Advanced Data Management (CSCI 640/490)

Data Wrangling

Dr. David Koop

NumPy

- Fast vectorized array operations for data munging and cleaning, subsetting and filtering, transformation, and any other kinds of computations
- Common array algorithms like sorting, unique, and set operations Efficient descriptive statistics and aggregating/summarizing data
- Data alignment and relational data manipulations for merging and joining together heterogeneous data sets
- Expressing conditional logic as array expressions instead of loops with ifelif-else branches
- Group-wise data manipulations (aggregation, transformation, function) application).

Northern Illinois University

Data

• What is this data?

R011	42ND STREET & 8TH AVENUE	00228985	00008471	00000441	00001455	00000134	00033341	00071255
R170	14TH STREET-UNION SQUARE	00224603	00011051	00000827	00003026	00000660	00089367	00199841
R046	42ND STREET & GRAND CENTRAL	00207758	00007908	00000323	00001183	00003001	00040759	00096613

- Semantics: real-world meaning of the data
- Type: structural or mathematical interpretation
- Both often require metadata
 - Sometimes we can infer some of this information
 - Line between data and metadata isn't always clear

- The meaning of the data
- Example: 94023, 90210, 02747, 60115

- The meaning of the data
- Example: 94023, 90210, 02747, 60115
 - Attendance at college football games?

D. Koop, CSCI 640/490, Spring 2023

0115 nes?

4

- The meaning of the data
- Example: 94023, 90210, 02747, 60115
 - Attendance at college football games?
 - Salaries?

D. Koop, CSCI 640/490, Spring 2023

0115 nes?

4

- The meaning of the data
- Example: 94023, 90210, 02747, 60115
 - Attendance at college football games?
 - Salaries?
 - Zip codes?
- Cannot always infer based on what the data looks like • Often require semantics to better understand data, column names help May also include rules about data: a zip code is part of an address that
- uniquely identifies a residence
- Useful for asking good questions about the data

Data Terminology

- Items
 - An **item** is an individual discrete entity
 - e.g., a row in a table
- Attributes
 - logged
 - a.k.a. variable, (data) dimension
 - e.g., a column in a table

D. Koop, CSCI 640/490, Spring 2023

- An attribute is some specific property that can be measured, observed, or

5

Tables

Multidimensional

- Data organized by rows & columns
 - rower item (usually)
- column ~ attribute
- label ~ attributes (columns) attribute name
- Key: identifies each item (row), usually unique
 - Allows join of data from 2+ tables
 - columns, e.g. (state, year) for population
- Compound key: key split among multiple Multidimensional:
 - Split compound key
 - e.g. a data cube with (state, year)

D. Koop, CSCI 640/490, Spring 2023

Northern Illinois University

Attribute Types

Categorical

D. Koop, CSCI 640/490, Spring 2023

→ Ordered

→ Ordinal

→ Quantitative

Northern Illinois University

<u>Assignment 2</u>

- Assignment 1 Questions with pandas, DuckDB, and Ibis
- CS 640 students do all, CS 490 do pandas & DuckDB (lbis is EC)
- Can work by framework or by query
- Most questions can be answered with a single statement... but that statement can take a while to write
 - Read documentation
 - Check hints

Reading

- Wednesday
- Discussing paper:

 - Kandel et al.
 - <u>http://vis.stanford.edu/files/wrangler.pdf</u>
- Read
- Come prepared with questions, thoughts - Compare with how things work in pandas

D. Koop, CSCI 640/490, Spring 2023

- "Wrangler: Interactive Visual Specification of Data Transformation Scripts"

pandas

- data analysis fast and easy in Python
- Built on top of NumPy
- Requirements:
 - Data structures with labeled axes (aligning data)
 - Time series data
 - Arithmetic operations that include metadata (labels)
 - Handle missing data
 - Merge and relational operations

