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exploration of existing MV designs (Section 6.1), and (2) recommends
designs given view type and layout information (Section 6.2). We eval-
uate the utility and effectiveness of this recommendation via a formal
user study. The results of the study suggest that our recommendation
tool can enhance the understanding of MV design space, and promote
appropriate MV designs, for both visualization novices and experts.

In summary, we contribute to the MV design in the following way:
• We curate a new dataset of 360 MV designs. Using an annotation

tool developed for this project, each of the MV designs has been
carefully labeled and annotated. The resulting dataset will be
released publicly to foster future research.

• We conduct a series of quantitative analyses on the dataset, and
find common composition patterns of view type usage and con-
figuration patterns of layout arrangement in the design of MVs.

• We develop an interactive recommendation system that supports
multi-faceted exploration, and recommendations of MV designs.
We conduct a formal user study showing the effectiveness of the
recommendation system. The system is freely available for the
academic purpose at https://mvlandscape.bitbucket.io/.

2 RELATED WORK

Multiple Views. Card et al.’s reference model [10] states that visu-
alizations are created in four steps: i) processing raw data into data
tables; ii) mapping data tables to visual structures; iii) transform-
ing visual structures to views through operations like zooming and
brushing; and iv) rendering and displaying views to users. While the
reference model is useful for designing a single visualization, it does
not provide guidelines for designing visualizations for more complex
and high-dimensional data. To help users examine and interact with
large, complex, and high-dimensional data, multiple-view visualiza-
tions (MV) that can show different perspectives of data emerged [38].
For example, dashboards evolve from single- to multiple-view visu-
alizations, rendering an increase of data visibility, enhancement of
operational efficiency, and reduction of understanding cost [43]. The
visualization community has contributed to MV design from various
perspectives, e.g., suggesting rules and guidelines [5, 36], developing
authoring tools (e.g., Polaris [47], Improvise [52], and ComVis [33]),
and extending to mobile devices [18, 26, 41] and large displays [27].

Many theories have also been proposed to facilitate the understand-
ing of the relationship between views. For example, VisLink [15]
formalized multi-relation visualizations as side by side, in parallel, or
in chosen placements. Javed and Elmqvist [22] and Gleicher et al. [17]
categorized design space of composite visualizations into juxtaposi-
tion, superimposition, overloading, nesting, and integration. However,
though much progress has been made, the design of the layout of a
multiple views visualization is usually curated manually based on the
designers’ experience. This process can be difficult and laborious for
professional designers, not to mention visualization novices.

The difficulty in designing MVs suggests a lack of structure and
understanding of the design space of MVs. However, the view layouts
are still created by humans, which suggests that MV design is not
arbitrary [18]. This work helps to address this challenge, by performing
an empirical study on how MVs are designed in practice, which we
categorize as composition and configuration patterns. The goal of this
study is to further our understanding of the design space of MVs and
provide the foundation for data-driven MV design.

Data-driven visualization design. Mackinlay proposed APT (A Pre-
sentation Tool) [31] for automated visualization design based on the
expressiveness and effectiveness of the visualization. APT builds on
studies in graphical perception, e.g., rankings of visual variables by
data type [14] and analytical tasks [11]. Some of these findings have
been integrated into the development of visualization authoring tools,
e.g., ShowMe [32]. Following Mackinlay’s work, there has been an in-
creasing trend of using data-driven models for automated visualization
design [42]. Most of these studies aim to learn an optimal mapping
from inputs of data attributes and tasks to outputs of visualizations.
For example, SEEDB [50] recommends visualizations that it deems
useful or interesting based on the perceived utility of the visualization;

(x, y)
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Display space Views of different types Small multiples

Fig. 1. Illustration of some example MV layouts. Tree structures below
depict corresponding hierarchies of the views.

Data2Vis [16] learns an end-to-end model for automatic visualization
generation; DeepEye [30] and VizML [19] learn to rank visualization
for input specifications of data, tasks, and context; Draco [34] learns
soft constraints for visualization design; and Chen et al. [12] learns
global and local features for timeline infographics. While useful, these
works focus on mapping data tables to visual structures for a single
visualization. The goal of this paper is to provide the foundation for
designing the composition and configuration of these visualizations
into a multiple-view design.

