on these.
To study the effect of parsing according to specificity

we ran DecSpecificity, LeftRight, and IncSpecificity on a few
structures. IncSpecificity is the exact opposite of DecSpeci-
ficity and considers structures starting with the least specific
one; it illustrates how crucial the choice of starting struc-
ture is. Figure 12 compares the throughput at which one can
split values using these methods. We see that DecSpecificity
performs much better than the others, with the improvement
being dramatic at splits involving many structures.

4.4 Undoing Transforms and Tracking Data Lineage
The ability to undo incorrect transforms is an important re-
quirement for interactive transformation. However, if the
specified transforms are directly applied on the input data,
many transforms (such as regular-expression-based substi-
tutions and some arithmetic expressions) cannot be undone
unambiguously – there exist no “compensating” transforms.
Undoing these requires “physical undo”, i.e., the system
has to maintain multiple versions of the (potentially large)
dataset.
Instead Potter’s Wheel never changes the actual data

records. It merely collects transforms as the user adds them,
and applies them only on the records displayed on the screen,
in essence showing a view using the transforms specified so
far. Undos are done “logically,” by removing the concerned
transform from the sequence and “redoing” the rest before
repainting the screen.
This approach also solves the ambiguous data lineage

problem of whether a discrepancy is due to an error in the
data or because of a poor transform. If the user wishes to
know the lineage of a particular discrepancy, the system only
needs to apply the transforms one after another, checking for
discrepancies after each transform.

5 Related Work
The commercial data cleaning process is based on ETL tools
and auditing tools, as described in the introduction. [6, 9]
give good descriptions of the process and some popular tools.
There is much literature on transformation languages, es-

pecially for performing higher-order operations on relational

data [1, 7, 16, 18]. Our horizontal transforms are very similar
to the restructuring operators of SchemaSQL [16]. However
our focus is on the ease of specification and incremental ap-
plication, and not merely on expressive power.
The research literature on finding discrepancies in data

has focused on two main things: general-purpose algorithms
for finding outliers in data (e.g. [3]), and algorithms for find-
ing approximate duplicates in data [13, 17, 10]. There has
also been some work on finding hidden dependencies in data
and correspondingly their violations [14]. Such general pur-
pose algorithms are useful as default algorithms for Potter’s
Wheel’s discrepancy detector. However we believe that in
many cases the discrepancies will be domain-specific, and
that data cleaning tools must handle these domains extensi-
bly.
A companion problem to data cleaning is the integration

of schemas from various data sources. We intend to extend
Potter’s Wheel with a system that handles interactive speci-
fication of schema mappings (such as Clio [19]).
Extracting structure from poorly structured data is in-

creasingly important for “wrapping” data from web pages,
and many tools exist in both the research and commercial
world (e.g. [2, 12, 8]). As discussed in Section 4.3, these
tools typically require users to specify regular expressions or
grammars; even these are often not sufficient to unambigu-
ously parse the data, so users have to write custom scripts.
There have also been some learning-based approaches for
automatic text wrapping and segmentation [15, 4]. We be-
lieve, however, that a semi-automatic, interactive approach
using a combination of graphical operations and statistical
methods is more powerful.
There has been some work in the machine learning litera-

ture [20, 5] and the database literature [11] on inferring reg-
ular expressions from a set of values. However as argued be-
fore, for detecting discrepancies it is important to infer struc-
tures in terms of generic user-defined domains, in a way that
is robust to structural data errors.

6 Conclusions and Future Work
Data cleaning and transformation are important tasks in
many contexts such as data warehousing and data integra-
tion. The current approaches to data cleaning are time-
consuming and frustrating due to long-running noninterac-
tive operations, poor coupling between analysis and trans-
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Wrangler Transformation Language
• Based on Potter's Wheel 
• Map: Delete, Extract, Cut, Split, Update 
• Lookup/join: Use external data (e.g. from zipcode→state) 
• Reshape: Fold and Unfold (aka pivot) 
• Positional: Fill and lag 
• Sorting, aggregation, key generation, schema transforms
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Interface
• Automated Transformation Suggestions 
• Editable Natural Language Explanations 

• Visual Transformation Previews 
• Transformation History
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intended to enhance analysts’ ability to review and refine
transformation steps. Textual annotations enable communi-
cation of analyst intent. Wrangler also couples verification
(run in the background as data is transformed) with visual-
ization to help users discover data quality issues.

