
Information Visualization

eXplainable Artificial Intelligence 

Dr. David Koop

D. Koop, CSCI 628, Fall 2021



High-Dimensional Data Exploration
• What are the tasks? 
- Discovering data configurations according to personal preference 
- Understanding the tradeoffs involved in such configurations 
- Partition the data (or views) to help with exploration 

• Goals of TripAdvisorND & Subspace Voyager: 
- Facilitate examination of key projection and key clustering 
- Let users explore and tweak
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3D—called cluster sculpting. We now generalize this work to
allow for cluster-sculpting in high-D.

The iPCA framework of Jeong et al. [12] seeks to help
users understand how the original data dimensions con-
tribute to PCA space and also to the data clustering. Via a
slider interface, users can interactively manipulate the
contribution of each individual dimension and then observe
the impact as transient changes in the scatterplot visualiza-
tions. In contrast, our framework enables users to perceive
these contributions directly in the navigation interface.

However, once the number of dimensions grows large,
global dimension reduction techniques are suboptimal. It is
often better to discover the subset of the dimensions most
relevant to a local clustering task, also called subspace
clustering [18]. The ENCLUS framework by Cheng et al. [3]
proposes entropy-based criteria to find interesting and
minimal-dimensioned subspaces with high densities of data
points. We make use of ENCLUS to extract the various
subspaces from the high-D space, and then use our map as
an intuitive framework to organize these subspaces and
visualize their spatial relationships.

3 OVERVIEW

We demonstrate our system via two usage scenarios—a
selection task and a clustering task—in conjunction with two
data sets—a college ranking data set and an image
segmentation data set. Both are discussed in Section 6. Our
interface consists of two screens: 1) the global sight map which
arranges both the landmark and the snapshot N-D projec-
tions (i.e., the sights) according to a spatial neighborhood

metric, and 2) the local sight explorer which allows users to
explore each of these projections via our high-D navigation
interface. Any interesting views encountered there can then
be inserted as snapshots into the map.

Global sight map (see Fig. 1). The sight map shows a
number of projections each augmented with a set of colored
bars arranged along the x- and y-axis. These bars indicate
the relevance of the corresponding dimensions for this
view, and they also allow users to quickly sense groupings
and assess spatial similarities of neighboring views.
Controls are available to 1) set the MDS layout metric,
and 2) pick among different projection bases, such as PCA
and projection pursuit, as well as clustering algorithms. The
landscape map is linked with the local sight explorer. Users
may 1) insert a new snapshot view acquired in the sight
explorer, 2) specify an arbitrary tour passing through a set
of mapped projections, and 3) use the map as an orientation
aid by visualizing the current view in the explorer as a
glyph that moves according to the map navigation path.

Local sight explorer (see Fig. 2). It consists of three major
components allowing users to explore a given sight selected
in the map: 1) scatterplot display, 2) a polygonal touchpad
interface to control the scatterplot projections, and 3) in-
formation about the projection plane vectors. The polygonal
touchpad enables users to smoothly tilt the projection plane
in high-D space and so produce multivariate scatterplots
that best convey the data relationships under investigation.
Motion parallax and illustrative motion trails further aid in
the perception of these transient patterns.

A video is available at [31] to show the system in action.
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Fig. 1. Global sight map. On the left is the map with sight glyphs. The glyphs are distanced apart by a metric based on the similarity of the orthogonal
N-D projection vector pairs generating the scatterplots in the glyph interior (see text for the similarity values for glyphs #1-4). Users can automatically
generate interesting sights and insert new sights generated with the local sight explorer interface (see Fig. 3). Each glyph is decorated by bar charts
showing the N-D coordinates of its projection vector pair (currently the user selected glyph #5 to have its vectors displayed in the vector component
bar chart, control panel bottom).

TripAdvisor-ND: Global Sight Map & Local Sight Explorer

3
4 THE GLOBAL SIGHT MAP

After running ENCLUS to identify subspace clusters we
employ projection pursuit (or PCA) to determine interesting
scatterplot views in each of these subspaces. An interesting
view is a 2D projection of the potentially high-D subspace
that separates dense structures in the data well. These views
can be general projections, i.e., they do not need to be
aligned with the data axis vectors. The original projection
pursuit [6] finds these views unsupervised via numerical
optimization of a metric called P-Index which is the product
of two parameterized measures: global spread and local
density. Projection pursuit typically starts from the two
major principal axes, two data axes, or two random
orthogonal vectors. Some randomization in the numerical
optimization and initial axis selection will yield a set of
good views. We obtain one such set for each subspace.