In the simplest form of a MV design, individual visualizations can
be arranged in a grid layout, as shown in VizDeck [25]. However, as we
show in Section 5, real-world composition and configuration patterns
of MVs can be more complicated and divergent. Due the complexity
of the design space, we develop a recommendation system to help a
designer generate a MV design. Based on the analyses of the MVs
in the VIS community over the last nine years, our recommendation
system can propose useful and more nuanced MV designs that are more
suited for real-world applications.

Layout Design. MV design can be regarded as a layout design prob-
lem studied in many fields, such as graphics design (e.g., [35, 55]),
architecture (e.g., [53, 56]), and treemap (e.g., [6, 44]). Here we briefly
summarize closely related works in graphics design and treemap.

Many works in graphic layout design largely rely on rule-based
approaches based on existing design principles. For example, Xu et
al. [55] introduced the beautification metric for the global layout that
aligns sketch-based interfaces. However, the design principles typically
aim to optimize certain properties, which may ignore the resulting effect
on other aspects of the design. As a result, in recent years researchers
have begun to explore an exemplar-based approach by learning from
existing designs. For example, O’Donovan et al. [35] optimized the
arrangement of the input contents of a single-page infographic layout
based on a small number of example layouts. Zheng et al. [59] showed
that infographic layout can be synthesized using a deep generative
model learned from a large-scale magazine layout dataset.

Related to the layout problem in graphic design, treemap is a nested
enclosure visualization, which is often described as space-filling [44].
The design of treemaps (e.g. squarified treemap [9]) therefore shares
similar considerations as the design of MVs. In particular, an effective
MV design should also take into account the efficiency of the usage
of space, which can be evaluated by quantitative metrics proposed for
measuring the space efficiency of treemaps. Borrowing from literature
in treemap design, we adopt a series of metrics, including aspect ra-
tio [6], and stability and relative-position-change [46] when analyzing
the configuration pattern of MVs.

3 DEFINITION AND VIEW SPECIFICATION

We define a multiple view (MV) as a layout that arranges two or more
views in a display space (see Figure 1 for some example layouts). Each
view in a MV consists of at least two perspective attributes:

• View type (denoted as type): Following Card et al.’s model [10], a
view is formed by applying transforming operations to the visual
structure. Many visual structures have been designed, which can be
classified into various view types [28, 45]. Recently, Borkin et al. [7]

Classifying MV Layouts
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Fig. 3. A bottom-up approach is applied to refine manual layout annota-
tions: views in a small multiples are grouped and aligned (a); neighboring
views that can form a rectangle are grouped and aligned (b&c). The
process is repeated until no more views can be grouped, generating the
refined layout (d) without overlaps and gaps.

is assigned to a unique color. We constrain bboxi within S by
clipping the intersection of user-specified rectangle recti and S,
i.e., bboxi = recti \S. Users can reposition and resize a bboxi by
dragging control points on the corner of each edge. We allow
overlap or gap between two neighboring bboxi and bbox j , which
will be fixed in a post-processing stage (see Section 4.3).

• Control Panel consists of a set of widgets allowing users to
navigate or change view attributes. In the top, the blue region lays
four buttons of previous, next, save, and load. Users can view
the previous/next interface by clicking on previous or next button,
respectively. If users feel comfortable with current annotations,
they can save them; if users would like to make changes, they can
load previous annotations.

When a user annotates a rectangle in the Annotation View, a new
section with a text field of View ID and a drop list of Type will
be added to the panel. Each section is marked in the same color
with the corresponding rectangle color in the Annotation View. In
the View ID text field, the user can input a positive integer (e.g., 1,
2) indicating the view is a level-1 view, or a one-decimal number
(e.g., 3.1, 3.2) indicating the view is a level-2 view, where the
integral part indicates the small multiples ID, and the decimal
part indicates the view number within the small multiples. In the
Type drop list, the user can choose one out of the 14 view types
(see Section 3). Users can also choose to delete the view using
the trash button attached besides.

• History View overviews all MVs in the dataset by showing an
image thumbnail for each MV. Annotated MVs are shown in the
gray background; the one being annotated is marked with a red
outline, and unannotated ones are shown in the white background.

