
Advanced Data Management (CSCI 640/490)

Python

Dr. David Koop

D. Koop, CSCI 640/490, Spring 2023

Fig. 8. Comparison of taxi pickups (left) and dropoff (right) in different neighborhoods over the first week of May 2011. The plots show that Midtown
and the Upper East side are the most active areas. But over the weekend, there is an increased number of dropoffs in Downtown. The figure also
highlights the fact the Harlem is underserved by taxis.

and we see greater activity in Downtown. Note the increase in the
number of trips that starts to happen on Thursday (May 5), with big
peak for pickups on Friday (May 6) in the evening—this indicates that
the nightlife on weekends is very lively in Downtown.

This one-week overview provides an accurate overview of city life,
where people go and when. It also highlights social inequalities. Peo-
ple who live in Harlem have long complained about the lack of taxi
service in their neighborhood. The plot clearly shows that their discon-
tent is well justified. There is over one order of magnitude difference
in the number of trips to/from Harlem compared to other more afflu-
ent neighborhoods. The heat map also shows that while people take
taxis to Harlem, there are barely any pickups there. Exploring other
parameters associated with the trips we found one surprising fact: the
tips per trip originating in Harlem are higher than for the other neigh-
borhoods (see Fig. 9). Further analysis also showed that the fare per
mile is lower for Harlem, and thus, there is less economic incentive
for taxis to be in that area. The higher tips may be a means to reward
drivers that go to Harlem.

6.2 Exploring Movement: Transportation Hubs
Airports and major train stations (i.e. Penn Station and Grand Central)
are key transportation hubs in NYC. By analyzing taxi movement to
and from these locations, we can obtain insights into how people move
into and out of the city. To compare the number of trips originating at
JFK and La Guardia, we select the regions in their vicinity and exam-
ine a 1-week period (05/01/2011 through 05/07/2011). As the plot in
the top of Fig. 10 shows, there are more pickups at La Guardia than at
JFK on most days. Another interesting question is where passengers
go. The choropleth (Fig. 10 top) that highlights NYC neighborhoods,
shows that most people go to Midtown (the darkest region), followed
by the Upper West Side.

By hovering the mouse over a neighborhood, the system displays
the exact number of trips ending in that neighborhood. We can also ob-
tain more fine-grained information about the exact dropoff locations—
the popular destinations, using a heat map.

In order to study the movement patterns for airports and train sta-
tions, we can group them (Fig. 10 bottom) . We select the regions
around Penn Station and Grand Central, and group them using the
Group/Ungroup button (note the two green outlines); we also group
the trips that start at the airports (blue outline). Immediately, the plot
is updated to show the number of pickups in the two regions. Note
that there are many more pickups around the train stations. Another
interesting observation is that the number of trips originating at the
train stations remains roughly constant from Monday through Thurs-
day, and starts to decrease on Friday, hitting a low on Saturday. This
reflects the behavior of many commuters who go to the City during
the week, but not on weekends. Note that, while in this example we
have focused on pickups, i.e., people arriving, it is easy to also study
dropoffs. Starting from the map view shown in Fig. 10, we can simply
select the airport and train regions (by double-clicking on them), and
then click on the “Dropoff” button.

Using the summary view, we can further explore features of the
selected trips. For example, by examining the average cost of trip per

Fig. 10. Comparing movement across NYC transportation hubs. On the
top, we examine trips starting at the two major airports in NYC: JFK and
La Guardia. In the bottom, we refine the query to compare trips starting
at the airports with trips starting at the train stations, Penn Station and
Grand Central.

mile, we can see that it is higher within Manhattan. This provides
an incentive for taxi companies to stay within Manhattan and avoid
trips to the airport. Note that while it is illegal for taxis to reject rides,
this is a common practice when the destination is JFK.2 This problem
is accentuated during rush hour on weekdays, when trips take much
longer (see Fig. 1) and lead to a potential reduction in revenue.

6.3 Studying Behavior over Time
Taxi Demand Patterns. Studying how taxi demand varies over time
can be useful to understand city dynamics. For taxi companies, this
information can help in decision making, both to schedule driver shifts
and maximize profits. To simplify the process of comparing multiple
times slices, TaxiVis provides a time space exploration mechanism.
The user first selects the time slices of interest. This can be done using
the time selection widgets (Fig. 5). In the regular selection mode, the
slices are selected by specifying a time range, a step size (e.g. an hour,
a day, a week), and the number of steps. In the recurrent selection
mode, the list of time ranges is already expressed and generated by
the widget. For example, by selecting 2011, May and Sunday, 5 times
ranges are returned–each corresponding to a Sunday in the month of
May, 2011. Given a list of time ranges, the result of a time space
exploration is a multi-view visualization displaying one map per time
interval, and a data summary view that aggregates the results for the
time intervals. Each map view and plot line is associated with a color
assigned to its time range. This is illustrated in Fig. 11. Here, we
examined all Mondays in May 2011 and May 2012. The number of
trips for the two years is very similar, including the significant drop

2http://cityroom.blogs.nytimes.com/2011/02/24/taxi-panel-focuses-on-
destination-discrimination.

Supporting Data Science

2

[Ferreira et al., 2013]
D. Koop, CSCI 640/490, Spring 2023

6F INDINGS

we got about the future of the data science,

the most salient takeaway was how excited our

respondents were about the evolution of the

field. They cited things in their own practice, how

they saw their jobs getting more interesting and

less repetitive, all while expressing a real and

broad enthusiasm about the value of the work in

their organization.