Basic Interactions
The Wrangler interface supports six basic interactions within
the data table. Users can select rows, select columns, click
bars in the data quality meter, select text within a cell, edit
data values within the table (for mass editing [14, 19]), and
assign column names, data types or semantic roles. Users
can also choose transforms from the menu or refine sugges-
tions by editing transform descriptions as described below.

Automated Transformation Suggestions
As a user interacts with data, Wrangler generates a list of
suggested transforms. In some cases the set of possible sug-
gestions is large (in the hundreds), but we wish to show only
a relevant handful to avoid overload. Instead of enumerat-
ing the entire suggestion space, users can prune and reorder
the space in three ways. First, users can provide more exam-
ples to disambiguate input to the inference engine. Providing
examples is especially effective for text selections needed
for splitting, extraction, and reformatting; two or three well-
chosen examples typically suffice. Second, users can filter
the space of transforms by selecting an operator from the
transform menu. Third, users can edit a transform by alter-
ing the parameters of a transform to a desired state.

Wrangler does not immediately execute a selected sugges-
tion. Instead, Wrangler makes it the current working trans-
form. The user can edit this transform directly; as a user edits
parameters, the suggestion space updates to reflect these ed-
its. Also, a user can instead interact with the table to generate
new suggestions that use the working transform as context.

Natural Language Descriptions
To aid apprehension of suggested transforms, Wrangler gen-
erates short natural language descriptions of the transform
type and parameters. These descriptions are editable, with
parameters presented as bold hyperlinks (Fig. 8). Clicking
a link reveals an in-place editor appropriate to the parameter
(Fig. 8b). Enumerable variables (such as the direction of a
fill) are mapped to drop-down menus while free-form text
parameters are mapped to text editors with autocomplete.

We designed these descriptions to be concise; default param-
eters that are not critical to understanding may be omitted.
For example, the unless between parameter for split opera-
tions indicates regions of text to ignore while splitting. In
most cases, this parameter is left undefined and including it
would bloat the description. To edit hidden parameters, users
can click the expansion arrow to the left of the description,
revealing an editor with entries for all possible parameters.

We also sought to make parameters within descriptions read-
able by non-experts. For instance, we translate regular ex-
pressions into natural language via pattern substitution (e.g.,
(\d+) to ‘number’). This translation can make some descrip-
tions less concise but increases readability. Translation is

Figure 8. Editable Natural Language Descriptions. (a) An example of

an editable description; highlighted text indicates editable parameters.

(b) Clicking on a parameter reveals an in-place editor. (c) After editing,

the description may update to include new parameters. In this case, a

new window size parameter is displayed for the moving average.

only performed with regular expressions generated by the
Wrangler inference engine. If a user types in a custom ex-
pression, Wrangler will reflect their input.

Visual Transformation Previews
Wrangler uses visual previews to enable users to quickly
evaluate the effect of a transform. For most transforms, Wran-
gler displays these previews in the source data, and not as
a separate visualization (e.g., side-by-side before and after
views). In-place previews provide a visual economy that
serves a number of goals. First, displaying two versions of
a table inherently forces both versions to be small, which
is particularly frustrating when the differences are sparse.
Second, presenting in-place modifications draws user atten-
tion to the effect of the transformation in its original context,
without requiring a shift in focus across multiple tables. As
we discuss next, in-place previews better afford direct ma-
nipulation for users to revise the current transform.

Wrangler maps transforms to at least one of five preview
classes: selection, deletion, update, column and table. In
defining these mappings, we attempted to convey a trans-
form’s effect with minimum displacement of the original
data. This stability allows users to continue interacting with
the original data, e.g., to provide new selection examples.

