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Feature Visualization
How neural networks build up their understanding of images

Edges (layer conv2d0) Textures (layer mixed3a) Patterns (layer mixed4a) Parts (layers mixed4b & mixed4c) Objects (layers mixed4d &
mixed4e)

ABOUT PRIZE SUBMIT Distill

Feature Visualization
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Feature Vis by Optimization
• "[W]hat kind of input would cause a certain behavior" 
• Start from random noise and iteratively tweak (using derivatives) 

• What are the objectives? (Where are we going?) 
- Neuron, channel, layer (has DeepDream "interesting" objective
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This article focuses on feature visualization. While feature visualization is a powerful tool,

actually getting it to work involves a number of details. In this article, we examine the major

issues and explore common approaches to solving them. We find that remarkably simple

methods can produce high-quality visualizations. Along the way we introduce a few tricks for

exploring variation in what neurons react to, how they interact, and how to improve the

optimization process.

Feature Visualization by Optimization

Neural networks are, generally speaking, differentiable with respect to their inputs. If we

want to find out what kind of input would cause a certain behavior — whether that’s an

internal neuron firing or the final output behavior — we can use derivatives to iteratively tweak

the input towards that goal .

While conceptually simple, there are subtle challenges in getting the optimization to work.

We will explore them, as well as common approaches to tackle them in the section ”The

Enemy of Feature Visualization″.

Optimization Objectives

What do we want examples of? This is the core question in working with examples,

regardless of whether we’re searching through a dataset to find the examples, or optimizing

images to create them from scratch. We have a wide variety of options in what we search for:

Feature visualization answers questions about what a
network — or parts of a network — are looking for by
generating examples.

Attribution studies what part of an example is
responsible for the network activating a particular way.
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Starting from random
noise, we optimize an
image to activate a
particular neuron (layer
mixed4a, unit 11).

Step 0

→
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→
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→
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Different optimization
objectives show what
different parts of a
network are looking for.

so
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This is only starting to scratch the surface of how neurons interact. The truth is that we have

almost no clue how to select meaningful directions, or whether there even exist particularly

meaningful directions. Independent of finding directions, there are also questions on how

directions interact — for example, interpolation can show us how a small number of directions

interact, but in reality there are hundreds of directions interacting.

The Enemy of Feature Visualization

If you want to visualize features, you might just optimize an image to make neurons fire.

Unfortunately, this doesn’t really work. Instead, you end up with a kind of neural network

optical illusion — an image full of noise and nonsensical high-frequency patterns that the

network responds strongly to.

These patterns seem to be the images kind of cheating, finding ways to activate neurons

that don’t occur in real life. If you optimize long enough, you’ll tend to see some of what the

neuron genuinely detects as well, but the image is dominated by these high frequency

patterns. These patterns seem to be closely related to the phenomenon of adversarial

examples .

We don’t fully understand why these high frequency patterns form, but an important part

seems to be strided convolutions and pooling operations, which create high-frequency

patterns in the gradient .

Each strided convolution or pooling creates checkerboard patterns in the gradient magnitudes when we backprop
through it.

Layer 4a, Unit 476 Layer 4a, Unit 460

Even if you carefully tune
learning rate, you’ll get
noise.

Optimization results are
enlarged to show detail
and artifacts.

REPRODUCE IN A
NOTEBOOK

Learning Rate (0.05)

Step 1 Step 32 Step 128 Step 256 Step 2048

[11]

[13]

← ← ← ←

Naive Optimization Doesn't Work
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The Building Blocks of Interpretability
Interpretability techniques are normally studied in isolation.
We explore the powerful interfaces that arise when you combine them — 
and the rich structure of this combinatorial space.

For instance, by combining feature visualization (what

is a neuron looking for?) with attribution (how does it

affect the output?), we can explore how the network

decides between labels like Labrador retriever and

tiger cat.

…

Several floppy ear
detectors seem to be
important when
distinguishing dogs,
whereas pointy ears are
used to classify "tiger cat".

CHANNELS THAT MOST
SUPPORT … LABRADOR RETRIEVER TIGER CAT

feature visualization of

channel

hover for
attribution maps

net evidence 1.63 1.51 1.19 1.32 1.54 1.72

for "Labrador retriever" 1.22 1.24 1.32 -0.70 -1.24 -0.43

for "tiger cat" -0.40 -0.27 0.13 0.62 0.30 1.29

ABOUT PRIZE SUBMIT Distill

CHOOSE AN INPUT IMAGE

The Building Blocks of Interpretability
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What Does the Network See?

Applying this technique to all the activation vectors allows us to not only see what the

network detects at each position, but also what the network understands of the input image

as a whole.

And, by working across layers (eg. “mixed3a”, “mixed4d”), we can observe how the

network’s understanding evolves: from detecting edges in earlier layers, to more

sophisticated shapes and object parts in the latter.

Semantic dictionaries give us a fine-grained look at an

activation: what does each single neuron detect? Building

off this representation, we can also consider an activation

vector as a whole. Instead of visualizing individual neurons,

we can instead visualize the combination of neurons that fire

at a given spatial location. (Concretely, we optimize the

image to maximize the dot product of its activations with the

original activation vector.)

  

Activation Vector

=

  886.

+

  599.

+

  328.

+

  303.

+ ...

Channels

REPRODUCE IN A NOTEBOOK mixed4d

Feature Vis + Attribution
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relationship , but could easily substitute in essentially any other technique. Future

improvements to attribution will, of course, correspondingly improve the interfaces built on

top of them.

Spatial Attribution with Saliency Maps

The most common interface for attribution is called a saliency map — a simple heatmap that

highlights pixels of the input image that most caused the output classification. We see two

weaknesses with this current approach.

First, it is not clear that individual pixels should be the primary unit of attribution. The

meaning of each pixel is extremely entangled with other pixels, is not robust to simple visual

transforms (e.g., brightness, contrast, etc.), and is far-removed from high-level concepts like

the output class. Second, traditional saliency maps are a very limited type of interface — they

only display the attribution for a single class at a time, and do not allow you to probe into

individual points more deeply. As they do not explicitly deal with hidden layers, it has been

difficult to fully explore their design space.

We instead treat attribution as another user interface building block, and apply it to the

hidden layers of a neural network. In doing so, we change the questions we can pose. Rather

than asking whether the color of a particular pixel was important for the “labrador retriever”

classification, we instead ask whether the high-level idea detected at that position (such as

“floppy ear”) was important. This approach is similar to what Class Activation Mapping

(CAM) methods  do but, because they interpret their results back onto the input

image, they miss the opportunity to communicate in terms of the rich behavior of a network’s

hidden layers.

INPUT IMAGE OUTPUT CLASSES OUTPUT FACTORS

Attribution tends to be more meaningful in later layers. The floppy ear, dog snout, cat head, etc, do
mostly what you expect. Surprisingly, the lower snout at mixed4d seems entangled with the idea of
a tennis ball and supports "tennis ball" and "granny smith apple."

REPRODUCE IN A NOTEBOOK
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[24, 13]

Labrador Retriever

Golden Retriever

Tennis Ball

Rhodesian Ridgeback

Appenzeller

Labrador Retriever

Golden Retriever

Beagle

Kuvasz

Redbone

Tiger

Tiger Cat

Lynx

Collie

Border Collie

mixed3a mixed4a mixed4d mixed5a

Spatial Attribution with Saliency Maps
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INPUT IMAGE

OUTPUT CLASSES

TOP CHANNELS SUPPORTING LABRADOR RETRIEVER

MIXED3B MIXED4A MIXED4B MIXED4C MIXED4D

This diagram is analogous to the previous one we saw: we conduct layer-to-layer attribution

but this time over channels rather than spatial positions. Once again, we use the icons from

our semantic dictionary to represent the channels that most contribute to the final output

classification. Hovering over an individual channel displays a heatmap of its activations

overlaid on the input image. The legend also updates to show its attribution to the output

classes (i.e., what are the top classes this channel supports?). Clicking a channel allows us

to drill into the layer-to-layer attributions, identifying the channels at lower layers that most

contributed as well as the channels at higher layers that are most supported.

While these diagrams focus on layer-to-layer attribution, it can still be valuable to focus on a

single hidden layer. For example, the teaser figure allows us to evaluate hypotheses for why

one class succeeded over the other.

Attribution to spatial locations and channels can reveal powerful things about a model,

especially when we combine them together. Unfortunately, this family of approaches is

burdened by two significant problems. On the one hand, it is very easy to end up with an

overwhelming amount of information: it would take hours of human auditing to understand

the long-tail of channels that slightly impact the output. On the other hand, both the

aggregations we have explored are extremely lossy and can miss important parts of the

story. And, while we could avoid lossy aggregation by working with individual neurons, and

not aggregating at all, this explodes the first problem combinatorially.

Making Things Human-Scale

In previous sections, we’ve considered three ways of slicing the cube of activations: into

spatial activations, channels, and individual neurons. Each of these has major downsides. If

Labrador Retriever

Golden Retriever

Tennis Ball

Rhodesian Ridge…

Appenzeller

... 

Showing 3 of 480

... 

Showing 3 of 508

... 

Showing 3 of 512

... 

Showing 3 of 512

... 

Showing 3 of 528

Channel Attribution
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factorizing the activations with non-negative matrix factorization  . Notice how the

overwhelmingly large number of neurons has been reduced to a small set of groups,

concisely summarizing the story of the neural network.

By using non-negative
matrix factorization we
can reduce the large
number of neurons to a
small set of groups
that concisely
summarize the story of
the network. 

REPRODUCE IN A
NOTEBOOK

ACTIVATIONS of neuron groups

NEURON GROUPS based on matrix factorization of mixed4d layer

EFFECT of neuron groups on output classes

This figure only focuses at a single layer but, as we saw earlier, it can be useful to look across

multiple layers to understand how a neural network assembles together lower-level

detectors into higher-level concepts.

The groups we constructed before were optimized to understand a single layer independent

of the others. To understand multiple layers together, we would like each layer’s factorization

to be “compatible” — to have the groups of earlier layers naturally compose into the groups

of later layers. This is also something we can optimize the factorization for  .

INPUT IMAGE ATTRIBUTION BY FACTORIZED GROUPS

MIXED4A MIXED4D OUTPUT CLASS

INPUT IMAGE

6 groups

color key

feature visualization of

each group

hover to isolate

Labrador retriever

beagle

tiger cat

lynx

tennis ball
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EFFECT of neuron groups on output classes

This figure only focuses at a single layer but, as we saw earlier, it can be useful to look across

multiple layers to understand how a neural network assembles together lower-level

detectors into higher-level concepts.

The groups we constructed before were optimized to understand a single layer independent

of the others. To understand multiple layers together, we would like each layer’s factorization

to be “compatible” — to have the groups of earlier layers naturally compose into the groups

of later layers. This is also something we can optimize the factorization for  .