D. Koop, CSCI 640/490, Spring 2023

Contains high-level data structures and manipulation tools designed to make

Series

- A one-dimensional array (with a type) with an **index**
- Index defaults to numbers but can also be text (like a dictionary)
- Allows easier reference to specific items
- obj = pd.Series([7,14,-2,1])
- Basically two arrays: obj.values and obj.index
- Can specify the index explicitly and use strings
- obj2 = pd.Series([4, 7, -5, 3])index=['d', 'b', 'a', 'c'])
- Kind of like fixed-length, ordered dictionary + can create from a dictionary
- obj3 = pd.Series({'Ohio': 35000, 'Texas': 71000,

D. Koop, CSCI 640/490, Spring 2023

'Oregon': 16000, 'Utah': 5000})

Series

- Indexing: s[1] Or s['Oregon']
- Can check for missing data: pd.isnull(s) Or pd.notnull(s)
- Both index and values can have an associated name:
 - s.name = 'population'; s.index.name = 'state'
- Addition and NumPy ops work as expected and preserve the index-value link
- These operations **align**:

In [28]: Out[28]:	\bullet	In [29]: obj Out[29]:	4	In [30]: obj Out[30]:	3 + obj4
Ohio	35000	California	NaN	California	NaN
Oregon	16000	Ohio	35000	Ohio	70000
Texas	71000	Oregon	16000	Oregon	32000
Utah	5000	Texas	71000	Texas	142000
dtype: i	nt64	dtype: float	64	Utah	NaN
				dtype: float	64
				[W. N	/IcKinney, Pyth

- A dictionary of Series (labels for each series)
- A spreadsheet with column headers
- Has an index shared with each series
- Allows easy reference to any cell
- df = DataFrame({'state': ['Ohio', 'Ohio', 'Ohio', 'Nevada'], 'year': [2000, 2001, 2002, 2001], 'pop': [1.5, 1.7, 3.6, 2.4]})
- Index is automatically assigned just as with a series but can be passed in as well via index kwarg
- Can reassign column names by passing columns kwarg

13

<pre>df = pd.read_csv('penguins_lter.csv')</pre>												
	studyName	Sample Number	Species	Region	Island	Stage	Individual ID	Clutch Completion	Date Egg	Culmen Length (mm)		
0	PAL0708	1	Adelie Penguin (Pygoscelis adeliae)	Anvers	Torgersen	Adult, 1 Egg Stage	N1A1	Yes	11/11/07	39.1		
1	PAL0708	2	Adelie Penguin (Pygoscelis adeliae)	Anvers	Torgersen	Adult, 1 Egg Stage	N1A2	Yes	11/11/07	39.5		
2	PAL0708	3	Adelie Penguin (Pygoscelis adeliae)	Anvers	Torgersen	Adult, 1 Egg Stage	N2A1	Yes	11/16/07	40.3		
3	PAL0708	4	Adelie Penguin (Pygoscelis adeliae)	Anvers	Torgersen	Adult, 1 Egg Stage	N2A2	Yes	11/16/07	NaN		
4	PAL0708	5	Adelie Penguin (Pygoscelis adeliae)	Anvers	Torgersen	Adult, 1 Egg Stage	N3A1	Yes	11/16/07	36.7		
339	PAL0910	120	Gentoo penguin (Pygoscelis papua)	Anvers	Biscoe	Adult, 1 Egg Stage	N38A2	No	12/1/09	NaN		
340	PAL0910	121	Gentoo penguin (Pygoscelis papua)	Anvers	Biscoe	Adult, 1 Egg Stage	N39A1	Yes	11/22/09	46.8		
341	PAL0910	122	Gentoo penguin (Pygoscelis papua)	Anvers	Biscoe	Adult, 1 Egg Stage	N39A2	Yes	11/22/09	50.4		
342	PAL0910	123	Gentoo penguin (Pygoscelis papua)	Anvers	Biscoe	Adult, 1 Egg Stage	N43A1	Yes	11/22/09	45.2		
343	PAL0910	124	Gentoo penguin (Pygoscelis papua)	Anvers	Biscoe	Adult, 1 Egg Stage	N43A2	Yes	11/22/09	49.9		