Selection previews highlight relevant regions of text in all
affected cells (Fig. 3). Deletion previews color to-be-deleted
cells in red (Fig. 2). Update previews overwrite values in a
column and indicate differences with yellow highlights (Fig.
4). Column previews display new derived columns, e.g., as
results from an extract operation (Fig. 3). We show a side-
by-side display of versions when previewing fold and unfold
transforms. These alter the structure of the table to such an
extent that the best preview is to show another table (Fig.
6, 9). These table previews use color highlights to match
input data to their new locations in the output table. Some
transforms map to multiple classes; e.g., extract transforms
use both selection and column previews.

When possible, previews also indicate where the user can
modify the transform through either direct manipulation or
description refinement. Highlighting selected text or cells
works well for certain transformations. For example, by

DataWrangler

ExportImport

Split data repeatedly on
newline into rows

Split split repeatedly on
","

Promote row 0 to header

Delete rows 0,1

Fill row 0 by copying
values from the left

Transform Script

Text

Split

Cut

Columns

Fill

Drop

Rows

Delete

Fill

Promote

Table

Fold

Unfold

Clear

split split1 split2 split3 split4

0 2004 2004 2004 2003
1 STATE Participation Rate 2004 Mean SAT I Verbal Mean SAT I Math Participation Rate 2003
2 New York 87 497 510 82
3 Connecticut 85 515 515 84
4 Massachusetts 85 518 523 82
5 New Jersey 83 501 514 85
6 New Hampshire 80 522 521 75
7 D.C. 77 489 476 77
8 Maine 76 505 501 70
9 Pennsylvania 74 501 502 73

10 Delaware 73 500 499 73
11 Georgia 73 494 493 66

split fold fold1 value

0 New York 2004 Participation Rate 2004
1 New York 2004 Mean SAT I Verbal
2 New York 2004 Mean SAT I Math
3 New York 2003 Participation Rate 2003
4 New York 2003 Mean SAT I Verbal
5 New York 2003 Mean SAT I Math
6 Connecticut 2004 Participation Rate 2004
7 Connecticut 2004 Mean SAT I Verbal
8 Connecticut 2004 Mean SAT I Math
9 Connecticut 2003 Participation Rate 2003

10 Connecticut 2003 Mean SAT I Verbal
11 Connecticut 2003 Mean SAT I Math

87
497
510
82
496
510
85
515
515
84
512
514

Figure 9. Visual preview of a fold operation. For transforms that rear-

range table layout, Wrangler previews the output table and uses color

highlights to show the correspondence of values across table states.

highlighting the text selected by a regular expression in each
cell, users can determine which examples they need to fix.
For reshape transforms, Wrangler highlights the input data
in the same color as the corresponding output in the sec-
ondary table. For instance, in a fold operation, data values
that will become keys are colored to match the keys in the
output table (Fig. 9). Wrangler also highlights the param-
eters in the transform description using the same colors as
those generated in previews (Fig. 3–6). The consistent use
of colors allows users to associate clauses in a description
with their effects in the table.

Transformation Histories and Export
As successive transforms are applied, Wrangler adds their
descriptions to an interactive transformation history viewer.
Users can edit individual transform descriptions and selec-
tively enable and disable prior transforms. Upon changes,
Wrangler runs the edited script and updates the data table.
Toggling or editing a transform may result in downstream er-
rors; Wrangler highlights broken transforms in red and pro-
vides an error message to aid debugging.

Wrangler scripts also support lightweight text annotations.
Analysts can use annotations to document their rationale for
a particular transform and may help future users better un-
derstand data provenance. To annotate a transform, users can
click the edit icon next to the desired transform and write
their annotation in the resulting text editor. Users can view
an annotation by mousing over the same edit icon. These
annotations appear as comments in code-generated scripts.
Users can export both generated scripts and transformed data;
clicking the Export button in the transform history invokes
export options. Analysts can later run saved or exported
scripts on new data sources, modifying the script as needed.

TYPES, ROLES, AND VERIFICATION
It is often difficult to discover data quality issues and there-
fore difficult to address them by constructing the appropri-
ate transform. Wrangler aids discovery of data quality issues
through the use of data types and semantic roles.

