
Advanced Data Management (CSCI 640/490)

Structured Data

Dr. David Koop

D. Koop, CSCI 640/490, Spring 2023

Relational Algebra
• Definition: A procedural language consisting of a set of operations that take

one or two relations as input and produce a new relation as their result.
• Six basic operators
- select: σ
- project: ∏
- union: ∪
- set difference: –
- Cartesian product: x
- rename: ρ

2

[A. Silberschatz et al.]
D. Koop, CSCI 640/490, Spring 2023

https://www.db-book.com/db6/slide-dir/

Select Operation
• The select operation selects tuples that satisfy a given predicate.
• Notation: σp(r)
• p is called the selection predicate
• Example: select those tuples of the instructor relation where the instructor

is in the “Physics” department.
- Query: σdept_name=“Physics”(instructor)
- Result:

3

[A. Silberschatz et al.]
D. Koop, CSCI 640/490, Spring 2023

https://www.db-book.com/db6/slide-dir/

Project Operation
• Example: eliminate the dept_name attribute

of instructor
• Query: ∏ID, name, salary (instructor)

4

[A. Silberschatz et al.]
D. Koop, CSCI 640/490, Spring 2023

https://www.db-book.com/db6/slide-dir/

Cartesian-Product Operation
• The Cartesian-product operation (denoted by X) allows us to combine

information from any two relations.
• Example: the Cartesian product of the relations instructor and teaches is

written as: instructor X teaches
• We construct a tuple of the result out of each possible pair of tuples: one

from the instructor relation and one from the teaches relation
• Since the instructor ID appears in both relations we distinguish between

these attribute by attaching to the attribute the name of the relation from
which the attribute originally came.

- instructor.ID and teaches.ID

5

[A. Silberschatz et al.]
D. Koop, CSCI 640/490, Spring 2023

https://www.db-book.com/db6/slide-dir/

Join Operation
• The Cartesian-Product instructor X teaches associates every tuple of

instructor with every tuple of teaches.
- Most of the resulting rows have information about instructors who did not

teach a particular course.
• To get only those tuples of instructor X teaches that pertain to

instructors and the courses that they taught, we write:
σinstructor.id = teaches.id (instructor x teaches)

- We get only those tuples of instructor X teaches that pertain to
instructors and the courses that they taught.

6

[A. Silberschatz et al.]
D. Koop, CSCI 640/490, Spring 2023

https://www.db-book.com/db6/slide-dir/

Equivalent Queries
• Example: Find information about courses taught by instructors in the Physics

department
• Query 1:

σdept_name=“Physics” (instructor instructor.ID = teaches.ID teaches)
• Query 2

(σdept_name=“Physics” (instructor)) instructor.ID = teaches.ID teaches
• The order of joins is one focus of some of the work on query optimization

⋈

⋈

7

[A. Silberschatz et al.]
D. Koop, CSCI 640/490, Spring 2023

https://www.db-book.com/db6/slide-dir/

Components of SQL
• Data Definition Language (DDL): the specification of information about

relations, including schema, types, integrity constraints, indices, storage
• Data Manipulation Language (DML): provides the ability to query

information from the database and to insert tuples into, delete tuples from,
and modify tuples in the database.

• Integrity: the DDL includes commands for specifying integrity constraints.
• View definition: The DDL includes commands for defining views.
• Also: Transaction control, embedded and dynamic SQL, authorization

8

[A. Silberschatz et al.]
D. Koop, CSCI 640/490, Spring 2023

https://www.db-book.com/db6/slide-dir/

Create Table
• An SQL relation is defined using the create table command:

create table r (A1 D1, A2 D2, ..., An Dn, (C1), …, (Ck))
- r is the name of the relation
- each Ai is an attribute name in the schema of relation r
- Di is the data type of values in the domain of attribute Ai

• Example:
create table instructor(
 ID char(5),
 name varchar(20),
 dept_name varchar(20),
 salary numeric(8,2));

9

[A. Silberschatz et al.]
D. Koop, CSCI 640/490, Spring 2023

Ci are integrity
constraints:

keys, foreign keys

https://www.db-book.com/db6/slide-dir/

Basic Query Structure
• A typical SQL query has the form:

select A1, A2, ..., An
from r1, r2, ..., rm
where P

- Ai represents an attribute
- ri represents a relation
- P is a predicate.