344 rows × 17 columns

	df =	pd.read_csv('penguins_l	ter.csv')							
Column Name	es	studyName	Sample Number	Species	Region	Island	Stage	Individual ID	Clutch Completion	Date Egg	Culmen Length (mm)
	0	PAL0708	1	Adelie Penguin (Pygoscelis adeliae)	Anvers	Torgersen	Adult, 1 Egg Stage	N1A1	Yes	11/11/07	39.1
	1	PAL0708	2	Adelie Penguin (Pygoscelis adeliae)	Anvers	Torgersen	Adult, 1 Egg Stage	N1A2	Yes	11/11/07	39.5
	2	PAL0708	3	Adelie Penguin (Pygoscelis adeliae)	Anvers	Torgersen	Adult, 1 Egg Stage	N2A1	Yes	11/16/07	40.3
	3	PAL0708	4	Adelie Penguin (Pygoscelis adeliae)	Anvers	Torgersen	Adult, 1 Egg Stage	N2A2	Yes	11/16/07	NaN
	4	PAL0708	5	Adelie Penguin (Pygoscelis adeliae)	Anvers	Torgersen	Adult, 1 Egg Stage	N3A1	Yes	11/16/07	36.7
	339	PAL0910	120	Gentoo penguin (Pygoscelis papua)	Anvers	Biscoe	Adult, 1 Egg Stage	N38A2	No	12/1/09	NaN
	340	PAL0910	121	Gentoo penguin (Pygoscelis papua)	Anvers	Biscoe	Adult, 1 Egg Stage	N39A1	Yes	11/22/09	46.8
	341	PAL0910	122	Gentoo penguin (Pygoscelis papua)	Anvers	Biscoe	Adult, 1 Egg Stage	N39A2	Yes	11/22/09	50.4
	342	PAL0910	123	Gentoo penguin (Pygoscelis papua)	Anvers	Biscoe	Adult, 1 Egg Stage	N43A1	Yes	11/22/09	45.2
	343	PAL0910	124	Gentoo penguin (Pygoscelis papua)	Anvers	Biscoe	Adult, 1 Egg Stage	N43A2	Yes	11/22/09	49.9

344 rows × 17 columns

344 rows × 17 columns

D. Koop, CSCI 640/490, Spring 2023

cies	Region	Island	Stage	Individual ID	Clutch Completion	Date Egg	Culmen Length (mm)
celis liae)	Anvers	Torgersen	Adult, 1 Egg Stage	N1A1	Yes	11/11/07	39.1
celis liae)	Anvers	Torgersen	Adult, 1 Egg Stage	N1A2	Yes	11/11/07	39.5
celis liae)	Anvers	Torgersen	Adult, 1 Egg Stage	N2A1	Yes	11/16/07	40.3
celis liae)	Anvers	Torgersen	Adult, 1 Egg Stage	N2A2	Yes	11/16/07	NaN
celis liae)	Anvers	Torgersen	Adult, 1 Egg Stage	N3A1	Yes	11/16/07	36.7
celis pua)	Anvers	Biscoe	Adult, 1 Egg Stage	N38A2	No	12/1/09	NaN
celis pua)	Anvers	Biscoe	Adult, 1 Egg Stage	N39A1	Yes	11/22/09	46.8
celis pua)	Anvers	Biscoe	Adult, 1 Egg Stage	N39A2	Yes	11/22/09	50.4
celis pua)	Anvers	Biscoe	Adult, 1 Egg Stage	N43A1	Yes	11/22/09	45.2
celis pua)	Anvers	Biscoe	Adult, 1 Egg Stage	N43A2	Yes	11/22/09	49.9

