
Advanced Data Management (CSCI 640/490)

Data & Pandas

Dr. David Koop

D. Koop, CSCI 640/490, Spring 2023

Arrays
• Usually a fixed size—lists are meant to change size
• Are mutable—tuples are not
• Store only one type of data—lists and tuples can store anything
• Are faster to access and manipulate than lists or tuples
• Can be multidimensional:
- Can have list of lists or tuple of tuples but no guarantee on shape
- Multidimensional arrays are rectangles, cubes, etc.

2D. Koop, CSCI 640/490, Spring 2023

Why NumPy?
• Fast vectorized array operations for data munging and cleaning, subsetting

and filtering, transformation, and any other kinds of computations
• Common array algorithms like sorting, unique, and set operations
• Efficient descriptive statistics and aggregating/summarizing data
• Data alignment and relational data manipulations for merging and joining

together heterogeneous data sets
• Expressing conditional logic as array expressions instead of loops with if-
elif-else branches

• Group-wise data manipulations (aggregation, transformation, function
application).

3

[W. McKinney, Python for Data Analysis]
D. Koop, CSCI 640/490, Spring 2023

NumPy Arrays
• data1 = [6, 7.5, 8, 0, 1]
arr1 = np.array(data1)

• Zeros: np.zeros(10), Ones: np.ones((4,5)),
Empty: np.empty((2,2))

• # of dimensions: arr2.ndim, Shape: arr2.shape, Type: arr2.dtype
• Types: Each array has a fixed type unlike other variables in python

4D. Koop, CSCI 640/490, Spring 2023

 [0.1913, 0.4544, 0.4519, 0.5535],
 [0.5994, 0.8174, -0.9297, -1.2564]])

Figure 4-2. Two-dimensional array slicing

Suppose each name corresponds to a row in the data array and we wanted to select all
the rows with corresponding name 'Bob'. Like arithmetic operations, comparisons
(such as ==) with arrays are also vectorized. Thus, comparing names with the string
'Bob' yields a boolean array:

In [87]: names == 'Bob'
Out[87]: array([True, False, False, True, False, False, False], dtype=bool)

This boolean array can be passed when indexing the array:

In [88]: data[names == 'Bob']
Out[88]:
array([[-0.048 , 0.5433, -0.2349, 1.2792],
 [2.1452, 0.8799, -0.0523, 0.0672]])

The boolean array must be of the same length as the axis it’s indexing. You can even
mix and match boolean arrays with slices or integers (or sequences of integers, more
on this later):

In [89]: data[names == 'Bob', 2:]
Out[89]:
array([[-0.2349, 1.2792],

86 | Chapter 4: NumPy Basics: Arrays and Vectorized Computation

2D Array Slicing

5

[W. McKinney, Python for Data Analysis]
D. Koop, CSCI 640/490, Spring 2023

How to obtain the blue slice
from array arr?

 [0.1913, 0.4544, 0.4519, 0.5535],
 [0.5994, 0.8174, -0.9297, -1.2564]])

Figure 4-2. Two-dimensional array slicing

Suppose each name corresponds to a row in the data array and we wanted to select all
the rows with corresponding name 'Bob'. Like arithmetic operations, comparisons
(such as ==) with arrays are also vectorized. Thus, comparing names with the string
'Bob' yields a boolean array:

In [87]: names == 'Bob'
Out[87]: array([True, False, False, True, False, False, False], dtype=bool)

This boolean array can be passed when indexing the array:

In [88]: data[names == 'Bob']
Out[88]:
array([[-0.048 , 0.5433, -0.2349, 1.2792],
 [2.1452, 0.8799, -0.0523, 0.0672]])

The boolean array must be of the same length as the axis it’s indexing. You can even
mix and match boolean arrays with slices or integers (or sequences of integers, more
on this later):

In [89]: data[names == 'Bob', 2:]
Out[89]:
array([[-0.2349, 1.2792],

86 | Chapter 4: NumPy Basics: Arrays and Vectorized Computation

2D Array Slicing

5

[W. McKinney, Python for Data Analysis]
D. Koop, CSCI 640/490, Spring 2023

How to obtain the blue slice
from array arr?

