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Uncertainty
• Uncertainty shows up in science all the time 
- Measuring 
- Modeling 
- Forecasting 

• People know there is uncertainty in data analysis, but don't actually 
understand most ways of communicating the amount of uncertainty
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How easy is it to ignore the uncertainty?

This contributes to dichotomania

People Ignore Uncertainty
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People Ignore Uncertainty
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Better Ways to Present Uncertainty
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[J. H. Gross, Washington Post, 2016]
D. Koop, CSCI 628, Fall 2021

https://www.washingtonpost.com/news/monkey-cage/wp/2016/11/29/how-to-better-communicate-election-forecasts-in-one-simple-chart/


Handbook�of�Computational�Statistics�and�Data�Science
Chapter�9�by�Lace�Padilla,�Matthew�Kay,�Jessica�Hullman
Circulation�limited�to�personal�use,�see�published�chapter�for�wide�circulation�and�citation
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Graphical Annotations of Distributional Properties 

Figure 1.1: A subset of the graphical annotations used to show properties of a distribution and mappings of probabil-
ity/confidence to visual variables. The visual variables that require color printing were excluded (e.g., color hue, color
value, and color saturation). The examples are adapted from prior work: violin and gradient plots [9], hypothetical
outcome plots [10], quantile dotplot [11], ensemble plot [12], icon array [13], fuzziness transparency [14], contour
boxplot [15], and probability density and interval plot [7].
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Graphical Annotations of Distributional Properties
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Uncertainty Visualization Theories
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Theory Summary Visualization Techniques

Frequency
Framing [30] (Section 1.2)

Uncertainty is more intuitively understood
in a frequency framing (1 out of 10) than
in a probabilistic framing (10%)

icon array [13], quantile dotplot [11],
hypothetical outcome plots [10]

Attribute Substitution [31] -
Deterministic Construal
Error [32] (Section 1.2)

If given the opportunity, viewers will
mentally substitute uncertainty
information for data that are easier to
understand

hypothetical outcome plots [10]

Visual Boundaries =
Cognitive Categories [21]
(Section 1.2)

Ranges that are represented by boundaries
lead people to believe that data inside and
outside the boundary are categorically
different

ensemble display [12], error bar
alternatives [7, 9]

Visual Semiotics [14]
(Section 1.2)

Some encoding techniques naturally map
onto uncertainty

fuzziness, transparency, location,
etc. [14], value-suppressing color
pallet [25]

Table 1.1: Summary of uncertainty visualization theory detailed in this chapter.

Frequency Framing
The frequency framing hypothesis was initially proposed by Gerd Gigerenzer [30] in response to popular theories,
which argued that human reasoning systematically deviates from rational choice according to mathematical rules
(e.g., [33]). Gigerenzer hypothesized that our decisions seem flawed when we are provided with confusing informa-
tion, such as probabilities communicated as percentiles (e.g., 10% chance). However, individuals can make rational
choices if provided with information in a format they can understand easily, such as in frequencies or ratios (e.g., 1
out of 10). Gigerenzer argued that percentiles do not match the way people encounter probability in the world, and
therefore lead to errors. Instead, it is more intuitive to depict probability as a frequency, as we have more exposure
to these types of ratios (e.g., I hit traffic on this road 7 out of 10 times. I will take a different route tomorrow.) The
frequentist framing hypothesis has substantial support from studies that find we can relatively automatically and ac-
curately understand frequency formats, whereas probabilities are time consuming and highly error prone (for review
and caveats, see [34]).

One of the most effective ways to implement frequency framing of uncertainty information is with visualizations,
and in this section we will detail two promising frequency-framing techniques. Researchers, predominantly in health-
care communication, have extensively studied the use of icon arrays (see Figure 1.1) to display ratios and have found
strong evidence that they are useful for communicating forecasted probabilities of event outcomes. The second notable
use of frequency formats in visualization is within the emerging study of quantile dotplots (see Figure 1.1). Whereas
quantile dotplots are relatively new and have not received as much examination as icon arrays, they capitalize on the
theoretical benefits of frequency framing and have demonstrated positive results in laboratory studies.