We allow users to tune the P-Index parameters and so
define the desirable characteristics of the views added into
the global sight map (see Fig. 1). All sights on the map are
characterized by one or more dense structures that are well
separated and so already provide a good appreciation of the
subspace clusters and their shapes. Touring the sight with

the local sight explorer will then enable more comprehen-
sive insight into the high-D structure of the clusters.

Map construction. To construct the map, given M views,
we first compute the M !M distance matrix for all pairs of
projection views and then determine their positions in the
sight map via MDS. For this we need a metric to determine
these pairwise distances. Each view Si, 1 " i "M, has two
orthogonal N-D axis vectors which we call projection plane
axis (PPA) vectors, PPAx and PPAy. In case of subspace
decomposition, dimensions that are not contained in a
subspace will have a zero value in the N-D vector. To
characterize each view by a single vector Si we concatenate
PPAx and PPAy into a vector of length 2N . Then, for two
projection views S1 and S2 we compute their similarity as the
Euclidian distance of S1 and S2. Note that view rotations and
also axis reflections will be rated as dissimilar in this scheme.
This is intended because these dissimilarities show semanti-
cally different relationships, e.g., sorting college data by low
versus high tuition, or can be part of a tour. If this is not
desired, one may take the absolute values of the PPA vector
components before computing the distance matrix.

Sight glyph design. The sights are abstracted into
glyphs, which are constructed by their scatterplot projec-
tions and augmented by N-D space location information.
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Fig. 2. Local sight explorer interface. The dynamic scatterplot display is controlled by the N-D touchpad polygon. Both are currently in a standard
biplot configuration (using the two major PCA vectors as a projection basis). The PCA bar chart in the vector component display shows the
magnitude of the 10 PCA vectors, and the other two bar charts show the components of the two major PCA vectors here selected for projection
(these vectors can also be generated via projection pursuit techniques). [J. E. Nam & K. Mueller, 2013]

D. Koop, CSCI 628, Fall 2021

https://www3.cs.stonybrook.edu/~mueller/papers/TripAdviosorND.pdf
https://www3.cs.stonybrook.edu/~mueller/papers/TripAdviosorND.pdf


one variable at a time, with another one fixed. Our touchpad
provides a more flexible, holistic interface—it is essentially
an N-D slider. Any subset of dimensions can simultaneously
influence the scatterplot projection, and the interactive
touchpad makes this interaction very direct. It unifies all
dimension selectors into one interface and allows a direct
balance and tradeoff of data factors in the visualization. An
important and unique visual aid in this undertaking is our
motion trails that freeze the movements in time such that
their magnitude and extent can be easily appreciated (see
Fig. 8d). Fig. 9, on the other end, provides a multifactor (here
7-10) visualization with a single scatterplot, allowing users to
aggregate factors along two or more orientations to express
(or ignore) the effects of tradeoffs. This is also a unique
feature of our system.

6.2 High-D Subspace Cluster Sculpting

The second usage scenario operates within a subspace-
clustering scenario, using the image segmentation data set
from the UCI Machine Learning Repository [32]. We took
1,200 instances composed of 300 random instances each
from four classes (Brickface, Cement, Foliage, and Grass).
Each instance corresponds to a 3! 3 image region with a
feature vector of 19 attributes (dimensions). These attributes
are statistical measures of the images, such as region-
centroid, region pixel count, density, hue, and others; for a

complete listing see [32]. The goal is to determine
descriptive feature vector clusters and from it derive
models that can classify new image pixels into these classes.

For our experiment, we did not retain the class
information of the data set since we seek to demonstrate
the interactive semi-supervised subspace clustering cap-
abilities of our framework. In the following, we will use the
tourism metaphor that is at the core of the TripAdvisorN"D

framework to illustrate the five exploration tasks. We first
describe the implementation of the five tasks in detail and
then present their use with the image segmentation data set.

Identify the sights (task 1). We first construct attractive
initial destinations from which to start explorations. In this
particular application, we use ENCLUS to find interesting
subspaces that embed good clusters. In the following, we
shall denote a dimension as Xi and a subspace as Si. In this
particular example, we identified five subspaces:

S1 ¼ ðX1; X7; X8; X9; X18Þ; S2 ¼ ðX6; X9; X18; X19Þ;
S3 ¼ ðX7; X9; X10; X11Þ; S4 ¼ ðX8; X16; X18Þ;
S5 ¼ ðX7; X11; X12; X13; X14; X15; X16Þ:

We then apply the projection pursuit algorithm (Section 4)
to identify 15 views (the sights) from these subspaces and
insert them into the sight map shown in Fig. 1.

