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Fig. 2. Wikipedia article on Chocolate showing an edit war in stage (2).
Blue halos indicate identical revisions.

Progress and Stagnation—Every Wikipedia article has a unique
story, and thus a unique time curve. For example, the time curve in
Figure 1(b) reveals that the article on Palestine underwent three stages,
including turbulences in the form of zig-zag patterns suggesting a con-
troversial stage. The controversy is then resolved and revisions be-
come large and clustered, suggesting maturity. The time curve in Fig-
ure 2 (Chocolate) is stable overall, except for a stage where the curve
alternates between the exact same revisions (blue halos), suggesting a
so-called “edit war”.

A time curve can give Wikipedia readers a rapid overview of an
article’s writing process, and possibly give them cues as to whether
the article can be trusted [11]. As articles never stop being edited,
time curves can also benefit contributors who monitor specific articles
over time. Time curves make it easy to spot patterns that can be further
examined using “detail-on-demand” techniques. Our web app does not
support such techniques, thus for our scenarios we used Wikipedia’s
history system to examine differences between revisions of interest.

Similar and Identical Revisions—Clusters are groups of highly
similar revisions which only differ by minor edits. In clusters, dots
can overlap significantly. To improve legibility and clearly show clus-
ter cardinality, time curves implement an overlap removal mechanism.
This can be seen in the final stage of Figure 1. Dots which have been
spread apart are displayed with a gray halo, reinforcing the visual im-
pression of a cluster. If exact positions are important, overlap removal
can be disabled globally or through an interactive lens. For example,
the inset B on Figure 1(b) shows that the final stage of Palestine under-
goes a gradual progression with a dense cluster at the end suggesting
a stabilization.

Overlap removal is not applied to identical revisions. Instead, these
are superimposed and shown with a blue halo – the darker the blue,
the more points have been superimposed. In Figure 2, the two blue ha-
los are rather dark, suggesting a long edit war. One of the opponents
finally won and the article continued to progress. The oscillation pat-
tern at the bottom left of Figure 1(b) shows an “informal edit war”. No
explicit revert was employed, but instead portions of the article were
repeatedly changed back to previous versions. Thus, there is still a
progression, but a very inefficient one. Finally the community did not
give way and the article mostly went back to where it was. This article
contains occasional blue halos, which correspond to minor formatting
changes not captured by our similarity metric.

User Contributions—The Wikipedia version of time curves can
allocate colors to users and show who is responsible for each change.
Inset C in Figure 1(b) is a zoomed-in view of the informal edit war
in the middle of the curve. Mostly two users were involved: Brown
and Green. The history on Wikipedia reveals that 1 Brown changed
a specific paragraph; 2 Brown then reintroduced part of the origi-
nal text but kept his insertions; 3 Green then removed most changes
made by Brown and 4 Brown reintroduced them; 5 Perhaps with-
out noticing Brown’s edits, Green made a minor change elsewhere in
the article; 6 After noticing, Green removed Brown’s edits again; Fi-
nally, 7 Brown gives up and inserts a single sentence stating that the
topic is still debated.

Figure 3(a) on Erich Honecker shows another example. Initially,
the article was edited almost exclusively by user Blue, in a cumulative
fashion. The final edits are minor clarifications and rewordings by
other contributors. The time color encoding (Figure 3(b)) reveals that
Blue’s edits were made in a very short amount of time (all points are

bright pink), while the later minor edits spanned a longer time period.
Thus this is a non-controversial article that quickly stabilized.

Fig. 3. Wikipedia article about former leader of German Democratic
Republic Erich Honecker, using different color encodings for nodes.

Vandalism—In cases of “vandalism”, parts or the entire article are
removed or replaced by irrelevant content. Acts of vandalism are vis-
ible as extreme outliers on a time curve. Figure 4 shows the curve for
Crimea, where a user deleted the entire article and inserted a redirect
to Putin.

Fig. 4. Vandalism on the Wikipedia article Crimea. The time point on
the right (very small) is a revision that contains a single link only.

Visual Signatures—Figure 5 shows time curves for multiple
Wikipedia articles. Even though the curves are scaled down, their
main visual characteristics are maintained. Time curves can thus serve
as visual signatures or thumbnails when navigating across multiple
datasets. We can see that the majority of the depicted Wikipedia ar-
ticles contains clusters of minor revisions, while approximately half
of them exhibit a monotonic progression. The other half involves
vandalism or edit wars. Such visualizations could, for example,
help Wikipedia administrators navigate collections of articles within
a given category and monitor anomalies.