	df =	pd.read_csv	('penguins_l	ter.csv')							
Column Names		studyName	Sample Number	Species	Region	Island	Stage	Individual ID	Clutch Completion	Date Egg	Culmen Length (mm)
	0	PAL0708	1	Adelie Penguin (Pygoscelis adeliae)	Anvers	Torgersen	Adult, 1 Egg Stage	N1A1	Yes	11/11/07	39.1
	1	PAL0708	2	Adelie Penguin (Pygoscelis adeliae)	Anvers	Torgersen	Adult, 1 Egg Stage	N1A2	Yes	11/11/07	39.5
	2	PAL0708	3	Adelie Penguin (Pygoscelis adeliae)	Anvers	Torgersen	Adult, 1 Egg Stage	N2A1	Yes	11/16/07	40.3
	3	PAL0708	4	Adelie Penguin (Pygoscelis adeliae)	Anvers	Torgersen	Adult, 1 Egg Stage	N2A2	Yes	11/16/07	NaN
	4	PAL0708	5	Adelie Penguin (Pygoscelis adeliae)	Anvers	Torgersen	Adult, 1 Egg Stage	N3A1	Yes	11/16/07	36.7
Index											
	339	PAL0910	120	Gentoo penguin (Pygoscelis papua)	Anvers	Biscoe	Adult, 1 Egg Stage	N38A2	No	12/1/09	NaN
	340	PAL0910	121	Gentoo penguin (Pygoscelis papua)	Anvers	Biscoe	Adult, 1 Egg Stage	N39A1	Yes	11/22/09	46.8
	341	PAL0910	122	Gentoo penguin (Pygoscelis papua)	Anvers	Biscoe	Adult, 1 Egg Stage	N39A2	Yes	11/22/09	50.4
	342	PAL0910	123	Gentoo penguin (Pygoscelis papua)	Anvers	Biscoe	Adult, 1 Egg Stage	N43A1	Yes	11/22/09	45.2
	343	PAL0910	124	Gentoo penguin (Pygoscelis papua)	Anvers	Biscoe	Adult, 1 Egg Stage	N43A2	Yes	11/22/09	49.9

344 rows × 17 columns

D. Koop, CSCI 640/490, Spring 2023

344 rows × 17 columns

D. Koop, CSCI 640/490, Spring 2023

cies	Region	Island	Stage	Individual ID	Clutch Completion	Date Egg	Culmen Length (mm)
celis liae)	Anvers	Torgersen	Adult, 1 Egg Stage	N1A1	Yes	11/11/07	39.1
celis liae)	Anvers	Torgersen	Adult, 1 Egg Stage	N1A2	Yes	11/11/07	39.5
celis liae)	Anvers	Torgersen	Adult, 1 Egg Stage	N2A1	Yes	11/16/07	40.3
celis liae)	Anvers	Torgersen	Adult, 1 Egg Stage	N2A2	Yes	11/16/07	NaN
celis liae)	Anvers	Torgersen	Adult, 1 Egg Stage	N3A1	Yes	11/16/07	36.7
celis pua)	Anvers	Biscoe	Adult, 1 Egg Stage	N38A2	No	12/1/09	NaN
celis pua)	Anvers	Biscoe	Adult, 1 Egg Stage	N39A1	Yes	11/22/09	46.8
celis pua)	Anvers	Biscoe	Adult, 1 Egg Stage	N39A2	Yes	11/22/09	50.4
celis pua)	Anvers	Biscoe	Adult, 1 Egg Stage	N43A1	Yes	11/22/09	45.2
celis pua)	Anvers	Biscoe	Adult, 1 Egg Stage	N43A2	Yes	11/22/09	49.9

D. Koop, CSCI 640/490, Spring 2023

cies	Region	Island	Stage	Individual ID	Clutch Completion	Date Egg	Culmen Length (mm)
celis liae)	Anvers	Torgersen	Adult, 1 Egg Stage	N1A1	Yes	11/11/07	39.1
celis liae)	Anvers	Torgersen	Adult, 1 Egg Stage	N1A2	Yes	11/11/07	39.5
celis liae)	Anvers	Torgersen	Adult, 1 Egg Stage	N2A1	Yes	11/16/07	40.3
celis liae)	Anvers	Torgersen	Adult, 1 Egg Stage	N2A2	Yes	11/16/07	NaN
celis liae)	Anvers	Torgersen	Adult, 1 Egg Stage	N3A1	Yes	11/16/07	36.7
celis pua)	Anvers	Biscoe	Adult, 1 Egg Stage	N38A2	No	12/1/09	NaN
celis pua)	Anvers	Biscoe	Adult, 1 Egg Stage	N39A1	Yes	11/22/09	46.8
celis pua)	Anvers	Biscoe	Adult, 1 Egg Stage	N39A2	Yes	11/22/09	50.4
celis pua)	Anvers	Biscoe	Adult, 1 Egg Stage	N43A1	Yes	11/22/09	45.2
celis pua)	Anvers	Biscoe	Adult, 1 Egg Stage	N43A2	Yes	11/22/09	49.9

