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Arrays
• Usually a fixed size—lists are meant to change size 
• Are mutable—tuples are not 
• Store only one type of data—lists and tuples can store anything 
• Are faster to access and manipulate than lists or tuples 
• Can be multidimensional: 
- Can have list of lists or tuple of tuples but no guarantee on shape 
- Multidimensional arrays are rectangles, cubes, etc.
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Why NumPy?
• Fast vectorized array operations for data munging and cleaning, subsetting 

and filtering, transformation, and any other kinds of computations  
• Common array algorithms like sorting, unique, and set operations  
• Efficient descriptive statistics and aggregating/summarizing data  
• Data alignment and relational data manipulations for merging and joining 

together heterogeneous data sets  
• Expressing conditional logic as array expressions instead of loops with if-
elif-else branches  

• Group-wise data manipulations (aggregation, transformation, function 
application).
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NumPy Arrays
• data1 = [6, 7.5, 8, 0, 1] 
arr1 = np.array(data1) 

• Zeros: np.zeros(10), Ones: np.ones((4,5)),  
Empty: np.empty((2,2)) 

• # of dimensions: arr2.ndim, Shape: arr2.shape, Type: arr2.dtype 
• Types: Each array has a fixed type unlike other variables in python
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       [ 0.1913,  0.4544,  0.4519,  0.5535],
       [ 0.5994,  0.8174, -0.9297, -1.2564]])

Figure 4-2. Two-dimensional array slicing

Suppose each name corresponds to a row in the data array and we wanted to select all
the rows with corresponding name 'Bob'. Like arithmetic operations, comparisons
(such as ==) with arrays are also vectorized. Thus, comparing names with the string
'Bob' yields a boolean array:

In [87]: names == 'Bob'
Out[87]: array([ True, False, False, True, False, False, False], dtype=bool)

This boolean array can be passed when indexing the array:

In [88]: data[names == 'Bob']
Out[88]: 
array([[-0.048 ,  0.5433, -0.2349,  1.2792],
       [ 2.1452,  0.8799, -0.0523,  0.0672]])

The boolean array must be of the same length as the axis it’s indexing. You can even
mix and match boolean arrays with slices or integers (or sequences of integers, more
on this later):

In [89]: data[names == 'Bob', 2:]
Out[89]: 
array([[-0.2349,  1.2792],

86 | Chapter 4: NumPy Basics: Arrays and Vectorized Computation

2D Array Slicing
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Assignment 2
• Assignment 1 Questions with pandas, DuckDB, and Ibis 
• CS 640 students do all, CS 490 do pandas & DuckDB (Ibis is EC) 
• Can work by framework or by query 
• Most questions can be answered with a single statement… but that 

statement can take a while to write 
- Read documentation 
- Check hints
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More Reshaping
• reshape: 

- arr2.reshape(4,2) # returns new view 

• resize: 
- arr2.resize(4,2) # no return, modifies arr2 in place 

• flatten:  
- arr2.flatten() # array([1.5,2.,3.,4.,5.,6.,7.,8.]) 

• ravel: 
- arr2.ravel() # array([1.5,2.,3.,4.,5.,6.,7.,8.]) 

• flatten and ravel look the same, but ravel is a view
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Boolean Indexing
• names == 'Bob' gives back booleans that represent the element-wise 

comparison with the array names 
• Boolean arrays can be used to index into another array: 

- data[names == 'Bob'] 

• Can even mix and match with integer slicing 
• Can do boolean operations (&, |) between arrays (just like addition, 

subtraction) 
- data[(names == 'Bob') | (names == 'Will')] 

• Note: or and and do not work with arrays 
• We can set values too!   data[data < 0] = 0
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Array Transformations
• Transpose 

- arr2.T # flip rows and columns 

• Stacking: take iterable of arrays and stack them horizontally/vertically  
- arrh1 = np.arange(3) 

- arrh2 = np.arange(3,6) 

- np.vstack([arrh1, arrh2]) 

- np.hstack([arr1.T, arr2.T]) # ???
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numpy Functions
• Unary: abs, sqrt, log, ceil, sin, cos, tan, arccos, arcsin, … 
• Binary: add, subtract, multiple, divide, … <, >, >=, <=, ==, != 
• Statistics: sum, mean, std, min, max, argmin, argmax 
• Boolean: any, all 
• Others: sort, unique 
• Linear Algebra (numpy.linalg) 
• Pseudorandom Number Generation (numpy.random)
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Data
• What is data? 
- Types 
- Semantics 

• How is data structured? 
- Tables (Data Frames) 
- Databases 
- Data Cubes 

• What formats is data stored in? 
• Raw versus derived data
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Data
• What is this data? 