INPUT IMAGE

To understand multiple layers together,
we would like each layer's factorization to
be "compatible"—to have the groups of
earlier layers naturally compose into the
groups of later layers. This is also
something we can optimize the
factorization for.

 positive influence
 negative influence

ATTRIBUTION BY FACTORIZED GROUPS

MIXED4A MIXED4D OUTPUT CLASS

In this section, we recognize that the way in which we break apart the cube of activations is

an important interface decision. Rather than resigning ourselves to the natural slices of the

cube of activations, we construct more optimal groupings of neurons. These improved

groupings are both more meaningful and more human-scale, making it less tedious for users

Labrador retriever

beagle

tiger cat

lynx

tennis ball

5 
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Schedule
• Critique for Thursday 
• Progress Reports next Tuesday

12D. Koop, CSCI 628, Fall 2021
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Multiple Views
• Facet (noun and verb) 
- particular aspect or feature of something 
- to split 

• Partition visualization into views/layers 
- Either juxtapose (side-by-side), superimpose (layer), nest, etc. 
- Depends on data and encoding 
- Generally, superimposing does not scale as well 
- Multiple views eats display space (either large screens or small 

visualizations)

14D. Koop, CSCI 628, Fall 2021



Facet

Partition into Side-by-Side Views

Superimpose Layers

Juxtapose and Coordinate Multiple Side-by-Side Views

Share Data: All/Subset/None

Share Navigation

All Subset

Same

Multiform

Multiform, 
Overview/

Detail

None

Redundant

No Linkage

Small Multiples

Overview/
Detail

Linked Highlighting

Multiple Views
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Facet

Partition into Side-by-Side Views

Superimpose Layers

Juxtapose and Coordinate Multiple Side-by-Side Views

Share Data: All/Subset/None

Share Navigation

All Subset
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Multiform

Multiform, 
Overview/

Detail

None

Redundant
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Overview/
Detail
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Multiple Views
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Multiform
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Multiform Views
• The same data visualized in different ways 
• Does not need to be a totally different encoding (all choices need not be 

disjoint), e.g. horizontal positions could be the same 
• One view becomes cluttered with too many attributes 
• Consumes more screen space 
• Allows greater separability between channels

18D. Koop, CSCI 628, Fall 2021



Small Multiples
• Same encoding, but different data in each view (e.g. SPLOM)
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Interaction with Multiform & Small Multiples
• Key interaction with multiform and small multiples: brushing 
- also called linked highlighting 

• Want to understand correspondences between representation in the different 
views

20D. Koop, CSCI 628, Fall 2021



Brushing
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Shneiderman's Mantra
• Visual lnformation-Seeking Mantra [B. Shneiderman, 1996]: 
- Overview first 
- Zoom and filter (Chapter 13) 
- Details on demand 

• Goal of the overview is to summarize all of the data 
• Want specific details about some aspect(s) of the data, need another view/

layer 
- May be permanent: side-by-side 
- May be a popup layer: often opaque or separated 

• (see textbook Ch. 6.7)

22D. Koop, CSCI 628, Fall 2021



Overview-Detail View
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Overview-Detail (with Zoom-Filter)
• Detail involves some subset of the full dataset 
• Involves user selection or filtering of some type 

• How question: includes facet 
• Examples: 
- Maps: partition into two views with same encoding, overview-detail 
- UC Trends: partition into multiple views, coordinated with linked highlighting, 

overview+detail of expenditures

25D. Koop, CSCI 628, Fall 2021



Fig. 2: The Cerebral display of the TLR4 graph (V=91, E=124) with associated LPS and LPS+LL-37 time series. The small multiples show an
overview of all 8 experimental conditions. The most noticeable differences between the LPS and the LPS+LL-37 condition occur at hour 4. By
selecting the hour 4 conditions, the main window shows the computed difference between the two conditions.

Furthermore, the biologists’ assessment of what constitutes a good
layout varies depending on the nature of the biomolecules involved. In
the undirected portion of the graph, which comprises protein-protein
interactions that propagate a signal from membrane to nucleus, they
wish to see the network structure so that they can follow the signaling
cascade. Thus for this section of the graph, it is important to minimize
edge crossings, even if it places interacting nodes somewhat far apart.
In contrast, for the directed portion of the graph, representing the genes
whose expression was altered in response to the signaling cascade, the
biologists want to see the nodes grouped tightly by function, even at
the expense of not being able to clearly see the interactions between
them. Translating these desires into automated graph layout requires
an algorithm that uses metadata associated with the nodes, in addition
to the direct graph structure, for node placement. Positioning nodes
according to biological meta-data defines a semantic substrate [34]
so that node position reveals biological function. We wrote a sim-
ple simulated annealing-based graph layout algorithm that uses node
metadata to guide node placement.

3.2 Small multiple views for multiple conditions

Cerebral uses small multiples [38] to simultaneously display multiple
experimental datasets. Each small multiple contains a complete copy
of the interaction graph with the same spatial layout, but with differ-
ent coloring according to the experimental data it is displaying. Our
design target was to handle from two to a few dozen gene expression
conditions, and from 50 to 3000 nodes in the interaction graph.

One obvious alternative to multiple small views would be a sin-
gle changeable or animated view, where the color coding changes
over time rather than being distributed over space [33, 32]. Com-

paring something visible with memories of what was seen before is
more difficult than comparing things simultaneously visible side by
side [31]. Thus, the limitations of human memory make comparing
the few dozen conditions of our design goal through animation quite
difficult [40]. Although small multiples would not scale to hundreds
of conditions, they handle the current usage of 8-10 easily and will
certainly accommodate the projected usage of few dozen conditions.

A second alternative is to embed a glyph, such as a line graph or
heat map, near or within the node itself [24, 32, 41]. While embedded
glyphs provide good detail when zoomed in for a local view, they be-
come indistinguishable when zoomed out for a global view of graphs
larger than a few dozen nodes. The biologists often need to see such
a view, as it more readily allows for the identification of interacting
genes/proteins whose expression behaves similarly across several con-
ditions. Thus, glyphs would not be appropriate in this domain.

Saraiya et al. [32] evaluated four approaches to integrating graph
and time series data, comparing one versus two views and slider-
controlled animation versus embedded glyphs. While they used 10
time series data points, in a good match for our problem domain, their
graph contained only 50 nodes. They found many tradeoffs between
task type, speed, and accuracy. Our design can be considered an at-
tempt to combine the strengths of the four different interfaces they
studied into a single interface for a problem where the tasks are com-
plex, accuracy outweighs raw speed, and the graph is large.

3.3 Parallel coordinates and clustering for data-driven ex-

ploration

Cerebral’s main views focus on the interaction graph model of the
biological system or process of interest. We also provide a data-

Multiform & Small Multiples (Cerebral)
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Navigation across multiple views
• Often navigation in one view updates navigation in another 
• Example: Maps: overview shifts as you move around in detail view 
• Selections in one view may trigger selections in another

27D. Koop, CSCI 628, Fall 2021



Facet

Partition into Side-by-Side Views

Superimpose Layers
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No Linkage
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Linked Highlighting

Multiple Views
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Partitioned Views
• Split dataset into groups and visualize each group 
• Extremes: one item per group, one group for all items 
• Can be a hierarchy 
- Order: which splits are more "related"? 
- Which attributes are used to split? usually categorical

29D. Koop, CSCI 628, Fall 2021



Matrix Alignment & Recursive Subdivision
• Matrix Alignment: 
- regions are placed in a matrix alignment 
- splits go to rows and columns 
- main-effects ordering: use summary statistic to determine order of 

categorical attribute 
• Recursive subdivision: 
- Designed for exploration 
- Involves hierarchy 
- User drives the ways data is broken down in recursive manner

30D. Koop, CSCI 628, Fall 2021



Example: Trellis Matrix Alignment
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VISUAL DESIGN AND CONTROL OF TRELLIS DISPLAY 125

I page. In Figure 2 there are 6 panels, I column, 6 rows, and 1 page. Later, we will
show a Trellis display with more than one page. We refer to the rectangular array as the
trellis because it is reminiscent of a garden trelliswork .•

Each panel of a trellis display shows a subset of the values of panel variables;
these values are formed by conditioning on the valqes of conditioning variables. In Fig-
ure I the panel variables are variety and yield, and the conditioning variables are site and
year. On each panel, values of yield and variety are displayed for one combination of year
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Figure 1. A Dotplot of the Barley Data Showing Yield Against Variety Given Year and Site.
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Fig. 2. A: Sized-based ordering, coloured by average price: sHier(/,$br,$ty,$yr,$mn); sLayout(/,SQ); sSize(/,$sal);
sColor(/,Ø,Ø,Ø,$prc). B: Reconfigure to a spatial and temporal layout: oLayout(/,1,SP); oLayout(/,2,OS); oLayout(/,3,VT);
oLayout(/,4,HZ). C: Fix the size: oSize(/,1,FIX); oSize(/,2,FIX); oSize(/,3,FIX); oSize(/,4,FIX). D: Remove time, and
colour by deviation from expected sales: oCut(/,4); oCut(/,3); oColor(/,2,$xsl).

the hierarchy can produce layouts similar to mosaic plots (and ma-
trix diagrams if sizes are fixed). They are particularly suitable where
variables have hierarchical dependencies, such as our calendar views
(sHier($yr,$mn)).

6.3 Layouts for time-based data and questions
Temporal data can be considered as ordinal. In Fig. 1A, years are
not arranged temporally; as such, temporal trends are difficult to de-
tect. Rearranging the years into a time-based order using an ordered
space-filling layout [36] (Fig. 1B) makes the increase in annual house
price easier to detect. In Fig. 1C, we have added month to the hi-
erarchy producing calendar views coloured by the number of sales.
Seasonal variations in the numbers of sales are apparent for flats and
terraced housing, however colour rescaling (using oColorMap) or
using colour schemes that are local to individual parts of the hierarchy
are required to detect these patterns where property types have low
sales. Alternatively, colour can be used to show values as a proportion
or deviation from a baseline. Appropriate baselines include those that
reflect the values expected from hypotheses that we might then accept
or reject on the basis of the display. For example, in Fig. 4A (calendar
views), our null hypothesis is that the number of sales does not vary
monthly (expected or baseline values are a twelfth of the sales for each
year). The geographically-consistent seasonal trends that are apparent
might cause us to reject our null hypothesis. Identifying the elements
with statistically-significant levels of variation might help us make that

choice. Fig. 4B shows the deviation of price from the yearly average
(accounting for inflation). Whilst prices rises steadily every year, this
is not the case for 2008 where prices have dropped markedly in the
final quarter, a trend not observed in Westminster.

Nesting the two temporal resolutions of year and month to pro-
duce calendar views is appropriate where we are expecting yearly and
monthly patterns. However, this may obscure other temporal patterns.
In Fig. 3B, we use an ordered squarified layout of all 108 months in
the period ordered from the left top to bottom right (compare with the
calendar views in Fig. 3A). Although both graphics show exactly the
same data, the use of $my and the associated OS layout in Fig. 3B
make the upward trend in prices and subsequent slump more apparent
as it is a continuous trend over the entire period. The result is a more
appropriate layout for research questions that relate to ongoing rather
than periodic change. The additional hierarchical level used in Fig.
3A and alternative layouts are more appropriate for comparing annual
patterns which are overshadowed by the longer term trend in the case
of this attribute. Again, interactive colour rescaling or colouring on
the basis of relative values is required to detect relative rises and falls
in different boroughs.

6.4 Geographical layouts
Spatially-ordered layouts (SP) have rectangles that are arranged ac-
cording their geographical locations. The effect of this layout can be
seen by comparing the non-spatial layout in Fig. 2A with the spatial

Example: HiVE System
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Design Space of Composite Visualization
• Composite visualization views (CVVs) 
- Includes Coordinated multiple views (CMV) 
- + More! 

• Design Patterns: 
- Juxtaposition: side-by-side 

- Superimposition: layers 

- Overloading: vis meshed with another 

- Nesting: vis inside a vis (recursive vis) 

- Integration: "merge" views + links
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Exploring the Design Space of Composite Visualization

Waqas Javed⇤ Niklas Elmqvist†

Purdue University

Figure 1: Four different visual composition operators (from the left): juxtaposition, superimposition, overloading, and nesting.

ABSTRACT

We propose the notion of composite visualization views (CVVs)
as a theoretical model that unifies the existing coordinated mul-
tiple views (CMV) paradigm with other strategies for combining
visual representations in the same geometrical space. We identify
five such strategies—called CVV design patterns—based on an ex-
tensive review of the literature in composite visualization. We go
on to show how these design patterns can all be expressed in terms
of a design space describing the correlation between two visualiza-
tions in terms of spatial mapping as well as the data relationships
between items in the visualizations. We also discuss how to use this
design space to suggest potential directions for future research.

