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Feature Visualization
How neural networks build up their understanding of images

Edges (layer conv2d0) Textures (layer mixed3a) Patterns (layer mixed4a) Parts (layers mixed4b & mixed4c) Objects (layers mixed4d &
mixed4e)
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There is a growing sense that neural networks need to be interpretable to humans. The field

of neural network interpretability has formed in response to these concerns. As it matures,

two major threads of research have begun to coalesce: feature visualization and attribution.

This article focuses on feature visualization. While feature visualization is a powerful tool,

actually getting it to work involves a number of details. In this article, we examine the major

issues and explore common approaches to solving them. We find that remarkably simple

methods can produce high-quality visualizations. Along the way we introduce a few tricks for

exploring variation in what neurons react to, how they interact, and how to improve the

Edges (layer conv2d0) Textures (layer mixed3a) Patterns (layer mixed4a) Parts (layers mixed4b & mixed4c) Objects (layers mixed4d &
mixed4e)

Feature visualization allows us to see how GoogLeNet , trained on the ImageNet  dataset, builds up its
understanding of images over many layers. Visualizations of all channels are available in the appendix.

[1] [2]

Feature visualization answers questions about what a
network — or parts of a network — are looking for by
generating examples.

Attribution studies what part of an example is
responsible for the network activating a particular way.
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Feature Vis by Optimization
• "[W]hat kind of input would cause a certain behavior" 
• Start from random noise and iteratively tweak (using derivatives) 

• What are the objectives? (Where are we going?) 
- Neuron, channel, layer (has DeepDream "interesting" objective
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This article focuses on feature visualization. While feature visualization is a powerful tool,

actually getting it to work involves a number of details. In this article, we examine the major

issues and explore common approaches to solving them. We find that remarkably simple

methods can produce high-quality visualizations. Along the way we introduce a few tricks for

exploring variation in what neurons react to, how they interact, and how to improve the

optimization process.

Feature Visualization by Optimization

Neural networks are, generally speaking, differentiable with respect to their inputs. If we

want to find out what kind of input would cause a certain behavior — whether that’s an

internal neuron firing or the final output behavior — we can use derivatives to iteratively tweak

the input towards that goal .

While conceptually simple, there are subtle challenges in getting the optimization to work.

We will explore them, as well as common approaches to tackle them in the section ”The

Enemy of Feature Visualization″.

Optimization Objectives

What do we want examples of? This is the core question in working with examples,

regardless of whether we’re searching through a dataset to find the examples, or optimizing

images to create them from scratch. We have a wide variety of options in what we search for:

Feature visualization answers questions about what a
network — or parts of a network — are looking for by
generating examples.

Attribution studies what part of an example is
responsible for the network activating a particular way.

1 
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Starting from random
noise, we optimize an
image to activate a
particular neuron (layer
mixed4a, unit 11).

Step 0

→

Step 4

→

Step 48

→

Step 2048

Different optimization
objectives show what
different parts of a
network are looking for.
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This article focuses on feature visualization. While feature visualization is a powerful tool,

actually getting it to work involves a number of details. In this article, we examine the major

issues and explore common approaches to solving them. We find that remarkably simple

methods can produce high-quality visualizations. Along the way we introduce a few tricks for

exploring variation in what neurons react to, how they interact, and how to improve the

optimization process.

Feature Visualization by Optimization

Neural networks are, generally speaking, differentiable with respect to their inputs. If we

want to find out what kind of input would cause a certain behavior — whether that’s an

internal neuron firing or the final output behavior — we can use derivatives to iteratively tweak

the input towards that goal .

While conceptually simple, there are subtle challenges in getting the optimization to work.

We will explore them, as well as common approaches to tackle them in the section ”The

Enemy of Feature Visualization″.

Optimization Objectives

What do we want examples of? This is the core question in working with examples,

regardless of whether we’re searching through a dataset to find the examples, or optimizing

images to create them from scratch. We have a wide variety of options in what we search for:

If we want to understand individual features, we can search for examples where they have

high values — either for a neuron at an individual position, or for an entire channel. We used

the channel objective to create most of the images in this article.

