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High-Dimensional Data Visualization Techniques
• Scatterplot Matrix (SPLOM) 
• Parallel Coordinates Plot (PCP) 
• Heatmap 
• Interactive Elements: 
- Brushing (Linked Highlighting) 
- Tooltips 

• Projection 
• Tours
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Probing Projections: Interaction Techniques for Interpreting
Arrangements and Errors of Dimensionality Reductions

Julian Stahnke, Marian Dörk, Boris Müller, and Andreas Thom

Abstract—We introduce a set of integrated interaction techniques to interpret and interrogate dimensionality-reduced data. Projection
techniques generally aim to make a high-dimensional information space visible in form of a planar layout. However, the meaning of
the resulting data projections can be hard to grasp. It is seldom clear why elements are placed far apart or close together and
the inevitable approximation errors of any projection technique are not exposed to the viewer. Previous research on dimensionality
reduction focuses on the efficient generation of data projections, interactive customisation of the model, and comparison of different
projection techniques. There has been only little research on how the visualization resulting from data projection is interacted with.
We contribute the concept of probing as an integrated approach to interpreting the meaning and quality of visualizations and propose
a set of interactive methods to examine dimensionality-reduced data as well as the projection itself. The methods let viewers
see approximation errors, question the positioning of elements, compare them to each other, and visualize the influence of data
dimensions on the projection space. We created a web-based system implementing these methods, and report on findings from an
evaluation with data analysts using the prototype to examine multidimensional datasets.

Index Terms—Information visualization, interactivity, dimensionality reduction, multidimensional scaling.

1 INTRODUCTION

A primary goal of information visualization is to find patterns and
relationships in multivariate datasets. Many visualization techniques
have been developed towards this goal such as multiple coordinated
views [2], parallel coordinates [14], scatterplot matrices [28], and
dimensionality reductions such as multidimensional scaling (MDS)
and principal component analysis (PCA) [5]. Dimensionality re-
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ductions are a particular class of techniques that synthesise high-
dimensional data spaces onto projection spaces with much fewer
dimensions, typically the two dimensions of the plane. While most
visualization techniques juxtapose the different data dimensions as
matrices or columns, dimensionality reductions integrate them into a
planar canvas. The projection results in a so-called spatialisation (i.e.,
embedding) of data elements that approximately represents similarity
as proximity and in turn dissimilarity as distance. Considering that
the human perceptional system comprises a well-developed capacity
for spatial reasoning, the assumption is that spatialisation would
be a more natural way [31] to analyse high-dimensional datasets
since groupings, separations, and other patterns among data elements
become immediately discernible.

However, there are two major caveats linked with dimensionality
reduction: first, it can be challenging to interpret the positions of
projected elements, and second, the errors that occur with any pro-
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Fig. 2. A tooltip displays the sample’s absolute values, standard
deviations, and graphical representations for each dimension.

dots on the projection and drawing a convex hull around them.
Clusters can also be saved and named as selections.

All of these groupings are displayed as panels in the sidebar. Each
selection, cluster, or class is displayed with a thumbnail of its spatial
distribution, providing a quick visual way of locating the relevant
points in the projection. Some additional information, such as the
name or the number of samples, is displayed below the thumbnail.
Furthermore, hovering over a grouping’s thumbnail displays small
density plots in the list of dimensions, as well as a text-based preview
of the most deviating dimensions per group.

On the projection, these groupings are coded by colour, with the
user being able to switch between displaying classes, selections, or
clusters using the respective eye icon.

4.3 Comparing elements

Elements can be analysed by viewing their values and comparing them
to the dataset in general, or to other selections in particular. Even
a single sample is never analysed in isolation; its values only make
sense when compared to the rest of the dataset (see Figure 2).

Analysing a single sample is done by hovering the mouse pointer
over a dot on the projection. The values for the corresponding sample
are indicated in the list of dimensions. Additionally, a tooltip appears,
showing the values for the various dimensions, and their standard
deviations. They are displayed in text form for accuracy, as well as
in a graphical representation for quick comprehension. The deviations
from the mean are displayed as bar charts, with density plots of the
whole dataset in the background to provide additional context. The
colours of the bars reflect the deviation as well, either in red or blue,
and with increasing saturation for higher deviations. If there are too
many dimensions to display at once, only the dimensions are shown,
in which the sample deviates most. An individual sample can also
be compared to other samples by selecting it and hovering over other
samples. A tooltip will appear and visualise the differences.