• The result of an SQL query is a relation

10

[A. Silberschatz et al.]
D. Koop, CSCI 640/490, Spring 2023

https://www.db-book.com/db6/slide-dir/

Select
• The select clause lists the attributes desired in the result of a query
- corresponds to the projection operation of the relational algebra

• Example: Find the names of all instructors
- select name
from instructor;

• Note: SQL names are case insensitive
- Name and NAME and name are equivalent
- Some people use upper case for language keywords (e.g. SELECT)

11

[A. Silberschatz et al.]
D. Koop, CSCI 640/490, Spring 2023

https://www.db-book.com/db6/slide-dir/

Where
• The operands can be expressions with operators <, <=, >, >=, =, and <>
• SQL allows the use of the logical connectives and, or, and not
• Comparisons can be applied to results of arithmetic expressions
• Example: Find all instructors in Comp. Sci. with salary > 70000

- select name
from instructor
where dept_name = 'Comp. Sci.' and salary > 70000

12

[A. Silberschatz et al.]
D. Koop, CSCI 640/490, Spring 2023

https://www.db-book.com/db6/slide-dir/

From
• The from clause lists the relations involved in the query
- Corresponds to the Cartesian Product operation in relational algebra

• Find the Cartesian product instructor X teaches
- select *
from instructor, teaches;

- All possible instructor – teaches pair, with all attributes from both
- Shared attributes (e.g., ID) are renamed (e.g., instructor.ID)

• Not very useful directly but useful combined with where clauses.

13

[A. Silberschatz et al.]
D. Koop, CSCI 640/490, Spring 2023

https://www.db-book.com/db6/slide-dir/

Group By
• Find the average salary of instructors in each department

- select dept_name, avg(salary) as avg_salary
from instructor
group by dept_name;

14

[A. Silberschatz et al.]
D. Koop, CSCI 640/490, Spring 2023

https://www.db-book.com/db6/slide-dir/

Deletion
• Delete all instructors: delete from instructor;
• Delete all instructors from the Finance department

- delete from instructor
where dept_name= 'Finance’;

• Delete all tuples in the instructor relation for those instructors associated with
a department located in the Watson building

- delete from instructor
where dept_name in (select dept_name
 from department
 where building = 'Watson');

15

[A. Silberschatz et al.]
D. Koop, CSCI 640/490, Spring 2023

https://www.db-book.com/db6/slide-dir/

Insertion
• Make each student in the Music department who has earned more than 144

credit hours an instructor in the Music department with a salary of $18,000.
- insert into instructor
 select ID, name, dept_name, 18000
 from student
 where dept_name = 'Music' and total_cred > 144;

• The select-from-where statement is evaluated fully before any of its results
are inserted into the relation.

• If not queries like
insert into table1 select * from table1

would cause problems

16

[A. Silberschatz et al.]
D. Koop, CSCI 640/490, Spring 2023

https://www.db-book.com/db6/slide-dir/

Updates
• Give a 5% salary raise to all instructors

- update instructor
set salary = salary * 1.05

• Give a 5% salary raise to those instructors who earn less than 70000
- update instructor
set salary = salary * 1.05
where salary < 70000;

• Give a 5% salary raise to instructors whose salary is less than average
- update instructor
set salary = salary * 1.05
where salary < (select avg(salary) from instructor);

17

[A. Silberschatz et al.]
D. Koop, CSCI 640/490, Spring 2023

https://www.db-book.com/db6/slide-dir/

Assignment 2
• Same questions as Assignment 1 but using pandas, duckdb, and ibis

18D. Koop, CSCI 640/490, Spring 2023

Joins
• Join operations take two relations and return another relation.
• From relational algebra, this is a Cartesian product + selection
• Want tuples in the two relations to match (under some condition)
• The join operations typically used as subquery expressions in the from clause
• Three types of joins:
- Natural join
- Inner join
- Outer join

19

[A. Silberschatz et al.]
D. Koop, CSCI 640/490, Spring 2023

https://www.db-book.com/db6/slide-dir/

Natural Join
• Natural join matches tuples with the same values for all common attributes,

and retains only one copy of each common column.
• List the names of instructors along with the course ID of the courses that

they taught
- select name, course_id
from students, takes
where student.ID = takes.ID;

• Same query in SQL with “natural join” construct
- select name, course_id
from student natural join takes;