As users transform data, Wrangler attempts to infer the data
type and semantic role for each column. Wrangler applies
validation functions to a sample of a column’s data to infer

these types, assigning the type that validates for over half of
the non-missing values. When multiple types satisfy this cri-
teria, Wrangler assigns the more specific one (e.g., integer is
more specific than double). Wrangler infers semantic roles
analogously. An icon in the column header indicates the se-
mantic role of the column, or the underlying data type if no
role has been assigned. Clicking the icon reveals a menu
with which users can manually assign a type or role.

Above each column is a data quality meter: a divided bar
chart that indicates the proportion of values in the column
that verify completely. Values that parse successfully are in-
dicated in green; values that match the type but do not match
the role (e.g., a 6 digit zip code) are shown in yellow; those
that do not match the type (e.g., ‘One’ does not parse as an
integer) are shown in red; and missing data are shown in
gray. Clicking a bar generates suggested transforms for that
category. For instance, clicking the missing values bar will
suggest transforms to fill in missing values or delete those
rows. Clicking the fails role bar will suggest transforms such
as a similarity join on misspelled country names.

THE WRANGLER INFERENCE ENGINE
We now present the design of the Wrangler inference engine,
which is responsible for generating a ranked list of suggested
transforms. Inputs to the engine consist of user interactions;
the current working transform; data descriptions such as col-
umn data types, semantic roles, and summary statistics; and
a corpus of historical usage statistics. Transform sugges-
tion proceeds in three phases: inferring transform parame-
ters from user interactions, generating candidate transforms
from inferred parameters, and finally ranking the results.

Usage Corpus and Transform Equivalence
To generate and rank transforms, Wrangler’s inference en-
gine relies on a corpus of usage statistics. The corpus con-
sists of frequency counts of transform descriptors and initi-
ating interactions. We built our initial corpus by wrangling
our collection of gathered data sets. The corpus updates over
time as more analysts use Wrangler.

For any given transform, we are unlikely to find an exact
match in the corpus. For instance, an analyst may perform
a fold operation over a combination of columns and rows
that does not appear in the corpus. In order to get useful
transform frequencies, we define a relaxed matching routine:
two transforms are considered equivalent in our corpus if (a)
they have an identical transform type (e.g., extract or fold)
and (b) they have equivalent parameters as defined below.

Wrangler transforms accept four basic types of parameters:
row, column or text selections and enumerables. We treat
two row selections as equivalent if they both (a) contain fil-
tering conditions (either index- or predicate-based) or (b)
match all rows in a table. Column selections are equivalent
if they refer to columns with the same data type or semantic
role. We based this rule on the observation that transforms
that operate on identical data types are more likely to be
similar. Text selections are equivalent if both (a) are index-
based selections or (b) contain regular expressions. We con-



sider enumerable parameters equivalent only if they match
exactly. We chose these equivalency classes based on ex-
ploratory analysis of our corpus and they seem to work well
in practice. As our corpus of transforms grows with more
use, we plan to explore more principled approaches (such as
clustering) to refine our matching routines.

Inferring Parameter Sets from User Interaction
In response to user interaction, Wrangler attempts to infer
three types of transform parameters: row, column, or text
selections. For each type we enumerate possible parameter
values, resulting in a collection of inferred parameter sets.
We infer a parameter’s values independent of the other pa-
rameters. For example, we infer regular expressions for text
selection based solely on the selected text, a process other-
wise independent of which rows or columns are selected.

We infer row selections based on row indices and predicate
matching. We list predicates of the form “row is empty” and
“column [equals | starts with | ends with | contains] selected-
value”, then emit the selections that match the rows and text
currently selected in the interface. For column selections we
simply return the columns that users have interacted with.

Emitted text selections are either simple index ranges (based
directly on selections in the interface) or inferred regular ex-
pressions. To generate regular expressions, we tokenize the
text within a cell and extract both the selected text and any
surrounding text within a 5 token window. We annotate to-
kens with one or more labels of the form number, word, up-
percase word, lowercase word, or whitespace. We then enu-
merate label sequences that match the text before, within,
and after the selection range (see Fig. 10); sequences can
contain either an annotation label or the exact token text.
Next we emit all possible combinations of before, within,
and after sequences that match all current text selection ex-
amples in the interface. It is then straightforward to translate
matching label sequences into regular expressions.