D. Koop, CSCI 640/490, Spring 2023

cies	Region	Island	Stage	Individual ID	Clutch Completion	Date Egg	Culmen Length (mm)
celis liae)	Anvers	Torgersen	Adult, 1 Egg Stage	N1A1	Yes	11/11/07	39.1
celis liae)	Anvers	Torgersen	Adult, 1 Egg Stage	N1A2	Yes	11/11/07	39.5
celis liae)	Anvers	Torgersen	Adult, 1 Egg Stage	N2A1	Yes	11/16/07	40.3
celis liae)	Anvers	Torgersen	Adult, 1 Egg Stage	N2A2	Yes	11/16/07	NaN
celis liae)	Anvers	Torgersen	Adult, 1 Egg Stage	N3A1	Yes	11/16/07	Missing [
celis pua)	Anvers	Biscoe	Adult, 1 Egg Stage	N38A2	No	12/1/09	NaN
celis pua)	Anvers	Biscoe	Adult, 1 Egg Stage	N39A1	Yes	11/22/09	46.8
celis pua)	Anvers	Biscoe	Adult, 1 Egg Stage	N39A2	Yes	11/22/09	50.4
celis pua)	Anvers	Biscoe	Adult, 1 Egg Stage	N43A1	Yes	11/22/09	45.2
celis pua)	Anvers	Biscoe	Adult, 1 Egg Stage	N43A2	Yes	11/22/09	49.9

DataFrame Constructor Inputs

Type

2D ndarray dict of arrays, lists, or tuples NumPy structured/record array dict of Series

dict of dicts

list of dicts or Series

List of lists or tuples Another DataFrame

NumPy MaskedArray

Notes

Treated as the "dict of arrays" case

Series" case.

DataFrame's column labels

Treated as the "2D ndarray" case

D. Koop, CSCI 640/490, Spring 2023

- A matrix of data, passing optional row and column labels
- Each sequence becomes a column in the DataFrame. All sequences must be the same length.
- Each value becomes a column. Indexes from each Series are unioned together to form the result's row index if no explicit index is passed.
- Each inner dict becomes a column. Keys are unioned to form the row index as in the "dict of
- Each item becomes a row in the DataFrame. Union of dict keys or Series indexes become the
- The DataFrame's indexes are used unless different ones are passed
- Like the "2D ndarray" case except masked values become NA/missing in the DataFrame result

[W. McKinney, Python for Data Analysis]

DataFrame Access and Manipulation

- df.values \rightarrow 2D NumPy array
- Accessing a column:
 - df["<column>"]
 - df.<column>
 - Both return Series
 - Dot syntax only works when the column is a valid identifier
- Assigning to a column:
 - df["<column>"] = <scalar> # all cells set to same value
 - df["<column>"] = <array> # values set in order
 - df["<column>"] = <series> # values set according to match between df and series indexes

DataFrame Index

- Similar to index for Series
- Immutable
- Can be shared with multiple structures (DataFrames or Series)
- in operator works with: 'Ohio' in df.index

D. Koop, CSCI 640/490, Spring 2023

n df.index

Index methods and properties

Method	Description
append	Concatenate with additional l
diff	Compute set difference as an l
intersection	Compute set intersection
union	Compute set union
isin	Compute boolean array indica
delete	Compute new Index with elen
drop	Compute new index by deletir
insert	Compute new Index by inserti
is_monotonic	Returns True if each element
is_unique	Returns True if the Index has
unique	Compute the array of unique v

D. Koop, CSCI 640/490, Spring 2023

- Index objects, producing a new Index
- Index

- cating whether each value is contained in the passed collection
- ment at index i deleted
- ing passed values
- ting element at index i
- it is greater than or equal to the previous element
- ns no duplicate values
- values in the Index

[W. McKinney, Python for Data Analysis]

Reindexing

- reindex creates a new object with the data conformed to new index
- obj2 = obj.reindex(['a', 'b', 'c', 'd', 'e'])
- Missing values: handle with kwargs