Abortion

Apple (Computers)

Higgs Cannabis

Ukraine InfoVis

Fig. 5. Time curve signatures of different Wikipedia articles.

3.2 Video Recordings
Video recordings seem to have little in common with document revi-
sion histories, yet they are also information artefacts reflecting changes
over time. Thus video time curves can be produced where time points
are video frames or groups of adjacent videos frames, and their sim-
ilarity is estimated through image similarity computation. Questions
related to video analysis include: “when do sudden changes happen in
this security camera footage?” or “how is this movie structured?”.

Surveillance Videos—Surveillance videos often consist in mostly
static scenes, or scenes with constant motion such as highways, side-
walks or counters. Interesting moments typically appear as outliers on
a time curve. Figure 6 shows a one-minute footage from a security
camera.2 In this figure and all following figures, annotations on time
points (labels and photos) are by us. In the central cluster (e.g., time

2https://www.youtube.com/watch?v=L8WV9wLBzdg

Time Curves for Wikipedia
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A Generic Framework and Library for
Exploration of Small Multiples through Interactive Piling
Fritz Lekschas, Xinyi Zhou, Wei Chen, Nils Gehlenborg, Benjamin Bach, and Hanspeter Pfister
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Fig. 1. Exploring Small Multiples through Visual Piling. (A) An example of thousands of necklace sketches from Google Quick-
draw [25] displayed as small multiples. The interactive arrangement, grouping, and aggregation of small multiples into piles support the
discovery and comparison of reoccurring patterns. (B) Other types of small multiple visualizations grouped and aggregated into piles,
including (from left to right) natural and immunofluorescence microscopy images, matrices, area charts, and scatterplots.

Abstract— Small multiples are miniature representations of visual information used generically across many domains. Handling large
numbers of small multiples imposes challenges on many analytic tasks like inspection, comparison, navigation, or annotation. To
address these challenges, we developed a framework and implemented a library called PILING.JS for designing interactive piling
interfaces. Based on the piling metaphor, such interfaces afford flexible organization, exploration, and comparison of large numbers of
small multiples by interactively aggregating visual objects into piles. Based on a systematic analysis of previous work, we present a
structured design space to guide the design of visual piling interfaces. To enable designers to efficiently build their own visual piling
interfaces, PILING.JS provides a declarative interface to avoid having to write low-level code and implements common aspects of the
design space. An accompanying GUI additionally supports the dynamic configuration of the piling interface. We demonstrate the
expressiveness of PILING.JS with examples from machine learning, immunofluorescence microscopy, genomics, and public health.

Index Terms—Information visualization, small multiples, interactive piling, visual aggregation, spatial organization.

1 INTRODUCTION

In many disciplines, datasets consist of large numbers of elements,
pattern instances, or dimensions. For instance, in supervised machine
learning, researchers compile sets of photos to train and validate ma-
chine learning models; in genomics, computational biologists study
visual patterns that act as proxies for biological features; in public
health, medical experts try to correlate different measurements to health
conditions of their patient cohort.

Small multiples [46] are a widely used visualization technique to
display such datasets through a series of miniature visualizations that
show different facets or subsets of the data. However, as the number
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of small multiples grows, comparison and exploration can become
inefficient due to the decreasing availability of screen real estate per
visualization and the increasing efforts for sequential scanning. Sub-
sampling or filtering can help to limit the number of small multiples
but might obscure important characteristics of the dataset. Summary
visualizations can alleviate this problem by aggregating subsets of the
data into a single visualization. However, the analyst needs to know
upfront how to organize the dataset into subsets. Without interactive
features, exploration with summary visualizations can be limited when
there are many potentially interesting facets or subsets to explore.

We propose a generic framework for exploring large numbers of
small multiples through interactive visual piling. Inspired by how
physical piles enable casual organization [35] of paper documents,
piling in visualization affords spatial grouping of visual elements into
piles that can be arranged, browsed, and aggregated interactively. By
combining the benefits of small multiples and visual aggregations with
interactive browsing, piling can be an effective technique for exploring
small multiples. For instance, in Fig. 1A, we demonstrate how piling
enables the discovery and comparison of shared concepts of necklace
sketches through interactive arrangements, groupings, aggregation, and
browsing. Currently, piling has been applied to matrix visualizations by
ad-hoc domain-specific methods to explore set typed data [43], dynamic
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Fig. 2. Elements and Properties of Visual Piles. To illustrate key
properties of piles, we differentiate between individual items and piles.

rather than to just consume a static grouping state. However, this does
not mean that piles cannot persist.