• Semantics: real-world meaning of the data 
• Type: structural or mathematical interpretation 
• Both often require metadata 
- Sometimes we can infer some of this information 
- Line between data and metadata isn’t always clear
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Data
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Tables

Attributes (columns)

Items 
(rows)

Cell containing value

Networks

Link

Node 
(item)

Trees

Fields (Continuous)

Attributes (columns)

Value in cell

Cell

Multidimensional Table

Value in cell

Grid of positions

Geometry (Spatial)

Position

Dataset TypesDataset Types
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Data Terminology
• Items 
- An item is an individual discrete entity 
- e.g., a row in a table 

• Attributes 
- An attribute is some specific property that can be measured, observed, or 

logged 
- a.k.a. variable, (data) dimension 
- e.g., a column in a table
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Fieldattribute

item
cell

Tables
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Attribute Semantics
Keys vs. Values (Tables) or Independent vs. Dependent (Fields)

Flat

Multidimensional

Ta
bl

es

Fi
el

ds

Tables
• Data organized by rows & columns 
- row ~ item (usually) 
- column ~ attribute 
- label ~ attribute name 

• Key: identifies each item (row), usually unique 
- Allows join of data from 2+ tables 
- Compound key: key split among multiple 

columns, e.g. (state, year) for population 
• Multidimensional: 
- Split compound key 
- e.g. a data cube with (state, year)
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Attributes

Attribute Types

Ordering Direction

Categorical Ordered

Ordinal Quantitative

Sequential Diverging Cyclic

Attribute Types
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23
1 = Quantitative
2 = Nominal
3 = Ordinal

 quantitative
 ordinal
 categorical

Categorial, Ordinal, and Quantitative
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24
1 = Quantitative
2 = Nominal
3 = Ordinal

 quantitative
 ordinal
 categorical

Categorial, Ordinal, and Quantitative
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Attribute Types
• May be further specified for computational storage/processing 
- Categorical: string, boolean, blood type 
- Ordered: enumeration, t-shirt size 
- Quantitative: integer, float, fixed decimal, datetime 

• Sometimes, types can be inferred from the data 
- e.g. numbers and none have decimal points → integer 
- could be incorrect (data doesn't have floats, but could be)
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Attributes

Attribute Types

Ordering Direction

Categorical Ordered

Ordinal Quantitative

Sequential Diverging Cyclic

Ordering Direction
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Sequential and Diverging Data
• Sequential: homogenous range from a 

minimum to a maximum 
- Examples: Land elevations, ocean depths 

• Diverging: can be deconstructed into two 
sequences pointing in opposite directions 
- Has a zero point (not necessary 0) 
- Example: Map of both land elevation and 

ocean depth
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Cyclic Data
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Cyclic Data
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Semantics
• The meaning of the data
• Example: 94023, 90210, 02747, 60115
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Semantics
• The meaning of the data
• Example: 94023, 90210, 02747, 60115
- Attendance at college football games?

26D. Koop, CSCI 640/490, Spring 2023



Semantics
• The meaning of the data
• Example: 94023, 90210, 02747, 60115
- Attendance at college football games?
- Salaries?
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Semantics
• The meaning of the data
• Example: 94023, 90210, 02747, 60115
- Attendance at college football games?
- Salaries?
- Zip codes?

• Cannot always infer based on what the data looks like
• Often require semantics to better understand data, column names help
• May also include rules about data: a zip code is part of an address that 

uniquely identifies a residence
• Useful for asking good questions about the data
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Data Model vs. Conceptual Model
• Data Model: raw data that has a specific data type (e.g. floats):
- Temperature Example: [32.5, 54.0, -17.3] (floats)

• Conceptual Model: how we think about the data
- Includes semantics, reasoning
- Temperature Example:

• Quantitative: [32.50, 54.00, -17.30]
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Data Model vs. Conceptual Model
• Data Model: raw data that has a specific data type (e.g. floats):
- Temperature Example: [32.5, 54.0, -17.3] (floats)

• Conceptual Model: how we think about the data
- Includes semantics, reasoning
- Temperature Example:

• Quantitative: [32.50, 54.00, -17.30]
• Ordered: [warm, hot, cold]
• Categorical: [not burned, burned, not burned]
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Derived Data
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Derived Data
• Often, data in its original form isn't as useful as we would like
• Examples: Data about a basketball team's games
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Derived Data
• Often, data in its original form isn't as useful as we would like
• Examples: Data about a basketball team's games
• Example 1: 1stHalfPoints, 2ndHalfPoints 
- More useful to know total number of points 
- Points = 1stHalfPoints + 2ndHalfPoints

• Example 2: Points, OpponentPoints 
- Want to have a column indicating win/loss 
- Win = True if (Points > OpponentPoints) else False

• Example 3: Points 
- Want to have a column indicating how that point total ranks 
- Rank = index in sorted list of all Point values
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pandas
• Contains high-level data structures and manipulation tools designed to make 

data analysis fast and easy in Python 
• Built on top of NumPy 
• Requirements: 
- Data structures with labeled axes (aligning data) 
- Time series data 
- Arithmetic operations that include metadata (labels) 
- Handle missing data 
- Merge and relational operations

29D. Koop, CSCI 640/490, Spring 2023



Pandas Code Conventions
• Universal: 

- import pandas as pd 

• Also used: 
- from pandas import Series, DataFrame
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Series
• A one-dimensional array (with a type) with an index 
• Index defaults to numbers but can also be text (like a dictionary) 
• Allows easier reference to specific items 
• obj = pd.Series([7,14,-2,1]) 