Plan and go on the tour (tasks 2/3). The sight map now
becomes the “tour map.” Each view is represented as a sight
glyph (Fig. 3). By clicking on one of the “destinations” in
this map, its frame color changes from black to red (Figs. 10
and 11) and the corresponding projection view is shown as
a scatterplot in the N-D sight explorer for closer exploration
(see task 4: Hop off the bus, below). In this way, users may
examine any sight in the tour map interactively using this
interface, and in any order. But they may also use the
distance and orientation information to connect the sites in
some predefined order, allowing “tour designers” to plan
an exploration tour either for themselves or for some
“traveler” (as shown in Fig. 10). So, unlike a travel with the
Grand Tour, analysts now have a map by which they can
compare the N-D orientations of the projections and draw
conclusions from their spatial associations. In practice, these
steps are often revisited after gaining insights about certain
landmark sights, whereby new snapshots of existing or new
sights may be added along the way.
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Fig. 10. Planning an exploration tour (indicated by arrows) in subspace
S5. Via the bar chart representation, glyphs in the same subspace
neighborhood can be readily identified. The tour is conducted via the
touchpad-based local sight explorer and the red-framed glyph contains
the currently generated projection scatterplot there. The user is free to
save this glyph as a snapshot into the map for a later revisit.

Fig. 11. Exploring a sight. (a) sight map—the location of the current view (as modified in the sight explorer) is shown red-framed as an orientation aid;
(b) dynamic scatterplot with motion trails enabled, to provide an additional navigation hint and give a sense for cluster extent; (c) touchpad
configuration for the view shown in (b).

Coordination of Views
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N-D Touchpad Polygon
• 2 polygons, one for each axis (inner = x, outer = y) 
• Controls the orientation of the two PPA vectors 
• Shading of vertices indicates weight 
• Move the vertices around to change the weights
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Problems with TripAdvisor-ND
• Have to keep track of two views at once 
• …so single window 
• Have to move around two points in ND trackpad 
• …so trackball interface 
• Hard to map axes 
• …so direct labeling
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contributions by how much they rely on automated subspace analysis 
methods. On one end are the works of Yuan et al. [44] and Kim et al. 
[22] where users are in full control. The former proposes a visual 
subspace exploration approach that focuses mainly on interactive 
dimension set selection and refinement. The latter suggests a system 
where users can drop data points into two different groups and the 
projection basis vectors are updated automatically. Lehmann et al. 
[26] find minimal sets of projections, allowing users to draw a path 
to traverse between them. In our system, users can also modify the 
projection basis to favor certain dimensions, namely by emphasizing 
the influence of these dimensions directly in the interface.   

Other approaches first perform an automated subspace clustering 
step and then visualize the results as small multiples of scatterplot 
projections [4], as MDS layouts [41], or use animated transitioning 
between them [27] akin to our map. We also first perform clustering 
but then use the results to provide guidance in the subsequent visual 
exploration of the actual subspaces, focusing on cluster appearance 
and relations. This can be helpful in the visual reasoning process.  

Related in some respect is also the LineUp system by Gratzl et 
al. [16]. LineUp requires users to manually set a weight for each 
attribute to determine its influence on the rankings of the data items. 
However, setting weights explicitly might not be intuitive to 
mainstream users with limited quantitative reasoning abilities. They 
may simply not know their preferences at this level of detail but 
rather discover them implicitly during data exploration. Our system 
supports this type of exploratory discovery process.  

3. RECAP: THE TRIPADVISORND FRAMEWORK 
The approach we have taken is largely motivated by our earlier 
TripAdvisorND framework [31] and the shortcomings we have 
observed in its use. One major improvement is the new trackball  
interface, which is much more direct than the spatially disjoint 
navigation pad of TripAdvisorND (see Fig. 1). This navigation pad 
consists of a polygon with S vertices, where S is the cardinality of the 
subspaces. Each vertex corresponds to a native dimension – hence 
the subspaces are axis-aligned (and not generalized). It should also 
be noted that for S>3 different orderings of the vertices are required 
to allow users to access the full projection coverage of the subspace. 

The interior of the polygon shows two disk-shaped pointers. 
They represent the two (N-D) basis vectors into which the N-D point 
cloud is projected for display using the vector dot product. In [31] 
these two vectors are called Projection Plane Axis (PPA) vectors – 
the x-axis is PPA-x and the y-axis is PPA-y. The vectors are 
computed from their positions in the pad polygon via generalized 
barycentric coordinate interpolation [29]. 