As data science becomes more commonplace and

simultaneously a bit demystified, we expect this

trend to continue as well. After all, last year’s

respondents were just as excited about their

work (about 79% were “satisfied” or better).

How a Data Scientist Spends Their Day

Here’s where the popular view of data scientists diverges pretty significantly from reality. Generally,

we think of data scientists building algorithms, exploring data, and doing predictive analysis. That’s

actually not what they spend most of their time doing, however.

As you can see from the chart above, 3 out of every 5 data scientists we surveyed actually spend the

most time cleaning and organizing data. You may have heard this referred to as “data wrangling” or

compared to digital janitor work. Everything from list verification to removing commas to debugging

databases–that time adds up and it adds up immensely. Messy data is by far the more time- consuming

aspect of the typical data scientist’s work flow. And nearly 60% said they simply spent too much

time doing it.

Data scientist job satisfaction

60%

19%

9%

4%
5%3%

 Building training sets: 3%

 Cleaning and organizing data: 60%

 Collecting data sets; 19%

 Mining data for patterns: 9%

 Refining algorithms: 4%

 Other: 5%

What data scientists spend the most time doing

4.0
5

4

3

2

1

35%

47%

12%

6%

1%

How do data scientists spend their time?

3

[CrowdFlower Data Science Report, 2016]
D. Koop, CSCI 640/490, Spring 2023

http://visit.crowdflower.com/rs/416-ZBE-142/images/CrowdFlower_DataScienceReport_2016.pdf

Data Wrangling

4

[Y. He et al., 2018]
D. Koop, CSCI 640/490, Spring 2023

Transform-Data-by-Example (TDE):
Extensible Data Transformation in Excel

Yeye He1, Kris Ganjam1, Kukjin Lee1, Yue Wang1, Vivek Narasayya1,
Surajit Chaudhuri1, Xu Chu2, Yudian Zheng3

1Microsoft Research, Redmond, USA
2Georgia Institute of Technology, Atlanta, USA

3Twitter Inc., San Francisco, USA
{yeyehe,krisgan,kulee,wanyue,viveknar,surajitc}@microsoft.com

xu.chu@cc.gatech.edu,yudianz@twitter.com

ABSTRACT
Business analysts and data scientists today increasingly need to
clean, standardize and transform diverse data sets, such as name,
address, date time, phone number, etc., before they can perform
analysis. These ad-hoc transformation problems are typically solved
by one-o� scripts, which is both di�cult and time-consuming.

Our observation is that these domain-speci�c transformation
problems have long been solved by developers with code libraries,
which are often shared in places like GitHub. We thus develop an
extensible data transformation system called Transform-Data-by-
Example (TDE) that can leverage rich transformation logic in source
code, DLLs, web services and mapping tables, so that end-users
only need to provide a few (typically 3) input/output examples, and
TDE can synthesize desired programs using relevant transformation
logic from these sources. The beta version of TDE was released in
O�ce Store for Excel.

ACM Reference Format:
Yeye He1, Kris Ganjam1, Kukjin Lee1, YueWang1, Vivek Narasayya1, Surajit
Chaudhuri1, Xu Chu2, Yudian Zheng3 . 2018. Transform-Data-by-Example
(TDE): Extensible Data Transformation in Excel. In SIGMOD’18: 2018 Interna-
tional Conference onManagement of Data, June 10–15, 2018, Houston, TX, USA.
ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/3183713.3193539

1 INTRODUCTION
Users such as business analysts and data scientists today regularly
perform ad-hoc analysis using diverse data sets, which however of-
ten need to be prepared (a multi-step process that typically involves
clean, transform, and join, among other things), before analysis
can be performed. This is di�cult and time-consuming for end-
users – studies suggest that users spend up to 80% of time on data
preparation [8].

There is increasing momentum in the industry towards self-
service data preparation [9], where the key objective is to build

2, 3: Work done at Microsoft Research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
SIGMOD’18, June 10–15, 2018, Houston, TX, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-4703-7/18/06. . . $15.00
https://doi.org/10.1145/3183713.3193539

Figure 1: A sales data set with heterogeneous data values.

intelligent systems that enable business analysts and data scientists
to prepare ad-hoc data sets themselves without needing help from
IT sta�. This, if realized, holds the potential to democratize data
analytics for a wide spectrum of users who often lack technical
skills like scripting. Gartner reckons this fast growing market to
be worth over $1 billion by 2019 [9]. In this work we focus on self-
service data transformation, which is a major component in data
preparation [9].

Figure 1 gives a concrete example for data transformation. This
sales data set has information such as transaction dates, customer
names, their phone numbers and addresses, etc. However, values in
same columns are highly heterogeneous, which can often happen
when data is collected from di�erent sources, or when values are
manually entered. In this example, date values in the �rst column
have many di�erent formats. In the second column, some customer
names are �rst-name followed by last-name, while others are last-
name followed by comma and �rst-name, with various optional
salutations (Mr., Dr., etc.) and su�xes (III, Jr., etc.). Similarly, phone
number and address columns are also highly inconsistent.