 - fill value: fill any missing value with a specific value - method='ffill': fill values forward
 - method='bfill': fill values backward
- Data Frames:
 - reindex rows as with series
 - reindex columns using columns kwarg

Dropping entries

- Can drop one or more entries
- Series:
 - new obj = obj.drop('c')
 - -new obj = obj.drop(['d', 'c'])
- Data Frames:
 - axis keyword defines which axis to drop (default 0)
 - $axis=0 \rightarrow rows$, $axis=1 \rightarrow columns$
 - -axis = 'columns'

Indexing

- Same as with NumPy arrays but can use Series's index labels
- Slicing with labels: NumPy is **exclusive**, Pandas is **inclusive**!
 - s = Series(np.arange(4)) s[0:2] # gives two values like numpy
 - s = Series(np.arange(4), index=['a', 'b', 'c', 'd'])s['a':'c'] # gives three values, not two!
- Obtaining data subsets
 - []: get columns by label
 - loc: get rows/cols by label
 - iloc: get rows/cols by position (integer index)
- For single cells (scalars), also have at and iat

Indexing

- s = Series(np.arange(4.), index=[4,3,2,1])
- s[3]
- s.loc[3]
- s.iloc[3]
- s2 = pd.Series(np.arange(4), index=['a','b','c','d'])
- s2[3]

Filtering

Same as with numpy arrays but allows use of column-based criteria

- data [data < 5] = 0
- data[data['three'] > 5]

- data < 5 \rightarrow boolean data frame, can be used to select specific elements

Arithmetic

- Add, subtract, multiply, and divide are element-wise like numpy
- ...but use labels to align
- ...and missing labels lead to NaN (not a number) values

In [28]: obj3		In [29]: obj	4	In [30]: obj	In [30]: obj3 + obj4		
Out[28]:		Out[29]:		Out[30]:			
Ohio	35000	California	NaN	California	NaN		
Oregon	16000	Ohio	35000	Ohio	70000		
Texas	71000	Oregon	16000	Oregon	32000		
Utah	5000	Texas	71000	Texas	142000		
dtype: i	.nt64	dtype: float	64	Utah	NaN		
				dtype: float64			

- also have .add, .subtract, ... that allow fill value argument
- obj3.add(obj4, fill value=0)

Arithmetic between DataFrames and Series

Broadcasting: e.g. apply single row operation across all rows

 Example: 	In [148]: frame Out[148]:				In [149]: series Out[149]:	—	In [150]: frame - series Out[150]:			
		b	d	е	b 0		b	d	е	
	Utah	0	1	2	d 1	Utah	0	0	0	
	Ohio	3	4	5	e 2	Ohio	3	3	3	
	Texas	6	7	8	Name: Utah, dtype: float64	Texas	6	6	6	
	Oregon	9	10	11		Oregon	9	9	9	

• To broadcast over columns, use methods (.add, ...)

In [154]:		frame		In [155]: series3		53
Out[154]:				Out[155]	•	
	b	d	е	Utah	1	
Utah	0	1	2	Ohio	4	
Ohio	3	4	5	Texas	7	
Texas	6	7	8	Oregon	10	
Oregon	9	10	11	Name: d,	dtype:	f]

```
In [156]: frame.sub(series3, axis=0)
         Out[156]:
                b d e
         Utah -1 0 1
         Ohio
               -1 0 1
         Texas -1 0 1
         Oregon -1 0 1
loat64
```


Sorting by Index (sort_index)

• Sort by index (lexicographical):

```
In [168]: obj = Series(range(4), index=['d', 'a', 'b', 'c'])
              In [169]: obj.sort index()
              Out[169]:
                  1
              а
              b
                 2
                  3
              С
              d
                  0
              dtype: int64
• DataFrame sorting:
              In [170]: frame = DataFrame(np.arange(8).reshape((2, 4)), index=['three', 'one'],
                                      columns=['d', 'a', 'b', 'c'])
                 •
              In [171]: frame.sort index()
                                             In [172]: frame.sort_index(axis=1)
              Out[171]:
                                              Out[172]:
                    d a b c
                                                    a b c d
                    4 5 6 7
                                              three 1 2 3 0
              one
              three 0 1 2 3
                                              one
                                                  5674
• axis controls sort rows (0) vs. sort columns (1)
```