In the pad-based interface, users can control the influence a 
dimension has on the display by moving either the PPA-x or PPA-y 
pointer toward that dimension. This essentially spreads out the 
projected point cloud along that dimension and so reveals the 
dimension’s ability to separate the data points into different 
populations/clusters. Then, by moving the other pointer toward 
another dimension, bivariate relationships can be visualized. Finally, 
when moving either or both pointers midway between a set of 
dimensions users can appreciate the combined effects stemming 
from the multivariate relationships of these dimensions. 

Shortcomings of TripAdvisorND motivating our work 

While the pad interface allows unprecedented control in the dynamic 
manipulation of the view onto the N-D point cloud, the need to 
separately manipulate two pointers in sequence suffers from a certain 
lack of ergonomics. A further shortcoming is that users are required 
to keep track of two interfaces at the same time: (1) the visualization 
window that shows the moving point cloud along with a projected 
coordinate system, and (2) the pad that controls the orientation of the 
projection plane. In practice, a user may observe one or more 
dimensions that should be emphasized in the display as they might 
offer the potential to break up a cluster into two or more components. 
To do this, the user would need to looks at the pad to identify which 
pointer should be moved and in what direction, and then observe the 
effect in the display. In the present work, we aimed for an interface 
that makes this operation more straightforward by embedding the 
navigation controls directly into the display. Enhancing the well-
known trackball interface with N-D navigation capabilities seemed 
to be good choice toward this goal. We also added view optimization 
and other navigation aids to support the manual exploration, 
allowing users to arrive at meaningful projections faster.  

4. SYSTEM OVERVIEW 
Fig. 2 shows the Subspace Voyager interface. It has three main 
components: the Subspace Explorer (SE), the Subspace Trail Map 
(STM), and the control panel. The latter allows users to set the 
various parameters and modes in the system.  

The exploration pipeline of the Subspace Voyager is illustrated 
in Fig. 3. After loading the data, our system performs either Random 
Projection or Subspace Clustering and Principal Component 
Analysis (PCA) to identify an initial promising 3D subspace. More 
3D subspaces can be generated via the control panel at any time. 

The data is then projected into this generated subspace and is 
displayed in the SE-embedded trackball. There are different 
interaction modes users can perform on the trackball. The first mode 
is to rotate the trackball while pressing down the left mouse button. 
This enables an exploration of the current 3D subspace. The second 
mode allows users to transition to adjacent subspaces where certain 
attributes of interest have a higher emphasis than in the current 3D 
subspace. It yields data projections that better capture the cluster 

Fig. 1. Pad-based navigation interface of TripAdvisorND. In the 
setting shown, the PPA-x vector is dominantly a combination of 
dimension axis DA 4 and DA 5, while PPA-y is a combination of 
DA 6, DA 1, and DA 2. 
 

Fig. 2. Subspace Voyager interface. It has three main 
components: the Subspace Explorer (SE), the Subspace Trail 
Map (STM) and the control panel. The SE is coupled with the 
trackball interface. It not only displays the data as a scatterplot, 
but it also allows users to visualize the current directions of the 
projected dimension axis vectors as labels placed outside its 
circular boundary. The labels are properly sized in terms of the 
corresponding attribute’s influence on the display. The SE offers 
various interactions for users to examine the data. The STM holds 
a set of views (and their parameters) that users may have found 
interesting during the exploration, embedding them into a word 
cloud of attributes. Finally, the control panel allows users to set 
the various parameters and modes in the system. 

Subspace Trail Map Subspace Explorer 

Subspace Voyager Interface
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distributions in these attributes. In this cluster chasing, users move 
the mouse – now with the right mouse button depressed – toward the 
respective attribute labels displayed on the trackball periphery. This 
increases the weight of these dimensions in the PPA vectors.  

As mentioned, in our system there is no need for manually 
optimizing views which can be tedious. Our system provides Ant 
Colony Optimization (ACO) [10] to generate the best trackball 
configuration automatically according to a set of user-selected view 
quality criteria. Users can also tag points by brushing them into 
different colors. This is helpful for cluster analysis or for editing out 
unwanted structures. Finally, at any time users can save the current 
trackball view to the STM to keep track of interesting findings. Any 
of these STM views can then be dragged back into the trackball for 
further exploration. Multiple small views can also be linked and 
traversed in order, providing a smooth transition between views.    

4.1 Generating a Set of Subspaces  
Choosing meaningful subspaces for exploration is a key challenge in 
multivariate data analysis and much work has been dedicated toward 
this goal (see Section 2). We have implemented two such strategies: 
(1) random view generation and (2) subspace clustering. Users can 
generate new subspaces at any time via the control panel.   