 [0.1913, 0.4544, 0.4519, 0.5535],
 [0.5994, 0.8174, -0.9297, -1.2564]])

Figure 4-2. Two-dimensional array slicing

Suppose each name corresponds to a row in the data array and we wanted to select all
the rows with corresponding name 'Bob'. Like arithmetic operations, comparisons
(such as ==) with arrays are also vectorized. Thus, comparing names with the string
'Bob' yields a boolean array:

In [87]: names == 'Bob'
Out[87]: array([True, False, False, True, False, False, False], dtype=bool)

This boolean array can be passed when indexing the array:

In [88]: data[names == 'Bob']
Out[88]:
array([[-0.048 , 0.5433, -0.2349, 1.2792],
 [2.1452, 0.8799, -0.0523, 0.0672]])

The boolean array must be of the same length as the axis it’s indexing. You can even
mix and match boolean arrays with slices or integers (or sequences of integers, more
on this later):

In [89]: data[names == 'Bob', 2:]
Out[89]:
array([[-0.2349, 1.2792],

86 | Chapter 4: NumPy Basics: Arrays and Vectorized Computation

2D Array Slicing

5

[W. McKinney, Python for Data Analysis]
D. Koop, CSCI 640/490, Spring 2023

How to obtain the blue slice
from array arr?

 [0.1913, 0.4544, 0.4519, 0.5535],
 [0.5994, 0.8174, -0.9297, -1.2564]])

Figure 4-2. Two-dimensional array slicing

Suppose each name corresponds to a row in the data array and we wanted to select all
the rows with corresponding name 'Bob'. Like arithmetic operations, comparisons
(such as ==) with arrays are also vectorized. Thus, comparing names with the string
'Bob' yields a boolean array:

In [87]: names == 'Bob'
Out[87]: array([True, False, False, True, False, False, False], dtype=bool)

This boolean array can be passed when indexing the array:

In [88]: data[names == 'Bob']
Out[88]:
array([[-0.048 , 0.5433, -0.2349, 1.2792],
 [2.1452, 0.8799, -0.0523, 0.0672]])

The boolean array must be of the same length as the axis it’s indexing. You can even
mix and match boolean arrays with slices or integers (or sequences of integers, more
on this later):

In [89]: data[names == 'Bob', 2:]
Out[89]:
array([[-0.2349, 1.2792],

86 | Chapter 4: NumPy Basics: Arrays and Vectorized Computation

2D Array Slicing

5

[W. McKinney, Python for Data Analysis]
D. Koop, CSCI 640/490, Spring 2023

How to obtain the blue slice
from array arr?

 [0.1913, 0.4544, 0.4519, 0.5535],
 [0.5994, 0.8174, -0.9297, -1.2564]])

Figure 4-2. Two-dimensional array slicing

Suppose each name corresponds to a row in the data array and we wanted to select all
the rows with corresponding name 'Bob'. Like arithmetic operations, comparisons
(such as ==) with arrays are also vectorized. Thus, comparing names with the string
'Bob' yields a boolean array:

In [87]: names == 'Bob'
Out[87]: array([True, False, False, True, False, False, False], dtype=bool)

This boolean array can be passed when indexing the array:

In [88]: data[names == 'Bob']
Out[88]:
array([[-0.048 , 0.5433, -0.2349, 1.2792],
 [2.1452, 0.8799, -0.0523, 0.0672]])

The boolean array must be of the same length as the axis it’s indexing. You can even
mix and match boolean arrays with slices or integers (or sequences of integers, more
on this later):

In [89]: data[names == 'Bob', 2:]
Out[89]:
array([[-0.2349, 1.2792],

86 | Chapter 4: NumPy Basics: Arrays and Vectorized Computation

2D Array Slicing

5

[W. McKinney, Python for Data Analysis]
D. Koop, CSCI 640/490, Spring 2023

How to obtain the blue slice
from array arr?

Assignment 2
• Assignment 1 Questions with pandas, DuckDB, and Ibis
• CS 640 students do all, CS 490 do pandas & DuckDB (Ibis is EC)
• Can work by framework or by query
• Most questions can be answered with a single statement… but that

statement can take a while to write
- Read documentation
- Check hints

6D. Koop, CSCI 640/490, Spring 2023

https://faculty.cs.niu.edu/~dakoop/cs640-2023sp/assignment2.html

More Reshaping
• reshape:

- arr2.reshape(4,2) # returns new view

• resize:
- arr2.resize(4,2) # no return, modifies arr2 in place

• flatten:
- arr2.flatten() # array([1.5,2.,3.,4.,5.,6.,7.,8.])

• ravel:
- arr2.ravel() # array([1.5,2.,3.,4.,5.,6.,7.,8.])

