
Advanced Data Management (CSCI 680/490)

Python

Dr. David Koop

D. Koop, CSCI 640/490, Spring 2023

JupyterLab

2D. Koop, CSCI 640/490, Spring 2023

JupyterLab Notebooks
• Can write code or plain text (can be styled Markdown)
- Choose the type of cell using the dropdown menu

• Cells break up your code, but all data is global
- Defining a variable a in one cell means it is available in any other cell
- This includes cells above the cell a was defined in!

• Remember Shift+Enter to execute
• Enter just adds a new line
• Use ?<function_name> for help
• Use Tab for auto-complete or suggestions
• Tab also indents, and Shift+Tab unindents

3D. Koop, CSCI 640/490, Spring 2023

Local Jupyter Environment
• www.anaconda.com/download/
• Anaconda has Jupyter Lab
• Use Python 3.9 or 3.10 version (not 2.7)
• Anaconda Navigator
- GUI application for managing Python

environment
- Can install packages
- Can start JupyterLab

• Can also use the shell to do this:
- $ jupyter lab

- $ conda install <pkg_name>

4D. Koop, CSCI 640/490, Spring 2023

https://www.anaconda.com/download/

Hosted Jupyter Environments
• Nice to have ability to configure everything locally, but… you have to

configure everything locally
• Solution: Cloud-hosted Jupyter (and Jupyter-like) environments
• Pros: No setup
• Cons: Limitations on resources: data and compute
• Options:
- Google Colab (need a Google account)
- Intel DevCloud
- JupyterLite: still beta

5D. Koop, CSCI 640/490, Spring 2023

https://colab.research.google.com/
https://www.intel.com/content/www/us/en/developer/tools/devcloud/overview.html
https://jupyterlite.readthedocs.io/en/latest/

Using Hosted Jupyter Environments
• Data:
- Either point to a public URL or upload the data
- Large datasets may not be supported, data may be deleted if uploaded

(and isn't in Google Drive, etc.)
• Notebooks:
- Can download the notebook locally (e.g. to use with a conda environment)
- Currently, Python 3.8

• Differences:
- Colab has tweaked the interface (e.g. different nomenclature)

6D. Koop, CSCI 640/490, Spring 2023

Assignment 1
• To be released soon
• Using Python for data analysis on salary survey data
• Use basic python for now to work on language knowledge
• Use Anaconda or a hosted Python environment
• Turn .ipynb file in via Blackboard

7D. Koop, CSCI 640/490, Spring 2023

8

Questions about Python?

D. Koop, CSCI 640/490, Spring 2023

Python Strings
• Strings can be delimited by single or double quotes

- "abc" and 'abc' are exactly the same thing
- Easier use of quotes in strings: "Joe's" or 'He said "Stop!"'

• String concatenation: "abc" + "def"
• Repetition: "abc" * 3
• Special characters: \n \t like Java/C++

9D. Koop, CSCI 640/490, Spring 2023

Python Strings
• Indexing:

a = "abcdef"
a[0]

• Slicing: a[1:3]
• Format:

name = "Jane"
print("Hello, {}".format(name))

- or
print(f"Hello, {name}")

10D. Koop, CSCI 640/490, Spring 2023

Loops
• while <condition>:
 <indented block>
end of while block (indentation done)

• Remember the colon!
• a = 5
while a > 0:
 print(a)
 a -= 2

• a > 0 is the condition
• Python has standard boolean operators (<, >, <=, >=, ==, !=)
- What does a boolean operation return?
- Linking boolean comparisons (and, or)

11D. Koop, CSCI 640/490, Spring 2023

Conditionals
• if, else
- Again, indentation is required

• elif
- Shorthand for else: if:

• Same type of boolean expressions (and or)

12D. Koop, CSCI 640/490, Spring 2023

break and continue
• break stops the execution of the loop
• continue skips the rest of the loop and goes to the next iteration

• a = 7
while a > 0:
 a -= 2
 if a < 4:
 break
 print(a)

13D. Koop, CSCI 640/490, Spring 2023

• a = 7
while a > 0:
 a -= 2
 if a < 4 and a > 2:
 continue
 print(a)

True and False
• True and False (captialized) are defined values in Python
• v == 0 will evaluate to either True or False

14D. Koop, CSCI 640/490, Spring 2023

15

Why do we create and use functions?