Analysing groups works similarly. When selecting a group of
samples, density plots for them are shown in the list of dimensions,
comparing the selection to the dataset. A tooltip comparison is
displayed as well. Because there is no single value for the dimensions,
the means are used instead. The graphical representation also takes
this into account, showing a density plot instead of a bar. As shown
in Figure 3, groupings can also be compared to each other, displaying
density plots for each of them. The methods for comparing samples
and groups work together, making it possible to compare a sample to
multiple clusters to e.g. find out which of them it should belong to.

4.4 Analysing dimensions

It is important to be able to quickly reference original dimensions
when analysing a dimensionality-reduced projection. Two things
matter in this regard: the spatial distribution of values in the projection
to account for clustering of the data, and the distribution of values in
the dimension itself to see how elements compare to other elements

Fig. 3. After selecting one group of samples, hovering over another
group shows a tooltip that compares these groups (here selections).

within an individual dimension. For this purpose the interface features
dynamic heatmaps in the projection and density plots in the sidebar.

4.4.1 Heatmaps
Projections created with most dimensionality-reduction techniques,
such as MDS, have no meaningful axes, complicating spatial orien-
tation because dimensional values are distributed nonlinearly. Yet, in
order to assign meaning to clustering and find correlations between
dimensions, it is important to know how those values correspond with
the positioning of the dots. (For some techniques, such as PCA,
the contribution of each original dimension can be mapped to the
projected dimensions. It would then be possible to display this as a
biplot, creating meaningful axes.)

One solution is to use a glyph plot, with the dots themselves being
used to represent an additional dimension, for example by varying
their size according to the values. This technique is available in the
prototype and can be used to visualise a dimension spatially. Where
dot size can only show the value distribution for the actual samples,
the projection space can also be used to answer a more theoretical
question: what values would a fictive sample have to have to be
projected to a certain spot? Or, phrased differently: what are the
interpolated values for the projection space? We used a heatmap to
try to answer this question.

Fig. 4. Hovering over a dimension in the sidebar displays its distribution
as a heatmap in the projection on the left.

The heatmap is a grid of cells each representing the value for a
certain dimension at its position, with higher values being darker.
Brightness is used to avoid confusion with the group colours. This
allows to visually assess the value distribution for a given dimension,
with smooth transitions between zones. All heatmaps are also shown
as thumbnails in the list of dimensions, and on the projection itself

Heatmap from Dimension Hover
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Fig. 6. Halos represent the cumulative error for the respective samples.
White indicates that a majority of samples is more similar than indicated
by their distance to the given sample; grey indicates the opposite.

The paths travelled by the points are shown as lines, leading from
the points’ original positions in the projection to the new, corrected
positions (see Figure 8). This connects them to their original positions
in the projection, and displays the size of the distance error at the same
time. Resembling the brightness encoding of the halos, the brightness
of the lines indicates whether they’ve moved closer or farther away.

A problem with this solution is that it introduces new distortions in
the spatial relationship between all other points. Only the distances
directly between the selected point and the other points are reliable,
whereas all the other distances are distorted, and the new positioning
might lead to wrong assumptions about potential clusterings. To
mitigate this problem, the correction paths are shown.

Another solution would be to recompute the projection while
preserving the distances from and to the selected point and being
more generous with distance errors among the remaining points. This
would somewhat reduce the introduced distortions. However, in
a recomputed projection, the positions of the points might change
significantly, most likely leading to completely different positions for
all points, possibly confusing the observer even if an animation is used.

Fig. 7. Dendrograms mapped onto the projection. Left: projection with
low projection error. Right: high projection error.

4.5.3 Dendrogram
In addition to the visualization of errors and corrections, a dendrogram
can visualize the samples with regard to their position in the clus-
tering hierarchy. Such a dendrogram (using the same agglomerative
algorithm as the clusters) overlaid onto the projection may also help

Fig. 8. Projection errors are corrected for the selected sample in orange;
grey traces indicate that samples are more different in high-dimensional
space, while white traces indicate a higher level of similarity.

to visualise high-dimensional distances on the projection space [25].
It graphically emphasises clusters by connecting close dots through
dense lines. Interestingly, the dendrogram is a surprisingly good
indicator of goodness of fit: if many thick, long lines intersect, it is
likely that the projection is of low quality.