• Basically two arrays: obj.values and obj.index 
• Can specify the index explicitly and use strings 
• obj2 = pd.Series([4, 7, -5, 3],  
                 index=['d', 'b', 'a', 'c']) 

• Kind of like fixed-length, ordered dictionary + can create from a dictionary 
• obj3 = pd.Series({'Ohio': 35000, 'Texas': 71000, 
                  'Oregon': 16000, 'Utah': 5000})
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Series
• Indexing: s[1] or s['Oregon'] 
• Can check for missing data: pd.isnull(s) or pd.notnull(s) 
• Both index and values can have an associated name: 

- s.name = 'population'; s.index.name = 'state' 

• Addition and NumPy ops work as expected and preserve the index-value link 
• These operations align:
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When only passing a dict, the index in the resulting Series will have the dict’s keys in
sorted order.

In [22]: states = ['California', 'Ohio', 'Oregon', 'Texas']

In [23]: obj4 = Series(sdata, index=states)

In [24]: obj4
Out[24]: 
California      NaN
Ohio          35000
Oregon        16000
Texas         71000
dtype: float64

In this case, 3 values found in sdata were placed in the appropriate locations, but since
no value for 'California' was found, it appears as NaN (not a number) which is con-
sidered in pandas to mark missing or NA values. I will use the terms “missing” or “NA”
to refer to missing data. The isnull and notnull functions in pandas should be used to
detect missing data:

In [25]: pd.isnull(obj4)      In [26]: pd.notnull(obj4)
Out[25]:                      Out[26]:                 
California     True           California    False      
Ohio          False           Ohio           True      
Oregon        False           Oregon         True      
Texas         False           Texas          True      
dtype: bool                   dtype: bool 

Series also has these as instance methods:

In [27]: obj4.isnull()
Out[27]: 
California     True
Ohio          False
Oregon        False
Texas         False
dtype: bool

I discuss working with missing data in more detail later in this chapter.

A critical Series feature for many applications is that it automatically aligns differently-
indexed data in arithmetic operations:

In [28]: obj3          In [29]: obj4      
Out[28]:               Out[29]:           
Ohio      35000        California      NaN
Oregon    16000        Ohio          35000
Texas     71000        Oregon        16000
Utah       5000        Texas         71000
dtype: int64           dtype: float64     
                                          
In [30]: obj3 + obj4
Out[30]: 
California       NaN
Ohio           70000
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Oregon         32000
Texas         142000
Utah             NaN
dtype: float64

Data alignment features are addressed as a separate topic.

Both the Series object itself and its index have a name attribute, which integrates with
other key areas of pandas functionality:

In [31]: obj4.name = 'population'

In [32]: obj4.index.name = 'state'

In [33]: obj4
Out[33]: 
state
California      NaN
Ohio          35000
Oregon        16000
Texas         71000
Name: population, dtype: float64

A Series’s index can be altered in place by assignment:

In [34]: obj.index = ['Bob', 'Steve', 'Jeff', 'Ryan']

In [35]: obj
Out[35]: 
Bob      4
Steve    7
Jeff    -5
Ryan     3
dtype: int64

DataFrame
A DataFrame represents a tabular, spreadsheet-like data structure containing an or-
dered collection of columns, each of which can be a different value type (numeric,
string, boolean, etc.). The DataFrame has both a row and column index; it can be
thought of as a dict of Series (one for all sharing the same index). Compared with other
such DataFrame-like structures you may have used before (like R’s data.frame), row-
oriented and column-oriented operations in DataFrame are treated roughly symmet-
rically. Under the hood, the data is stored as one or more two-dimensional blocks rather
than a list, dict, or some other collection of one-dimensional arrays. The exact details
of DataFrame’s internals are far outside the scope of this book.

While DataFrame stores the data internally in a two-dimensional for-
mat, you can easily represent much higher-dimensional data in a tabular
format using hierarchical indexing, a subject of a later section and a key
ingredient in many of the more advanced data-handling features in pan-
das.
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Data Frame
• A dictionary of Series (labels for each series) 
• A spreadsheet with column headers 
• Has an index shared with each series 
• Allows easy reference to any cell 
• df = DataFrame({'state': ['Ohio', 'Ohio', 'Ohio', 'Nevada'], 
                'year': [2000, 2001, 2002, 2001], 
                'pop': [1.5, 1.7, 3.6, 2.4]}) 

• Index is automatically assigned just as with a series but can be passed in as 
well via index kwarg 

• Can reassign column names by passing columns kwarg
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Data Frame
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Data Frame
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Column Names



Data Frame
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Column Names

Index



Data Frame
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Column Names

Index

Column: df['Island']



Data Frame
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Column Names

Index

Column: df['Island']

Row: df.loc[2]



Data Frame
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Column Names

Index

Column: df['Island']

Cell: df.loc[341,'Species']

Row: df.loc[2]



Data Frame
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Column Names

Index

Column: df['Island']

Cell: df.loc[341,'Species']

Missing Data

Row: df.loc[2]