After finishing annotating a MV, we store the labeling results in a
JSON file named by the paper DOI. The JSON file records center posi-
tion and size of the MV in the image, and an array named views storing
information of type and bbox of all views. Level-2 views in a small
multiples are stored as a nested array named small multiples within
views array. Specifically, bboxi of a view viewi stores the normalized
center position (xi,yi) and size wi ⇥hi to facilitate comparison among
different MVs. By referring to the interface position and size, we can
recover the exact position of each view in the image.

4.3 Layout Refinement

Manual annotation would inevitably cause overlaps or gaps between
bbox of neighboring views. To remove the effect on follow-up anal-
yses, we refine bbox annotations using a bottom-up approach, as il-
lustrated in Figure 3. Here, the approach takes a set of rectangles
BB := {bbox1, [bbox2.1,bbox2.2], [bbox3.1,bbox3.2],bbox4,bbox5} as
input. Notice here BB is the annotation results for the MV displayed in
Figure 2. The algorithm works as follows:

1. First, the algorithm checks if any two or more views are forming
a small multiples, by referring to the view ID information stored
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Fig. 4. Preliminary analyses on distribution of view count (left), and
frequency of each view type (right).

in the JSON file. For example, bbox2.1 and bbox2.2 in Figure 3(a)
are bounding boxes of two views forming a small multiples. Next,
we group the bboxes together, forming a group of bboxes (denoted
as BBg). We identify a minimum rectangle bboxg that encloses all
bbox 2 BBg. As in Figure 3, we can derive bboxg1 for BBg1 :=
{bbox2.1,bbox2.2}, and bboxg2 for BBg2 := {bbox3.1,bbox3.2}.

2. Next, we update bboxi 2 BBg as follows: (i) in case if the
top/left/bottom/right margin of bboxi to bboxg is smaller than a
threshold q , we align bboxi to the top/left/bottom/right of bboxg;
(ii) in case if an overlap or gap between two neighboring boxes
bboxi & bbox j is smaller than q , we stretch or shrink bboxi and
bbox j to remove the misalignment. Here, we set q as 3% of the
average width and height of bboxg.

3. All bboxi 2 BBg are removed from BB while bboxg is added
into BB, forming a new set BB0. In Figure 3(b), BB0 :=
{bbox1,bboxg1,bboxg2,bbox4,bbox5}.

4. We then check if any two or more boxes in BB0 can be grouped
upon the following conditions:

• The boxes are in the same “neighborhood” � centers of the
boxes can be connected in a straight line without crossing
some other box. For instance, bboxg2 & bbox4 are neigh-
bors, while bboxg1 & bbox5 are not because connections
between them will pass through bboxg2 and bbox4.

• The box centers are in horizontal or vertical, and
widths/heights of the boxes are nearly the same. For in-
stance, bboxg2 & bbox4 satisfy the condition, while bboxg2
& bbox1 because their heights are very different.

As in Figure 3(b), only bboxg2 & bbox4 meet the conditions.
5. We update the boxes as described in Step 2. Specifically, all

sub-boxes in a group box, e.g., bbox3.1 & bbox3.2 in bboxg2 will
be updated accordingly.

6. We repeat Step 2-5 until all boxes are grouped.

Finally, we generate a refined layout (Figure 3(d)) without overlaps
and gaps for each MV. We refine all interfaces in the annotation dataset.
Supplementary Table S3 presents some annotation results.

5 COMPOSITION AND CONFIGURATION ANALYSIS

After annotating all collected MV images (Section 4), we create a new
corpus Cmv = {MVi}n

i=1, where n = 360 is the number of collected
MVs in this work. Each view viewi is represented as a two-tuple
viewi := (typei,bboxi). We first conduct some preliminary analyses on
the distribution of view count and frequency of view type. Figure 4
presents the results. As shown in Figure 4 (left), most MVs (62.2%)
comprise no more than five views, with 68 three-view being the most
common MVs, followed by 61 four-view, 52 five-view, and 43 two-
view. This indicates that designers opt for simple MVs with a small
number of views. Figure 4 (right) shows that most MVs include a Panel
(68.3%) of menus, legends, and narrative texts. Next to Panel, we see
SciVis is not frequent (8.3%), as there are not many SciVis MVs in the
collected dataset. Among view types of information visualization, Bar
(32.2%), Net. (33.3%), and Line (32.5%) exceed 30%, whilst Circle
charts are seldom (only 1.6%) adopted.