• flatten and ravel look the same, but ravel is a view

7D. Koop, CSCI 640/490, Spring 2023

Boolean Indexing
• names == 'Bob' gives back booleans that represent the element-wise

comparison with the array names
• Boolean arrays can be used to index into another array:

- data[names == 'Bob']

• Can even mix and match with integer slicing
• Can do boolean operations (&, |) between arrays (just like addition,

subtraction)
- data[(names == 'Bob') | (names == 'Will')]

• Note: or and and do not work with arrays
• We can set values too! data[data < 0] = 0

8D. Koop, CSCI 640/490, Spring 2023

Array Transformations
• Transpose

- arr2.T # flip rows and columns

• Stacking: take iterable of arrays and stack them horizontally/vertically
- arrh1 = np.arange(3)

- arrh2 = np.arange(3,6)

- np.vstack([arrh1, arrh2])

- np.hstack([arr1.T, arr2.T]) # ???

9D. Koop, CSCI 640/490, Spring 2023

numpy Functions
• Unary: abs, sqrt, log, ceil, sin, cos, tan, arccos, arcsin, …
• Binary: add, subtract, multiple, divide, … <, >, >=, <=, ==, !=
• Statistics: sum, mean, std, min, max, argmin, argmax
• Boolean: any, all
• Others: sort, unique
• Linear Algebra (numpy.linalg)
• Pseudorandom Number Generation (numpy.random)

10D. Koop, CSCI 640/490, Spring 2023

11

Data

D. Koop, CSCI 640/490, Spring 2023

Data
• What is data?
- Types
- Semantics

• How is data structured?
- Tables (Data Frames)
- Databases
- Data Cubes

• What formats is data stored in?
• Raw versus derived data

12D. Koop, CSCI 640/490, Spring 2023

Data
• What is this data?

• Semantics: real-world meaning of the data
• Type: structural or mathematical interpretation
• Both often require metadata
- Sometimes we can infer some of this information
- Line between data and metadata isn’t always clear

13D. Koop, CSCI 640/490, Spring 2023

Data

14D. Koop, CSCI 640/490, Spring 2023

Tables

Attributes (columns)

Items
(rows)

Cell containing value

Networks

Link

Node
(item)

Trees

Fields (Continuous)

Attributes (columns)

Value in cell

Cell

Multidimensional Table

Value in cell

Grid of positions

Geometry (Spatial)

Position

Dataset TypesDataset Types

15

[Munzner (ill. Maguire), 2014]
D. Koop, CSCI 640/490, Spring 2023

Data Terminology
• Items
- An item is an individual discrete entity
- e.g., a row in a table

• Attributes
- An attribute is some specific property that can be measured, observed, or

logged
- a.k.a. variable, (data) dimension
- e.g., a column in a table

16D. Koop, CSCI 640/490, Spring 2023

Fieldattribute

item
cell

Tables

17D. Koop, CSCI 640/490, Spring 2023

Attribute Semantics
Keys vs. Values (Tables) or Independent vs. Dependent (Fields)

Flat

Multidimensional

Ta
bl

es

Fi
el

ds

Tables
• Data organized by rows & columns
- row ~ item (usually)
- column ~ attribute
- label ~ attribute name

• Key: identifies each item (row), usually unique
- Allows join of data from 2+ tables
- Compound key: key split among multiple

columns, e.g. (state, year) for population
• Multidimensional:
- Split compound key
- e.g. a data cube with (state, year)

18

[Munzner (ill. Maguire), 2014]
D. Koop, CSCI 640/490, Spring 2023

Attributes

Attribute Types

Ordering Direction

Categorical Ordered

Ordinal Quantitative

Sequential Diverging Cyclic

Attribute Types

19

[Munzner (ill. Maguire), 2014]
D. Koop, CSCI 640/490, Spring 2023

23
1 = Quantitative
2 = Nominal
3 = Ordinal

 quantitative
 ordinal
 categorical

Categorial, Ordinal, and Quantitative

20D. Koop, CSCI 640/490, Spring 2023

24
1 = Quantitative
2 = Nominal
3 = Ordinal

 quantitative
 ordinal
 categorical

Categorial, Ordinal, and Quantitative

21D. Koop, CSCI 640/490, Spring 2023

Attribute Types
• May be further specified for computational storage/processing
- Categorical: string, boolean, blood type
- Ordered: enumeration, t-shirt size
- Quantitative: integer, float, fixed decimal, datetime