5 EXAMPLE: OECD COUNTRIES

To illustrate the functionality of the interface we visualize the dataset
of OECD countries in the prototype (see Figure 9). The dataset
contains 8 dimensions for 36 countries2. First, the viewer is drawn
to the projection and notices Turkey that seems to be a clear outlier,
far away from all other countries. To explore why this is, the viewer
can examine this sample by hovering over it. A tooltip relating Turkey
to the rest of the dataset appears, showing that it deviates strongly from
the mean in nearly every dimension. This indicates the positioning as
outlier is probably correct.

To test this assumption and build up trust in the visualization,
the viewer selects ‘correct distances’, showing the high-dimensional
distances between Turkey and the other countries. This reveals that
Turkey should be even farther apart from several of the other countries.
Having confirmed that Turkey is an outlier in this dataset, the viewer
uses the built-in clustering to get a sense of how the countries are
grouped. Playing around with the number of clusters, they notice
that there seem to be seven clusters roughly corresponding to the
geographical and geopolitical placement of the countries.

Taking a closer look at the positioning of the clustered countries,
they realise that the arrangement seems to roughly correspond to
geographic directions: Northern and Southern countries are roughly
distributed along the vertical axes, East and West along the horizontal.
To find out if or how this correlates with the dimensions, the viewer
first compares the different clusters. Here the differences along the
dimensions are very much pronounced. Interestingly though, life
expectancy is lower in Latin America than Asia, while the self-
reported health is higher for the former than the latter.

After a few more comparisons between the clusters, the viewer
becomes interested in the dimension life satisfaction and turns towards
the heatmaps. They notice that the values for life satisfaction and self-
reported health seem to be higher in the Western countries, whereas the
value for employees working very long hours seems to be especially
high in the countries of the far East and the South.

2http://www.oecdbetterlifeindex.org/

Showing Projection Errors
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Grand, guided and manual tours 5
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Fig. 3. Two one-dimensional projections of two-dimensional data.

1.2 What Structure is Interesting?

When we use tours, what are we looking for in data? Anything that is not
normally distributed, a little unusual or unexpected. For example, clusters
of points, outliers, linear dependencies, non-linear relationships, and low-
dimensional sub-structures. All of these can be present in multivariate data
but hidden from the viewer who only chooses a few static projections. Figures
4 and 5 show some examples.

In Figure 4 a scatterplot matrix of all pairwise plots is shown at left,
and a tour projection is shown at right. The pairwise plots show some linear
association between three variables, particularly between the variables TEMP
and PRESS, and TEMP and CODE. However, viewing the data in a tour
reveals that the three variables are really perfectly related, with perhaps a
slight nonlinear association. The projection of the data revealing the perfect
relationship is:

A =

2

4
TEMP �0.720 0.470
PRESS �0.668 �0.671
CODE �0.191 0.573

3

5

In Figure 5 the pairwise scatterplots (at left) suggest there is some cluster-
ing of the data points in this six variable data set. The tour projection (right)
reveals three well-separated clusters. The projection revealing the clusters is:

Different Projections Lead to Different Conclusions
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Grand Tour
• A grand tour is… 
- "A space-filling curve in the manifold of low-

dimensional projections of high-dimensional 
data spaces" 

- "A movie of low-dimensional projections 
constructed in such a way that it comes 
arbitrarily close to showing all possible low-
dimensional projections" 

- "A random walk through all possible planes" 
- Indexed by time

8
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Grand Tour
• Helps to see 
- Clusters 
- Outliers 
- Linear Dependence 
- Elliptical Clusters (different shapes) 
- Separated Elliptical Clusters
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Different Views Help
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Other Tours
• Guided: follows the optimization path for a projection pursuit index 
• Local: rocks back and forth from a given projection, shows all possible 

projections within a radius 
• Manual: start from best projection, control coefficient of one variable
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Grand Tour of Image Data using UMAP
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Reading Critique
• Turn in by tonight
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Project Updates
• Thursday 
• If you want feedback, please bring demos, web pages
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Reminder: IEEE VIS
• Lots of interesting work being presented 
• Students have free admission 
• Two more days: today and tomorrow 
• https://ieeevis.org
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The Subspace Voyager: Exploring High-Dimensional Data along 
a Continuum of Salient 3D Subspace 