For the former (1), we use the technique proposed by Anand et al. 
[1] and then further optimize the subspace using ACO powered 
projection pursuit (see Section 5.4). For the latter (2) we assume – 
similar to Liu et al. [27] and our own work [43] – that each cluster 
forms a subspace on its own. We characterize each such subspace by 
the three principal components obtained with PCA. Finally, for both 
of these methods, we use ACO view optimization to generate a high 
quality (given the chosen metric) scatterplot projection in the 
trackball display. 

We should also note that in a view that has the PC vectors as its 
basis if two (or more) dimension vectors are very close, it means 
they are to some extent correlated. This is especially true when these 
dimensions have large weightings in one significant PC (i.e. these 
dimensions are strongly correlated [47]). We will make use of this 
relationship in the use case described in Section 7.1. 

4.2 The Subspace Explorer (SE) 
The SE is coupled with the trackball interface. It not only displays 
the data as a scatterplot, but it also allows users to visualize the 
current directions of the projected dimension axis vectors as labels 
placed outside its circular boundary. The size and opacity of a label 
indicate to what extent its associated attribute is expressed in the 
projection. A larger and bolder font means that the scatterplot 
exhibits more of the attribute’s variability. The label placement, on 
the other hand, reveals the radial direction along which the 
variability is mostly exposed. 

 

The simplest form of trackball interaction generates scatterplot 
projections confined to the current generalized 3D subspace 
projected into the SE. This projected 3D subspace can be modified 
by:  
x Mouse-initiated trackball interaction: users can transition to 

adjacent 3D subspaces by augmented trackball interaction   
x Randomized projections: this discovers new 3D subspaces ready 

for trackball-based exploration    
x 3D Subspace interpolation: moving a slider in the control panel 

generates a continuous set of 3D subspaces, intermediate to two 
subspaces in the STM, which can be explored via the trackball 

x View optimization: the 3D subspace (as well as the current 
projection view within the current 3D subspace) can be optimized 
via projection pursuit driven by a user-defined set of criteria  

     The control panel provides several options for trackball use. The 
checkbox ‘TurnOff’ specifies if all data points are to be shown or 
only those that are well described in the current subspace, i.e., belong 
to that subspace. The color bar on the bottom right is the brushing 
tool. It allows users to tag individual points or groups of points in a 
dedicated color to cluster them or mark them as inactive in gray.  

4.3 The Subspace Trail Map (STM)  
The STM holds a set of views (and their parameters) that users may 
have found interesting during the trackball exploration. The view 
images are embedded into a word cloud of attributes. Their 
placement with respect to each word indicates the influence of the 
corresponding attribute to the view. We treat each view as a point 
and use PCA on all of them to spread them out. The circular shape of 
the images mimics the shape of the trackballs. A smaller diameter 
reduces overlap of similar views in the STM while a larger diameter 
provides magnification. Users can drag any view back into the 
trackball for further exploration, or they can connect interesting 
views by lines to produce animated transitions for presentations.  

5. THE SUBSPACE EXPLORER AND TRACKBALL INTERFACE 
Users can tilt the trackball and watch the resulting scatterplot react to 
the motion. Fig. 4 sketches how a trackball works. Imagine a virtual 
sphere that encapsulates the current generalized 3D subspace. When 
clicked, the screen coordinate of the mouse is mapped to this sphere. 
Given the current and previous mouse clicks, we can compute the 
axis of rotation n and the rotation angle T. From those two quantities, 
a 3×3 rotation matrix is derived, as described in [3].  

5.1 Creating the Trackball Space Projection Matrix 
The trackball system only works in 3D but our data points are N-D 
and so we need to project the ND points into 3D before rotating. We 
achieve this by post-multiplying the trackball rotation matrix T with 
the 3uN projection matrix P. We have two options for the first two of 
the vectors in P: (1) the orthogonal PPA x-axis and y-axis pair we 
obtained from the randomized projection procedure, or (2) the two 
most significant PCs we obtained when performing PCA for the 
selected cluster. In both cases we require a third orthogonal axis, call 
it the PPA z-axis. Since this is N-D space we have a number of 
choices. We can either (1) randomly generate an N-D vector, or (2) if  

Fig. 4. 3D trackball. Given the current and previous mouse clicks, 
both the axis of rotation and the rotation angle can be computed. 

Fig. 3.  Subspace Voyager workflow. See Section 4 for a 
narration. 

Trackball Interface
• Can use different mouse buttons 
• Left: rotation 
• Right: transition by changing axis 
• Middle: travel along orthogonal 

vector (a z-axis), can't see until 
rotation
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5.4.1 Preventing Overlapping Attribute Labels 
In practice, attribute labels may come to print on top of one another 
(Fig. 6(a)). This occurs because several dimension vectors overlap. 
We solved this problem by forcing labels to locate at least β degrees 
apart from their neighbors. Fig. 6(c) shows this for the upper left 
quadrant. Here, 𝑑1 is the location of label1 located γ degrees away 
from PPA-y and 𝑑2

′  is the location of neighboring label2, spaced 
𝛽′ degrees away. We see that 𝛽′ is too small causing the two labels 
to overlap. Therefore we introduce a small displacement which 
places label2 at 𝑑2 . Now label1 and label2 are spaced 𝛽  degrees 
apart and no longer overlap. 