• Sometimes, types can be inferred from the data
- e.g. numbers and none have decimal points → integer
- could be incorrect (data doesn't have floats, but could be)

22D. Koop, CSCI 640/490, Spring 2023

Attributes

Attribute Types

Ordering Direction

Categorical Ordered

Ordinal Quantitative

Sequential Diverging Cyclic

Ordering Direction

23

[Munzner (ill. Maguire), 2014]
D. Koop, CSCI 640/490, Spring 2023

Sequential and Diverging Data
• Sequential: homogenous range from a

minimum to a maximum
- Examples: Land elevations, ocean depths

• Diverging: can be deconstructed into two
sequences pointing in opposite directions
- Has a zero point (not necessary 0)
- Example: Map of both land elevation and

ocean depth

24

[Rogowitz & Treinish, 1998]
D. Koop, CSCI 640/490, Spring 2023

Sequential and Diverging Data
• Sequential: homogenous range from a

minimum to a maximum
- Examples: Land elevations, ocean depths

• Diverging: can be deconstructed into two
sequences pointing in opposite directions
- Has a zero point (not necessary 0)
- Example: Map of both land elevation and

ocean depth

24

[Rogowitz & Treinish, 1998]
D. Koop, CSCI 640/490, Spring 2023

Cyclic Data

25D. Koop, CSCI 640/490, Spring 2023

Cyclic Data

25D. Koop, CSCI 640/490, Spring 2023

Semantics
• The meaning of the data
• Example: 94023, 90210, 02747, 60115

26D. Koop, CSCI 640/490, Spring 2023

Semantics
• The meaning of the data
• Example: 94023, 90210, 02747, 60115
- Attendance at college football games?

26D. Koop, CSCI 640/490, Spring 2023

Semantics
• The meaning of the data
• Example: 94023, 90210, 02747, 60115
- Attendance at college football games?
- Salaries?

26D. Koop, CSCI 640/490, Spring 2023

Semantics
• The meaning of the data
• Example: 94023, 90210, 02747, 60115
- Attendance at college football games?
- Salaries?
- Zip codes?

• Cannot always infer based on what the data looks like
• Often require semantics to better understand data, column names help
• May also include rules about data: a zip code is part of an address that

uniquely identifies a residence
• Useful for asking good questions about the data

26D. Koop, CSCI 640/490, Spring 2023

Data Model vs. Conceptual Model
• Data Model: raw data that has a specific data type (e.g. floats):
- Temperature Example: [32.5, 54.0, -17.3] (floats)

• Conceptual Model: how we think about the data
- Includes semantics, reasoning
- Temperature Example:

• Quantitative: [32.50, 54.00, -17.30]

27

[via A. Lex, 2015]
D. Koop, CSCI 640/490, Spring 2023

Data Model vs. Conceptual Model
• Data Model: raw data that has a specific data type (e.g. floats):
- Temperature Example: [32.5, 54.0, -17.3] (floats)

• Conceptual Model: how we think about the data
- Includes semantics, reasoning
- Temperature Example:

• Quantitative: [32.50, 54.00, -17.30]
• Ordered: [warm, hot, cold]

27

[via A. Lex, 2015]
D. Koop, CSCI 640/490, Spring 2023

Data Model vs. Conceptual Model
• Data Model: raw data that has a specific data type (e.g. floats):
- Temperature Example: [32.5, 54.0, -17.3] (floats)

• Conceptual Model: how we think about the data
- Includes semantics, reasoning
- Temperature Example:

• Quantitative: [32.50, 54.00, -17.30]
• Ordered: [warm, hot, cold]
• Categorical: [not burned, burned, not burned]

27

[via A. Lex, 2015]
D. Koop, CSCI 640/490, Spring 2023

Derived Data

28D. Koop, CSCI 640/490, Spring 2023

Derived Data
• Often, data in its original form isn't as useful as we would like
• Examples: Data about a basketball team's games

28D. Koop, CSCI 640/490, Spring 2023

Derived Data
• Often, data in its original form isn't as useful as we would like
• Examples: Data about a basketball team's games
• Example 1: 1stHalfPoints, 2ndHalfPoints
- More useful to know total number of points
- Points = 1stHalfPoints + 2ndHalfPoints