Icon arrays

A substantial body of research demonstrates that icon arrays are one of the most effective ways to communicate a
single probabilistic value and can outperform textual descriptions of probabilities and frequencies [27, 35–42]. One
of the key benefits of icon arrays is that they offload cognition by allowing a viewers visual system to compare the
denominator and the numerator in a frequency probability format. Visual comparisons of this nature are easier and
faster than numerical calculations.

The difficulty in comparing ratios can produce common errors, such as individuals focusing on the numerator
of each ratio and neglecting the denominator, called denominator neglect (for review see [43]). For example, when
comparing a cancer with a mortality rate of 1,286 of 10,000 people to a cancer with a mortality rate of 24 of 100
people, participants in a laboratory study incorrectly reported that the former cancer was riskier [44]. Researchers
propose that individuals pay more attention to the relative differences in numerators (in this case, 1,286 vs. 24 deaths),
even though they should consider the relative ratios (12.86% vs. 24% mortality) (e.g., [43, 44]). Several studies
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Hurricane error cones
[Cox, House, Lindell. Visualizing Uncertainty in Predicted Hurricane Tracks. 
International Journal for Uncertainty Quanti!cation, 3(2), 143–156, 2013]

Visualizing Uncertainty in Predicted Hurricane Tracks 153

and a 5 indicating that they strongly preferred the error cone. They were also asked for open-ended comments on the
study.

5. RESULTS

Figure 10 shows each of the six cases presented to the experiment participants, in their order of presentation, with the
top row of each case showing the error cone view, and the bottom row showing our method. These examples were

Case 1 Case 2 Case 3

Case 4 Case 5 Case 6
FIG. 10: The six cases as shown to experiment participants.

Volume 3, Number 2, 2013
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Hurricane Error Cones vs. Ensembles
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(but problems with ensembles...)
[Padilla, Ruginski, Creem-Regehr. Effects of ensemble and summary displays on interpretations of geospatial 
uncertainty data. Cognitive Research: Principles and Implications, 2(1), 40, 2017]Ensembles not perfect either
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Spaghetti Plot vs. HOP
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Spaghetti Plot vs. HOP
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Uncertainty -> ~dither (samples from dist)
[Lucchesi & Wikle. Visualizing uncertainty in areal data with bivariate choropleth maps, map pixelation and glyph 
rotation. Stat, 292–302, 2017]

Discrete outcomes

Maybe more intuitive, 
maybe less?

Possible deterministic 
construal errors

Dithering to show uncertainty
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[Lucchesi and Wikle, 2017]
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Schedule
• Thursday: Progress Reports & Uncertainty 
• Next Tuesday: Surveys Due & Presentations 
• Tuesday, Oct. 26: No Class 
• Thursday, Oct. 28: High-Dimensional Data Critique Due

14D. Koop, CSCI 628, Fall 2021



Today's Paper: Critique Due
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ABSTRACT 
Users often rely on realtime predictions in everyday con-
texts like riding the bus, but may not grasp that such predic-
tions are subject to uncertainty. Existing uncertainty visual-
izations may not align with user needs or how they natural-
ly reason about probability. We present a novel mobile in-
terface design and visualization of uncertainty for transit 
predictions on mobile phones based on discrete outcomes. 
To develop it, we identified domain specific design re-
quirements for visualizing uncertainty in transit prediction 
through: 1) a literature review, 2) a large survey of users of 
a popular realtime transit application, and 3) an iterative 
design process. We present several candidate visualizations 
of uncertainty for realtime transit predictions in a mobile 
context, and we propose a novel discrete representation of 
continuous outcomes designed for small screens, quantile 
dotplots. In a controlled experiment we find that quantile 
dotplots reduce the variance of probabilistic estimates by 
~1.15 times compared to density plots and facilitate more 
confident estimation by end-users in the context of realtime 
transit prediction scenarios.  