In experiments, we found that the best choice for β is dependent 
on the orientation of the dimension vector. The more vertical it is, 
the larger β should be, while for a more horizontal alignment, a 
smaller β will suffice. The following equation relates β to the angle γ 
between the vertical axis and the dimension vector (for the upper left 
quadrant only – the other three quadrants are related by symmetry): 

        β =  { 
𝜃𝑣 − (𝜃𝑣 − 𝜃ℎ) ∗ γ

45°
            0 ≤ 𝛾 <  45°

          𝜃ℎ                                      45° < 𝛾 ≤  90°    
 

Here, 𝜃𝑣  and 𝜃ℎ  are constants we determined for the maximal font 
size of the labels which occur when the corresponding dimension 
vectors are fully projected. The angle  𝜃ℎ = 4° is the displacement 
needed when γ is greater than 45°, while an angle of 𝜃𝑣 = 24° is 
needed when γ=0°. When γ is between 0° and 45° we determine β 
via linear interpolation. Fig. 6(b) shows the configuration of Fig. 6(a) 
with our label displacement scheme enabled. 

We also found that while displacing the labels provided for 
better readability, it was distracting in interactive mode when users 
were rotating the trackball since it could lead to sudden jumps of the 
labels. Hence we only apply the overlap removal method when the 
projection is fixed (after releasing the mouse). Conversely, when a 
dataset has many dimensions, the label overlap can never be 
prevented. For this reason, we added a slider to the control panel by 
which users can set the maximum number of displayed attribute 
labels. These can be the most significant attributes or attributes 
manually selected by clicking on their labels with <ctrl> depressed.    

5.5 Point Brushing, Tagging, and De-Activation 
Our interface also provides the ability to label a point (or a group of 
points) with a color chosen from a palette. This is useful when 
monitoring a certain point’s (or point group’s) behavior when the 
trackball rotates. It greatly helps in distinguishing different clusters 
or seeing sub-clusters emerge during motion.  

Conversely, by painting a selected group of points in gray they 
will become invisible and will be excluded from all further analysis. 
This helps, for example, in recognizing other structures that were 
hidden or ambiguous before this removal. 

6. THE SUBSPACE TRAIL MAP AND VIEW GENERATION 
The subspace trail map (STM) is a spatial layout of thumbnail 
representations of views. It serves three purposes. First, it enables 
users to keep track of the subspaces explored so far. These subspaces 
can be revisited for further exploration. Second, it serves as a 
presentation platform for the system to suggest new subspaces not 
yet explored. Third, it permits users to define routes along which 
they can transition between two or more of these subspaces, 
essentially using them as keyframes. In the STM, users can double 
click any view thumbnail and add it back into the SE. For clustered 
data, all subspaces can be inserted into the STM at once by clicking 
the ‘AllSubspace’ button in the control panel.  

6.1 Populating the Subspace Trail Map (STM) 
Each view thumbnail in the STM holds the view’s 2D scatterplot 
embedded into a circle to mimic its appearance in the SE. PCA 
analysis is used to ensure a well-spread layout of the view 
thumbnails with a minimum of overlap. If overlap occurs the 
‘SmallViewSize’ slider can be employed to lower the circle sizes 
uniformly (see Fig. 11(i)). Alternatively, clicking on a partially 
hidden view will bring it to the foreground.  

To illustrate how the STM layout works, suppose there are 𝑝 
subspace views stored in the STM and the dimensionality of the data 
set is 𝑁. The three orthogonal PPA vectors (the PPA x, y, and z-axes) 
spanning a subspace j can then be formally expressed as: 

𝑃𝑃𝐴𝑖𝑗 = ∑ 𝑤𝑖𝑗𝑘𝑑𝑘

𝑁−1

𝑘=0

 

where 𝑖 is either x, y, or z, 0 ≤ j ≤ 𝑝 − 1, 𝑤𝑖𝑗𝑘 is the weighting of the 
𝑘𝑡ℎ  data dimension on  𝑃𝑃𝐴𝑖𝑗  and 𝑑𝑘 is the 𝑘𝑡ℎ  dimension axis 
vector.  We then use the L2 norm to define the overall weighting of 
the 𝑘𝑡ℎ data dimension for the 𝑗𝑡ℎ  subspace: 