20

[A. Silberschatz et al.]
D. Koop, CSCI 640/490, Spring 2023

https://www.db-book.com/db6/slide-dir/

Example: Student Schedules

21

[A. Silberschatz et al.]
D. Koop, CSCI 640/490, Spring 2023

https://www.db-book.com/db6/slide-dir/

Example: Natural Join

22

[A. Silberschatz et al.]
D. Koop, CSCI 640/490, Spring 2023

https://www.db-book.com/db6/slide-dir/

Natural Join Danger
• Beware of unrelated attributes with same name which get equated incorrectly
• Example: List the names of students instructors along with the titles of

courses that they have taken
- select name, title
from student natural join takes natural join course;

• Wrong… only lists courses when the student took courses in their
department (major)

• Correct:
- select name, title
from student natural join takes, course
where takes.course_id = course.course_id;

23

[A. Silberschatz et al.]
D. Koop, CSCI 640/490, Spring 2023

https://www.db-book.com/db6/slide-dir/

Outer Join
• Joins so far are inner joins
• Outer joins returns tuples from one (or both) relations that do not match

tuples in the other relation
• Fills in missing values with null
• Three forms of outer join:
- left outer join
- right outer join
- full outer join

24

[A. Silberschatz et al.]
D. Koop, CSCI 640/490, Spring 2023

https://www.db-book.com/db6/slide-dir/

Join Examples

25

[A. Silberschatz et al.]
D. Koop, CSCI 640/490, Spring 2023

course prereq

Left Join

Right Join

https://www.db-book.com/db6/slide-dir/

Join Examples

26

[A. Silberschatz et al.]
D. Koop, CSCI 640/490, Spring 2023

course prereq

(Full) Outer Join

Inner Join

https://www.db-book.com/db6/slide-dir/

Arrays

What is the difference between an array and a list (or a tuple)?

27D. Koop, CSCI 640/490, Spring 2023

Arrays
• Usually a fixed size—lists are meant to change size
• Are mutable—tuples are not
• Store only one type of data—lists and tuples can store anything
• Are faster to access and manipulate than lists or tuples
• Can be multidimensional:
- Can have list of lists or tuple of tuples but no guarantee on shape
- Multidimensional arrays are rectangles, cubes, etc.

28D. Koop, CSCI 640/490, Spring 2023

Why NumPy?
• Fast vectorized array operations for data munging and cleaning, subsetting

and filtering, transformation, and any other kinds of computations
• Common array algorithms like sorting, unique, and set operations
• Efficient descriptive statistics and aggregating/summarizing data
• Data alignment and relational data manipulations for merging and joining

together heterogeneous data sets
• Expressing conditional logic as array expressions instead of loops with if-
elif-else branches

• Group-wise data manipulations (aggregation, transformation, function
application).

29

[W. McKinney, Python for Data Analysis]
D. Koop, CSCI 640/490, Spring 2023

30

import numpy as np

D. Koop, CSCI 640/490, Spring 2023

PyData Notebooks
• https://github.com/wesm/pydata-book/
• ch04.ipynb
• Click the raw button and save that file to disk
• …or download/clone the entire repository

31D. Koop, CSCI 640/490, Spring 2023

https://github.com/wesm/pydata-book/

Creating arrays
• data1 = [6, 7, 8, 0, 1]
arr1 = np.array(data1)

• data2 = [[1.5,2,3,4],[5,6,7,8]]
arr2 = np.array(data2)

• data3 = np.array([6, "abc", 3.57]) # !!! check !!!

• Can check the type of an array in dtype property
• Types:

- arr1.dtype # dtype('int64')

- arr3.dtype # dtype('<U21'), unicode plus # chars

32D. Koop, CSCI 640/490, Spring 2023

Types
• "But I thought Python wasn't stingy about types…"
• numpy aims for speed
• Able to do array arithmetic
• int16, int32, int64, float32, float64, bool, object
• Can specify type explicitly

- arr1_float = np.array(data1, dtype='float64')
• astype method allows you to convert between different types of arrays:

arr = np.array([1, 2, 3, 4, 5])
arr.dtype
float_arr = arr.astype(np.float64)

33D. Koop, CSCI 640/490, Spring 2023

In [36]: arr2.dtype
Out[36]: dtype('int32')

dtypes are a source of NumPy’s flexibility for interacting with data coming from other
systems. In most cases they provide a mapping directly onto an underlying disk or
memory representation, which makes it easy to read and write binary streams of data
to disk and also to connect to code written in a low-level language like C or Fortran.
The numerical dtypes are named the same way: a type name, like float or int, fol‐
lowed by a number indicating the number of bits per element. A standard double-
precision floating-point value (what’s used under the hood in Python’s float object)
takes up 8 bytes or 64 bits. Thus, this type is known in NumPy as float64. See
Table 4-2 for a full listing of NumPy’s supported data types.