Feature visualization answers questions about what a
network — or parts of a network — are looking for by
generating examples.

Attribution studies what part of an example is
responsible for the network activating a particular way.

1 

[3]

Starting from random
noise, we optimize an
image to activate a
particular neuron (layer
mixed4a, unit 11).

Step 0

→

Step 4

→

Step 48

→

Step 2048

Different optimization
objectives show what
different parts of a
network are looking for.

 n  layer index 

 x,y  spatial position

 z  channel index 

 k  class index

Neuron
 layer [x,y,z] 

Channel
 layer [:,:,z] 

Layer/DeepDream
 layer [:,:,:]  

so
ftm
ax

Class Logits
 pre_softmax[k] 

so
ftm
ax

Class Probability
 softmax[k] n n n

2

Optimization Objectives
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the channel objective to create most of the images in this article.

If we want to understand a layer as a whole, we can use the DeepDream objective ,

searching for images the layer finds “interesting.”

And if we want to create examples of output classes from a classifier, we have two options — 

optimizing class logits before the softmax or optimizing class probabilities after the softmax.

One can see the logits as the evidence for each class, and the probabilities as the likelihood

of each class given the evidence. Unfortunately, the easiest way to increase the probability

softmax gives to a class is often to make the alternatives unlikely rather than to make the

class of interest likely . From our experience, optimizing pre-softmax logits produces

images of better visual quality. 

The objectives we’ve mentioned only scratch the surface of possible objectives — there are a

lot more that one could try. Of particular note are the objectives used in style transfer ,

which can teach us about the kinds of style and content a network understands, and

objectives used in optimization-based model inversion , which help us understand what

information a model keeps and what it throws away. We are only at the beginning of

understanding which objectives are interesting, and there is a lot of room for more work in

this area.

Why visualize by optimization?

Optimization can give us an example input that causes the desired behavior — but why

bother with that? Couldn’t we just look through the dataset for examples that cause the

desired behavior?

It turns out that optimization approach can be a powerful way to understand what a model is

really looking for, because it separates the things causing behavior from things that merely

correlate with the causes. For example, consider the following neurons visualized with

dataset examples and optimization:

Optimization also has the advantage of flexibility. For example, if we want to study how

neurons jointly represent information, we can easily ask how a particular example would

need to be different for an additional neuron to activate. This flexibility can also be helpful in

visualizing how features evolve as the network trains. If we were limited to understanding the

model on the fixed examples in our dataset, topics like these ones would be much harder to

explore.

On the other hand, there are also significant challenges to visualizing features with

optimization. In the following sections we’ll examine techniques to get diverse visualizations,

understand how neurons interact, and avoid high frequency artifacts.

[4]

[5]

2

[6]

[7]

Dataset Examples show
us what neurons respond
to in practice

Optimization isolates
the causes of behavior
from mere correlations. A

neuron may not be
detecting what you
initially thought.

Baseball—or stripes? 
mixed4a, Unit 6

Animal faces—or snouts? 
mixed4a, Unit 240

Clouds—or fluffiness? 
mixed4a, Unit 453

Buildings—or sky? 
mixed4a, Unit 492

Why not Examples?
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Diversity
• Examples can be diverse 
• Optimization may give us one very positive takeaway 
• Add a diversity term!
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examples shows that is broadly correct. Note the spoon with a texture and color similar

enough to dog fur for the neuron to activate.

The effect of diversity can be even more striking in higher level neurons, where it can show

us different types of objects that stimulate a neuron. For example, one neuron responds to

different kinds of balls, even though they have a variety of appearances.

This simpler approach has a number of shortcomings: For one, the pressure to make

examples different can cause unrelated artifacts (such as eyes) to appear. Additionally, the

optimization may make examples be different in an unnatural way. For example, in the above

example one might want to see examples of soccer balls clearly separated from other types

of balls like golf or tennis balls. Dataset based approaches such as Wei et al.  can split

features apart more naturally — however they may not be as helpful in understanding how the

model will behave on different data.

Diversity also starts to brush on a more fundamental issue: while the examples above

represent a mostly coherent idea, there are also neurons that represent strange mixtures of

ideas. Below, a neuron responds to two types of animal faces, and also to car bodies.