𝑊𝑗𝑘 =  √𝑤𝑥𝑗𝑘
2 + 𝑤𝑦𝑗𝑘

2 + 𝑤𝑧𝑗𝑘
2    

These weights define an N-D vector for each subspace: 

𝑆𝑗 = [𝑊0𝑗, 𝑊1𝑗 , 𝑊2𝑗 … 𝑊𝑝−1,𝑗] 

This allows us to treat each subspace as an 𝑁-D point. We perform 
PCA on this space of points. We keep the first two PCs and project 
all points (subspaces) into this basis. Since PCA automatically seeks 
to find the directions that maximize the variance of the data points, 
the view thumbnails will be organized in a way that reduces overlaps.  

Finally, the view thumbnails are embedded in a word cloud of 
dimension labels (see Fig. 2). These labels are likewise placed based 
on this PC-basis, using the projection strength of their dimension 
vectors to define their sizes and opacities. To prevent clutter we only 
keep the labels of the ten most significant dimensions.   

                            (a)                                                               (b)                                                              (c)                                                                  
Fig. 6. Dimension label overlap prevention. (a) Naïve implementation causing label overlap; (b) Using our angular spacing scheme to 
prevent  label overlap; (c) Illustration of our label overlap prevention scheme. 

Fix Labels
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The Building Blocks of Interpretability
Interpretability techniques are normally studied in isolation.
We explore the powerful interfaces that arise when you combine them — 
and the rich structure of this combinatorial space.

For instance, by combining feature visualization (what

is a neuron looking for?) with attribution (how does it

affect the output?), we can explore how the network

decides between labels like Labrador retriever and

tiger cat.

…

Several floppy ear
detectors seem to be
important when
distinguishing dogs,
whereas pointy ears are
used to classify "tiger cat".

CHANNELS THAT MOST
SUPPORT … LABRADOR RETRIEVER TIGER CAT

feature visualization of

channel

hover for
attribution maps

net evidence 1.63 1.51 1.19 1.32 1.54 1.72

for "Labrador retriever" 1.22 1.24 1.32 -0.70 -1.24 -0.43

for "tiger cat" -0.40 -0.27 0.13 0.62 0.30 1.29

ABOUT PRIZE SUBMIT Distill

CHOOSE AN INPUT IMAGE

Next Class: Critique Due
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Introduction to eXplainable AI (XAI)

Q. V. Liao, M. Singh, Y. Zhang, and R. Bella 
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WHEN 
When in the deep learning 
process is visualization used? 
During Training

After Training

§8

?

WHAT 
What data, features, and relationships 
in deep learning can be visualized? 
Computational Graph & Network Architecture

Learned Model Parameters

Individual Computational Units

Neurons In High-dimensional Space

Aggregated Information

WHO 
Who would use and benefit 
from visualizing deep learning? 
Model Developers & Builders

Model Users

Non-experts

HOW 
How can we visualize deep learning 
data, features, and relationships? 
Node-link Diagrams for Network Architecture

Dimensionality Reduction & Scatter Plots

Line Charts for Temporal Metrics 

Instance-based Analysis & Exploration

Interactive Experimentation

Algorithms for Attribution & Feature Visualization

WHY 
Why would one want to use  
visualization in deep learning? 
Interpretability & Explainability

Debugging & Improving Models

Comparing & Selecting Models

Teaching Deep Learning Concepts

WHERE 
Where has deep learning 
visualization been used? 
Application Domains & Models

A Vibrant Research Community

Visual Analytics in Deep Learning

§5

§6

§7 §9

Interrogative Survey Overview
§4

Fig. 1. A visual overview of our interrogative survey, and how each of the six questions, ”Why, Who, What, How, When, and Where,” relate to one
another. Each question corresponds to one section of this survey, indicated by the numbered tag, near each question title. Each section lists its
major subsections discussed in the survey.

incorporated into the model understanding process in visual
analytics tools to help people gain insight [14], [15], [16].
This hybrid research area has grown in both academia and
industry, forming the basis for many new research papers,
academic workshops, and deployed industry tools.

In this survey, we summarize a large number of deep
learning visualization works using the Five W’s and How
(Why, Who, What, How, When, and Where). Figure 1
presents a visual overview of how these interrogative ques-
tions reveal and organize the various facets of deep learning
visualization research and their related topics. By framing
the survey in this way, many existing works fit a description
as the following fictional example:

To interpret representations learned by deep models
(why), model developers (who) visualize neuron activa-
tions in convolutional neural networks (what) using t-
SNE embeddings (how) after the training phase (when)
to solve an urban planning problem (where).