However, though interesting, the preliminary analyses do not pro-
vide answers for practical questions such as “which view types are
frequently used together?”, or “where to position each view?”. We

Frequency of View Count & Type
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ARC values. For each group, we depict its ARC distribution using the
box plot as in Figure 7 (left). Here we show only the range [1/10, 10]
that most ARC values fall in. Since ARC and 1/ARC are reciprocal, we
put 1 at the center, and [1/10, 1) and (1,10] as symmetric around 1. We
can observe that ARCs of most view types are within the range [1/2, 2],
with mean values fall around 1. Some exceptions are Area charts with
most ARCs larger than 1, and Panel with most ARCs less than 1. From
follow-up investigation, we find that many MVs arrange horizontally
long and narrow Area charts in small multiples, and many MVs employ
vertically long and narrow Panels on the left/right side.

We further select four representative view types of Bar, Distri., Net.
and Panel, and observe their ARC distributions using the violin plot
(Figure 7 (right)). We can notice that the mean ARC of Bar charts is
near 1, yet there are some narrow Bar charts with ARCs towards 1/5 and
5. For Distri. views, there is a peak of ARCs (the white dots) around 1/2,
and most ARCs are above 1/3 except one outlier. For Net. views (e.g.
node-link diagrams), we see their ARCs are more concentrated within
[1/2, 2] with a mean value around 1. This is probably because ARCs of
Net. views are more independent with the underlying data, in contrast
to other view types like Bar charts that need to increase its width to
accommodate for the increased number of data attributes. Lastly, we
can see ARCs of Panel are mostly below 1 with a peak around 1/3,
which indicates that the Panels are typically vertically long and narrow.

5.3.2 View Type & Relative Position
Position. To understand how individual views are
positioned in MVs, we measure the relative posi-
tions of different view types. Inspired by stability
measurement for treemap layout [46], we divide
the display space into 3⇥ 3 grids {S1,S2, ...,S9}
as shown in the inline figure. Next, we model the
relative position of viewi in the display space S as
S(viewi) = {pi,1S1, ..., pi,9S9}, where pi,k stands for the proportion of
overlapping area between bboxi and grid Sk multiplied by the size of Sk.
For instance, consider the inline figure, the overlapping area between
the green view (denoted as view1) and S1 is 1/4 the size of S1, while S1
is 1/9 the size of entire view space S. Hence, p1,1 = 1/4⇥1/9 = 1/36.
Similarly, we can compute p1,2, p1,4, and p1,5 as 1/36, while the other
p1, j are 0. Together, we can represent the relative position of the green
view as { 1

36 S1,
1
36 S2,

1
36 S4,

1
36 S5}.

The use of this encoding scheme has several advantages: first, each
view is explicitly represented � we can derive relative positions and
sizes of different views in a MV. Second, the representation is consistent
across MVs � we can compare positions and sizes of views in different
MVs. Last, we can sum up multiple views of the same view type by
simply adding up their p values. The sum stands for relative position
and size for the view type rather than a specific view.

The stacked bar chart in Figure 8 (left) depicts the average p values
for each view type in MV designs. The overall bar length depicts the
average size of each view type. We can notice that several view types,
including Diag., SciVis, and Net., occupy larger areas � over 25% of the
display space. In contrast, Area and Bar occupy only ⇠5% of the dis-
play space, even though the frequency of Bar charts are quite high (see
Figure 4 (right)). This may suggest that designers tend to assign small
spaces for Area and Bar charts, as the view types are typically used
for depicting summary statistics. We expected Circle to show similar

p values with those of Area and Bar, but surprisingly Circle occupies
much bigger space of about 25%. We investigated carefully the MVs
containing Circle in the database and found that works on infographics
design use Circle charts to illustrate their approach; see Supplementary
Table S3-2A for an example. In contrast, Circle occupies much smaller
sizes in other visual analytics MVs; see Supplementary Table S3-Other
Layouts for an example.