Don’t worry about memorizing the NumPy dtypes, especially if
you’re a new user. It’s often only necessary to care about the general
kind of data you’re dealing with, whether floating point, complex,
integer, boolean, string, or general Python object. When you need
more control over how data are stored in memory and on disk,
especially large datasets, it is good to know that you have control
over the storage type.

Table 4-2. NumPy data types
Type Type code Description
int8, uint8 i1, u1 Signed and unsigned 8-bit (1 byte) integer types
int16, uint16 i2, u2 Signed and unsigned 16-bit integer types
int32, uint32 i4, u4 Signed and unsigned 32-bit integer types
int64, uint64 i8, u8 Signed and unsigned 64-bit integer types
float16 f2 Half-precision !oating point
float32 f4 or f Standard single-precision !oating point; compatible with C !oat
float64 f8 or d Standard double-precision !oating point; compatible with C double and

Python float object
float128 f16 or g Extended-precision !oating point
complex64,
complex128,
complex256

c8, c16,
c32

Complex numbers represented by two 32, 64, or 128 !oats, respectively

bool ? Boolean type storing True and False values
object O Python object type; a value can be any Python object
string_ S Fixed-length ASCII string type (1 byte per character); for example, to create a

string dtype with length 10, use 'S10'
unicode_ U Fixed-length Unicode type (number of bytes platform speci"c); same

speci"cation semantics as string_ (e.g., 'U10')

4.1 The NumPy ndarray: A Multidimensional Array Object | 91

numpy data types (dtypes)

34

[W. McKinney, Python for Data Analysis]
D. Koop, CSCI 640/490, Spring 2023

Speed Benefits
• Compare random number generation in pure Python versus numpy
• Python:

- import random
%timeit rolls_list = [random.randrange(1,7)
 for i in range(0, 60_000)]

• With NumPy:
- %timeit rolls_array = np.random.randint(1, 7, 60_000)

• Significant speedup (80x+)

35D. Koop, CSCI 640/490, Spring 2023

Array Shape
• Our normal way of checking the size of a collection is… len
• How does this work for arrays?
• arr1 = np.array([1,2,3,6,9])
len(arr1) # 5

• arr2 = np.array([[1.5,2,3,4],[5,6,7,8]])
len(arr2) # 2

• All dimension lengths → shape: arr2.shape # (2,4)
• Number of dimensions: arr2.ndim # 2
• Can also reshape an array:

- arr2.reshape(4,2)

- arr2.reshape(-1,2) # what happens here?

36D. Koop, CSCI 640/490, Spring 2023

Array Programming
• Lists:

- c = []
for i in range(len(a)):
 c.append(a[i] + b[i])

• How to improve this?

37D. Koop, CSCI 640/490, Spring 2023

Array Programming
• Lists:

- c = []
for i in range(len(a)):
 c.append(a[i] + b[i])

- c = [aa + bb for aa, bb in zip(a,b)]

• NumPy arrays:
- c = a + b

• More functional-style than imperative
• Internal iteration instead of external

38D. Koop, CSCI 640/490, Spring 2023

Operations
• a = np.array([1,2,3])
b = np.array([6,4,3])

• (Array, Array) Operations (Element-wise)
- Addition, Subtraction, Multiplication
- a + b # array([7, 6, 6])

• (Scalar, Array) Operations (Broadcasting):
- Addition, Subtraction, Multiplication, Division, Exponentiation
- a ** 2 # array([1, 4, 9])

- b + 3 # array([9, 7, 6])

39D. Koop, CSCI 640/490, Spring 2023

More on Array Creation
• Zeros: np.zeros(10)
• Ones: np.ones((4,5)) # shape
• Empty: np.empty((2,2))
• _like versions: pass an existing array and matches shape with specified

contents
• Range: np.arange(15) # constructs an array, not iterator!