Index Terms: H.5.1 [Information Systems]: Multimedia Infor-
mation Systems—Animations; H.5.2 [Information Systems]: User
Interfaces; I.3 [Computer Methodologies]: Computer Graphics

1 INTRODUCTION

While the design space of visual representations is far from ex-
hausted, it is clear that it is becoming increasingly difficult to de-
velop entirely novel visual representations that significantly extend
the existing vocabulary of such representations in our field. It is
also clear that there is generally no visual representation that is
obviously superior for a given dataset; all visual representations
have strengths and weaknesses. In recent years, efforts have been
made towards combining different visualizations to balance these
strengths and weaknesses. This also addresses novelty: new visual
representations can be generated by combining existing ones.

However, there exists many ways to combine two or more vi-
sualizations in a single space. One common approach is coordi-
nated multiple views (CMV) [31], where the visualizations are of-
ten juxtaposed in the same space and coordinated using some form
of linking mechanism. However, there exist many examples where
multiple visualizations are combined in other ways than CMV-style
juxtaposition. For example, the NodeTrix [17] technique combines
adjacency matrices inside a node-link diagram, SparkClouds [21]
overlays a temporal visualization over tag clouds, and semantic sub-
strates [34] connect nodes in different views using links. These
examples show that juxtaposition, used for many CMV-based visu-
alization systems, is not an isolated approach to combining multiple
visualizations, but that there exists a spectrum of different patterns
for composing visualizations. However, although these examples
are discussed in the literature, there is no formal characterization
that organizes these in the same way as for CMV.

⇤e-mail: wjaved@purdue.edu
†e-mail: elm@purdue.edu

In this paper, we identify the design space of composite visual-
ization views (CVVs) that allows us to combine multiple visualiza-
tion in the same visual space. As a starting point, we survey the
literature of composite visualization and find five general design
patterns for how existing work merges two different visualizations
into one: juxtaposition, integration, overloading, superimposition,
and nesting. Some of these patterns are already known and formally
recognized; for example, juxtaposition gives rise to the CMV com-
position pattern, where views are simply placed next to each other.
Other design patterns have so far not been formally defined in the
literature, but we try to highlight each pattern with examples. We
then use these patterns to define a design space that captures the
salient aspects of composite visualization. We proceed to use this
design space to suggest avenues for future research.

2 COMPOSITE VISUALIZATION VIEWS

We define a composite visualization as the visual composition of
two or more visual structures in the same view. In this definition,
we use the following concepts from Card et al. [9]’s pipeline:

• visual composition: the combination (placement or arrange-
ment) of multiple visual objects;

• visual structure: the mapping from data to visual form (i.e.,
the result of a visualization technique);

• view: the physical display space (most often 2D) where a vi-
sual structure is rendered.

The nature of the composition governs the resulting type of com-
posite visualization. As we shall see in this paper, composite visual-
izations are relatively common. However, only one type of compos-
ite visualization—coordinated multiple views (CMV) [4, 32, 40],
where the visual composition is often a juxtaposition—is formally
recognized as a visualization design strategy in the literature.

Composite visualizations are used primarily for situations where
a single visualization is not sufficient because of high complexity,
large scale, or heterogeneous data [31]. In these situations, display-
ing data in several different ways may benefit user cognition. For
example, the same file system hierarchy could be visualized in both
a treemap [20] as well as a radial layout (such as Sunburst [35]),
each representation allowing the user to focus on different aspects
of the data. Furthermore, different types of data have varying repre-
sentation affinities. For example, locations are best represented in a
geospatial visualization, whereas multidimensional data fit best in
a parallel coordinate plot [18] or a scatterplot matrix [10].

2.1 Method

Our approach in this work is to derive a design space of compos-
ite visualization based on the literature of visualization techniques
where several visual structures are combined in the same view. We
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sual structure is rendered.

The nature of the composition governs the resulting type of com-
posite visualization. As we shall see in this paper, composite visual-
izations are relatively common. However, only one type of compos-
ite visualization—coordinated multiple views (CMV) [4, 32, 40],
where the visual composition is often a juxtaposition—is formally
recognized as a visualization design strategy in the literature.

Composite visualizations are used primarily for situations where
a single visualization is not sufficient because of high complexity,
large scale, or heterogeneous data [31]. In these situations, display-
ing data in several different ways may benefit user cognition. For
example, the same file system hierarchy could be visualized in both
a treemap [20] as well as a radial layout (such as Sunburst [35]),
each representation allowing the user to focus on different aspects
of the data. Furthermore, different types of data have varying repre-
sentation affinities. For example, locations are best represented in a
geospatial visualization, whereas multidimensional data fit best in
a parallel coordinate plot [18] or a scatterplot matrix [10].

2.1 Method

Our approach in this work is to derive a design space of compos-
ite visualization based on the literature of visualization techniques
where several visual structures are combined in the same view. We
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Figure 1: Four different visual composition operators (from the left): juxtaposition, superimposition, overloading, and nesting.

ABSTRACT

We propose the notion of composite visualization views (CVVs)
as a theoretical model that unifies the existing coordinated mul-
tiple views (CMV) paradigm with other strategies for combining
visual representations in the same geometrical space. We identify
five such strategies—called CVV design patterns—based on an ex-
tensive review of the literature in composite visualization. We go
on to show how these design patterns can all be expressed in terms
of a design space describing the correlation between two visualiza-
tions in terms of spatial mapping as well as the data relationships
between items in the visualizations. We also discuss how to use this
design space to suggest potential directions for future research.

Index Terms: H.5.1 [Information Systems]: Multimedia Infor-
mation Systems—Animations; H.5.2 [Information Systems]: User
Interfaces; I.3 [Computer Methodologies]: Computer Graphics

1 INTRODUCTION

While the design space of visual representations is far from ex-
hausted, it is clear that it is becoming increasingly difficult to de-
velop entirely novel visual representations that significantly extend
the existing vocabulary of such representations in our field. It is
also clear that there is generally no visual representation that is
obviously superior for a given dataset; all visual representations
have strengths and weaknesses. In recent years, efforts have been
made towards combining different visualizations to balance these
strengths and weaknesses. This also addresses novelty: new visual
representations can be generated by combining existing ones.

However, there exists many ways to combine two or more vi-
sualizations in a single space. One common approach is coordi-
nated multiple views (CMV) [31], where the visualizations are of-
ten juxtaposed in the same space and coordinated using some form
of linking mechanism. However, there exist many examples where
multiple visualizations are combined in other ways than CMV-style
juxtaposition. For example, the NodeTrix [17] technique combines
adjacency matrices inside a node-link diagram, SparkClouds [21]
overlays a temporal visualization over tag clouds, and semantic sub-
strates [34] connect nodes in different views using links. These
examples show that juxtaposition, used for many CMV-based visu-
alization systems, is not an isolated approach to combining multiple
visualizations, but that there exists a spectrum of different patterns
for composing visualizations. However, although these examples
are discussed in the literature, there is no formal characterization
that organizes these in the same way as for CMV.
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In this paper, we identify the design space of composite visual-
ization views (CVVs) that allows us to combine multiple visualiza-
tion in the same visual space. As a starting point, we survey the
literature of composite visualization and find five general design
patterns for how existing work merges two different visualizations
into one: juxtaposition, integration, overloading, superimposition,
and nesting. Some of these patterns are already known and formally
recognized; for example, juxtaposition gives rise to the CMV com-
position pattern, where views are simply placed next to each other.
Other design patterns have so far not been formally defined in the
literature, but we try to highlight each pattern with examples. We
then use these patterns to define a design space that captures the
salient aspects of composite visualization. We proceed to use this
design space to suggest avenues for future research.

2 COMPOSITE VISUALIZATION VIEWS

We define a composite visualization as the visual composition of
two or more visual structures in the same view. In this definition,
we use the following concepts from Card et al. [9]’s pipeline:

• visual composition: the combination (placement or arrange-
ment) of multiple visual objects;

• visual structure: the mapping from data to visual form (i.e.,
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a treemap [20] as well as a radial layout (such as Sunburst [35]),
each representation allowing the user to focus on different aspects
of the data. Furthermore, different types of data have varying repre-
sentation affinities. For example, locations are best represented in a
geospatial visualization, whereas multidimensional data fit best in
a parallel coordinate plot [18] or a scatterplot matrix [10].
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Our approach in this work is to derive a design space of compos-
ite visualization based on the literature of visualization techniques
where several visual structures are combined in the same view. We
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visual representations in the same geometrical space. We identify
five such strategies—called CVV design patterns—based on an ex-
tensive review of the literature in composite visualization. We go
on to show how these design patterns can all be expressed in terms
of a design space describing the correlation between two visualiza-
tions in terms of spatial mapping as well as the data relationships
between items in the visualizations. We also discuss how to use this
design space to suggest potential directions for future research.
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1 INTRODUCTION

While the design space of visual representations is far from ex-
hausted, it is clear that it is becoming increasingly difficult to de-
velop entirely novel visual representations that significantly extend
the existing vocabulary of such representations in our field. It is
also clear that there is generally no visual representation that is
obviously superior for a given dataset; all visual representations
have strengths and weaknesses. In recent years, efforts have been
made towards combining different visualizations to balance these
strengths and weaknesses. This also addresses novelty: new visual
representations can be generated by combining existing ones.

However, there exists many ways to combine two or more vi-
sualizations in a single space. One common approach is coordi-
nated multiple views (CMV) [31], where the visualizations are of-
ten juxtaposed in the same space and coordinated using some form
of linking mechanism. However, there exist many examples where
multiple visualizations are combined in other ways than CMV-style
juxtaposition. For example, the NodeTrix [17] technique combines
adjacency matrices inside a node-link diagram, SparkClouds [21]
overlays a temporal visualization over tag clouds, and semantic sub-
strates [34] connect nodes in different views using links. These
examples show that juxtaposition, used for many CMV-based visu-
alization systems, is not an isolated approach to combining multiple
visualizations, but that there exists a spectrum of different patterns
for composing visualizations. However, although these examples
are discussed in the literature, there is no formal characterization
that organizes these in the same way as for CMV.
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ization views (CVVs) that allows us to combine multiple visualiza-
tion in the same visual space. As a starting point, we survey the
literature of composite visualization and find five general design
patterns for how existing work merges two different visualizations
into one: juxtaposition, integration, overloading, superimposition,
and nesting. Some of these patterns are already known and formally
recognized; for example, juxtaposition gives rise to the CMV com-
position pattern, where views are simply placed next to each other.
Other design patterns have so far not been formally defined in the
literature, but we try to highlight each pattern with examples. We
then use these patterns to define a design space that captures the
salient aspects of composite visualization. We proceed to use this
design space to suggest avenues for future research.
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We define a composite visualization as the visual composition of
two or more visual structures in the same view. In this definition,
we use the following concepts from Card et al. [9]’s pipeline:

• visual composition: the combination (placement or arrange-
ment) of multiple visual objects;

• visual structure: the mapping from data to visual form (i.e.,
the result of a visualization technique);

• view: the physical display space (most often 2D) where a vi-
sual structure is rendered.

The nature of the composition governs the resulting type of com-
posite visualization. As we shall see in this paper, composite visual-
izations are relatively common. However, only one type of compos-
ite visualization—coordinated multiple views (CMV) [4, 32, 40],
where the visual composition is often a juxtaposition—is formally
recognized as a visualization design strategy in the literature.

Composite visualizations are used primarily for situations where
a single visualization is not sufficient because of high complexity,
large scale, or heterogeneous data [31]. In these situations, display-
ing data in several different ways may benefit user cognition. For
example, the same file system hierarchy could be visualized in both
a treemap [20] as well as a radial layout (such as Sunburst [35]),
each representation allowing the user to focus on different aspects
of the data. Furthermore, different types of data have varying repre-
sentation affinities. For example, locations are best represented in a
geospatial visualization, whereas multidimensional data fit best in
a parallel coordinate plot [18] or a scatterplot matrix [10].