This framing captures the needs, audience, and techniques
of deep learning visualization, and positions new work’s
contributions in the context of existing literature.

We conclude by highlighting prominent research direc-
tions and open problems. We hope that this survey acts as
a companion text for researchers and practitioners wishing
to understand how visualization supports deep learning
research and applications.

2 OUR CONTRIBUTIONS & METHOD OF SURVEY

2.1 Our Contributions
C1. We present a comprehensive, timely survey on visual-

ization and visual analytics in deep learning research,
using a human-centered, interrogative framework. This
method enables us to position each work with respect
to its Five Ws and How (Why, Who, What, How, When,
and Where), and flexibly discuss and highlight existing
works’ multifaceted contributions.
• Our human-centered approach using the Five W’s

and How — based on how we familiarize ourselves
with new topics in everyday settings — enables
readers to quickly grasp important facets of this
young and rapidly growing body of research.

• Our interrogative process provides a framework to
describe existing works, as well as a model to base
new work off of.

C2. To highlight and align the cross-cutting impact that
visual analytics has had on deep learning across a
broad range of domains, our survey goes beyond
visualization-focused venues, extending a wide scope
that encompasses most relevant works from many top
venues in artificial intelligence, machine learning, deep
learning, and computer vision. We highlight how visual
analytics has been an integral component in solving
some of AI’s biggest modern problems, such as neural
network interpretability, trust, and security.

Survey of visualization in deep learning
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5

TABLE 2
Overview of representative works in visual analytics for deep learning. Each row is one work; works are sorted alphabetically by first author’s last
name. Each column corresponds to a subsection from the six interrogative questions. A work’s relevant subsection is indicated by a colored cell.
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Abadi, et al., 2016 [27] arXiv
Bau, et al., 2017 [28] CVPR
Bilal, et al., 2017 [29] TVCG

Bojarski, et al., 2016 [30] arXiv
Bruckner, 2014 [31] MS Thesis

Carter, et al., 2016 [32] Distill
Cashman, et al., 2017 [33] VADL

Chae, et al., 2017 [34] VADL
Chung, et al., 2016 [35] FILM
Goyal, et al., 2016 [36] arXiv

Harley, 2015 [37] ISVC
Hohman, et al., 2017 [38] CHI

Kahng, et al., 2018 [39] TVCG
Karpathy, et al., 2015 [40] arXiv

Li, et al., 2015 [41] arXiv
Liu, et al., 2017 [14] TVCG
Liu, et al., 2018 [42] TVCG

Ming, et al., 2017 [43] VAST
Norton & Qi, 2017 [44] VizSec

Olah, 2014 [45] Web
Olah, et al., 2018 [46] Distill

Pezzotti, et al., 2017 [47] TVCG
Rauber, et al., 2017 [48] TVCG

Robinson, et al., 2017 [49] GeoHum.
Rong & Adar, 2016 [50] ICML VIS

Smilkov, et al., 2016 [51] NIPS WS.
Smilkov, et al., 2017 [16] ICML VIS
Strobelt, et al., 2018 [52] TVCG

Tzeng & Ma, 2005 [13] VIS
Wang, et al., 2018 [53] TVCG

Webster, et al., 2017 [54] Web
Wongsuphasawat, et al., 2018 [15] TVCG

Yosinski, et al., 2015 [55] ICML DL
Zahavy, et al., 2016 [56] ICML

Zeiler, et al., 2014 [10] ECCV
Zeng, et al., 2017 [57] VADL

Zhong, et al., 2017 [58] ICML VIS
Zhu, et al., 2016 [59] ECCV

Survey Landscape
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The Building Blocks of Interpretability
Interpretability techniques are normally studied in isolation.
We explore the powerful interfaces that arise when you combine them — 
and the rich structure of this combinatorial space.

For instance, by combining feature visualization (what

is a neuron looking for?) with attribution (how does it

affect the output?), we can explore how the network

decides between labels like Labrador retriever and

tiger cat.

…

Several floppy ear
detectors seem to be
important when
distinguishing dogs,
whereas pointy ears are
used to classify "tiger cat".

CHANNELS THAT MOST
SUPPORT … LABRADOR RETRIEVER TIGER CAT

feature visualization of

channel

hover for
attribution maps

net evidence 1.63 1.51 1.19 1.32 1.54 1.72

for "Labrador retriever" 1.22 1.24 1.32 -0.70 -1.24 -0.43

for "tiger cat" -0.40 -0.27 0.13 0.62 0.30 1.29

ABOUT PRIZE SUBMIT Distill

CHOOSE AN INPUT IMAGE

Next Class: Critique Due
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