Examples like these suggest that neurons are not necessarily the right semantic units for

understanding neural nets.

Optimization with diversity. Layer mixed4a, Unit 143

Dataset examples

Simple Optimization

Optimization with diversity reveals multiple types of balls. Layer mixed5a, Unit 9

Dataset examples

[8]

Simple Optimization

Optimization with diversity show cats, foxes, but also cars. Layer mixed4e, Unit 55

Dataset examples
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This is only starting to scratch the surface of how neurons interact. The truth is that we have

almost no clue how to select meaningful directions, or whether there even exist particularly

meaningful directions. Independent of finding directions, there are also questions on how

directions interact — for example, interpolation can show us how a small number of directions

interact, but in reality there are hundreds of directions interacting.

The Enemy of Feature Visualization

If you want to visualize features, you might just optimize an image to make neurons fire.

Unfortunately, this doesn’t really work. Instead, you end up with a kind of neural network

optical illusion — an image full of noise and nonsensical high-frequency patterns that the

network responds strongly to.

These patterns seem to be the images kind of cheating, finding ways to activate neurons

that don’t occur in real life. If you optimize long enough, you’ll tend to see some of what the

neuron genuinely detects as well, but the image is dominated by these high frequency

patterns. These patterns seem to be closely related to the phenomenon of adversarial

examples .

We don’t fully understand why these high frequency patterns form, but an important part

seems to be strided convolutions and pooling operations, which create high-frequency

patterns in the gradient .

Each strided convolution or pooling creates checkerboard patterns in the gradient magnitudes when we backprop
through it.

Layer 4a, Unit 476 Layer 4a, Unit 460

Even if you carefully tune
learning rate, you’ll get
noise.

Optimization results are
enlarged to show detail
and artifacts.

REPRODUCE IN A
NOTEBOOK

Learning Rate (0.05)

Step 1 Step 32 Step 128 Step 256 Step 2048

[11]

[13]

← ← ← ←

Naive Optimization Doesn't Work
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Regularization to Avoid Noise
• Frequency penalization: penalize high-frequency noise 
• Transformation robustness: jitter/rotate/scale images and still activate 
• Learned priors: learn a prior and try to enforce it 
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The Building Blocks of Interpretability
Interpretability techniques are normally studied in isolation.
We explore the powerful interfaces that arise when you combine them — 
and the rich structure of this combinatorial space.

For instance, by combining feature visualization (what

is a neuron looking for?) with attribution (how does it

affect the output?), we can explore how the network

decides between labels like Labrador retriever and

tiger cat.

…

Several floppy ear
detectors seem to be
important when
distinguishing dogs,
whereas pointy ears are
used to classify "tiger cat".

CHANNELS THAT MOST
SUPPORT … LABRADOR RETRIEVER TIGER CAT

feature visualization of

channel

hover for
attribution maps

net evidence 1.63 1.51 1.19 1.32 1.54 1.72

for "Labrador retriever" 1.22 1.24 1.32 -0.70 -1.24 -0.43

for "tiger cat" -0.40 -0.27 0.13 0.62 0.30 1.29

ABOUT PRIZE SUBMIT Distill

CHOOSE AN INPUT IMAGE

The Building Blocks of Interpretability
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What Does the Network See?

Applying this technique to all the activation vectors allows us to not only see what the

network detects at each position, but also what the network understands of the input image

as a whole.

And, by working across layers (eg. “mixed3a”, “mixed4d”), we can observe how the

network’s understanding evolves: from detecting edges in earlier layers, to more

sophisticated shapes and object parts in the latter.

Semantic dictionaries give us a fine-grained look at an

activation: what does each single neuron detect? Building

off this representation, we can also consider an activation

vector as a whole. Instead of visualizing individual neurons,

we can instead visualize the combination of neurons that fire

at a given spatial location. (Concretely, we optimize the

image to maximize the dot product of its activations with the

original activation vector.)

  

Activation Vector

=

  886.

+

  599.

+

  328.

+

  303.

+ ...