2.1 Method

Our approach in this work is to derive a design space of compos-
ite visualization based on the literature of visualization techniques
where several visual structures are combined in the same view. We
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Technique Visualization A Visualization B Spatial Relation Data Relation

ComVis [24] (Figure 2) any any juxtapose none
Improvise [39] (Figure 3) any any juxtapose none
Jigsaw [36] any any juxtapose none
Snap-Together [30] any any juxtapose none
semantic substrates [34] (Figure 4) node-link node-link juxtapose item-item
VisLink [11] (Figure 5) radial graph node-link juxtapose item-item
Napoleon’s March on Moscow [37] time line view area visualization juxtapose item-item
Mapgets [38] (Figure 6) map text superimpose item-item
GeoSpace [22] (Figure 7) map bar graph superimpose item-item
3D GIS [8] map glyphs superimpose item-item
Scatter Plots in Parallel Coordinates [45] (Figure 8) parallel coordinate scatterplot overload item-dimension
Graph links on treemaps [14] (Figure 9) treemap node-link overload item-item
SparkClouds [21] tag cloud line graph overload item-item
ZAME [13] (Figure 10) matrix glyphs nested item-group
NodeTrix [17] (Figure 11) node-link matrix nested item-group
TimeMatrix [44] matrix glyphs nested item-group
GPUVis [25] Scatterplot glyphs nested item-group

Table 1: Classification of common composite visualization techniques using our design space.

(a) Juxtaposed views. (b) Integrated views. (c) Superimposed views. (d) Overloaded views. (e) Nested views.

Figure 12: Example of composing a scatterplot and bar graph using different methods.

datasets in the same space and using different visualizations, but
also highlights the relational linking between the two datasets.

Nested views provide an efficient approach to link each of the
data values, visualized through the host visualization, to its related
dataset, visualized through client visualizations. This is achieved
by nesting clients inside the visual marks in the host.

• Benefits: Very compact representation, easy correlation.
• Drawbacks: Limited space for the client visualizations, clut-

ter is high, and visual design dependencies are high.
• Applications: Again, situations that call for augmenting a

particular visual representation with additional mapping.

Figure 12(e) shows an example composition of scatterplot and
bar graph visualizations based on this design patter. In the figure,
the scatterplot visualization is acting as a host and bar graph visu-
alizations are nested inside its visual marks.

There is probably not a clear winner among different design pat-
terns while designing an information visualization tool. The correct
choice of design pattern to use for a particular implementation de-
pends on different conditions, such as the available view space, user
knowledge, and the complexity of the underlying dataset. Ideally
speaking, designers should be able to combine any existing visual-
izations to generate a composite visualization view.

8.2 Delimitations

While our above CVV design patterns are general in nature, they
are based solely on the spatial layout of component visualizations.
However, it is possible to envision other ways to combine two or
more visualizations, for example using interaction or animation.
One such example is the use of interactive hyperlinking [6, 43] (or
wormholing) to navigate between different visualization views.

8.3 Discussion

There are several direct benefits to structuring the design space of
composite visualization views in this manner. Classifying existing
techniques into patterns not only helps in understanding these tech-
niques, but also in evaluating their strengths and weaknesses.

However, the design patterns presented in this paper are all based
on evidence from the literature of how existing visualization tools
and techniques use composite views. Therefore, our framework
is inherently limited to current designs, and more descriptive than
generative in nature. Furthermore, this list of patterns is not neces-
sarily exhaustive, and we certainly foresee additional design pat-
terns for composite views to emerge with progress in informa-
tion visualization. It is also not always straightforward to sepa-
rate what is a composite visualization and what is an “atomic” (or
component) visualization, particularly when the compositions on
the visual structures—which is the case for overloaded and nested
views—as opposed to merely on the views. Our approach in the
above text has been to treat as components any technique has been
presented in the literature as a standalone technique.

9 CONCLUSION

We have proposed a novel framework for specifying, designing, and
evaluating compositions of multiple visualizations in the same vi-
sual space that we call composite visualization views. The benefit
of the framework is not only to provide a way to unify a large col-
lection of existing work where visual representations are combined
in various ways, but also to suggest new combinations of visual
representations that may significantly advance the state of the art.
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collect such composite visualizations using literature searches and
prior experience. We then let existing work inform our model by
organizing this prior art into rough categories that emerge from the
characteristics of the techniques. In later sections, we discuss each
category in more detail. Finally, we construct a design space that
captures all aspects of these composite visualization techniques.

2.2 Visual Composition

The method for visual composition is an emerging theme when sur-
veying composite visualizations in the literature. In other words,
the different ways of composing two visualizations A and B in the
same visual space seems to be a useful organizing principle in this
domain. Based on the literature, we derive the four visual compo-
sitions (Figure 1) that give rise to four rough categories—we call
them CVV design patterns—for composing visualizations:

• Juxtaposition ! Juxtaposed Views: Placing visualizations
side-by-side in one view (Coordinated Multiple Views [32]);

• Superimposition ! Superimposed Views: Overlaying two
visualizations in a single view;

• Overloading ! Overloaded Views: Utilizing the space of
one visualization for another; and

• Nesting ! Nested Views: Nesting the contents of one visu-
alization inside another visualization.

In addition, another emergent CVV design pattern is to juxtapose
visual structures, but to add graphical objects such as arrows, dotted
lines, or glyphs to visually link one view with another. We therefore
think this method deserves a design pattern of its own:

• Integration ! Integrated Views: Placing visualizations in
the same view with visual links.

2.3 Design Patterns

Identifying and characterizing composite visualization views
(CVVs) as a unified design approach not only allows us to explore
this space in a structured fashion, but also provides a method for
comparing the effectiveness of different designs. The reason we
use the term design pattern [15] here is that these are high-level ap-
proaches where the actual composition generally differs on a case-
by-case basis. This is consistent with the notion of a design pattern
as a general and reusable solution to a common problem.

We should also note that these design patterns are very differ-
ent from the software design patterns for visualization proposed by
Heer and Agrawala [16]. The latter deal with software engineering
design aspects, whereas our CVV patterns are defined on a visual
design level. While the pattern movement is popular in software
engineering, the reader should note that design patterns first were
proposed by Alexander et al. [2] for urban planning, and so our use
of the concept is in fact closer to its original spirit.

Below we describe the five rough categories of composite visu-
alization that we identified in the literature. In each section, we
first describe each pattern and then give a couple of in-depth ex-
amples of representative composite visualization techniques. These
examples are not intended to be exhaustive, but to be illustrative of
practical implementations of each pattern.

2.4 Existing Formalisms

Using multiple views for visualization is not a new concept, and
early examples date back to the beginnings of the field [27]. Bal-
donado et al. [4] gave general guidelines on the use of multi-
ple views in information visualization, and North and Shneider-
man [30, 28, 29] discussed relational models for achieving this.

Figure 2: ComVis [24] (Juxtaposed Views). Meteorology data.

Figure 3: Improvise [39] (Juxtaposed Views). Juxtaposed views are

used to explore the simulated ion trajectory in a cubic ion trap.

These discussions were later formalized into the concept of coor-
dinated multiple views (CMV) [31, 32], where multiple views of
different visualizations are combined in visual space and are im-
plicitly linked together, often using brushing [5].

In their work on multiple and explicitly linked visualizations,
Collins et al. [11] discuss the formalization of multi-relation visu-
alizations, in the process deriving three different techniques for this
practice. Their formalism is related to our work but of a preliminary
nature, lacks the discussion of some of the design patterns discussed
here, and also does not identify CVVs as a unified approach.

3 JUXTAPOSITION ! JUXTAPOSED VIEWS

Juxtaposed views (Figures 2 and 3) are the most prominent—and
probably the most flexible and easy to implement—design pattern
for composing visualizations in a single view [4, 28, 31, 33]. The
design pattern is based on juxtaposing multiple visualizations side
by side. Any linking between visualizations is implicit, i.e., it is not
a part of the visual representation. Examples include brushing [5],
synchronized scrolling [27], and synchronized drill-down [23].

The effectiveness of juxtaposed views has been an important re-
search topic. North and Shneiderman presented a taxonomy [29] of
such visualization. They showed that a well-designed juxtaposed
view increases user performance while exploring relations among
multiple data dimensions. However, designing effective juxtaposed
views can be a challenging task and requires efficient relational
linking and spatial layout. Weaver’s cross-filtered views [41] ad-
dresses this by abstracting the relations between the views to make
definining, implementing, and reusing them easier.

There currently exists a large number of visualization tools based
on juxtaposed views in the literature; e.g. [3, 7, 36]. Below we
review two such tools that are representative of these.

Juxtaposition
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collect such composite visualizations using literature searches and
prior experience. We then let existing work inform our model by
organizing this prior art into rough categories that emerge from the
characteristics of the techniques. In later sections, we discuss each
category in more detail. Finally, we construct a design space that
captures all aspects of these composite visualization techniques.

2.2 Visual Composition

The method for visual composition is an emerging theme when sur-
veying composite visualizations in the literature. In other words,
the different ways of composing two visualizations A and B in the
same visual space seems to be a useful organizing principle in this
domain. Based on the literature, we derive the four visual compo-
sitions (Figure 1) that give rise to four rough categories—we call
them CVV design patterns—for composing visualizations:

• Juxtaposition ! Juxtaposed Views: Placing visualizations
side-by-side in one view (Coordinated Multiple Views [32]);

• Superimposition ! Superimposed Views: Overlaying two
visualizations in a single view;

• Overloading ! Overloaded Views: Utilizing the space of
one visualization for another; and

• Nesting ! Nested Views: Nesting the contents of one visu-
alization inside another visualization.

In addition, another emergent CVV design pattern is to juxtapose
visual structures, but to add graphical objects such as arrows, dotted
lines, or glyphs to visually link one view with another. We therefore
think this method deserves a design pattern of its own:

• Integration ! Integrated Views: Placing visualizations in
the same view with visual links.

2.3 Design Patterns

Identifying and characterizing composite visualization views
(CVVs) as a unified design approach not only allows us to explore
this space in a structured fashion, but also provides a method for
comparing the effectiveness of different designs. The reason we
use the term design pattern [15] here is that these are high-level ap-
proaches where the actual composition generally differs on a case-
by-case basis. This is consistent with the notion of a design pattern
as a general and reusable solution to a common problem.

We should also note that these design patterns are very differ-
ent from the software design patterns for visualization proposed by
Heer and Agrawala [16]. The latter deal with software engineering
design aspects, whereas our CVV patterns are defined on a visual
design level. While the pattern movement is popular in software
engineering, the reader should note that design patterns first were
proposed by Alexander et al. [2] for urban planning, and so our use
of the concept is in fact closer to its original spirit.

Below we describe the five rough categories of composite visu-
alization that we identified in the literature. In each section, we
first describe each pattern and then give a couple of in-depth ex-
amples of representative composite visualization techniques. These
examples are not intended to be exhaustive, but to be illustrative of
practical implementations of each pattern.

2.4 Existing Formalisms

Using multiple views for visualization is not a new concept, and
early examples date back to the beginnings of the field [27]. Bal-
donado et al. [4] gave general guidelines on the use of multi-
ple views in information visualization, and North and Shneider-
man [30, 28, 29] discussed relational models for achieving this.

Figure 2: ComVis [24] (Juxtaposed Views). Meteorology data.

Figure 3: Improvise [39] (Juxtaposed Views). Juxtaposed views are

used to explore the simulated ion trajectory in a cubic ion trap.

These discussions were later formalized into the concept of coor-
dinated multiple views (CMV) [31, 32], where multiple views of
different visualizations are combined in visual space and are im-
plicitly linked together, often using brushing [5].

In their work on multiple and explicitly linked visualizations,
Collins et al. [11] discuss the formalization of multi-relation visu-
alizations, in the process deriving three different techniques for this
practice. Their formalism is related to our work but of a preliminary
nature, lacks the discussion of some of the design patterns discussed
here, and also does not identify CVVs as a unified approach.