From individual bars, we can derive relative positions of each view
type. We notice that Panel is rarely distributed in the center of the
display space, as its p values for grids S2, S5, and S8 are very small. In
contrast, Diag. is mostly placed in the center, as its p values for grids
S2, S5 and S8 are relatively high. In addition to Diag., the other large
view types, i.e., SciVis and Map, also show higher p values at grids
S1, S2, S4, and S5. This indicates that designers tend to place large
views in the top-left and center regions of the display space. The other
view types present balanced p values for the nine grids, indicating their
positions can be inconsistent depending on designs.
Position Stability: To check if the relative positions of a view type can,
in fact, be inconsistent, we measure position stability of a view type in
different MVs. We adopt the metric of relative-position-change [46] to
measure the distance between two views viewi and view j:

D(viewi,view j) =
1
2

9

Â
k=1

|pi,k � p j,k| (2)

D ranges from [0, 0.5]: close to 0 values indicate similar, consis-
tent positions across MV designs, whilst close to 0.5 values indicate
positions are exclusively distinct (i.e. highly inconsistent). From the
relative-position-change, we can derive stability (denoted as ST B) of
typek in the collected MV s as follows:

ST B(type) =
1

m(m�1)

m

Â
i=1

m

Â
j=1, j 6=i

D(viewi,view j) (3)

where m indicates the number of MV s that include the view type.
Figure 8 (right) presents the stability of each view type in the top

10 layouts. The cells with null values indicate that the layout contains
at most one MV with the view type. We can observe that most STBs
are below 0.2. For example, STBs of Panel are about 0.1 in all top
10 layouts, indicating positions and sizes of Panel are rather stable.
This is probably because designers commonly allocate Panel in the
periphery. Nevertheless, there are several unstable cases with STBs over
0.3, including Text in layout 4H, Point in layout 4C, and Map in layout
2B. Taking Map in layout 2B for example, we notice that chances of
positioning maps in the top or the bottom are almost half and half. In
contrast, Map in layout 2A is rather stable, as we see most maps are
positioned in the left, rather than in the right.

6 RECOMMENDATION SYSTEM

Our analyses are nuanced and therefore difficult to turn into a cleanly
articulated design guideline for MVs. As such, we aggregate our find-
ings into a recommendation system that can help a designer choose the
most appropriate MV designs given their data and needs. Our recom-
mendation system can be used in two interactive modes: Exploration
mode (Section 6.1) and Design mode (Section 6.2).

6.1 Exploration Mode

Exploration mode enables faceted exploration of existing MVs. Based
on the prior analyses, each MV includes attributes of view types, number
of views, and layout. Moreover, the MV images are derived from
publications that include attributes of year, venue, authors, etc. We
develop Exploration mode as illustrated in Figure 9, which consists of
two main components:

• Exploration View, shown in Figure 9(b), adopts a unit visual-
ization to present the query result. Each existing MV design is
depicted as a dot, with color representing extrinsic attributes of
year or venue. Users can group the queried MVs based on their
intrinsic attributes of Number of Views or Layout. We only present
the first 10 groups in case more than 10 groups are formed. Here

View Aspect Ratio Distribution
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Note that each dimensional design factor involves various discrete data values. For example, we identify
128 primary institutions in the MV dataset (see Sect. 5.2), i.e., jC3j ¼ 128 if we consider each individual
institute. Nevertheless, this will yield excessive discrete data values, hindering Bayesian inference. We
overcome the deficiency by clustering institutes into groups based on continent (see Sect. 6.2). Similarly, we
categorize all possible data values of view dimension (C1) by considering if the MV contains a specific view
type or not, e.g., bar chart. We keep coordination dimension (C2) as origin since the number of coordination
data values is small. In this way, the above tuple can be simplified as

ðwith bar; ½comparison; exploration$; AsiaÞ:

4.2 Modeling

The model is used to explain the probability of events occurring. Given a set of design considerations C, we
need to formulate a predictive probability distribution over the design space of possible MV layouts. But
before we formulate a predictive probability distribution, we need to formulate the posterior distribution,

Pðl~jCÞ / PðCjl~ÞPðl~Þ; ð3Þ

where l~ is a K-dimensional vector which describes the probability of each layout, PðCjl~Þ is the likelihood
of the set of design considerations C given a particular l~, and Pðl~Þ is the prior of MV layouts.