Generating Suggested Transforms
After inferring parameter sets, Wrangler generates a list of
transform suggestions. For each parameter set, we loop over
each transform type in the language, emitting the types that
can accept all parameters in the set. For example, a split
transform can accept a parameter set containing a text selec-
tion, but an unfold transform can not. Wrangler instantiates
each emitted transform with parameters from the parameter
set. To determine values for missing parameters, we query
the corpus for the top-k (default 4) parameterizations that co-
occur most frequently with the provided parameter set. Dur-
ing this process we do not infer complex criteria such as row
predicates or regular expressions; we do infer enumerable
parameters, index-based row selections, and column inputs.
We then filter the suggestion set to remove “degenerate” (no-
op) transforms that would have no effect on the data.

Ranking Suggested Transforms
Wrangler then rank-orders transform suggestions according
to five criteria. The first three criteria rank transforms by
their type; the remaining two rank transforms within types.

(a)
Reported crime in Alabama

(b)

before: {‘in’, ‘ ’} ‘Alabama’! {‘Alabama’, word}
selection: {‘Alabama’} ‘in’! {‘in’, word, lowercase}
after: ; ‘ ’! {‘ ’}

(c)

before: {(‘ ’), (‘in’, ‘ ’), (word, ‘ ’), (lowercase, ‘ ’)}
selection: {(‘Alabama’), (word)}
after: ;

(d)

{(),(‘Alabama’),()} {(),(word),()}
{(‘ ’),(),()} {(word, ‘ ’),(),()}
{(‘ ’),(‘Alabama’),()} {(word, ‘ ’),(‘Alabama’),()}
{(‘ ’),(word),()} {(word, ‘ ’),(word),()}
{(‘in’, ‘ ’),(),()} {(lowercase, ‘ ’),(),()}
{(‘in’, ‘ ’),(‘Alabama’),()} {(lowercase, ‘ ’),(‘Alabama’),()}
{(‘in’, ‘ ’),(word),()} {(lowercase, ‘ ’),(word),()}

(e) {(lowercase, ‘ ’),(‘Alabama’),()}! /[a-z]+ (Alabama)/

Figure 10. Regular Expression Inference. (a) The user selects text in a

cell. (b) We tokenize selected and surrounding text. For clarity, the fig-

ure only includes two neighboring tokens. For each token, we generate

a set of matching labels. (c) We enumerate all label sequences matching

the text. (d) We then enumerate all candidate before, selection and after
combinations. Patterns that do not uniquely match the selected text are

filtered (indicated by strike-through). (e) Finally, we construct regular

expressions for each candidate pattern.

Ensuring that transforms of the same type are adjacent helps
users compare varying parameterizations more easily.

First, we consider explicit interactions: if a user chooses a
transform from the menu or selects a current working trans-
form, we assign higher rank to transforms of that type. Sec-
ond, we consider specification difficulty. We have observed
that row and text selection predicates are harder to specify
than other parameters. We thus label row and text selections
as hard and all others as easy. We then sort transform types
according to the count of hard parameters they can accept.
Third, we rank transform types based on their corpus fre-
quency, conditioned on their initiating user interaction (e.g.,
text or column selection). In the case of text selection, we
also consider the length of the selected text. If a user selects
three or fewer characters, split transforms are ranked above
extract transforms; the opposite is true for longer selections.

We then sort transforms within type. We first sort trans-
forms by frequency of equivalent transforms in the corpus.
Second, we sort transforms in ascending order using a sim-
ple measure of transform complexity. Our goal is to prefer-
entially rank simpler transforms because users can evaluate
their descriptions more quickly. We define transform com-
plexity as the sum of complexity scores for each parameter.
The complexity of a row selection predicate is the number of
clauses it contains (e.g., “a=5 and b=6” has complexity 2).
The complexity of a regular expression is defined to be the
number of tokens (described previously) in its description.
All other parameters are given complexity scores of zero.

Finally, we attempt to surface diverse transform types in the
final suggestion list. We filter the transforms so that no type
accounts for more than 1/3 of the suggestions, unless the
transform type matches the working transform or the filter
results in fewer suggestions than can appear in the interface.