Sorting by Value (sort_values)

- sort values method on series - obj.sort values()
- first)
- sort values on DataFrame:
 - df.sort values (<list-of-columns>)
 - df.sort values(by=['a', 'b'])
 - Can also use axis=1 to sort by index labels

D. Koop, CSCI 640/490, Spring 2023

• Missing values (NaN) are at the end by default (na position controls, can be

String Transformation

- One of the reasons for Python's popularity is string/text processing
- split (<delimiter>): break a string into pieces:
 - -s = "12, 13, 14"slist = s.split(',') # ["12", "13", " 14"]
- <delimiter>.join([<str>]): join several strings by a delimiter
 - ":".join(slist) # "12:13: 14"
- strip(): remove leading and trailing whitespace
 - [p.strip() for p in slist] # ["12", "13", "14"]

String Transformation

- replace (<from>, <to>): change substrings to another substring
- upper()/lower(): casing
- index (<str>): find where a substring first occurs (Error if not found)
- find (<str>): same as index but -1 if not found
- startswith()/endswith(): boolean checks for string occurrence

Regular Expressions in Python

- import re
- re.search(<pattern>, <str to check>)
 - Returns None if no match, information about the match otherwise
- Capturing information about what is in a string \rightarrow parentheses
- (d+)/d+/d+ will **capture** information about the month
- match = re.search('(d+)/d+/d+', '12/31/2016') if match: match.group() # 12
- re.findall(<pattern>, <str to check>)
 - Finds all matches in the string, search only finds the first match
- Can pass in flags to alter methods: e.g. re.IGNORECASE

Pandas String Methods

- to the entire series
- Fast (vectorized) on whole columns or datasets
- USe .str.<method name>
- .str is important!
 - data = pd.Series({'Dave': 'dave@google.com',

 - 'Wes': np.nan})

data.str.contains('gmail') data.str.split('@').str[1] data.str[-3:]

• Any column or series can have the string methods (e.g. replace, split) applied

```
'Steve': 'steve@gmail.com',
'Rob': 'rob@gmail.com',
```


Regular Expression Methods

Description			
Return all non-overlapping matching patte			
Like findall, but returns an iterator			
Match pattern at start of string and optiona matches, returns a match object, and other			
Scan string for match to pattern; returning the string as opposed to only at the beginn			
Break string into pieces at each occurrence			
Replace all (sub) or first n occurrences (sult $1, \2, \ldots$ to refer to match group el			

D. Koop, CSCI 640/490, Spring 2023

erns in a string as a list

- ally segment pattern components into groups; if the pattern rwise None
- a match object if so; unlike match, the match can be anywhere in ning
- of pattern
- ubn) of pattern in string with replacement expression; use symbols elements in the replacement string

[W. McKinney, Python for Data Analysis]

Pandas String Methods with Regexs

In [172]: pattern Out[172]: '([A-Z0-9. %+-]+)@([A-Z0-9.-]+)\\.([A-Z]{2,4})' In [173]: data.str.findall(pattern, flags=re.IGNORECASE) Out[173]: [(dave, google, com)] Dave [(rob, gmail, com)] Rob [(steve, gmail, com)] Steve Wes NaN dtype: object In [175]: matches Out[175]: Dave True Rob True Steve True Wes NaN dtype: object

D. Koop, CSCI 640/490, Spring 2023

- In [174]: matches = data.str.match(pattern, flags=re.IGNORECASE)

[W. McKinney, Python for Data Analysis]

Examples

- See <u>Notebook</u>
- Chicago Food Inspection Dataset
 - pandas
 - DuckDB using SQL
 - Ibis

Reading

- Wednesday
- Discussing paper:

 - Kandel et al.
 - <u>http://vis.stanford.edu/files/wrangler.pdf</u>
- Read
- Come prepared with questions, thoughts - Compare with how things work in pandas

D. Koop, CSCI 640/490, Spring 2023

- "Wrangler: Interactive Visual Specification of Data Transformation Scripts"