D. Koop, CSCI 640/490, Spring 2023

Functions
• Calling functions is as expected:

mul(2,3) # computes 2*3 (mul from operator package)

- Values passed to the function are parameters
- May be variables!
a = 5
b = 7
mul(a,b)

• print is a function
print("This line doesn't end.", end=" ")
print("See it continues")

- end is also a parameter, but this has a different syntax (keyword argument!)

16D. Koop, CSCI 640/490, Spring 2023

Defining Functions
• def keyword
• Arguments have names but no types

def hello(name):
 print(f"Hello {name}")

• Can have defaults:
def hello(name="Jane Doe"):
 print(f"Hello {name}")

• With defaults, we can skip the parameter: hello() or hello("John")
• Also can pick and choose arguments:

def hello(name1="Joe", name2="Jane"):
 print(f"Hello {name1} and {name2}")
hello(name2="Mary")

17D. Koop, CSCI 640/490, Spring 2023

Return statement
• Return statement gives back a value:

def mul(a,b):
 return a * b

• Variables changed in the function won't be updated:
def increment(a):
 a += 1
 return a
b = 12
c = increment(b)
print(b,c)

18D. Koop, CSCI 640/490, Spring 2023

Python Containers
• Container: store more than one value
• Mutable versus immutable: Can we update the container?
- Yes → mutable
- No → immutable
- Lists are mutable, tuples are immutable

• Lists and tuples may contain values of different types:
• List: [1,"abc",12.34]
• Tuple: (1, "abc", 12.34)
• You can also put functions in containers!
• len function: number of items: len(l)

19D. Koop, CSCI 640/490, Spring 2023

Indexing (Positive and Negative)
• Positive indices start at zero, negative at -1
• my_str = "abcde"; my_str[1] # "b"

• my_list = [1,2,3,4,5]; my_list[-3] # 3

• my_tuple = (1,2,3,4,5); my_tuple[-5] # 1

20D. Koop, CSCI 640/490, Spring 2023

a b c d e

0 1 2 3 4

-5 -4 -3 -2 -1

Slicing
• Positive or negative indices can be used at any step
• my_str = "abcde"; my_str[1:3] # ["b", c"]

• my_list = [1,2,3,4,5]; my_list[3:-1] # [4]

• Implicit indices
- my_tuple = (1,2,3,4,5); my_tuple[-2:] # (4,5)

- my_tuple[:3] # (1,2,3)

21D. Koop, CSCI 640/490, Spring 2023

[1:3] a b c d e

0 1 2 3 4

-5 -4 -3 -2 -1

[-4:-2]

Tuples
• months = ('January','February','March','April',
'May','June','July','August','September','October',
'November','December')

• Useful when you know you're not going to change the contents or add or
delete values

• Can index and slice
• Also, can create new tuples from existing ones:

- t = (1,2,3)
u = (4,5,6)

- v = t + u # v points to a new object
- t += u # t is a new object

22D. Koop, CSCI 640/490, Spring 2023

Modifying Lists
• Add to a list l:

- l.append(v): add one value (v) to the end of the list
- l.extend(vlist): add multiple values (vlist) to the end of l
- l.insert(i, v): add one value (v) at index i

• Remove from a list l:
- del l[i]: deletes the value at index i
- l.pop(i): removes the value at index i (and returns it)
- l.remove(v): removes the first occurrence of value v (careful!)

• Changing an entry:
- l[i] = v: changes the value at index i to v (Watch out for IndexError!)