Author Keywords 
End-user visualization; transit predictions; mobile interfaces; 
dotplots; uncertainty visualization. 

ACM Classification Keywords 
H.5.m. Information interfaces and presentation (e.g., HCI): 
Miscellaneous 

INTRODUCTION 
Quantitative predictions are increasingly ubiquitous in eve-
ryday life. Many such data come in the form of point esti-
mates designed to aid decision-making, such as when the 
next bus is going to arrive, how long a road trip will take, 
whether and when it will rain, or what the high temperature 
will be. Often, people access these predictions on their mo-
bile phones to make in-the-moment decisions that are time-

constrained (providing little opportunity for training, inter-
pretation, or complex interaction) using interfaces that are 
space-constrained (due to screen size).  

For example, Susan might refer to a bus’s predicted arrival 
time on a smartphone application to check if she has time to 
get coffee before her bus to work arrives. She sees that the 
bus is running a few minutes late and is predicted to arrive 
in five minutes. There is no line at the coffee shop, so she 
steps in to order. However, the bus makes up lost time and 
arrives only two minutes later: Susan, still waiting for cof-
fee, misses her bus and is late for a meeting.  

Susan based her decision on a point estimate of arrival time, 
as presented in many predictive systems for bus arrival, 
flight time, or car travel. Her decision is reasonable given 
the point prediction she saw, but real-world predictions are 
subject to uncertainty (e.g., her bus is most likely to come 
in 5 minutes but may come in as little as 1 minute or as 
much as 9 minutes). Designers and analysts are responsible 
for reporting uncertainty with predictions to help people 
make decisions that align with their goals [5,33], yet most 
visualizations of predictions present the data as if it were 
true (Finger & Bizantz [10] as cited in Cook & Thomas 
[5]). Had Susan’s application presented her with a more 
complete representation of the predicted arrival time—
perhaps noting that arrival times earlier than 5 minutes are 
also quite probable—she may not have risked getting cof-
fee. 

Many attempts to communicate uncertainty rely on com-
plex visual representations of probability distributions. For 
example, error bars and probability densities require prior 
experience with statistical models to correctly interpret 
[2,6]. People can better understand probabilistic infor-
mation when it is framed in terms of discrete events. For 
instance, Hoffrage & Gigerenzer [16] found that more med-
ical experts could accurately estimate the positive predic-
tive value (precision) of a test when presented with discrete 
counts or outcomes. Discrete-event representations have 
been used to improve patient understanding of risk, e.g., by 
showing the uncertainty in a medical diagnosis as discrete 
possible outcomes (number of true positive, false positives, 
false negatives, and true negatives) [11]. However, visualiz-
ing discrete approaches to presenting probability distribu-
tions typically requires a large amount of space or time to 
communicate the set of possible outcomes [17]. It is not 

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from
Permissions@acm.org. 
CHI'16, May 07 - 12, 2016, San Jose, CA, USA 
Copyright is held by the owner/author(s). Publication rights licensed to ACM. 
ACM 978-1-4503-3362-7/16/05 $15.00  
DOI: http://dx.doi.org/10.1145/2858036.2858558 

Probabilistic estimate of arrival status: For example, 
what is the chance the bus has already arrived? Among 
questions not currently supported by OneBusAway, survey 
respondents most wanted support for this question (status 
probability), and commonly reported worst experiences 
related to it. 

Data freshness: Because OneBusAway does not currently 
give probabilistic estimates, one of the only available sig-
nals for expert users to assess risk is the freshness of the 
data: OneBusAway indicates the time of the last update for 
realtime predictions and whether the current prediction is 
based on realtime data (it reflects the scheduled arrival time 
when realtime data is not available). This freshness infor-
mation should either be provided to users in a redesigned 
interface, or should be incorporated into any models driving 
probabilistic estimates. 