This data set is obviously not ready for analysis yet – an analyst
wanting to �gure out which day-of-the-week (Mon, Tue, etc.) has
the most sales, for instance, cannot �nd that out by executing a
SQL query or a pivot table using this data, as day-of-the-week is
missing from the input. However, deriving day-of-the-week from
date strings is non-trivial even for programmers, and the hetero-
geneity of date values only adds to the complexity. Similarly, the
analyst may want to analyze sales with a group-by on area code
from phone-numbers, or zip-code from addresses, both of which
again require di�cult data transformations.

Our observation is that these domain-speci�c transformation
problems like date-time parsing and address standardization have

Demonstrations SIGMOD’18, June 10-15, 2018, Houston, TX, USA

1785

SIGMOD’18, June 10–15, 2018, Houston, TX, USA

Yeye He1, Kris Ganjam1, Kukjin Lee1, Yue Wang1, Vivek Narasayya1,
Surajit Chaudhuri1, Xu Chu2, Yudian Zheng3

Figure 2: TDE transformation for date-time. (Left): input data is in column-C, user provides two desired output examples in
column-D. (Right): After clicking on the “Get Transformation” button, TDE searches over thousands of functions to compose
new programs whose output are consistent with the given examples. Within a few seconds, a ranked list of programs are
returned in the right pane. Hovering over the �rst program (using System.DateTime.Parse from .Net) gives a preview of all
results (shaded in green).

Figure 3: (Left): transformation for names. The �rst three values in column-D are provided as output examples. The desired
�rst-names and last-names are marked in bold for ease of reading. A composed program using library CSharpNameParser
from GitHub is returned. (Right): transformations for addresses. The �rst three values are provided as examples to produce
city, state, and zip-code as output. Note that some of these info are missing from the input. A program invoking Bing Maps
API is returned as the top result.

existed for decades – developers traditionally build custom code li-
braries to solve them, and share their code in places like GitHub and
StackOver�ow. In a recent crawl, we extracted over 1.8M functions
from code libraries crawled at GitHub, and over 2M code snippets
extracted from pages on StackOver�ow.

We have built a production-quality data-transformation engine
called Transform-Data-by-Example (TDE) that can index rich trans-
formation logic from sources such as code, to allow users to search
and reuse existing transformation logic. The front-end of TDE is an
Excel add-in, currently in beta release at O�ce Store [4]. We choose
Excel as the front-end to allow end-users stay in their familiar Excel
environment without switching.

Unique Features. The TDE system has the following features
that we believe are important �rst steps to realize the vision of
self-service data transformation. (More details of the system can be
found in a full research article [11]).
• Search-by-Example. TDE allows end-users to search transforma-
tions by examples, a paradigm known as program-by-example
(PBE) [14], �rst used in FlashFill [10] for data transformation. Com-
pared to existing PBE systems such as FlashFill that compose results
using a small number of string primitivies, TDE synthesizes pro-
grams from a much larger space of arbitrary program functions
and mapping tables [17]. We develop novel algorithms to make this

feasible at an interactive speed, with just a few (typically three)
input/output examples.
• Program Synthesis. Since existing functions rarely produce the
exact output speci�ed by users, TDE automatically synthesizes new
programs, sometimes with multiple functions, to exactly match
target output, all within just a few seconds. Expert-users have the
option to inspect the synthesized programs to ensure correctness.
• Head-domain Support. We have built an instance of TDE that
indexes over 50K functions from GitHub that can already han-
dle many head and tail domains, such as date-time, person-name,
phone-number, us-address, url, unit-conversion, etc. Many of these
transformations cannot be handled by any existing system.
• Extensibility. Although TDE can already support many important
domains out of the box, there will be diverse application domains
where TDE has no built-in support as it has not encountered and
crawled relevant functions from such domains. TDE is therefore
designed to be extensible – users can simply point TDE to their
domain-speci�c source code, DLLs, web services, and mapping
tables, the transformation logic in these resources will be automati-
cally extracted, and made immediately search-able. The way TDE
works is just like a search engine “indexing” a new document.

2 DEMO SCENARIOS
Given the raw data set in Figure 1, a user would like to transform
this data in order to perform analysis. Suppose she wants to �nd

Demonstrations SIGMOD’18, June 10-15, 2018, Houston, TX, USA

1786

SIGMOD’18, June 10–15, 2018, Houston, TX, USA

Yeye He1, Kris Ganjam1, Kukjin Lee1, Yue Wang1, Vivek Narasayya1,
Surajit Chaudhuri1, Xu Chu2, Yudian Zheng3

Figure 2: TDE transformation for date-time. (Left): input data is in column-C, user provides two desired output examples in
column-D. (Right): After clicking on the “Get Transformation” button, TDE searches over thousands of functions to compose
new programs whose output are consistent with the given examples. Within a few seconds, a ranked list of programs are
returned in the right pane. Hovering over the �rst program (using System.DateTime.Parse from .Net) gives a preview of all
results (shaded in green).

Figure 3: (Left): transformation for names. The �rst three values in column-D are provided as output examples. The desired
�rst-names and last-names are marked in bold for ease of reading. A composed program using library CSharpNameParser
from GitHub is returned. (Right): transformations for addresses. The �rst three values are provided as examples to produce
city, state, and zip-code as output. Note that some of these info are missing from the input. A program invoking Bing Maps
API is returned as the top result.

existed for decades – developers traditionally build custom code li-
braries to solve them, and share their code in places like GitHub and
StackOver�ow. In a recent crawl, we extracted over 1.8M functions
from code libraries crawled at GitHub, and over 2M code snippets
extracted from pages on StackOver�ow.