3 JUXTAPOSITION ! JUXTAPOSED VIEWS

Juxtaposed views (Figures 2 and 3) are the most prominent—and
probably the most flexible and easy to implement—design pattern
for composing visualizations in a single view [4, 28, 31, 33]. The
design pattern is based on juxtaposing multiple visualizations side
by side. Any linking between visualizations is implicit, i.e., it is not
a part of the visual representation. Examples include brushing [5],
synchronized scrolling [27], and synchronized drill-down [23].

The effectiveness of juxtaposed views has been an important re-
search topic. North and Shneiderman presented a taxonomy [29] of
such visualization. They showed that a well-designed juxtaposed
view increases user performance while exploring relations among
multiple data dimensions. However, designing effective juxtaposed
views can be a challenging task and requires efficient relational
linking and spatial layout. Weaver’s cross-filtered views [41] ad-
dresses this by abstracting the relations between the views to make
definining, implementing, and reusing them easier.

There currently exists a large number of visualization tools based
on juxtaposed views in the literature; e.g. [3, 7, 36]. Below we
review two such tools that are representative of these.

Juxtaposition
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Juxtaposition Guidelines
• Benefits:  
- The component visualizations are independent and can be composed 

without interference 
- Easy to implement 

• Drawbacks:  
- Implicit visual linking is not always easy to see, particularly when multiple 

objects are selected 
- Space is divided between the views, yielding less space for each view 

• Applications: Use for heterogeneous datasets consisting of many different 
types of data, or for where different independent visualizations need to be 
combined.
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3.1 ComVis

ComVis [24] is a multidimensional visualization system support-
ing multiple coordinated views for exploring complex datasets (Fig-
ure 2). The dataset is shown in the form a table view at the bottom
of the main window. Beyond basic interactions, ComVis also sup-
port interactive brushing using both single and composite brushes.

Figure 2 shows a visual exploration of meteorology data using
ComVis. The user has created eight different views, each with a
different visualization. The analyst has then used a single brush to
select three bins in the histogram view, causing all the other views
to highlight the corresponding data items.

3.2 Improvise

Improvise [39, 40] is a visualization framework based on the jux-
taposed views design pattern. The framework allows users to build
and browse multiple visualizations while coordinating relational
linking among them. The system is highly extensible and modular-
ized, allowing it to be adapted for virtually any type of data and vi-
sual representation. To explore relational data in an interactive man-
ner, Improvise provides support for coordinated queries, a visual
abstraction language designed for relational databases. More re-
cent work on cross-filtered views [41] adds to the expressive power
of the framework for relation linking between different views.

Figure 3 shows a visual exploration of a simulated ion trajec-
tory in a cubic ion trap using Improvise. The tool allows user to
visualize different portions of the data set, selected using dynamic
queries [1]. All the visualizations are coordinated and data selection
in one view is projected in all others.

Figure 4: Semantic Substrates [34] (Integrated Views). Network

visualization of a dataset of court cases using semantic substrates.

4 INTEGRATION ! INTEGRATED VIEWS

The integrated views design pattern is also based on juxtaposing (or
tiling) the component visualizations (Figures 4, 5). For this reason,
the visual composition for integrated views is identical to that of
juxtaposed views. However, contrary to the implicit linking used in
juxtaposed views, integrated views use explicit linking, normally
in the form of graphical lines that relate data items in different
views another [11]. One prominent example of integrated views
is Charles Minard’s famous visualization of Napoleon’s march on
Moscow [37], where explicit linking shows the relations between
temperature and the number of surviving soldiers during the retreat.

Figure 5: VisLink [11] (Integrated Views). Radial and force-directed

graphs on separate visualization planes linked with visual edges.

The use of explicit linking in integrated views, compared to im-
plicit linking in juxtaposed views, allows for better relational cogni-
tion, but at the cost of added visual clutter. However, as the number
of data points increases in the visualizations, the visual clutter aris-
ing from the explicit links may become a major hindrance. Com-
monly used strategies to avoid this problem are to aggregate the
links, or to show relational links only for selected data values [11].

4.1 Semantic Substrates

Shneiderman and Aris [34] proposed a network visualization layout
based on a user-defined semantic substrate with node-links diagram
as an underlying visualization (Figure 4). Semantic substrates are
spatially non-overlapping regions that are built to hold nodes based
on some category present in the dataset. The individual regions
are sized proportionally to the number of data entries for the cate-
gory they visualize. This scheme allows users to get a quick idea
about the cardinality of different categories present in the under-
lying dataset. Their approach is in line with the integrated view
design pattern because the techniques add visual links to connect
the nodes in different substrates. To reduce clutter arising from the
links, the tool allows for toggling their visibility.

Figure 4 shows semantic substrates used for the exploration of
a subset of federal judicial cases on the legal issue of regulatory
takings from 1978 to 2005. The nodes in different views are placed
based on their chronological order along the horizontal axis and
links among the nodes highlight citation between different cases.

4.2 VisLink

VisLink [11] (Figure 5) creates multiple 2D planes, one for each
visualization, and shows relational linking between the different vi-
sualization planes. Visualization planes generated in VisLink are
interactive and users can re-position them in the view to explore
data relations. In contrast with semantic substrates, VisLink allows
the use of different visualizations while exploring the dataset.

As with semantic substrates, the VisLink relational linking is
done using visual lines that connect visual marks in one plane with
the corresponding mark in the other plane. To reduce the inher-
ent occlusion due to the explicit relational links between visualiza-
tions, the tool supports two kinds of edges: straight edges are used
to show one-to-one linking, while bundled curved edges are used
to highlight one to many linking. To reduce visual clutter the tool
shows relational links only between adjacent planes, and the planes
must be reordered for the user to see relations between other planes.
Figure 5 shows VisLink being used for exploring a dataset of En-
glish words based on the IS-A relation over synonym sets.

Integration
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3.1 ComVis

ComVis [24] is a multidimensional visualization system support-
ing multiple coordinated views for exploring complex datasets (Fig-
ure 2). The dataset is shown in the form a table view at the bottom
of the main window. Beyond basic interactions, ComVis also sup-
port interactive brushing using both single and composite brushes.

Figure 2 shows a visual exploration of meteorology data using
ComVis. The user has created eight different views, each with a
different visualization. The analyst has then used a single brush to
select three bins in the histogram view, causing all the other views
to highlight the corresponding data items.

3.2 Improvise

Improvise [39, 40] is a visualization framework based on the jux-
taposed views design pattern. The framework allows users to build
and browse multiple visualizations while coordinating relational
linking among them. The system is highly extensible and modular-
ized, allowing it to be adapted for virtually any type of data and vi-
sual representation. To explore relational data in an interactive man-
ner, Improvise provides support for coordinated queries, a visual
abstraction language designed for relational databases. More re-
cent work on cross-filtered views [41] adds to the expressive power
of the framework for relation linking between different views.

Figure 3 shows a visual exploration of a simulated ion trajec-
tory in a cubic ion trap using Improvise. The tool allows user to
visualize different portions of the data set, selected using dynamic
queries [1]. All the visualizations are coordinated and data selection
in one view is projected in all others.

Figure 4: Semantic Substrates [34] (Integrated Views). Network

visualization of a dataset of court cases using semantic substrates.

4 INTEGRATION ! INTEGRATED VIEWS

The integrated views design pattern is also based on juxtaposing (or
tiling) the component visualizations (Figures 4, 5). For this reason,
the visual composition for integrated views is identical to that of
juxtaposed views. However, contrary to the implicit linking used in
juxtaposed views, integrated views use explicit linking, normally
in the form of graphical lines that relate data items in different
views another [11]. One prominent example of integrated views
is Charles Minard’s famous visualization of Napoleon’s march on
Moscow [37], where explicit linking shows the relations between
temperature and the number of surviving soldiers during the retreat.

Figure 5: VisLink [11] (Integrated Views). Radial and force-directed

graphs on separate visualization planes linked with visual edges.

The use of explicit linking in integrated views, compared to im-
plicit linking in juxtaposed views, allows for better relational cogni-
tion, but at the cost of added visual clutter. However, as the number
of data points increases in the visualizations, the visual clutter aris-
ing from the explicit links may become a major hindrance. Com-
monly used strategies to avoid this problem are to aggregate the
links, or to show relational links only for selected data values [11].

4.1 Semantic Substrates

Shneiderman and Aris [34] proposed a network visualization layout
based on a user-defined semantic substrate with node-links diagram
as an underlying visualization (Figure 4). Semantic substrates are
spatially non-overlapping regions that are built to hold nodes based
on some category present in the dataset. The individual regions
are sized proportionally to the number of data entries for the cate-
gory they visualize. This scheme allows users to get a quick idea
about the cardinality of different categories present in the under-
lying dataset. Their approach is in line with the integrated view
design pattern because the techniques add visual links to connect
the nodes in different substrates. To reduce clutter arising from the
links, the tool allows for toggling their visibility.

Figure 4 shows semantic substrates used for the exploration of
a subset of federal judicial cases on the legal issue of regulatory
takings from 1978 to 2005. The nodes in different views are placed
based on their chronological order along the horizontal axis and
links among the nodes highlight citation between different cases.

4.2 VisLink

VisLink [11] (Figure 5) creates multiple 2D planes, one for each
visualization, and shows relational linking between the different vi-
sualization planes. Visualization planes generated in VisLink are
interactive and users can re-position them in the view to explore
data relations. In contrast with semantic substrates, VisLink allows
the use of different visualizations while exploring the dataset.

As with semantic substrates, the VisLink relational linking is
done using visual lines that connect visual marks in one plane with
the corresponding mark in the other plane. To reduce the inher-
ent occlusion due to the explicit relational links between visualiza-
tions, the tool supports two kinds of edges: straight edges are used
to show one-to-one linking, while bundled curved edges are used
to highlight one to many linking. To reduce visual clutter the tool
shows relational links only between adjacent planes, and the planes
must be reordered for the user to see relations between other planes.
Figure 5 shows VisLink being used for exploring a dataset of En-
glish words based on the IS-A relation over synonym sets.

Integration
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Integration

40

[Napoleon's March to Moscow, C. J. Minard, 1869]
D. Koop, CSCI 628, Fall 2021



Integration Guidelines
• Benefits:  
- Easy to perceive one-to-one and one-to-many relations between items in 

components 
- Visualizations are less independent compared to juxtaposed views, but still 

separate 
• Drawbacks:  
- Extra visual clutter added to the overall view 
- Display space is split between the views 
- Some dependencies exist between views to allow for the visual linking 

• Applications: Use for heterogeneous datasets where correlation and 
comparisons between views is particularly important.
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Figure 6: Mapgets [38] (Superimposed Views). Presentation stack,

with superimposed layers for rivers, borders, and labels, in Mapgets.

Figure 7: GeoSpace [22] (Superimposed Views). A crime data layer

superimposed on a geographical map of the Cambridge, MA area.

5 SUPERIMPOSITION ! SUPERIMPOSED VIEWS

Superimposed views overlay two or more visual spaces on top of
each other (Figures 6 and 7). The resulting visualization becomes
the visual combination of the component visualizations, often using
transparency to enable seeing all views. Superimposed views are
generally used to highlight spatial relations in the component visu-
alizations. In other words, the spatial linking present in these views
is one-to-one, i.e., all the overlay visualizations share the same un-
derlying visual space. Line graph visualizations with several data
series, where more than one graph is superimposed in a single chart
(e.g., [19]), is a very commonly used example of this design pattern.

The spatial linking in the superimposed views allows for easy
comparison across different datasets because the user does not have
to split their attention between different parts of the visual space.
Furthermore, the fact that visualizations are stacked means that they
can each use the full available space in the view. However, because
the composition simply adds the component visualizations together,
the visual clutter may become significant, and it is also likely to
cause conflicts arising from one visualization occluding another.