We believe these design elements will address each goal 
identified in the user survey with the exception of the goal 
of knowing schedule frequency. We felt that this goal is 
better addressed through a separate interface, such as a trip 
planner or schedule explorer in a mapping application. 
Schedule frequency is less relevant to in-the-moment deci-
sion-making than it is to long-term planning (can I rely on a 
bus arriving within some amount of time?). When schedule 
frequency is relevant to in-the-moment decisions, it typical-
ly reduces to other goals, like time to next bus. 

DESIGN 
We conducted an iterative design process focused on the 
design requirements set out above. This process began with 
a wide exploration of ideas through sketching, followed by 
paper prototyping in increasing fidelity, and culminated in 
digital mockups. These phases were informed by ongoing 
user feedback gained through informal down-the-hall test-
ing with a total of 24 users. During informal testing, we 
presented users with hypothetical scenarios of use and 
asked them to think aloud as they interpreted the display. 

Many of the design issues we encountered are somewhat 
orthogonal to specific of encodings of probability: given a 
particular timeline layout, for example, we could encode 
probability in many ways (e.g., as area, discrete events, a 
gradient). We first present our proposed set of designs and 
their rationale, then discuss possible techniques for encod-
ing probability on small screens. 

Proposed designs and rationale 
Our proposed designs, instantiated with one particular visu-
alization of uncertainty (density plot) out of several possi-
ble, are shown in Figure 1. Here we describe decisions we 
made to resolve design tensions and to match user goals. 

Different layouts better serve different use cases 
We developed two alternative layouts, bus-timeline and 
route-timeline. The bus-timeline layout gives a timeline for 
a single bus on each row, similar to how the existing One-
BusAway app displays a single row per bus, sorted by pre-
dicted time to arrival. This simplifies understanding and 

navigation, but is less compact in addressing problems like 
assessing schedule frequency, and, once the probabilistic 
visualizations are added, less compact than the current ap-
plication. Route-timeline, by contrast, creates a more com-
plex display and navigation (requiring navigation in two 
dimensions), but more easily aids understanding of sched-
ule frequency (how often is the bus) and schedule oppor-
tunity (since if one is considering the risk associated with 
missing the next bus, it is easier to see how soon the bus 
after that is coming and factor that into one’s decision).  

Point estimates and probabilistic  
estimates should coincide spatially 
We explored several tradeoffs between prominent point 
estimates versus probabilistic estimates, what we call the 
glanceability/false precision tradeoff. A too-prominent 
display of the point estimate causes users to ignore the 
probabilistic one, thus still giving a false sense of precision; 
a less-glanceable point estimate will be difficult to skim and 
frustrating to use. We want a display that is glanceable but 
which also does not convey false precision. To resolve this, 
we concluded that these two elements should coincide spa-
tially: that is, looking at the point estimate should encour-
age the user to also be looking at the probabilistic estimate. 
We had considered designs in which the point estimate was 
along the right-hand edge of the display (Figure 3), as in the 
original OneBusAway. We concluded that this facilitated 
glanceability, but also allowed users to pay too little atten-
tion to the probabilistic estimates. Moving the point esti-
mate onto the probability distribution resolved this tension. 

Annotated timelines give probabilistic  
estimates of status “for free” 
While we considered designs that more explicitly com-
municate the probability that the bus has arrived, we real-
ized that an annotated timeline combined with probabilistic 
predictions communicates this implicitly. By denoting areas 
that correspond to “departed”, “now”, and “on the way” on 
the timeline, users can directly read these probabilities from 
the distributions depicted; see the timeline annotations 
across the top of Figure 1.  

 
Figure 1. Alternative layouts we developed. (a) Bus Timeline: 
Each row (timeline) shows one predicted bus. (b) Route Time-
line: Each row shows all predicted buses from a given route. 