• Prior. In our work, the three variables of design factors (i.e., view, designer, and coordination) are all
categorical. Their observed values conform to a polynomial distribution, so we set the prior to the
Dirichlet distribution. For the domain of L with K possible categories, we define a K-dimensional
vector l~ to describe the probability of observing each of the K categories. And we assume that the prior
distribution over all values of l~ is the Dirichlet distribution with parameter a~

Table 1 Notations and their descriptions

Notation Description

C The space of possible design factors
Ci One-dimensional design factor
M The set of all MVs collected
L The set of all MV layouts derived from M

Fig. 3 Annotating coordination types for StreetVizor (Shen et al. 2018). Views b1 and b2 are side-by-side maps for
comparison, thus being labeled as comparison. Views a, b1, b2, c, d, and e explore street views from different perspectives,
thus being labeled as exploration

Modeling layout design for multiple-view visualization...

REGULAR PAPER

Lingdan Shao • Zhe Chu • Xi Chen • Yanna Lin • Wei Zeng

Modeling layout design for multiple-view visualization
via Bayesian inference

Received: 8 July 2021 / Accepted: 1 August 2021
! The Visualization Society of Japan 2021

Abstract Layout design for multiple-view visualization (MV) concerns primarily how to arrange views in
layouts that are geometrically and topologically plausible. Guidelines for MV layout design suggest con-
siderations on various design factors, including view (e.g., bar and line charts), viewport (e.g., mobile vs.
desktop), and coordination (e.g., exploration vs. comparison), along with expertise and preference of the
designer. Recent studies have revealed the diverse space of MV layout design via statistical analysis on
empirical MVs, yet neglect the effects of those design factors. To address the gap, this work proposes to
model the effects of design factors on MV layouts via Bayesian probabilistic inference. Specifically, we
access three important properties of MV layout, i.e., maximum area ratio and weighted average aspect ratio
as geometric metrics, and layout topology as a topological metric. We update the posterior probability of
layout metrics given design factors by penetrating MVs from recent visualization publications. The analyses
reveal many insightful MV layout design patterns, such as views in coordination type of comparison exhibit
more balanced area ratio, while those for exploration are more scattered. This work makes a prominent
starting point for a thorough understanding of MV layout design patterns. On the basis, we discuss how
practitioners can use Bayesian inference approach for future research on finer-annotated visualization
datasets and more comprehensive design factors and properties.
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1 Introduction

Multiple-view visualization (MV) is a specific technique that composites multiple views in a cohesive
manner, to enable simultaneous data exploration from different perspectives (Roberts 2007). As data are
becoming increasingly large, complex, and heterogeneous, MVs have been extensively used for exploratory
data analysis and visual analytics. However, despite the ubiquity of MVs, it remains a challenging task to
arrange multiple views in a geometrically and topologically plausible layout. Developers usually need to
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MV Design Factors
• View: Adopt Chen et al.'s Classification (Area Chart, Bar Chart, …) 
• Coordination: Exploration, Focus+Context, Comparison 
• Viewport: Only Desktop in this paper 
• Designer: Creativity, Experience in MVs?
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MV Layout Metrics
• Geometry: 
- Maximum Area Ratio (MAR): how much of one view dominates the 

visualization? allows identification of focus views 
- Weighted Average Aspect Ratio (WAAR): balanced in matrix arrangements 

or more diverse? 
- Topology: only horizontal, vertical, and hybrid
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Effect on Maximum Area Ratio (MAR)
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Effect on Weighted Average Aspect Ratio (WAAR)
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Effect on Topology
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Findings
• SciVis views have strong influence on topology (horizontal) 
• Exploration and focus+context → hybrid 
• Comparison → horizontal 
• Designer has no significant impact (grouped by continent, however…)
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MV Developer Options
• Developers can predetermine layout 
• Views are positioned based on the data 
• Group views that are coordinated together 
• Screen size can be used to determine the layout 
• Users can determine the layout
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Questions
• Do these surveys show how visualizations are being used? 
• How much is an artifact of screen size or publication constraints?
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Schedule
• Progress Reports Today 
• Presentations after Thanksgiving 
• Papers due at the end of the semester
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Presentations
• Format: Conference Talk 
- Motivation and Introduction 
- Background & Related Work (short) 
- Technique/Methodology 
- Results 
- Conclusion 

• Demos or videos are great, pre-record a video of a demo in case 
- Can be done early or later in presentation 

• Motivation and results are aided by comparison with other work, that's a 
good way to point to related work
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Presentation Schedule
• 2 on Tuesday 
• 3 on Thursday (or vice versa) 
• Volunteers?
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Paper
• Research paper format (IEEE TVCG preferred) 
• Due at the end of the semester
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