We have built a production-quality data-transformation engine
called Transform-Data-by-Example (TDE) that can index rich trans-
formation logic from sources such as code, to allow users to search
and reuse existing transformation logic. The front-end of TDE is an
Excel add-in, currently in beta release at O�ce Store [4]. We choose
Excel as the front-end to allow end-users stay in their familiar Excel
environment without switching.

Unique Features. The TDE system has the following features
that we believe are important �rst steps to realize the vision of
self-service data transformation. (More details of the system can be
found in a full research article [11]).
• Search-by-Example. TDE allows end-users to search transforma-
tions by examples, a paradigm known as program-by-example
(PBE) [14], �rst used in FlashFill [10] for data transformation. Com-
pared to existing PBE systems such as FlashFill that compose results
using a small number of string primitivies, TDE synthesizes pro-
grams from a much larger space of arbitrary program functions
and mapping tables [17]. We develop novel algorithms to make this

feasible at an interactive speed, with just a few (typically three)
input/output examples.
• Program Synthesis. Since existing functions rarely produce the
exact output speci�ed by users, TDE automatically synthesizes new
programs, sometimes with multiple functions, to exactly match
target output, all within just a few seconds. Expert-users have the
option to inspect the synthesized programs to ensure correctness.
• Head-domain Support. We have built an instance of TDE that
indexes over 50K functions from GitHub that can already han-
dle many head and tail domains, such as date-time, person-name,
phone-number, us-address, url, unit-conversion, etc. Many of these
transformations cannot be handled by any existing system.
• Extensibility. Although TDE can already support many important
domains out of the box, there will be diverse application domains
where TDE has no built-in support as it has not encountered and
crawled relevant functions from such domains. TDE is therefore
designed to be extensible – users can simply point TDE to their
domain-speci�c source code, DLLs, web services, and mapping
tables, the transformation logic in these resources will be automati-
cally extracted, and made immediately search-able. The way TDE
works is just like a search engine “indexing” a new document.

2 DEMO SCENARIOS
Given the raw data set in Figure 1, a user would like to transform
this data in order to perform analysis. Suppose she wants to �nd

Demonstrations SIGMOD’18, June 10-15, 2018, Houston, TX, USA

1786

SIGMOD’18, June 10–15, 2018, Houston, TX, USA

Yeye He1, Kris Ganjam1, Kukjin Lee1, Yue Wang1, Vivek Narasayya1,
Surajit Chaudhuri1, Xu Chu2, Yudian Zheng3

Figure 2: TDE transformation for date-time. (Left): input data is in column-C, user provides two desired output examples in
column-D. (Right): After clicking on the “Get Transformation” button, TDE searches over thousands of functions to compose
new programs whose output are consistent with the given examples. Within a few seconds, a ranked list of programs are
returned in the right pane. Hovering over the �rst program (using System.DateTime.Parse from .Net) gives a preview of all
results (shaded in green).

Figure 3: (Left): transformation for names. The �rst three values in column-D are provided as output examples. The desired
�rst-names and last-names are marked in bold for ease of reading. A composed program using library CSharpNameParser
from GitHub is returned. (Right): transformations for addresses. The �rst three values are provided as examples to produce
city, state, and zip-code as output. Note that some of these info are missing from the input. A program invoking Bing Maps
API is returned as the top result.

existed for decades – developers traditionally build custom code li-
braries to solve them, and share their code in places like GitHub and
StackOver�ow. In a recent crawl, we extracted over 1.8M functions
from code libraries crawled at GitHub, and over 2M code snippets
extracted from pages on StackOver�ow.

We have built a production-quality data-transformation engine
called Transform-Data-by-Example (TDE) that can index rich trans-
formation logic from sources such as code, to allow users to search
and reuse existing transformation logic. The front-end of TDE is an
Excel add-in, currently in beta release at O�ce Store [4]. We choose
Excel as the front-end to allow end-users stay in their familiar Excel
environment without switching.

Unique Features. The TDE system has the following features
that we believe are important �rst steps to realize the vision of
self-service data transformation. (More details of the system can be
found in a full research article [11]).
• Search-by-Example. TDE allows end-users to search transforma-
tions by examples, a paradigm known as program-by-example
(PBE) [14], �rst used in FlashFill [10] for data transformation. Com-
pared to existing PBE systems such as FlashFill that compose results
using a small number of string primitivies, TDE synthesizes pro-
grams from a much larger space of arbitrary program functions
and mapping tables [17]. We develop novel algorithms to make this

feasible at an interactive speed, with just a few (typically three)
input/output examples.
• Program Synthesis. Since existing functions rarely produce the
exact output speci�ed by users, TDE automatically synthesizes new
programs, sometimes with multiple functions, to exactly match
target output, all within just a few seconds. Expert-users have the
option to inspect the synthesized programs to ensure correctness.
• Head-domain Support. We have built an instance of TDE that
indexes over 50K functions from GitHub that can already han-
dle many head and tail domains, such as date-time, person-name,
phone-number, us-address, url, unit-conversion, etc. Many of these
transformations cannot be handled by any existing system.
• Extensibility. Although TDE can already support many important
domains out of the box, there will be diverse application domains
where TDE has no built-in support as it has not encountered and
crawled relevant functions from such domains. TDE is therefore
designed to be extensible – users can simply point TDE to their
domain-speci�c source code, DLLs, web services, and mapping
tables, the transformation logic in these resources will be automati-
cally extracted, and made immediately search-able. The way TDE
works is just like a search engine “indexing” a new document.