Bus Timeline Route Timeline

the row height. Traditional solutions include horizon charts 
[15] (which we suspect are unfamiliar to lay users), or nor-
malizing all density plots to the same height (which makes 
comparison difficult). This problem is most pronounced on 
buses with tight variance, i.e., the most precise predictions. 
Consequently, for density plots we adopted the compromise 
approach of scaling down the max height only when it ex-
ceeds the row height. This adjustment affects only the pre-
dictions of which the model is most certain, so fine-grained 
resolution of probability becomes less important to most 
goals. This adjustment is required only for density, dotplot-
50, and dotplot-100 (in the dense dotplots, instead of scal-
ing we reduce the dot-spacing). Dotplot-20 and stripeplot 
have the advantage of a consistent representation of proba-
bility in tight densities: they need not be modified. 

Countability may vary from tails to body  
Care must be taken in deciding how many hypothetical 
draws (quantiles) to include in discrete plots. Figure 4 com-
pares some of the tradeoffs here: With few draws, as in 
dotplot-20, it is easy to count the dots in the tails and body 
of the distribution, but the density is less well-resolved. 
With many dots, as in dotplot-100, counting in the tails is 
often still easy, but in the body overwhelming; however, 
density is very well-resolved.  

Selected encodings 
To select the encodings to evaluate for our final design, we 
constructed the matrix shown in Figure 4 comparing vari-
ous properties of the encodings. We selected density, 
stripeplot-50, dotplot-20, and dotplot-100 as representing a 
wide range of possible trade-offs suggested by this matrix. 
EXPERIMENT 
We conducted an online survey to evaluate the effective-
ness of our designs in conveying uncertainty. The goal of 
this survey was to assess how well people can interpret 
probabilistic predictions from the visualizations and to elicit 
their preferences for how the data should be displayed.  

Method 
To assess how well people can judge probability from our 
visualizations, we adopted an approach similar to that of 
Ibrekk and Morgan [18], who presented various representa-
tions of uncertainty for weather forecasts and asked subjects 
to report probabilities (e.g., snowfall >2 inches, or between 
2 and 12 inches).  

We created four scenarios based on the goals identified in 
our user survey, each with two questions about the proba-
bility of bus arrival. For example, in one scenario the re-
spondent is waiting for a bus, and must decide if they have 
enough time to get coffee before the bus arrives. They are 
asked what the chance is that the bus will arrive 10 minutes 
or earlier, and respond using a visual analog scale, a 100-
point slider from 0/100 to 100/100. We call their response 
the estimated p (in contrast to the true p, which we calculate 
from the underlying probability distribution). A bubble on 
the response slider shows this chance expressed in all three 
denominators used by the various visualization types (e.g. 

“20/100, 10/50, 4/20”), so that participants do not have to 
do mental arithmetic in the dotplot and stripeplot condi-
tions. The predictions in each scenario were generated from 
models based on Box-Cox t distributions [29] fit to ~2 
weeks worth of arrival time data for actual buses in Seattle, 
but the buses were given fake route names. Participants are 
also asked how confident they are in each probability they 
estimate. At the end of the survey they rate the ease of use 
and visual appeal of each visualization. All subjective rat-
ings are made on 100-point visual analog scales. 

Scenario order was randomized between participants. Each 
participant saw each visualization type (density, stripeplot, 
dotplot-20, or dotplot-100) once. Before each scenario, they 
were also given a brief tutorial explaining the encoding they 
were about to use. Pairings between scenario and visualiza-
tion type were also randomized. Participants were also ran-
domly assigned to see all visualizations in the bus-timeline 
or route-timeline layout. A full version of the survey can be 
found in the supplementary material. 

Participants 
We recruited participants from a variety of locations, in-
cluding department mailing lists, a local transit blog, and a 
local forum on reddit.com. Participants were entered into a 
raffle for 1 $100 Amazon.com gift card and an additional 

 
Figure 5. The four types of visualizations selected for evaluation.  
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Figure 4. Comparison of various encodings of probability we 

considered for use in our designs. 
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