Channels

REPRODUCE IN A NOTEBOOK mixed4d

Combine Feature Vis and Activation
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What Does the Network See?

Applying this technique to all the activation vectors allows us to not only see what the

network detects at each position, but also what the network understands of the input image

as a whole.

And, by working across layers (eg. “mixed3a”, “mixed4d”), we can observe how the

network’s understanding evolves: from detecting edges in earlier layers, to more

sophisticated shapes and object parts in the latter.

Semantic dictionaries give us a fine-grained look at an

activation: what does each single neuron detect? Building

off this representation, we can also consider an activation

vector as a whole. Instead of visualizing individual neurons,

we can instead visualize the combination of neurons that fire

at a given spatial location. (Concretely, we optimize the

image to maximize the dot product of its activations with the

original activation vector.)

  

Activation Vector

=

  886.

+

  599.

+

  328.

+

  303.

+ ...

Channels

REPRODUCE IN A NOTEBOOK mixed4d

Feature Vis + Attribution
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relationship , but could easily substitute in essentially any other technique. Future

improvements to attribution will, of course, correspondingly improve the interfaces built on

top of them.

Spatial Attribution with Saliency Maps

The most common interface for attribution is called a saliency map — a simple heatmap that

highlights pixels of the input image that most caused the output classification. We see two

weaknesses with this current approach.

First, it is not clear that individual pixels should be the primary unit of attribution. The

meaning of each pixel is extremely entangled with other pixels, is not robust to simple visual

transforms (e.g., brightness, contrast, etc.), and is far-removed from high-level concepts like

the output class. Second, traditional saliency maps are a very limited type of interface — they

only display the attribution for a single class at a time, and do not allow you to probe into

individual points more deeply. As they do not explicitly deal with hidden layers, it has been

difficult to fully explore their design space.

We instead treat attribution as another user interface building block, and apply it to the

hidden layers of a neural network. In doing so, we change the questions we can pose. Rather

than asking whether the color of a particular pixel was important for the “labrador retriever”

classification, we instead ask whether the high-level idea detected at that position (such as

“floppy ear”) was important. This approach is similar to what Class Activation Mapping

(CAM) methods  do but, because they interpret their results back onto the input

image, they miss the opportunity to communicate in terms of the rich behavior of a network’s

hidden layers.

INPUT IMAGE OUTPUT CLASSES OUTPUT FACTORS

Attribution tends to be more meaningful in later layers. The floppy ear, dog snout, cat head, etc, do
mostly what you expect. Surprisingly, the lower snout at mixed4d seems entangled with the idea of
a tennis ball and supports "tennis ball" and "granny smith apple."

REPRODUCE IN A NOTEBOOK

2 

[24, 13]

Labrador Retriever

Golden Retriever

Tennis Ball

Rhodesian Ridgeback

Appenzeller

Labrador Retriever

Golden Retriever

Beagle

Kuvasz

Redbone

Tiger

Tiger Cat

Lynx

Collie

Border Collie

mixed3a mixed4a mixed4d mixed5a

Spatial Attribution with Saliency Maps
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INPUT IMAGE

OUTPUT CLASSES

TOP CHANNELS SUPPORTING LABRADOR RETRIEVER

MIXED3B MIXED4A MIXED4B MIXED4C MIXED4D

This diagram is analogous to the previous one we saw: we conduct layer-to-layer attribution

but this time over channels rather than spatial positions. Once again, we use the icons from

our semantic dictionary to represent the channels that most contribute to the final output

classification. Hovering over an individual channel displays a heatmap of its activations

overlaid on the input image. The legend also updates to show its attribution to the output

classes (i.e., what are the top classes this channel supports?). Clicking a channel allows us

to drill into the layer-to-layer attributions, identifying the channels at lower layers that most

contributed as well as the channels at higher layers that are most supported.

While these diagrams focus on layer-to-layer attribution, it can still be valuable to focus on a

single hidden layer. For example, the teaser figure allows us to evaluate hypotheses for why

one class succeeded over the other.