28D. Koop, CSCI 640/490, Spring 2023

Derived Data
• Often, data in its original form isn't as useful as we would like
• Examples: Data about a basketball team's games
• Example 1: 1stHalfPoints, 2ndHalfPoints
- More useful to know total number of points
- Points = 1stHalfPoints + 2ndHalfPoints

• Example 2: Points, OpponentPoints
- Want to have a column indicating win/loss
- Win = True if (Points > OpponentPoints) else False

28D. Koop, CSCI 640/490, Spring 2023

Derived Data
• Often, data in its original form isn't as useful as we would like
• Examples: Data about a basketball team's games
• Example 1: 1stHalfPoints, 2ndHalfPoints
- More useful to know total number of points
- Points = 1stHalfPoints + 2ndHalfPoints

• Example 2: Points, OpponentPoints
- Want to have a column indicating win/loss
- Win = True if (Points > OpponentPoints) else False

• Example 3: Points
- Want to have a column indicating how that point total ranks
- Rank = index in sorted list of all Point values

28D. Koop, CSCI 640/490, Spring 2023

pandas
• Contains high-level data structures and manipulation tools designed to make

data analysis fast and easy in Python
• Built on top of NumPy
• Requirements:
- Data structures with labeled axes (aligning data)
- Time series data
- Arithmetic operations that include metadata (labels)
- Handle missing data
- Merge and relational operations

29D. Koop, CSCI 640/490, Spring 2023

Pandas Code Conventions
• Universal:

- import pandas as pd

• Also used:
- from pandas import Series, DataFrame

30D. Koop, CSCI 640/490, Spring 2023

Series
• A one-dimensional array (with a type) with an index
• Index defaults to numbers but can also be text (like a dictionary)
• Allows easier reference to specific items
• obj = pd.Series([7,14,-2,1])

• Basically two arrays: obj.values and obj.index
• Can specify the index explicitly and use strings
• obj2 = pd.Series([4, 7, -5, 3],
 index=['d', 'b', 'a', 'c'])

• Kind of like fixed-length, ordered dictionary + can create from a dictionary
• obj3 = pd.Series({'Ohio': 35000, 'Texas': 71000,
 'Oregon': 16000, 'Utah': 5000})

31D. Koop, CSCI 640/490, Spring 2023

Series
• Indexing: s[1] or s['Oregon']
• Can check for missing data: pd.isnull(s) or pd.notnull(s)
• Both index and values can have an associated name:

- s.name = 'population'; s.index.name = 'state'

• Addition and NumPy ops work as expected and preserve the index-value link
• These operations align:

32

[W. McKinney, Python for Data Analysis]
D. Koop, CSCI 640/490, Spring 2023

When only passing a dict, the index in the resulting Series will have the dict’s keys in
sorted order.

In [22]: states = ['California', 'Ohio', 'Oregon', 'Texas']

In [23]: obj4 = Series(sdata, index=states)

In [24]: obj4
Out[24]:
California NaN
Ohio 35000
Oregon 16000
Texas 71000
dtype: float64

In this case, 3 values found in sdata were placed in the appropriate locations, but since
no value for 'California' was found, it appears as NaN (not a number) which is con-
sidered in pandas to mark missing or NA values. I will use the terms “missing” or “NA”
to refer to missing data. The isnull and notnull functions in pandas should be used to
detect missing data:

In [25]: pd.isnull(obj4) In [26]: pd.notnull(obj4)
Out[25]: Out[26]:
California True California False
Ohio False Ohio True
Oregon False Oregon True
Texas False Texas True
dtype: bool dtype: bool

Series also has these as instance methods:

In [27]: obj4.isnull()
Out[27]:
California True
Ohio False
Oregon False
Texas False
dtype: bool

I discuss working with missing data in more detail later in this chapter.

A critical Series feature for many applications is that it automatically aligns differently-
indexed data in arithmetic operations:

In [28]: obj3 In [29]: obj4
Out[28]: Out[29]:
Ohio 35000 California NaN
Oregon 16000 Ohio 35000
Texas 71000 Oregon 16000
Utah 5000 Texas 71000
dtype: int64 dtype: float64

In [30]: obj3 + obj4
Out[30]:
California NaN
Ohio 70000

110 | Chapter 5: Getting Started with pandas

When only passing a dict, the index in the resulting Series will have the dict’s keys in
sorted order.