2 DEMO SCENARIOS
Given the raw data set in Figure 1, a user would like to transform
this data in order to perform analysis. Suppose she wants to �nd

Demonstrations SIGMOD’18, June 10-15, 2018, Houston, TX, USA

1786

https://www.microsoft.com/en-us/research/publication/transform-data-by-example-tde-extensible-data-transformation-in-excel/

Data Cleaning/Standardization (Aliases)

5

[NLP Publishing Stats, M. Rei & R. Allen]
D. Koop, CSCI 640/490, Spring 2023

'google brain resident': 'google',
'google brain': 'google',
'google inc': 'google',
'google inc.':'google',
'google research nyc': 'google',
'google research': 'google',
'google, inc.': 'google’,
'deepmind @ google': 'deepmind',
'deepmind technologies': 'deepmind',
'google deepmind': 'deepmind’,

'ibm research - china':'ibm',
'ibm research':'ibm',
'ibm research, ny':'ibm',
'ibm research, usa':'ibm',
'ibm t. j. watson research center':'ibm',
'ibm t. j. watson research':'ibm',
'ibm t.j watson research center':'ibm',
'ibm t.j. watson research center':'ibm',
'ibm t.j.watson research center':'ibm',
'ibm thomas j. watson research center':'ibm',
'ibm tj watson research center':'ibm',

'microsoft research cambridge':'microsoft',
'microsoft research india':'microsoft',
'microsoft research maluuba':'microsoft',
'microsoft research new england':'microsoft',
'microsoft research':'microsoft',
'microsoft research, redmond, w':'microsoft',
'microsoft research, redmond, wa':'microsoft',
'miicrosoft research':'microsoft',

Carnegie Mellon University

Microsoft

Stanford University

Google

Columbia University

UC Berkeley

Massachusetts Institute of Technology

University of Washington

IBM

University of Edinburgh

University of Cambridge

Johns Hopkins University

UT Austin

Princeton University

University of Pennsylvania

INRIA

University of Maryland

University of Toronto

University College London

Cornell University

Tsinghua University

Peking University

Harbin Institute of Technology

Chinese Academy of Sciences

Georgia Institute of Technology

050100

150

200

250

300

ICML
NIPS
EMNLP
NAACL
EACL
ACL

http://webcache.googleusercontent.com/search?q=cache:3go8NtkZZEgJ:www.marekrei.com/blog/analysing-nlp-publication-patterns/
https://medium.com/machine-learning-in-practice/nips-accepted-papers-stats-26f124843aa0

Data Integration
• Google Thinks I’m Dead

(I know otherwise.) [R. Abrams,
NYTimes, 2017]

• Not only Google, but also Alexa:
- "Alexa replies that Rachel Abrams is

a sprinter from the Northern
Mariana Islands (which is true of
someone else)."

- "He asks if Rachel Abrams is
deceased, and Alexa responds yes,
citing information in the Knowledge
Graph panel."

6D. Koop, CSCI 640/490, Spring 2023

http://www.apple.com
http://www.apple.com

Data Storage

7

[V. Wilkinson]
D. Koop, CSCI 640/490, Spring 2023

https://openclassrooms.com/en/courses/5671741-design-the-logical-model-of-your-relational-database/6255746-compare-relational-and-nosql-databases

Scaling Dataframes

8

[D. Petersohn]
D. Koop, CSCI 640/490, Spring 2023

https://towardsdatascience.com/the-modin-view-of-scaling-pandas-825215533122

Provenance and Reproducibility

9D. Koop, CSCI 640/490, Spring 2023

Fig. 7: Using the blog to document processes: A visualization expert
created a series of blog posts to explain the problems found when gen-
erating the visualizations for CMOP.

ACKNOWLEDGMENTS

Our research has been funded by the National Science Foun-
dation (grants IIS-0905385, IIS-0746500, ATM-0835821, IIS-
0844546, CNS-0751152, IIS-0713637, OCE-0424602, IIS-0534628,
CNS-0514485, IIS-0513692, CNS-0524096, CCF-0401498, OISE-
0405402, CCF-0528201, CNS-0551724), the Department of En-
ergy SciDAC (VACET and SDM centers), and IBM Faculty Awards
(2005, 2006, 2007, and 2008). E. Santos is partially supported by a
CAPES/Fulbright fellowship.

REFERENCES

[1] L. Bavoil, S. Callahan, P. Crossno, J. Freire, C. Scheidegger, C. Silva, and
H. Vo. VisTrails: Enabling Interactive Multiple-View Visualizations. In
IEEE Visualization 2005, pages 135–142, 2005.

[2] S. P. Callahan, J. Freire, C. E. Scheidegger, C. T. Silva, and H. T. Vo.
Towards provenance-enabling paraview. pages 120–127, 2008.

[3] Chemical blogspace. http://cb.openmolecules.net/.
[4] NSF Center for Coastal Margin Observation and Prediction (CMOP).

http://www.stccmop.org.
[5] S. B. Davidson and J. Freire. Provenance and scientific workflows: chal-

lenges and opportunities. In Proceedings of SIGMOD, pages 1345–1350,
2008.