5.1 Mapgets

Mapgets [38] is a geographic visualization system that allows users
to interactively perform map editing and querying of geographical
datasets. The maps generated using Mapgets are built on an under-
lying presentation stack that superimposes multiple dataset layers
on top of each other. The users can dynamically select the dataset

to use for each layer and the total number of layers to compose.
Different layers in the presentation stack allow users to indepen-
dently interact with each of the associated visualization and control
the layer attributes. The technique also allows the users to reorder
layers in the presentation stack to achieve the desirable map result.

Figure 6 shows an example of a European map generated in
Mapgets. The presentation stack associated with this map consists
of three layers: the bottom layer visualizes rivers, the center layer
is used to depict the country borders, and the topmost layer is used
to display the country labels.

5.2 GeoSpace

GeoSpace [22] allows users to interactively explore complex visual
spaces using superimposed views. It permits progressively overlay-
ing different datasets, based on the user queries, in a single view.
Beyond allowing users to explore datasets through dynamic queries,
GeoSpace also supports pan and zoom operations for navigation.

Figure 7 shows GeoSpace system being used for exploring crime
around the Cambridge, MA area. The figure shows a 2D view of
the visualization, where red dots that are spatially coupled to the
underlying layer show the reported crime cases in the region.

Figure 8: SPPC [45] (Overloaded Views). This tool overloads points

into the region bounded by two axes in the parallel coordinate plot.

Figure 9: Links on treemaps [14] (Overloaded Views). The tool

identifies a tree structure in a graph and visualizes it using a treemap.

Superimposition
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Figure 6: Mapgets [38] (Superimposed Views). Presentation stack,

with superimposed layers for rivers, borders, and labels, in Mapgets.

Figure 7: GeoSpace [22] (Superimposed Views). A crime data layer

superimposed on a geographical map of the Cambridge, MA area.

5 SUPERIMPOSITION ! SUPERIMPOSED VIEWS

Superimposed views overlay two or more visual spaces on top of
each other (Figures 6 and 7). The resulting visualization becomes
the visual combination of the component visualizations, often using
transparency to enable seeing all views. Superimposed views are
generally used to highlight spatial relations in the component visu-
alizations. In other words, the spatial linking present in these views
is one-to-one, i.e., all the overlay visualizations share the same un-
derlying visual space. Line graph visualizations with several data
series, where more than one graph is superimposed in a single chart
(e.g., [19]), is a very commonly used example of this design pattern.

The spatial linking in the superimposed views allows for easy
comparison across different datasets because the user does not have
to split their attention between different parts of the visual space.
Furthermore, the fact that visualizations are stacked means that they
can each use the full available space in the view. However, because
the composition simply adds the component visualizations together,
the visual clutter may become significant, and it is also likely to
cause conflicts arising from one visualization occluding another.

5.1 Mapgets

Mapgets [38] is a geographic visualization system that allows users
to interactively perform map editing and querying of geographical
datasets. The maps generated using Mapgets are built on an under-
lying presentation stack that superimposes multiple dataset layers
on top of each other. The users can dynamically select the dataset

to use for each layer and the total number of layers to compose.
Different layers in the presentation stack allow users to indepen-
dently interact with each of the associated visualization and control
the layer attributes. The technique also allows the users to reorder
layers in the presentation stack to achieve the desirable map result.

Figure 6 shows an example of a European map generated in
Mapgets. The presentation stack associated with this map consists
of three layers: the bottom layer visualizes rivers, the center layer
is used to depict the country borders, and the topmost layer is used
to display the country labels.

5.2 GeoSpace

GeoSpace [22] allows users to interactively explore complex visual
spaces using superimposed views. It permits progressively overlay-
ing different datasets, based on the user queries, in a single view.
Beyond allowing users to explore datasets through dynamic queries,
GeoSpace also supports pan and zoom operations for navigation.

Figure 7 shows GeoSpace system being used for exploring crime
around the Cambridge, MA area. The figure shows a 2D view of
the visualization, where red dots that are spatially coupled to the
underlying layer show the reported crime cases in the region.

Figure 8: SPPC [45] (Overloaded Views). This tool overloads points

into the region bounded by two axes in the parallel coordinate plot.

Figure 9: Links on treemaps [14] (Overloaded Views). The tool

identifies a tree structure in a graph and visualizes it using a treemap.

Superimposition
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Superimposition Guidelines
• Benefits:  
- Allows direct comparison in the same visual space.  

• Drawbacks: 
- May cause occlusion and high visual clutter. 
- The client visualization must share the same spatial mapping as the host 

visualization.  
• Applications: In settings where comparison is common, or where the 

component visualization views need to be as large as possible (potentially the 
entire available space).
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Figure 6: Mapgets [38] (Superimposed Views). Presentation stack,

with superimposed layers for rivers, borders, and labels, in Mapgets.

Figure 7: GeoSpace [22] (Superimposed Views). A crime data layer

superimposed on a geographical map of the Cambridge, MA area.

5 SUPERIMPOSITION ! SUPERIMPOSED VIEWS

Superimposed views overlay two or more visual spaces on top of
each other (Figures 6 and 7). The resulting visualization becomes
the visual combination of the component visualizations, often using
transparency to enable seeing all views. Superimposed views are
generally used to highlight spatial relations in the component visu-
alizations. In other words, the spatial linking present in these views
is one-to-one, i.e., all the overlay visualizations share the same un-
derlying visual space. Line graph visualizations with several data
series, where more than one graph is superimposed in a single chart
(e.g., [19]), is a very commonly used example of this design pattern.

The spatial linking in the superimposed views allows for easy
comparison across different datasets because the user does not have
to split their attention between different parts of the visual space.
Furthermore, the fact that visualizations are stacked means that they
can each use the full available space in the view. However, because
the composition simply adds the component visualizations together,
the visual clutter may become significant, and it is also likely to
cause conflicts arising from one visualization occluding another.

5.1 Mapgets

Mapgets [38] is a geographic visualization system that allows users
to interactively perform map editing and querying of geographical
datasets. The maps generated using Mapgets are built on an under-
lying presentation stack that superimposes multiple dataset layers
on top of each other. The users can dynamically select the dataset

to use for each layer and the total number of layers to compose.
Different layers in the presentation stack allow users to indepen-
dently interact with each of the associated visualization and control
the layer attributes. The technique also allows the users to reorder
layers in the presentation stack to achieve the desirable map result.

Figure 6 shows an example of a European map generated in
Mapgets. The presentation stack associated with this map consists
of three layers: the bottom layer visualizes rivers, the center layer
is used to depict the country borders, and the topmost layer is used
to display the country labels.

5.2 GeoSpace

GeoSpace [22] allows users to interactively explore complex visual
spaces using superimposed views. It permits progressively overlay-
ing different datasets, based on the user queries, in a single view.
Beyond allowing users to explore datasets through dynamic queries,
GeoSpace also supports pan and zoom operations for navigation.

Figure 7 shows GeoSpace system being used for exploring crime
around the Cambridge, MA area. The figure shows a 2D view of
the visualization, where red dots that are spatially coupled to the
underlying layer show the reported crime cases in the region.

Figure 8: SPPC [45] (Overloaded Views). This tool overloads points

into the region bounded by two axes in the parallel coordinate plot.

Figure 9: Links on treemaps [14] (Overloaded Views). The tool

identifies a tree structure in a graph and visualizes it using a treemap.

Overloading
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6 OVERLOADING ! OVERLOADED VIEWS

This design pattern characterizes compositions where one visual-
ization, called the client visualization, is rendered inside another
visualization, called the host, using the same spatial mapping as the
host [26]. Overloaded views (Figures 8 and 9) are similar to super-
imposed views, but with some important differences. Like super-
imposition, the client visualization in this design pattern is overlaid
on the host. However, unlike Superimposed Views, there exists no
one-to-one spatial linking between the two visualizations [12].

While previous design patterns have all operated on specific
views of component visualizations, overloaded views (and also the
next pattern, Nested Views) operate on the visual structure them-
selves. In other words, it is no longer possible to merely use vi-
sual layout operations to organize the views together, but the vi-
sual structures themselves must be modified to combine the com-
ponents. We will see examples of this below.

Figure 10: ZAME [13] (Nested Views). Visual exploration of a

protein-protein interaction dataset in ZAME.

6.1 Scatter Plots in Parallel Coordinates (SPPC)

Yuan et al. [45] presented a system that allows overloading of 2D
scatterplots on a parallel coordinates visualization [18] (Figure 8).
The technique is based on converting the space between pairs of
selected coordinate dimensions in a parallel coordinate plot into
scatterplots through multidimensional scaling [42]. The technique
takes advantage of the fact that parallel coordinate plots do not re-
ally use the space between the parallel dimensional axes, which
means that this space is open for being overloaded.

SPPC is also an example of combining two techniques to com-
pensate for their individual shortcomings. Parallel coordinates are
efficient for visualizing multiple dimensions in a compact 2D vi-
sual representation. However, they make it hard to correlate trends
across multiple dimensions due to their inherent visual clutter. Scat-
terplots, on the other hand, provide an effective way of correlating
trends in any dimension of a dataset [10]. Combining both tech-
niques allows for sharing their advantages.

6.2 Graph Links on Treemaps

Fekete et al. [14] proposed a technique for rendering graphs using a
treemap [20] with overloaded graph links. The idea is based on the
fact that it is possible to decompose a graph into a tree structure and
a set of remaining graph edges that are not included in the tree. This
graph decomposition allows for using a treemap to visualize the tree
structure, and then overload links corresponding to the remaining
graph edges on the treemap visualization. Even though Fekete et al.

call this “overlaying”, the technique is an example of overloading
in our terminology because the graph links are not just a separate
layer on top of the treemap, but they are embedded into the visual
structure of the treemap and use the node positions as anchors.

Figure 9 shows the technique being used to visualize a website.
Here, the directory structure, inherent in any website, is visualized
through an underlying treemap and external links are visualized
through overlaid edges. The overlaid edges are not straight lines,
but are curved to highlight source and target locations. The edges
are curved more near the source, hence making it easy to visually
recognize the direction of the link. The tool also supports con-
trolling the visibility of various edges to reduce visual clutter, and
coloring edges based on their attributes.

Figure 11: NodeTrix [17] (Nested Views). This example shows a

visualization of the InfoVis co-authorship network.

7 NESTING ! NESTED VIEWS

Nested views, like overloaded views, are also based on the notion of
host and client visualizations. However, in this design pattern, one
or more client visualizations are nested inside the visual marks of
the host visualizations, based on the relational linking between the
points. Most often, the nesting is performed simply by replacing
the visual marks in the host visualization by nested instances of the
client visualization (Figures 10 and 11). An example of this would
be a scatterplot where the individual marks are barchart glyphs [25].

The nested views pattern provides an effective way of relating
data points in the host visualization to the data visualized through
the client visualizations. Again the users need not divide their atten-
tion between multiple views, and the host visualization is allowed
to use the full available space. However, since the design pattern
embeds one or more visualizations inside a visual mark, the client
visualizations are allocated only a small portion of the host visual-
ization’s visual space, and zooming and panning may be required to
see details. Furthermore, just like overloading, nested views com-
pose the actual visual structures of the components, which typically
requires a more careful design.

One issue to discuss here is the difference between overloading
and nesting. These are different design patterns because nesting
simply replaces the visual marks of the host with the visual structure
of the client, whereas overloading requires a much more integrated
composition of the visual structures of the host and the client.

7.1 ZAME

Nested views are becoming increasingly prominent for visualizing
large-scale datasets using glyph-based methods. ZAME [13], a vi-
sualization system designed to explore large-scale adjacency matrix
graph visualization, uses this approach. The base matrix represen-
tation used in ZAME is a hierarchical aggregation of the underly-
ing dataset. The tool allows the user to zoom in data space, which
amounts to drilling-down and rolling-up in the aggregation hierar-
chy to see more or less details. Abstract glyphs representing aggre-
gated data for each cell in the matrix are nested inside the visual
marks of the matrix to convey information about the aggregation.

