Information Visualization

Uncertainty Visualization

Dr. David Koop

Uncertainty

- Uncertainty shows up in science all the time
 - Measuring
 - Modeling
 - Forecasting
- People know there is uncertainty in data analysis, but don't actually understand most ways of communicating the amount of uncertainty

2

People Ignore Uncertainty

Variable	Coefficient (Standard Error)	Argentina
Constant	.41 (.93)	Chile-
Argentina	1.31 (.33)** ^{B,M}	Colombia-
Colombia	1.46 (.32)** ^{B,M}	Mexico-
Venezuela	.96 .37)** ^{B,M}	Venezuela-

People Ignore Uncertainty

FiveThirtyEight: Trump's Chances

NYT Upshot: Trump's Chances

28.6%

D. Koop, CSCI 628, Fall 2021

HuffPo Pollster: Trump's Chances

15.0%

2.0%

Better Ways to Present Uncertainty

FiveThirtyEight: Trump's Chances

286 cases in 1,000

D. Koop, CSCI 628, Fall 2021

NYT Upshot: Trump's Chances

HuffPo Pollster: Trump's Chances

150 cases in 1,000

20 cases in 1,000

[J. H. Gross, Washington Post, 2016]

Northern Illinois University

Graphical Annotations of Distributional Properties

Intervals and Ratios

error bars

Distributions

violin plot

hypothetical outcome plot

D. Koop, CSCI 628, Fall 2021

box plot

quantile dot plot

ensemble plot

Uncertainty Visualization Theories

Theory	Summary	Visualization Techniques
Frequency Framing [30] (Section 1.2)	Uncertainty is more intuitively understood in a frequency framing (1 out of 10) than in a probabilistic framing (10%)	icon array [13], quantile dotplot [11], hypothetical outcome plots [10]
Attribute Substitution [31] - Deterministic Construal Error [32] (Section 1.2)	If given the opportunity, viewers will mentally substitute uncertainty information for data that are easier to understand	hypothetical outcome plots [10]
Visual Boundaries = Cognitive Categories [21] (Section 1.2)	Ranges that are represented by boundaries lead people to believe that data inside and outside the boundary are categorically different	ensemble display [12], error bar alternatives [7, 9]
Visual Semiotics [14] (Section 1.2)	Some encoding techniques naturally map onto uncertainty	fuzziness, transparency, location, etc. [14], value-suppressing color pallet [25]

Hurricane Error Cones vs. Ensembles

D. Koop, CSCI 628, Fall 2021

8

Ensembles not perfect either

Spaghetti Plot vs. HOP

Spaghetti Plot vs. HOP

Dithering to show uncertainty

D. Koop, CSCI 628, Fall 2021

Northern Illinois University 11

Bivariate Colormap (Uncertainty → Saturation)

D. Koop, CSCI 627/490, Fall 2020

[Correll et al., 2018]

Lead Marg

Value-Suppressing Uncertainty Palette

D. Koop, CSCI 627/490, Fall 2020

13

Schedule

- Thursday: Progress Reports & Uncertainty
- Next Tuesday: Surveys Due & Presentations
- Tuesday, Oct. 26: No Class
- Thursday, Oct. 28: High-Dimensional Data Critique Due

Today's Paper: Critique Due

When (ish) is My Bus? User-centered Visualizations of **Uncertainty in Everyday, Mobile Predictive Systems**

Matthew Kay CSE | dub University of Washington mjskay@uw.edu

Tara Kola Computer Science Tufts University tara.kola@tufts.edu

Bus Timeline

Route Timeline

D. Koop, CSCI 628, Fall 2021 p

Jessica R. Hullman

iSchool | dub University of Washington jhullman@uw.edu

Sean A. Munson HCDE | dub University of Washington smunson@uw.edu

Paper Presentation

D. Koop, CSCI 628, Fall 2021

Critique

Questions & Discussion