[6] R. T. Fielding. Architectural Styles and the Design of Network-based Soft-
ware Architectures. PhD thesis, University of California, Irvine, 2000.

[7] S. Fomel and J. Claerbout. Guest editors’ introduction: Reproducible
research. Computing in Science Engineering, 11(1):5 –7, jan.-feb. 2009.

Fig. 8: Visualizing a binary star system simulation. This
is an image that was generated by embedding a workflow di-
rectly in the text. The original workflow is available at
http://www.crowdlabs.org/vistrails/workflows/details/119/.

[8] J. Freire, D. Koop, E. Santos, and C. T. Silva. Provenance for computa-
tional tasks: A survey. Computing in Science & Engineering, 10(3):11–
21, May-June 2008.

[9] J. Freire, C. Silva, S. Callahan, E. Santos, C. Scheidegger, and H. Vo.
Managing rapidly-evolving scientific workflows. In International Prove-
nance and Annotation Workshop (IPAW), LNCS 4145, pages 10–18.
Springer Verlag, 2006.

[10] R. Hoffmann. A wiki for the life sciences where authorship matters. Na-
ture Genetics, 40(9):1047–1051, 2008.

[11] IBM. OpenDX. http://www.research.ibm.com/dx.
[12] Kitware. Paraview. http://www.paraview.org.
[13] Kitware. The visualization toolkit. http://www.vtk.org.
[14] Many Eyes Wikified. http://wikified.researchlabs.ibm.com.
[15] M. McKeon. Harnessing the Web Information Ecosystem with Wiki-

based Visualization Dashboards. IEEE Transactions on Visualization and
Computer Graphics, 15(6):1081–1088, 2009.

[16] A. R. Pico, T. Kelder, M. P. van Iersel, K. Hanspers, B. R. Conklin, and
C. Evelo. WikiPathways: Pathway editing for the people. PLoS Biology,
6(7), 2008.

[17] D. D. Roure, C. Goble, and R. Stevens. The design and realisation of
the virtual research environment for social sharing of workflows. Future
Generation Computer Systems, 25(5):561 – 567, 2009.

[18] E. Santos, L. Lins, J. Ahrens, J. Freire, and C. Silva. Vismashup: Stream-
lining the creation of custom visualization applications. IEEE Transac-
tions on Visualization and Computer Graphics, 15(6):1539–1546, 2009.

[19] Swivel. http://www.swivel.com.
[20] J. Tohline and E. Santos. Visualizing a Journal that Serves the Computa-

tional Sciences Community. Computing in Science & Engineering, 12(3),
2010. To appear.

[21] J. E. Tohline. Scientific Visualization: A Necessary Chore. Computing
in Science & Engineering, 9(6):76–81, 2007.

[22] C. Upson, J. Thomas Faulhaber, D. Kamins, D. H. Laidlaw, D. Schlegel,
J. Vroom, R. Gurwitz, and A. van Dam. The Application Visualiza-
tion System: A Computational Environment for Scientific Visualization.
IEEE Computer Graphics and Applications, 9(4):30–42, 1989.

[23] F. B. Viegas, M. Wattenberg, F. van Ham, J. Kriss, and M. McKeon.
ManyEyes: A site for visualization at internet scale. IEEE Transactions
on Visualization and Computer Graphics, 13(6):1121–1128, 2007.

[24] VisIt Visualization Tool. https://wci.llnl.gov/codes/visit.
[25] The VisTrails Project. http://www.vistrails.org.

DATA DATA

Data Management

Computation

Visualization

Paper

Provenance and Reproducibility

9D. Koop, CSCI 640/490, Spring 2023

Fig. 7: Using the blog to document processes: A visualization expert
created a series of blog posts to explain the problems found when gen-
erating the visualizations for CMOP.

ACKNOWLEDGMENTS

Our research has been funded by the National Science Foun-
dation (grants IIS-0905385, IIS-0746500, ATM-0835821, IIS-
0844546, CNS-0751152, IIS-0713637, OCE-0424602, IIS-0534628,
CNS-0514485, IIS-0513692, CNS-0524096, CCF-0401498, OISE-
0405402, CCF-0528201, CNS-0551724), the Department of En-
ergy SciDAC (VACET and SDM centers), and IBM Faculty Awards
(2005, 2006, 2007, and 2008). E. Santos is partially supported by a
CAPES/Fulbright fellowship.

REFERENCES

[1] L. Bavoil, S. Callahan, P. Crossno, J. Freire, C. Scheidegger, C. Silva, and
H. Vo. VisTrails: Enabling Interactive Multiple-View Visualizations. In
IEEE Visualization 2005, pages 135–142, 2005.

[2] S. P. Callahan, J. Freire, C. E. Scheidegger, C. T. Silva, and H. T. Vo.
Towards provenance-enabling paraview. pages 120–127, 2008.

[3] Chemical blogspace. http://cb.openmolecules.net/.
[4] NSF Center for Coastal Margin Observation and Prediction (CMOP).

http://www.stccmop.org.
[5] S. B. Davidson and J. Freire. Provenance and scientific workflows: chal-

lenges and opportunities. In Proceedings of SIGMOD, pages 1345–1350,
2008.