Nesting
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6 OVERLOADING ! OVERLOADED VIEWS

This design pattern characterizes compositions where one visual-
ization, called the client visualization, is rendered inside another
visualization, called the host, using the same spatial mapping as the
host [26]. Overloaded views (Figures 8 and 9) are similar to super-
imposed views, but with some important differences. Like super-
imposition, the client visualization in this design pattern is overlaid
on the host. However, unlike Superimposed Views, there exists no
one-to-one spatial linking between the two visualizations [12].

While previous design patterns have all operated on specific
views of component visualizations, overloaded views (and also the
next pattern, Nested Views) operate on the visual structure them-
selves. In other words, it is no longer possible to merely use vi-
sual layout operations to organize the views together, but the vi-
sual structures themselves must be modified to combine the com-
ponents. We will see examples of this below.

Figure 10: ZAME [13] (Nested Views). Visual exploration of a

protein-protein interaction dataset in ZAME.

6.1 Scatter Plots in Parallel Coordinates (SPPC)

Yuan et al. [45] presented a system that allows overloading of 2D
scatterplots on a parallel coordinates visualization [18] (Figure 8).
The technique is based on converting the space between pairs of
selected coordinate dimensions in a parallel coordinate plot into
scatterplots through multidimensional scaling [42]. The technique
takes advantage of the fact that parallel coordinate plots do not re-
ally use the space between the parallel dimensional axes, which
means that this space is open for being overloaded.

SPPC is also an example of combining two techniques to com-
pensate for their individual shortcomings. Parallel coordinates are
efficient for visualizing multiple dimensions in a compact 2D vi-
sual representation. However, they make it hard to correlate trends
across multiple dimensions due to their inherent visual clutter. Scat-
terplots, on the other hand, provide an effective way of correlating
trends in any dimension of a dataset [10]. Combining both tech-
niques allows for sharing their advantages.

6.2 Graph Links on Treemaps

Fekete et al. [14] proposed a technique for rendering graphs using a
treemap [20] with overloaded graph links. The idea is based on the
fact that it is possible to decompose a graph into a tree structure and
a set of remaining graph edges that are not included in the tree. This
graph decomposition allows for using a treemap to visualize the tree
structure, and then overload links corresponding to the remaining
graph edges on the treemap visualization. Even though Fekete et al.

call this “overlaying”, the technique is an example of overloading
in our terminology because the graph links are not just a separate
layer on top of the treemap, but they are embedded into the visual
structure of the treemap and use the node positions as anchors.

Figure 9 shows the technique being used to visualize a website.
Here, the directory structure, inherent in any website, is visualized
through an underlying treemap and external links are visualized
through overlaid edges. The overlaid edges are not straight lines,
but are curved to highlight source and target locations. The edges
are curved more near the source, hence making it easy to visually
recognize the direction of the link. The tool also supports con-
trolling the visibility of various edges to reduce visual clutter, and
coloring edges based on their attributes.

Figure 11: NodeTrix [17] (Nested Views). This example shows a

visualization of the InfoVis co-authorship network.

7 NESTING ! NESTED VIEWS

Nested views, like overloaded views, are also based on the notion of
host and client visualizations. However, in this design pattern, one
or more client visualizations are nested inside the visual marks of
the host visualizations, based on the relational linking between the
points. Most often, the nesting is performed simply by replacing
the visual marks in the host visualization by nested instances of the
client visualization (Figures 10 and 11). An example of this would
be a scatterplot where the individual marks are barchart glyphs [25].

The nested views pattern provides an effective way of relating
data points in the host visualization to the data visualized through
the client visualizations. Again the users need not divide their atten-
tion between multiple views, and the host visualization is allowed
to use the full available space. However, since the design pattern
embeds one or more visualizations inside a visual mark, the client
visualizations are allocated only a small portion of the host visual-
ization’s visual space, and zooming and panning may be required to
see details. Furthermore, just like overloading, nested views com-
pose the actual visual structures of the components, which typically
requires a more careful design.

One issue to discuss here is the difference between overloading
and nesting. These are different design patterns because nesting
simply replaces the visual marks of the host with the visual structure
of the client, whereas overloading requires a much more integrated
composition of the visual structures of the host and the client.

7.1 ZAME

Nested views are becoming increasingly prominent for visualizing
large-scale datasets using glyph-based methods. ZAME [13], a vi-
sualization system designed to explore large-scale adjacency matrix
graph visualization, uses this approach. The base matrix represen-
tation used in ZAME is a hierarchical aggregation of the underly-
ing dataset. The tool allows the user to zoom in data space, which
amounts to drilling-down and rolling-up in the aggregation hierar-
chy to see more or less details. Abstract glyphs representing aggre-
gated data for each cell in the matrix are nested inside the visual
marks of the matrix to convey information about the aggregation.

Nesting
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Nesting Guidlines
• Benefits: 
- Very compact representation 
- Easy correlation 

• Drawbacks:  
- Limited space for the client visualizations 
- Clutter is high 
- Visual design dependencies are high 

• Applications: Situations that call for augmenting a particular visual 
representation with additional mapping
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Design Space
• Visualizations: the techniques or idioms used 
• Spatial relation: relationship between visual structures in display space 
• Data relation: visual relationship between items in different views 
- None: No relation 
- Item-item: One-to-one 
- Item-group: One-to-many 
- Item-dimension: Item in one view is a scale in another
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Technique Visualization A Visualization B Spatial Relation Data Relation

ComVis [24] (Figure 2) any any juxtapose none
Improvise [39] (Figure 3) any any juxtapose none
Jigsaw [36] any any juxtapose none
Snap-Together [30] any any juxtapose none
semantic substrates [34] (Figure 4) node-link node-link juxtapose item-item
VisLink [11] (Figure 5) radial graph node-link juxtapose item-item
Napoleon’s March on Moscow [37] time line view area visualization juxtapose item-item
Mapgets [38] (Figure 6) map text superimpose item-item
GeoSpace [22] (Figure 7) map bar graph superimpose item-item
3D GIS [8] map glyphs superimpose item-item
Scatter Plots in Parallel Coordinates [45] (Figure 8) parallel coordinate scatterplot overload item-dimension
Graph links on treemaps [14] (Figure 9) treemap node-link overload item-item
SparkClouds [21] tag cloud line graph overload item-item
ZAME [13] (Figure 10) matrix glyphs nested item-group
NodeTrix [17] (Figure 11) node-link matrix nested item-group
TimeMatrix [44] matrix glyphs nested item-group
GPUVis [25] Scatterplot glyphs nested item-group

Table 1: Classification of common composite visualization techniques using our design space.

(a) Juxtaposed views. (b) Integrated views. (c) Superimposed views. (d) Overloaded views. (e) Nested views.

Figure 12: Example of composing a scatterplot and bar graph using different methods.

datasets in the same space and using different visualizations, but
also highlights the relational linking between the two datasets.

Nested views provide an efficient approach to link each of the
data values, visualized through the host visualization, to its related
dataset, visualized through client visualizations. This is achieved
by nesting clients inside the visual marks in the host.

• Benefits: Very compact representation, easy correlation.
• Drawbacks: Limited space for the client visualizations, clut-

ter is high, and visual design dependencies are high.
• Applications: Again, situations that call for augmenting a

particular visual representation with additional mapping.

Figure 12(e) shows an example composition of scatterplot and
bar graph visualizations based on this design patter. In the figure,
the scatterplot visualization is acting as a host and bar graph visu-
alizations are nested inside its visual marks.

There is probably not a clear winner among different design pat-
terns while designing an information visualization tool. The correct
choice of design pattern to use for a particular implementation de-
pends on different conditions, such as the available view space, user
knowledge, and the complexity of the underlying dataset. Ideally
speaking, designers should be able to combine any existing visual-
izations to generate a composite visualization view.

8.2 Delimitations

While our above CVV design patterns are general in nature, they
are based solely on the spatial layout of component visualizations.
However, it is possible to envision other ways to combine two or
more visualizations, for example using interaction or animation.
One such example is the use of interactive hyperlinking [6, 43] (or
wormholing) to navigate between different visualization views.

8.3 Discussion

There are several direct benefits to structuring the design space of
composite visualization views in this manner. Classifying existing
techniques into patterns not only helps in understanding these tech-
niques, but also in evaluating their strengths and weaknesses.

However, the design patterns presented in this paper are all based
on evidence from the literature of how existing visualization tools
and techniques use composite views. Therefore, our framework
is inherently limited to current designs, and more descriptive than
generative in nature. Furthermore, this list of patterns is not neces-
sarily exhaustive, and we certainly foresee additional design pat-
terns for composite views to emerge with progress in informa-
tion visualization. It is also not always straightforward to sepa-
rate what is a composite visualization and what is an “atomic” (or
component) visualization, particularly when the compositions on
the visual structures—which is the case for overloaded and nested
views—as opposed to merely on the views. Our approach in the
above text has been to treat as components any technique has been
presented in the literature as a standalone technique.

9 CONCLUSION

We have proposed a novel framework for specifying, designing, and
evaluating compositions of multiple visualizations in the same vi-
sual space that we call composite visualization views. The benefit
of the framework is not only to provide a way to unify a large col-
lection of existing work where visual representations are combined
in various ways, but also to suggest new combinations of visual
representations that may significantly advance the state of the art.
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Summary (Scatterplot + Bar Chart)
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Technique Visualization A Visualization B Spatial Relation Data Relation
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Graph links on treemaps [14] (Figure 9) treemap node-link overload item-item
SparkClouds [21] tag cloud line graph overload item-item
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GPUVis [25] Scatterplot glyphs nested item-group

Table 1: Classification of common composite visualization techniques using our design space.

(a) Juxtaposed views. (b) Integrated views. (c) Superimposed views. (d) Overloaded views. (e) Nested views.

Figure 12: Example of composing a scatterplot and bar graph using different methods.

datasets in the same space and using different visualizations, but
also highlights the relational linking between the two datasets.

Nested views provide an efficient approach to link each of the
data values, visualized through the host visualization, to its related
dataset, visualized through client visualizations. This is achieved
by nesting clients inside the visual marks in the host.

• Benefits: Very compact representation, easy correlation.
• Drawbacks: Limited space for the client visualizations, clut-

ter is high, and visual design dependencies are high.
• Applications: Again, situations that call for augmenting a

particular visual representation with additional mapping.

Figure 12(e) shows an example composition of scatterplot and
bar graph visualizations based on this design patter. In the figure,
the scatterplot visualization is acting as a host and bar graph visu-
alizations are nested inside its visual marks.

There is probably not a clear winner among different design pat-
terns while designing an information visualization tool. The correct
choice of design pattern to use for a particular implementation de-
pends on different conditions, such as the available view space, user
knowledge, and the complexity of the underlying dataset. Ideally
speaking, designers should be able to combine any existing visual-
izations to generate a composite visualization view.

8.2 Delimitations

While our above CVV design patterns are general in nature, they
are based solely on the spatial layout of component visualizations.
However, it is possible to envision other ways to combine two or
more visualizations, for example using interaction or animation.
One such example is the use of interactive hyperlinking [6, 43] (or
wormholing) to navigate between different visualization views.

8.3 Discussion

There are several direct benefits to structuring the design space of
composite visualization views in this manner. Classifying existing
techniques into patterns not only helps in understanding these tech-
niques, but also in evaluating their strengths and weaknesses.

However, the design patterns presented in this paper are all based
on evidence from the literature of how existing visualization tools
and techniques use composite views. Therefore, our framework
is inherently limited to current designs, and more descriptive than
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terns for composite views to emerge with progress in informa-
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the visual structures—which is the case for overloaded and nested
views—as opposed to merely on the views. Our approach in the
above text has been to treat as components any technique has been
presented in the literature as a standalone technique.