Automation from past actions
• Infer parameter sets from user 

interaction 
• Generating transforms 
• Ranking and ordering 

transformations: 
- Based on user preferences, 

difficulty, and corpus frequency 
- Sort transforms by type and 

diversify suggestions
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Figure 1. The Wrangler Interface. The left panel contains (from top-to-bottom) a history of transforms, a transform selection menu, and automat-

ically suggested transforms based on the current selection. Bold text within the transform descriptions indicate parameters that can be clicked and

revised. The right panel contains an interactive data table; above each column is a data quality meter.

short natural language descriptions—which users can refine
via interactive parameters—and visual previews of transform
results. These techniques enable analysts to rapidly navigate
and assess the space of viable transforms.

As analysts transform data, their steps are recorded in a script
to facilitate reuse and provide documentation of data prove-
nance. Wrangler’s interactive history viewer supports re-
view, refinement, and annotation of these scripts. Wran-
gler’s high-level language supports a variety of runtime plat-
forms: Wrangler scripts can be run in a web browser using
JavaScript or translated into MapReduce or Python code.

We also present a controlled user study comparing Wran-
gler and Excel across a set of data wrangling tasks. We find
that Wrangler significantly reduces specification time and
promotes the use of robust transforms rather than manual
editing. Wrangler is one piece of a larger effort to address
bottlenecks in the data lifecycle by integrating insights and
methods from the HCI and database communities.

RELATED WORK
The database and machine learning communities have con-
tributed a number of algorithmic techniques for aiding data
cleaning and integration. These techniques include meth-
ods for detecting erroneous values [10, 11], information ex-
traction [1, 25], entity resolution [6], type inference [7], and
schema matching [9, 21]. In the Wrangler interface we seek
to surface such techniques in an accessible manner.

A number of commercial and research systems provide graph-
ical interfaces leveraging the above methods. Many of these
tools provide interfaces for schema matching or entity reso-
lution [3, 9, 16, 23]. Toped++ [24] is an interface for creating
Topes, objects that validate and transform data. Topes sup-
port transformations such as text formatting and lookups, but
provide little support for filtering, reshaping, or aggregation.
Bellman [5] helps users understand the structure and quality
of a database, but does not enable transformations.

Many data cleaning applications apply direct manipulation
and programming-by-demonstration (PBD) methods to spe-
cific cleaning tasks. Users of SWYN [2] build regular ex-
pressions by providing example text selections and can eval-
uate their effect in visual previews. Potluck [14] applies si-
multaneous text editing [19] to merge data sources. Karma
[26] infers text extractors and transformations for web data
from examples entered in a table. Vegemite [18] applies
PBD to integrate web data, automates the use of web ser-
vices, and generates shareable scripts. Other interfaces [15]
apply PBD to data integration via copy and paste actions.

Wrangler applies a number of these techniques: it infers reg-
ular expressions from example selections [2] and supports
mass editing [14, 19]. Wrangler uses semantic roles akin
to Topes [24] and provides natural language descriptions of
transforms [18]. However, Wrangler differs in important
ways. PBD data tools support text extraction or data integra-
tion, but lack operations such as reshaping, aggregation, and
missing value imputation. Prior tools (except for Vegemite
[18]) also do not generate scripts to document provenance.

Most closely related to Wrangler is prior work on interactive
data cleaning. Potter’s Wheel [22] provides a transformation
language for data formatting and outlier detection. Wrangler
extends the Potter’s Wheel language with key differences
discussed later. Ajax [8] also provides an interface to spec-
ify transforms, with advanced facilities for entity resolution.
Neither tool provides much support for direct manipulation:
interaction is largely restricted to menu-based commands or
entering programming statements. Google Refine [13] (for-
merly Freebase GridWorks) leverages Freebase to enable en-
tity resolution and discrepancy detection. It provides sum-
marization and filtering support through faceted histograms.
Though users can specify some commands graphically, oth-
ers must be written in a command language. Moreover, the
system assumes that input data arrives in a proper tabular
format, limiting the forms of data to which it can be applied.

http://vis.stanford.edu/wrangler/app/