[6] R. T. Fielding. Architectural Styles and the Design of Network-based Soft-
ware Architectures. PhD thesis, University of California, Irvine, 2000.

[7] S. Fomel and J. Claerbout. Guest editors’ introduction: Reproducible
research. Computing in Science Engineering, 11(1):5 –7, jan.-feb. 2009.

Fig. 8: Visualizing a binary star system simulation. This
is an image that was generated by embedding a workflow di-
rectly in the text. The original workflow is available at
http://www.crowdlabs.org/vistrails/workflows/details/119/.

[8] J. Freire, D. Koop, E. Santos, and C. T. Silva. Provenance for computa-
tional tasks: A survey. Computing in Science & Engineering, 10(3):11–
21, May-June 2008.

[9] J. Freire, C. Silva, S. Callahan, E. Santos, C. Scheidegger, and H. Vo.
Managing rapidly-evolving scientific workflows. In International Prove-
nance and Annotation Workshop (IPAW), LNCS 4145, pages 10–18.
Springer Verlag, 2006.

[10] R. Hoffmann. A wiki for the life sciences where authorship matters. Na-
ture Genetics, 40(9):1047–1051, 2008.

[11] IBM. OpenDX. http://www.research.ibm.com/dx.
[12] Kitware. Paraview. http://www.paraview.org.
[13] Kitware. The visualization toolkit. http://www.vtk.org.
[14] Many Eyes Wikified. http://wikified.researchlabs.ibm.com.
[15] M. McKeon. Harnessing the Web Information Ecosystem with Wiki-

based Visualization Dashboards. IEEE Transactions on Visualization and
Computer Graphics, 15(6):1081–1088, 2009.

[16] A. R. Pico, T. Kelder, M. P. van Iersel, K. Hanspers, B. R. Conklin, and
C. Evelo. WikiPathways: Pathway editing for the people. PLoS Biology,
6(7), 2008.

[17] D. D. Roure, C. Goble, and R. Stevens. The design and realisation of
the virtual research environment for social sharing of workflows. Future
Generation Computer Systems, 25(5):561 – 567, 2009.

[18] E. Santos, L. Lins, J. Ahrens, J. Freire, and C. Silva. Vismashup: Stream-
lining the creation of custom visualization applications. IEEE Transac-
tions on Visualization and Computer Graphics, 15(6):1539–1546, 2009.

[19] Swivel. http://www.swivel.com.
[20] J. Tohline and E. Santos. Visualizing a Journal that Serves the Computa-

tional Sciences Community. Computing in Science & Engineering, 12(3),
2010. To appear.

[21] J. E. Tohline. Scientific Visualization: A Necessary Chore. Computing
in Science & Engineering, 9(6):76–81, 2007.

[22] C. Upson, J. Thomas Faulhaber, D. Kamins, D. H. Laidlaw, D. Schlegel,
J. Vroom, R. Gurwitz, and A. van Dam. The Application Visualiza-
tion System: A Computational Environment for Scientific Visualization.
IEEE Computer Graphics and Applications, 9(4):30–42, 1989.

[23] F. B. Viegas, M. Wattenberg, F. van Ham, J. Kriss, and M. McKeon.
ManyEyes: A site for visualization at internet scale. IEEE Transactions
on Visualization and Computer Graphics, 13(6):1121–1128, 2007.

[24] VisIt Visualization Tool. https://wci.llnl.gov/codes/visit.
[25] The VisTrails Project. http://www.vistrails.org.

DATA DATA

Data Management

Computation

Visualization

Paper

Provenance

About this course
• Course web page is authoritative:
- faculty.cs.niu.edu/~dakoop/cs640-2023sp/
- Schedule, Readings, Assignments will be posted online
- Check the web site before emailing me

• Course is meant to be more "cutting edge"
- Still focus on building skills related to data management
- Tune into current research and tools

• Requires student participation: readings and discussions

10D. Koop, CSCI 640/490, Spring 2023

http://faculty.cs.niu.edu/~dakoop/cs640-2023sp/

Course Material
• Helpful Books:
- Python for Data Analysis, W. McKinney
- Effective Pandas, M. Harrison
- Intro to Python, Deitel & Deitel
- Python Data Science Handbook, J.

VanderPlas
• Research papers
• Many websites

11D. Koop, CSCI 640/490, Spring 2023

https://wesmckinney.com/book/
https://store.metasnake.com/effective-pandas-book
http://www.deitel.com/Books/IntrotoPythonforCSandDS/tabid/3689/Default.aspx
https://github.com/jakevdp/PythonDataScienceHandbook

12

Syllabus Questions?

D. Koop, CSCI 640/490, Spring 2023

13

Class Roster Check

D. Koop, CSCI 640/490, Spring 2023

JupyterLab

14D. Koop, CSCI 640/490, Spring 2023

JupyterLab
• An interactive, configurable programming

environment
• Supports many activities including notebooks
• Runs in your web browser
• Notebooks:
- Originally designed for Python
- Supports other languages, too
- Displays results (even interactive maps) inline
- You decide how to divide code into

executable cells
- Shift+Enter to execute a cell

15D. Koop, CSCI 640/490, Spring 2023

Installing Python & JupyterLab
• www.anaconda.com/download/
• Anaconda has Jupyter Lab
• Use Python 3.9 or 3.10 version
• Anaconda Navigator
- GUI application for managing Python

environment
- Can install packages
- Can start JupyterLab

• Can also use the shell to do this:
- $ jupyter lab

- $ conda install <pkg_name>

16D. Koop, CSCI 640/490, Spring 2023

https://www.anaconda.com/download/

JupyterLab Notebook Tips
• Starts with a directory view
• Create new notebooks using the Launcher (+ icon on the left)
- New notebooks have the name "Untitled"
- File → Rename Notebook… (or right-click) to change the name