9 CONCLUSION

We have proposed a novel framework for specifying, designing, and
evaluating compositions of multiple visualizations in the same vi-
sual space that we call composite visualization views. The benefit
of the framework is not only to provide a way to unify a large col-
lection of existing work where visual representations are combined
in various ways, but also to suggest new combinations of visual
representations that may significantly advance the state of the art.

REFERENCES

[1] C. Ahlberg and B. Shneiderman. Visual information seeking: Tight
coupling of dynamic query filters with starfield displays. In Proceed-

Technique Visualization A Visualization B Spatial Relation Data Relation

ComVis [24] (Figure 2) any any juxtapose none
Improvise [39] (Figure 3) any any juxtapose none
Jigsaw [36] any any juxtapose none
Snap-Together [30] any any juxtapose none
semantic substrates [34] (Figure 4) node-link node-link juxtapose item-item
VisLink [11] (Figure 5) radial graph node-link juxtapose item-item
Napoleon’s March on Moscow [37] time line view area visualization juxtapose item-item
Mapgets [38] (Figure 6) map text superimpose item-item
GeoSpace [22] (Figure 7) map bar graph superimpose item-item
3D GIS [8] map glyphs superimpose item-item
Scatter Plots in Parallel Coordinates [45] (Figure 8) parallel coordinate scatterplot overload item-dimension
Graph links on treemaps [14] (Figure 9) treemap node-link overload item-item
SparkClouds [21] tag cloud line graph overload item-item
ZAME [13] (Figure 10) matrix glyphs nested item-group
NodeTrix [17] (Figure 11) node-link matrix nested item-group
TimeMatrix [44] matrix glyphs nested item-group
GPUVis [25] Scatterplot glyphs nested item-group

Table 1: Classification of common composite visualization techniques using our design space.

(a) Juxtaposed views. (b) Integrated views. (c) Superimposed views.
1 2 3 4 5 6 7 8a b c d e f g h

(d) Overloaded views. (e) Nested views.

Figure 12: Example of composing a scatterplot and bar graph using different methods.

datasets in the same space and using different visualizations, but
also highlights the relational linking between the two datasets.

Nested views provide an efficient approach to link each of the
data values, visualized through the host visualization, to its related
dataset, visualized through client visualizations. This is achieved
by nesting clients inside the visual marks in the host.

• Benefits: Very compact representation, easy correlation.
• Drawbacks: Limited space for the client visualizations, clut-

ter is high, and visual design dependencies are high.
• Applications: Again, situations that call for augmenting a

particular visual representation with additional mapping.

Figure 12(e) shows an example composition of scatterplot and
bar graph visualizations based on this design patter. In the figure,
the scatterplot visualization is acting as a host and bar graph visu-
alizations are nested inside its visual marks.

There is probably not a clear winner among different design pat-
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pends on different conditions, such as the available view space, user
knowledge, and the complexity of the underlying dataset. Ideally
speaking, designers should be able to combine any existing visual-
izations to generate a composite visualization view.
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While our above CVV design patterns are general in nature, they
are based solely on the spatial layout of component visualizations.
However, it is possible to envision other ways to combine two or
more visualizations, for example using interaction or animation.
One such example is the use of interactive hyperlinking [6, 43] (or
wormholing) to navigate between different visualization views.

8.3 Discussion

There are several direct benefits to structuring the design space of
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techniques into patterns not only helps in understanding these tech-
niques, but also in evaluating their strengths and weaknesses.

However, the design patterns presented in this paper are all based
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is inherently limited to current designs, and more descriptive than
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sarily exhaustive, and we certainly foresee additional design pat-
terns for composite views to emerge with progress in informa-
tion visualization. It is also not always straightforward to sepa-
rate what is a composite visualization and what is an “atomic” (or
component) visualization, particularly when the compositions on
the visual structures—which is the case for overloaded and nested
views—as opposed to merely on the views. Our approach in the
above text has been to treat as components any technique has been
presented in the literature as a standalone technique.

9 CONCLUSION

We have proposed a novel framework for specifying, designing, and
evaluating compositions of multiple visualizations in the same vi-
sual space that we call composite visualization views. The benefit
of the framework is not only to provide a way to unify a large col-
lection of existing work where visual representations are combined
in various ways, but also to suggest new combinations of visual
representations that may significantly advance the state of the art.
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or virtual/augmented reality?
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4

Visualization Workplaces

VisTiles
[Langner, Horak, 

and Dachselt,
VIS 2017]

+
David 
Meets 

Goliath
[Horak, Badam, 

Elmqvist, and 
Dachselt,

CHI 2018]

Now: Large Wall-sized Displays

More data More views More users

Visualization on Devices other than Personal Computers
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7

Large Displays for Information Visualization

Collaboration Styles
[Isenberg, Fisher, Morris, 
Inkpen, Czerwinski,
VAST 2010]

Territoriality and 
Formations
[Azad, Ruiz, Vogel, Hancock, and 
Lank, DIS 2012]

Proximity to the display
Up Close and Personal
[Jakobsen and Hornbæk,
TOCHI 2014]

Different collaboration styles as well as formations and positioning

Large Display Interactions and Movement
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Movement Paths

Team 1 (P1, P2) Team 3 (P5, P6) Team 7 (P13, P14)

Themed Exploration Phase
Open Exploration Phase

User 1 User 2User Study on User Movement
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MARVIS: Mobile Devices & Augmented Reality
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Visualization and Interaction Concepts

In our work, we describe exemplary techniques as part of several new visualization and interaction concepts.

The techniques build on visualization principles and tasks, including overview+detail, linking and brushing, data filtering,

and visual comparison.

Also, MARVIS allows for adapting and enhancing existing visualization techniques.

The concepts can be organized into two categories: single mobile device with AR and two

or more mobile devices with AR.

Note that information shown in AR is colored in purple, that of mobile devices in blue.

Using AR for adapting different Overview+Detail and Focus+Context techniques. (a) A typical map overview; (b) Marginal histograms
around the mobile device; (c) 3D visualization of a Matrix Cube; (d) Navigation support by an off-screen coordinate origin; (e)
Zoomed in bar chart with fisheye-style continuation; (f) Mobile device as a detailed lens into a larger map;

Using AR for Alternative Visualization Views, Separated Visualization User Interface Components, and Superimposed 3D Visualizations.
(a) SPLOM shows alternative scatterplots configurations; (b) Distributed views of a dashboard; (c) Tilted AR views; (d) Off-loaded
legend and menus; (e) Continuous 3D track above a map; (f) 3D wall visualization aligned to a map;

Using AR for Relations Between Visualizations, Combination of
Visualizations, and Multi-User Support. (a) Linking and brushing supported by curved AR connections; (b) Ribbons between devices
indicate the relative proportions; (c) Icon meta-visualizations reveal view relations; (d) AR bar chart summarizes calculated
differences between views; (e) Merging two views in AR; (f) Personal and shared areas for collaborative activities;

Prototype Application: Implemented Example Use Cases

Our prototype application consists of six implemented example use cases and exemplifies how our proposed concepts

can be realized. Each example demonstrates parts of our concepts, but also extends and enhances already existing

! Watch the video on YouTube.

(https://youtu.be/bDS7kRFYgjY) This video shows basic

concepts and the implemented prototype of MARVIS.

MARVIS will be presented at CHI 2021

(https://chi2021.acm.org). Watch the ! pre-recored talk on

YouTube (https://youtu.be/uTDfiGbQU78).

MARVIS in 30 seconds

! Watch the video on YouTube.

(https://youtu.be/DHvnkpmjUhw)This video is a 30-

seconds preview of MARVIS.

(https://youtu.be/DHvnkpmjUhw)

Using Tablets and Augmented Reality
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Visualization and Interaction Concepts

In our work, we describe exemplary techniques as part of several new visualization and interaction concepts.

The techniques build on visualization principles and tasks, including overview+detail, linking and brushing, data filtering,

and visual comparison.

Also, MARVIS allows for adapting and enhancing existing visualization techniques.

The concepts can be organized into two categories: single mobile device with AR and two

or more mobile devices with AR.

Note that information shown in AR is colored in purple, that of mobile devices in blue.

Using AR for adapting different Overview+Detail and Focus+Context techniques. (a) A typical map overview; (b) Marginal histograms
around the mobile device; (c) 3D visualization of a Matrix Cube; (d) Navigation support by an off-screen coordinate origin; (e)
Zoomed in bar chart with fisheye-style continuation; (f) Mobile device as a detailed lens into a larger map;

Using AR for Alternative Visualization Views, Separated Visualization User Interface Components, and Superimposed 3D Visualizations.
(a) SPLOM shows alternative scatterplots configurations; (b) Distributed views of a dashboard; (c) Tilted AR views; (d) Off-loaded
legend and menus; (e) Continuous 3D track above a map; (f) 3D wall visualization aligned to a map;

Using AR for Relations Between Visualizations, Combination of
Visualizations, and Multi-User Support. (a) Linking and brushing supported by curved AR connections; (b) Ribbons between devices
indicate the relative proportions; (c) Icon meta-visualizations reveal view relations; (d) AR bar chart summarizes calculated
differences between views; (e) Merging two views in AR; (f) Personal and shared areas for collaborative activities;

Prototype Application: Implemented Example Use Cases

Our prototype application consists of six implemented example use cases and exemplifies how our proposed concepts

can be realized. Each example demonstrates parts of our concepts, but also extends and enhances already existing

! Watch the video on YouTube.

(https://youtu.be/bDS7kRFYgjY) This video shows basic

concepts and the implemented prototype of MARVIS.

MARVIS will be presented at CHI 2021

(https://chi2021.acm.org). Watch the ! pre-recored talk on

YouTube (https://youtu.be/uTDfiGbQU78).

MARVIS in 30 seconds

! Watch the video on YouTube.

(https://youtu.be/DHvnkpmjUhw)This video is a 30-

seconds preview of MARVIS.

(https://youtu.be/DHvnkpmjUhw)

Using Tablets and Augmented Reality
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Visualization and Interaction Concepts

In our work, we describe exemplary techniques as part of several new visualization and interaction concepts.

The techniques build on visualization principles and tasks, including overview+detail, linking and brushing, data filtering,

and visual comparison.

Also, MARVIS allows for adapting and enhancing existing visualization techniques.

The concepts can be organized into two categories: single mobile device with AR and two

or more mobile devices with AR.

Note that information shown in AR is colored in purple, that of mobile devices in blue.

Using AR for adapting different Overview+Detail and Focus+Context techniques. (a) A typical map overview; (b) Marginal histograms
around the mobile device; (c) 3D visualization of a Matrix Cube; (d) Navigation support by an off-screen coordinate origin; (e)
Zoomed in bar chart with fisheye-style continuation; (f) Mobile device as a detailed lens into a larger map;

Using AR for Alternative Visualization Views, Separated Visualization User Interface Components, and Superimposed 3D Visualizations.
(a) SPLOM shows alternative scatterplots configurations; (b) Distributed views of a dashboard; (c) Tilted AR views; (d) Off-loaded
legend and menus; (e) Continuous 3D track above a map; (f) 3D wall visualization aligned to a map;

Using AR for Relations Between Visualizations, Combination of
Visualizations, and Multi-User Support. (a) Linking and brushing supported by curved AR connections; (b) Ribbons between devices
indicate the relative proportions; (c) Icon meta-visualizations reveal view relations; (d) AR bar chart summarizes calculated
differences between views; (e) Merging two views in AR; (f) Personal and shared areas for collaborative activities;

Prototype Application: Implemented Example Use Cases

Our prototype application consists of six implemented example use cases and exemplifies how our proposed concepts

can be realized. Each example demonstrates parts of our concepts, but also extends and enhances already existing

! Watch the video on YouTube.

(https://youtu.be/bDS7kRFYgjY) This video shows basic

concepts and the implemented prototype of MARVIS.

MARVIS will be presented at CHI 2021

(https://chi2021.acm.org). Watch the ! pre-recored talk on

YouTube (https://youtu.be/uTDfiGbQU78).

MARVIS in 30 seconds
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