Attribution to spatial locations and channels can reveal powerful things about a model,

especially when we combine them together. Unfortunately, this family of approaches is

burdened by two significant problems. On the one hand, it is very easy to end up with an

overwhelming amount of information: it would take hours of human auditing to understand

the long-tail of channels that slightly impact the output. On the other hand, both the

aggregations we have explored are extremely lossy and can miss important parts of the

story. And, while we could avoid lossy aggregation by working with individual neurons, and

not aggregating at all, this explodes the first problem combinatorially.

Making Things Human-Scale

In previous sections, we’ve considered three ways of slicing the cube of activations: into

spatial activations, channels, and individual neurons. Each of these has major downsides. If

Labrador Retriever

Golden Retriever

Tennis Ball

Rhodesian Ridge…

Appenzeller

... 

Showing 3 of 480

... 

Showing 3 of 508

... 

Showing 3 of 512

... 

Showing 3 of 512

... 

Showing 3 of 528

Channel Attribution
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factorizing the activations with non-negative matrix factorization  . Notice how the

overwhelmingly large number of neurons has been reduced to a small set of groups,

concisely summarizing the story of the neural network.

By using non-negative
matrix factorization we
can reduce the large
number of neurons to a
small set of groups
that concisely
summarize the story of
the network. 

REPRODUCE IN A
NOTEBOOK

ACTIVATIONS of neuron groups

NEURON GROUPS based on matrix factorization of mixed4d layer

EFFECT of neuron groups on output classes

This figure only focuses at a single layer but, as we saw earlier, it can be useful to look across

multiple layers to understand how a neural network assembles together lower-level

detectors into higher-level concepts.

The groups we constructed before were optimized to understand a single layer independent

of the others. To understand multiple layers together, we would like each layer’s factorization

to be “compatible” — to have the groups of earlier layers naturally compose into the groups

of later layers. This is also something we can optimize the factorization for  .

INPUT IMAGE ATTRIBUTION BY FACTORIZED GROUPS

MIXED4A MIXED4D OUTPUT CLASS

INPUT IMAGE

6 groups

color key

feature visualization of

each group

hover to isolate

Labrador retriever

beagle

tiger cat

lynx

tennis ball

5 

2.249

3.298

-0.350

0.111

0.920

3.755

0.599

-0.994

-0.642

1.336

-1.193

-0.110

-1.607

-0.057

0.152

-1.141

-0.356

0.116

0.117

-0.885

1.117

-0.133

0.248

1.120

1.227

-1.892

-2.618

0.205

0.152

-0.480

Factoring into Neuron Groups
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EFFECT of neuron groups on output classes

This figure only focuses at a single layer but, as we saw earlier, it can be useful to look across

multiple layers to understand how a neural network assembles together lower-level

detectors into higher-level concepts.

The groups we constructed before were optimized to understand a single layer independent

of the others. To understand multiple layers together, we would like each layer’s factorization

to be “compatible” — to have the groups of earlier layers naturally compose into the groups

of later layers. This is also something we can optimize the factorization for  .

INPUT IMAGE

To understand multiple layers together,
we would like each layer's factorization to
be "compatible"—to have the groups of
earlier layers naturally compose into the
groups of later layers. This is also
something we can optimize the
factorization for.

 positive influence
 negative influence

ATTRIBUTION BY FACTORIZED GROUPS

MIXED4A MIXED4D OUTPUT CLASS

In this section, we recognize that the way in which we break apart the cube of activations is

an important interface decision. Rather than resigning ourselves to the natural slices of the

cube of activations, we construct more optimal groupings of neurons. These improved

groupings are both more meaningful and more human-scale, making it less tedious for users

Labrador retriever

beagle

tiger cat

lynx

tennis ball

5 

8 groups 6 groups  Align layer factors

tiger cat

beagle

Labrador

retriever

lynx

tennis ball

2.249

3.298

-0.350

0.111

0.920

3.755

0.599

-0.994

-0.642

1.336

-1.193

-0.110

-1.607

-0.057

0.152

-1.141

-0.356

0.116

0.117

-0.885

1.117

-0.133

0.248

1.120

1.227

-1.892

-2.618

0.205

0.152

-0.480

Adding InfoVis
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