In [22]: states = ['California', 'Ohio', 'Oregon', 'Texas']

In [23]: obj4 = Series(sdata, index=states)

In [24]: obj4
Out[24]:
California NaN
Ohio 35000
Oregon 16000
Texas 71000
dtype: float64

In this case, 3 values found in sdata were placed in the appropriate locations, but since
no value for 'California' was found, it appears as NaN (not a number) which is con-
sidered in pandas to mark missing or NA values. I will use the terms “missing” or “NA”
to refer to missing data. The isnull and notnull functions in pandas should be used to
detect missing data:

In [25]: pd.isnull(obj4) In [26]: pd.notnull(obj4)
Out[25]: Out[26]:
California True California False
Ohio False Ohio True
Oregon False Oregon True
Texas False Texas True
dtype: bool dtype: bool

Series also has these as instance methods:

In [27]: obj4.isnull()
Out[27]:
California True
Ohio False
Oregon False
Texas False
dtype: bool

I discuss working with missing data in more detail later in this chapter.

A critical Series feature for many applications is that it automatically aligns differently-
indexed data in arithmetic operations:

In [28]: obj3 In [29]: obj4
Out[28]: Out[29]:
Ohio 35000 California NaN
Oregon 16000 Ohio 35000
Texas 71000 Oregon 16000
Utah 5000 Texas 71000
dtype: int64 dtype: float64

In [30]: obj3 + obj4
Out[30]:
California NaN
Ohio 70000

110 | Chapter 5: Getting Started with pandas

Oregon 32000
Texas 142000
Utah NaN
dtype: float64

Data alignment features are addressed as a separate topic.

Both the Series object itself and its index have a name attribute, which integrates with
other key areas of pandas functionality:

In [31]: obj4.name = 'population'

In [32]: obj4.index.name = 'state'

In [33]: obj4
Out[33]:
state
California NaN
Ohio 35000
Oregon 16000
Texas 71000
Name: population, dtype: float64

A Series’s index can be altered in place by assignment:

In [34]: obj.index = ['Bob', 'Steve', 'Jeff', 'Ryan']

In [35]: obj
Out[35]:
Bob 4
Steve 7
Jeff -5
Ryan 3
dtype: int64

DataFrame
A DataFrame represents a tabular, spreadsheet-like data structure containing an or-
dered collection of columns, each of which can be a different value type (numeric,
string, boolean, etc.). The DataFrame has both a row and column index; it can be
thought of as a dict of Series (one for all sharing the same index). Compared with other
such DataFrame-like structures you may have used before (like R’s data.frame), row-
oriented and column-oriented operations in DataFrame are treated roughly symmet-
rically. Under the hood, the data is stored as one or more two-dimensional blocks rather
than a list, dict, or some other collection of one-dimensional arrays. The exact details
of DataFrame’s internals are far outside the scope of this book.

While DataFrame stores the data internally in a two-dimensional for-
mat, you can easily represent much higher-dimensional data in a tabular
format using hierarchical indexing, a subject of a later section and a key
ingredient in many of the more advanced data-handling features in pan-
das.

Introduction to pandas Data Structures | 111

Data Frame
• A dictionary of Series (labels for each series)
• A spreadsheet with column headers
• Has an index shared with each series
• Allows easy reference to any cell
• df = DataFrame({'state': ['Ohio', 'Ohio', 'Ohio', 'Nevada'],
 'year': [2000, 2001, 2002, 2001],
 'pop': [1.5, 1.7, 3.6, 2.4]})

• Index is automatically assigned just as with a series but can be passed in as
well via index kwarg

• Can reassign column names by passing columns kwarg

33D. Koop, CSCI 640/490, Spring 2023

Data Frame

34D. Koop, CSCI 640/490, Spring 2023

Data Frame

34D. Koop, CSCI 640/490, Spring 2023

Column Names

Data Frame

34D. Koop, CSCI 640/490, Spring 2023

Column Names

Index

Data Frame

34D. Koop, CSCI 640/490, Spring 2023

Column Names

Index

Column: df['Island']

Data Frame

34D. Koop, CSCI 640/490, Spring 2023

Column Names

Index

Column: df['Island']

Row: df.loc[2]

Data Frame

34D. Koop, CSCI 640/490, Spring 2023

Column Names

Index

Column: df['Island']

Cell: df.loc[341,'Species']

Row: df.loc[2]

Data Frame

34D. Koop, CSCI 640/490, Spring 2023

Column Names

Index

Column: df['Island']

Cell: df.loc[341,'Species']

Missing Data

Row: df.loc[2]