• Save a notebook using the command under the File menu
• Shutting down the notebook requires quitting the kernel
- Web browser is interface to display code and results
- Kernel runs the code: may see messages in a console/terminal window
- Closing the browser window does not stop Jupyter
- Use File → Shut Down to shut down everything

17D. Koop, CSCI 640/490, Spring 2023

JupyterLab Notebooks
• Open a notebook using the left panel like you would in a desktop view
• Past results are displayed—does not mean they are loaded in memory
• Use "Run All" or "Run All Above" to re-execute past work
- If you shut down the kernel, all of the data and variables you defined need

to be redefined (so you need to re-run all)
- Watch Out—Order Matters: If you went back and re-executed cells in a

different order than they are shown, doing "Run All" may not produce the
same results!

• Edit mode (green) versus Command mode (blue == Be Careful)

18D. Koop, CSCI 640/490, Spring 2023

JupyterLab Notebooks
• Can write code or plain text (can be styled Markdown)
- Choose the type of cell using the dropdown menu

• Cells break up your code, but all data is global
- Defining a variable a in one cell means it is available in any other cell
- This includes cells above the cell a was defined in!

• Remember Shift+Enter to execute
• Enter just adds a new line
• Use ?<function_name> for help
• Use Tab for auto-complete or suggestions
• Tab also indents, and Shift+Tab unindents

19D. Koop, CSCI 640/490, Spring 2023

JupyterLab Outputs
• stdout: where print commands go
• stderr: where error messages go
• display: special output channel used to show rich outputs
• output: same as display but used to display the value of the last line of a cell

20D. Koop, CSCI 640/490, Spring 2023

JupyterLab Output Types

21D. Koop, CSCI 640/490, Spring 2023

stdout

display

output

stderr

Other JupyterLab Features
• Terminal
- Similar to what you see on turing/

hopper but for your local machine
• File Viewers
- CSV
- Plugins available

• Console
- Can be linked to notebooks

22D. Koop, CSCI 640/490, Spring 2023

JupyterLab Documentation
• JupyterLab Tutorial Video
• JupyterLab Documentation

23D. Koop, CSCI 640/490, Spring 2023

https://www.youtube.com/watch?v=RFabWieskak
https://jupyterlab.readthedocs.io/en/stable/getting_started/overview.html

Python
• Started in December 1989 by Guido van Rossum
• “Python has surpassed Java as the top language used to introduce U.S.

students to programming…” (ComputerWorld, 2014)
• Python and R are the two top languages for data science
• High-level, interpreted language
• Supports multiple paradigms (OOP, procedural, imperative)
• Help programmers write readable code, Use less code to do more
• Lots of libraries for python
- Designed to be extensible
- Easy to wrap code from other languages like C/C++

• Open-source with a large, passionate community
24D. Koop, CSCI 640/490, Spring 2023

http://www.computerworld.com/article/2489732/it-skills-training/python-bumps-off-java-as-top-learning-language.html

Learning Python Resources
• Python for Programmers
• https://wiki.python.org/moin/BeginnersGuide
• https://wiki.python.org/moin/IntroductoryBooks
• http://www.pythontutor.com
• https://www.python-course.eu
• https://software-carpentry.org/lessons/

25D. Koop, CSCI 640/490, Spring 2023

http://www.apple.com
https://wiki.python.org/moin/BeginnersGuide
https://wiki.python.org/moin/IntroductoryBooks
http://www.pythontutor.com
https://www.python-course.eu
https://software-carpentry.org/lessons/

Python Compared to C++ and Java
• Dynamic Typing
- A variable does not have a fixed type
- Example: a = 1; a = "abc"

• Indentation
- Braces define blocks in Java, good style is to indent but not required
- Indentation is critical in Python
 z = 20
 if x > 0:
 if y > 0:
 z = 100
 else:
 z = 10

26D. Koop, CSCI 640/490, Spring 2023

Notebook

27D. Koop, CSCI 640/490, Spring 2023

Print function
•print("Hello World")

• Can also print variables:
name = "Jane"
print("Hello,", name)

28D. Koop, CSCI 640/490, Spring 2023

Python Variables and Types
• No type declaration necessary
• Variables are names, not memory locations
a = 0
a = "abc"
a = 3.14159

• Don't worry about types, but think about types
• Strings are a type
• Integers are as big as you want them
• Floats can hold large numbers, too (double-precision)

29D. Koop, CSCI 640/490, Spring 2023

Python Math and String "Math"
• Standard Operators: +, -, *, /, %
• Division "does what you want" (new in v3)
- 5 / 2 = 2.5
- 5 // 2 = 2 # use // for integer division

• Shortcuts: +=, -=, *=
• No ++, --
• Exponentiation (Power): **
• Order of operations and parentheses: (4 - 3 - 1 vs. 4 - (3 - 1))
• "abc" + "def"

• "abc" * 3

30D. Koop, CSCI 640/490, Spring 2023