40D. Koop, CSCI 640/490, Spring 2023

Indexing
• Same as with lists plus shorthand for 2D+

- arr1 = np.array([6, 7, 8, 0, 1])

- arr1[1]

- arr1[-1]

• What about two dimensions?
- arr2 = np.array([[1.5,2,3,4],[5,6,7,8]])

- arr[1][1]

- arr[1,1] # shorthand

41D. Koop, CSCI 640/490, Spring 2023

Figure 4-1. Indexing elements in a NumPy array

In multidimensional arrays, if you omit later indices, the returned object will be a
lower dimensional ndarray consisting of all the data along the higher dimensions. So
in the 2 × 2 × 3 array arr3d:

In [76]: arr3d = np.array([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]])

In [77]: arr3d
Out[77]:
array([[[1, 2, 3],
 [4, 5, 6]],
 [[7, 8, 9],
 [10, 11, 12]]])

arr3d[0] is a 2 × 3 array:
In [78]: arr3d[0]
Out[78]:
array([[1, 2, 3],
 [4, 5, 6]])

Both scalar values and arrays can be assigned to arr3d[0]:
In [79]: old_values = arr3d[0].copy()

In [80]: arr3d[0] = 42

In [81]: arr3d
Out[81]:
array([[[42, 42, 42],
 [42, 42, 42]],
 [[7, 8, 9],
 [10, 11, 12]]])

In [82]: arr3d[0] = old_values

96 | Chapter 4: NumPy Basics: Arrays and Vectorized Computation

2D Indexing

42

[W. McKinney, Python for Data Analysis]
D. Koop, CSCI 640/490, Spring 2023

Slicing
• 1D: Similar to lists

- arr1 = np.array([6, 7, 8, 0, 1])

- arr1[2:5] # np.array([8,0,1]), sort of

• Can mutate original array:
- arr1[2:5] = 3 # supports assignment

- arr1 # the original array changed

• Slicing returns views (copy the array if original array shouldn't change)
- arr1[2:5] # a view

- arr1[2:5].copy() # a new array

43D. Koop, CSCI 640/490, Spring 2023

Slicing
• 2D+: comma separated indices as shorthand:

- arr2 = np.array([[1.5,2,3,4],[5,6,7,8]])

- a[1:3,1:3]

- a[1:3,:] # works like in single-dimensional lists

• Can combine index and slice in different dimensions
- a[1,:] # gives a row

- a[:,1] # gives a column

44D. Koop, CSCI 640/490, Spring 2023

 [0.1913, 0.4544, 0.4519, 0.5535],
 [0.5994, 0.8174, -0.9297, -1.2564]])

Figure 4-2. Two-dimensional array slicing

Suppose each name corresponds to a row in the data array and we wanted to select all
the rows with corresponding name 'Bob'. Like arithmetic operations, comparisons
(such as ==) with arrays are also vectorized. Thus, comparing names with the string
'Bob' yields a boolean array:

In [87]: names == 'Bob'
Out[87]: array([True, False, False, True, False, False, False], dtype=bool)

This boolean array can be passed when indexing the array:

In [88]: data[names == 'Bob']
Out[88]:
array([[-0.048 , 0.5433, -0.2349, 1.2792],
 [2.1452, 0.8799, -0.0523, 0.0672]])

The boolean array must be of the same length as the axis it’s indexing. You can even
mix and match boolean arrays with slices or integers (or sequences of integers, more
on this later):

In [89]: data[names == 'Bob', 2:]
Out[89]:
array([[-0.2349, 1.2792],

86 | Chapter 4: NumPy Basics: Arrays and Vectorized Computation

2D Array Slicing

45

[W. McKinney, Python for Data Analysis]
D. Koop, CSCI 640/490, Spring 2023

How to obtain the blue slice
from array arr?

 [0.1913, 0.4544, 0.4519, 0.5535],
 [0.5994, 0.8174, -0.9297, -1.2564]])

Figure 4-2. Two-dimensional array slicing

Suppose each name corresponds to a row in the data array and we wanted to select all
the rows with corresponding name 'Bob'. Like arithmetic operations, comparisons
(such as ==) with arrays are also vectorized. Thus, comparing names with the string
'Bob' yields a boolean array:

In [87]: names == 'Bob'
Out[87]: array([True, False, False, True, False, False, False], dtype=bool)

This boolean array can be passed when indexing the array:

In [88]: data[names == 'Bob']
Out[88]:
array([[-0.048 , 0.5433, -0.2349, 1.2792],
 [2.1452, 0.8799, -0.0523, 0.0672]])

The boolean array must be of the same length as the axis it’s indexing. You can even
mix and match boolean arrays with slices or integers (or sequences of integers, more
on this later):

In [89]: data[names == 'Bob', 2:]
Out[89]:
array([[-0.2349, 1.2792],

86 | Chapter 4: NumPy Basics: Arrays and Vectorized Computation

2D Array Slicing

45

[W. McKinney, Python for Data Analysis]
D. Koop, CSCI 640/490, Spring 2023

How to obtain the blue slice
from array arr?