 Bing Wang and Klaus Mueller, Senior Member, IEEE 

Abstract— Analyzing high-dimensional data and finding hidden patterns is a difficult problem and has attracted numerous research 
efforts. Automated methods can be useful to some extent but bringing the data analyst into the loop via interactive visual tools can 
help the discovery process tremendously. An inherent problem in this effort is that humans lack the mental capacity to truly 
understand spaces exceeding three spatial dimensions. To keep within this limitation, we describe a framework that decomposes a 
high-dimensional data space into a continuum of generalized 3D subspaces. Analysts can then explore these 3D subspaces 
individually via the familiar trackball interface while using additional facilities to smoothly transition to adjacent subspaces for 
expanded space comprehension. Since the number of such subspaces suffers from combinatorial explosion, we provide a set of 
data-driven subspace selection and navigation tools which can guide users to interesting subspaces and views. A subspace trail 
map allows users to manage the explored subspaces, keep their bearings, and return to interesting subspaces and views. Both 
trackball and trail map are each embedded into a word cloud of attribute labels which aid in navigation. We demonstrate our system 
via several use cases in a diverse set of application areas – cluster analysis and refinement, information discovery, and supervised 
training of classifiers. We also report on a user study that evaluates the usability of the various interactions our system provides.  
Index Terms— High-dimensional data, subspace navigation, trackball, PCA, ant colony optimization

1.  INTRODUCTION 
ATA with many attributes have become commonplace in a 
wide range of domains, such as science, business, medicine, 
etc. In these data, the most interesting relations are often 

multivariate, and gaining proper tools to recognize these 
relationships reliably is still an active area of research. While 
automated analysis can be useful in finding some of the high-
dimensional patterns, adding the human into the loop can break ties 
and help discern patterns in confounding and noisy data settings that 
benefit from the intricate reasoning faculties of human domain 
experts. However, we are still far off from having effective visual 
tools for high-D data analytics that make the best use of the inborn 
capabilities of the human visual system and at the same time also 
observe its limitations.   

High-D space is generally confusing to most people since 
humans do not possess the innate neural network to recognize and 
reason with high-D objects. Spatial reasoning skills are acquired in 
early childhood where often haptic and visual experiences are 
combined to build 3D mental models of the real world. Since high-D 
objects are largely mathematical and do not occur in a tangible form, 
the associated cognitive reasoning chains are not developed in these 
critical early years. This lack of reasoning faculties represents a 
barrier for most people when dealing with high-D data later in life 
and so deprives them of the chance to find more insight in these data.  

We describe a framework and interface that eases this barrier by 
design, called the Subspace Voyager. It serializes the exploration of 
high-D space into a continuous travel along a string of generalized, 
but not necessarily dimension axis-aligned 3D subspaces, visualized 
as scatterplot projections of the data points. This serialization allows 
us to abolish the complex interactions and representations that are 
often typical to high-D space exploration tools. We replace them 
with paradigms familiar to most people, such as trackballs, maps, 
and word clouds. Our interface uses these to help users explore the 
generalized 3D subspaces, navigate the continuum of 3D subspaces, 
and assess the relevance of individual attributes for a given subspace.  

The simplicity gained through the 3D subspace decomposition 
comes at a price – the extent of the transformations defined on such a 
restricted subspace is limited and may not reach far enough to 
generate a projection in which a pattern of current interest is well 
expressed. To enable a reach beyond these limits we have augmented 
the 3D navigation interface with extra capabilities that allow users to 
“chase” the discovered patterns by moving to adjacent 3D subspaces 
via simple mouse interactions. In this way, patterns can be observed 
that are truly multivariate and not restricted to a single 3D subspace.  

In some sense, our approach is akin to that taken in an upcoming 
Indie video game, Miegakure [46] (itself inspired by the classic 
novel Flatland [2]) which enables 4D space travel by swapping one 
of the three current dimensions. We go significantly further than this 
game: (1) our spaces are much greater than 4D, and (2) we allow 
transitions in all dimensions simultaneously. Yet, it is encouraging 
that the entertainment industry sees fun in this type of space travel. It 
suggests that our interface might be fun and engaging as well, which 
will immensely benefit the analytics that is performed with it. 

The 3D subspaces our system supports are general in the sense 
that they do not need to be constrained to three specific data axes but 
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               (a)                                                        (b)                                                      (c)                                                  (d) 
Panel (a) and (c) are two projective views onto a 10-dimesional sales pipeline dataset with 900 points. The labels at the circle boundary 
indicate the data attributes and their axis directions in that view. The strength of the label fonts indicates how well the attributes are 
expressed in this view. Panel (b) shows a view generated by using our system’s trackball interface to generate new projective views between 
view (a) and (c). The motion parallax clarified that there were not two but three clusters. Panel (d) shows the three clusters in different colors.     

This paper is © IEEE and appears reformatted in IEEE Transactions on Visualization and Computer Graphics, 2017 
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