23D. Koop, CSCI 640/490, Spring 2023

Modifying a list
• v = [1,2,3]
w = [4,5,6]

• x = v + w # x is a new list [1,2,3,4,5,6]
• v.extend(w) # v is mutated to [1,2,3,4,5,6]
• v += w # v is mutated to [1,2,3,4,5,6]
• v.append(w) # v is mutated to [1,2,3,[4,5,6]]
• x = v + 4 # error
• v += 4 # error
• v += [4] # v is mutated to [1,2,3,4]

24D. Koop, CSCI 640/490, Spring 2023

in: Checking for a value
• The in operator:

- 'a' in l

- 'a' not in l
• Not very fast for lists

25D. Koop, CSCI 640/490, Spring 2023

For loops
• Used much more frequently than while loops
• Is actually a "for-each" type of loop
• In Java, this is:

- for (String item : someList) {
 System.out.println(item);
}

• In Python, this is:
- for item in someList:
 print(item)

• Grabs each element of someList in order and puts it into item
• Be careful modifying container in a for loop! (e.g. someList.append(new_item))

26D. Koop, CSCI 640/490, Spring 2023

What about counting?
• In C++:
• for(int i = 0; i < 100; i++) {
 cout << i << endl;
}

• In Python:
• for i in range(0,100): # or range(100)
 print(i)

• range(100) vs. list(range(100))
• What about only even integers?

27D. Koop, CSCI 640/490, Spring 2023

Dictionaries
• One of the most useful features of Python
• Also known as associative arrays
• Exist in other languages but a core feature in Python
• Associate a key with a value
• When I want to find a value, I give the dictionary a key, and it returns the value
• Example: InspectionID (key) → InspectionRecord (value)
• Keys must be immutable (technically, hashable):
- Normal types like numbers, strings are fine
- Tuples work, but lists do not (TypeError: unhashable type: 'list')

• There is only one value per key!

28D. Koop, CSCI 640/490, Spring 2023

Dictionaries
• Defining a dictionary: curly braces
• states = {'MA': 'Massachusetts, 'RI': 'Road Island', 'CT':
'Connecticut'}

• Accessing a value: use brackets!
• states['MA'] or states.get('MA')
• Adding a value:
• states['NH'] = 'New Hampshire'

• Checking for a key:
• 'ME' in states → returns True or False
• Removing a value: states.pop('CT') or del states['CT']
• Changing a value: states['RI'] = 'Rhode Island'

29D. Koop, CSCI 640/490, Spring 2023

Dictionaries
• Combine dictionaries: d1.update(d2)

- update overwrites any key-value pairs in d1
when the same key appears in d2

- d1 | d2
• len(d) is the number of entries in d

30D. Koop, CSCI 640/490, Spring 2023

Extracting Parts of a Dictionary
• d.keys(): the keys only
• d.values(): the values only
• d.items(): key-value pairs as a collection of tuples:
[(k1, v1), (k2, v2), …]

• Unpacking a tuple or list
- t = (1,2)
a, b = t

• Iterating through a dictionary:
for (k,v) in d.items():
 if k % 2 == 0:
 print(v)

• Important: keys, values, and items are in added order!
31D. Koop, CSCI 640/490, Spring 2023

Sets
• Just the keys from a dictionary
• Only one copy of each item
• Define like dictionaries without values

- s = {'a','b','c','e'}

- 'a' in s # True

• Mutation
- s.add('f')
s.add('a') # only one copy
s.remove('c')

• One gotcha:
- {} is an empty dictionary not an empty set

32D. Koop, CSCI 640/490, Spring 2023

33

Exercises

D. Koop, CSCI 640/490, Spring 2023

Exercise
• Given variables x and y, print the long division answer of x divided by y with

the remainder.
• Examples:

- x = 11, y = 4 should print "2R3"
- x = 15, y = 2 should print "7R1"

34D. Koop, CSCI 640/490, Spring 2023

Exercise
• Suppose I want to write Python code to print the numbers from 1 to 100.

What errors do you see?

// print the numbers from 1 to 100
int counter = 1
while counter < 100 {
 print counter
 counter++
}

35D. Koop, CSCI 640/490, Spring 2023