 [0.1913, 0.4544, 0.4519, 0.5535],
 [0.5994, 0.8174, -0.9297, -1.2564]])

Figure 4-2. Two-dimensional array slicing

Suppose each name corresponds to a row in the data array and we wanted to select all
the rows with corresponding name 'Bob'. Like arithmetic operations, comparisons
(such as ==) with arrays are also vectorized. Thus, comparing names with the string
'Bob' yields a boolean array:

In [87]: names == 'Bob'
Out[87]: array([True, False, False, True, False, False, False], dtype=bool)

This boolean array can be passed when indexing the array:

In [88]: data[names == 'Bob']
Out[88]:
array([[-0.048 , 0.5433, -0.2349, 1.2792],
 [2.1452, 0.8799, -0.0523, 0.0672]])

The boolean array must be of the same length as the axis it’s indexing. You can even
mix and match boolean arrays with slices or integers (or sequences of integers, more
on this later):

In [89]: data[names == 'Bob', 2:]
Out[89]:
array([[-0.2349, 1.2792],

86 | Chapter 4: NumPy Basics: Arrays and Vectorized Computation

2D Array Slicing

45

[W. McKinney, Python for Data Analysis]
D. Koop, CSCI 640/490, Spring 2023

How to obtain the blue slice
from array arr?

 [0.1913, 0.4544, 0.4519, 0.5535],
 [0.5994, 0.8174, -0.9297, -1.2564]])

Figure 4-2. Two-dimensional array slicing

Suppose each name corresponds to a row in the data array and we wanted to select all
the rows with corresponding name 'Bob'. Like arithmetic operations, comparisons
(such as ==) with arrays are also vectorized. Thus, comparing names with the string
'Bob' yields a boolean array:

In [87]: names == 'Bob'
Out[87]: array([True, False, False, True, False, False, False], dtype=bool)

This boolean array can be passed when indexing the array:

In [88]: data[names == 'Bob']
Out[88]:
array([[-0.048 , 0.5433, -0.2349, 1.2792],
 [2.1452, 0.8799, -0.0523, 0.0672]])

The boolean array must be of the same length as the axis it’s indexing. You can even
mix and match boolean arrays with slices or integers (or sequences of integers, more
on this later):

In [89]: data[names == 'Bob', 2:]
Out[89]:
array([[-0.2349, 1.2792],

86 | Chapter 4: NumPy Basics: Arrays and Vectorized Computation

2D Array Slicing

45

[W. McKinney, Python for Data Analysis]
D. Koop, CSCI 640/490, Spring 2023

How to obtain the blue slice
from array arr?

 [0.1913, 0.4544, 0.4519, 0.5535],
 [0.5994, 0.8174, -0.9297, -1.2564]])

Figure 4-2. Two-dimensional array slicing

Suppose each name corresponds to a row in the data array and we wanted to select all
the rows with corresponding name 'Bob'. Like arithmetic operations, comparisons
(such as ==) with arrays are also vectorized. Thus, comparing names with the string
'Bob' yields a boolean array:

In [87]: names == 'Bob'
Out[87]: array([True, False, False, True, False, False, False], dtype=bool)

This boolean array can be passed when indexing the array:

In [88]: data[names == 'Bob']
Out[88]:
array([[-0.048 , 0.5433, -0.2349, 1.2792],
 [2.1452, 0.8799, -0.0523, 0.0672]])

The boolean array must be of the same length as the axis it’s indexing. You can even
mix and match boolean arrays with slices or integers (or sequences of integers, more
on this later):

In [89]: data[names == 'Bob', 2:]
Out[89]:
array([[-0.2349, 1.2792],

86 | Chapter 4: NumPy Basics: Arrays and Vectorized Computation

2D Array Slicing

45

[W. McKinney, Python for Data Analysis]
D. Koop, CSCI 640/490, Spring 2023

How to obtain the blue slice
from array arr?