3.2 Goals and Tasks
Even though the application-specific goals differ, we identify two over-
arching goals for interactive visual piling interfaces from related work.
(G1) Visual piling is a tool for organizing data collections into subsets
to reduce complexity. This includes, for example, to sort items into
groups, categorize groups based on their content, or filter out subsets
of items for quality control. (G2) Beyond organization, visual piles are
a means to explore and compare individual items and groups of items
to each other. Specifically, one might want to determine the primary
topic of a group, identify outliers, or discover trends.

To identify the common tasks needed to support organization, ex-
ploration, and comparison, we systematically reviewed related work.
Following an open-coding approach, the first two authors coded all
17 piling-related papers from Sect. 2 according to their application-
specific tasks independently. We focused our coding efforts on the role
of interactive piling to not confuse piling-specific with unrelated tasks.
After coding the papers, the first two authors resolved disagreements.
Subsequently, we generalized the assigned codes into five high-level
analytic tasks that any interactive visual piling interface should support.

T1 Grouping: manually or automatically sort items into piles.
T2 Arrangement: position items and piles relative to each other in

an orderly, randomized, gridded, or unconstrained layout.
T3 Previewing: identify and locate items on a pile using in-place,

gallery, foreshortened, combining, and indicating previews.
T4 Browsing: search, explore, and navigate within and between piles

through in-place, dispersive, layered, and hierarchical browsing.
T5 Aggregation: summarize a pile into a synthesized, representative,

or abstract representation.

To study how different visual encoding and interaction approaches
support the exploration of small multiples, we use these five analytical
tasks to structure the design space exploration (Sect. 4) and to guide
future piling designs.

3.3 Usage Scenario
To exemplify how visual piling enhances the exploration of small
multiples, we describe a typical usage scenario following the example
of necklace sketches from Google Quickdraw [25] (Fig. 1A), which we
also demonstrate in the supplementary video. One goal in analyzing
large collections of visual objects is to identify and compare trends
within the dataset. Inspired by Forma Fluens [37], we are trying to
find reoccurring pattern concepts. Visualizing the sketches as small
multiples (Fig. 1A1 left) allows us to assess and compare individual
sketches, but it does not support the discovery of shared concepts.
A common approach to uncover similarities within large and high-
dimensional data collections is to arrange (T2) the items as a two-
dimensional embedding for cluster analysis (Fig. 1A2). We arranged
the items by a UMAP [38] embedding of image features that were
learned with a convolutional autoencoder. In the resulting cluster plot,
items can be represented as a symbol (e.g., a dot) or a small thumbnail.
While symbol-based cluster plots are highly scalable, they do not reveal
the visual details of a cluster. On the other hand, thumbnail-based

cluster plots do not scale to large datasets due to overplotting issues.
Visual piling provides a trade-off by grouping (T1) spatial clusters,
i.e., clusters formed by items in relative proximity (Fig. 1A3). By
aggregating (T5) all sketches into an average and showing this average
as the pile cover, we can discover and browse overarching concepts
effectively. For instance, after manually refining the grouping and
arrangement of four piles (Supplementary Figure S1), we can see
that people are sketching a necklace as an open beaded necklace, a
necklace worn around a neck, an open pendant necklace, or a closed
pendant necklace (Fig. 1A4). Visual piling also affords the encoding
of additional information beyond the individual items. For instance, in
Fig. 1A4, we visualize the relative distribution of geographic regions
across a pile using small bar charts below each pile.

4 A DESIGN SPACE FOR VISUAL PILING

This is the first design space (Fig. 3) for visual piling. For each of the
five analytical tasks (Sect. 3.2), we derived general approaches and
common solutions from previous work through multiple discussions
among the co-authors. The resulting subcategories cover overarching
approaches of each task. We generalize these approaches to highlight
conceptual differences. Multiple approaches can be combined to offer
different ways of organizing and exploring small multiples. In our
design space, we cover the relevant visual encodings and interactions.
We also describe common gestures for triggering interactions but do
not attempt to provide a complete overview of all possible gestures.

4.1 Grouping
We distinguish between manual and automatic grouping (T1), as ex-
emplified in Fig. 3 Grouping. Manual grouping requires the user to
interactively determine which items should be grouped and, potentially,
in which order. Automatic grouping follows a specific procedure to
group multiple items at once.

Manual. Sequential grouping is the simplest form of manual group-
ing. It requires the user to group items interactively, one at a time. This
is typically achieved with a drag-and-drop gesture [1,3,5,31,35,43,50].
While sequential grouping requires more time, it enables temporal orga-
nization. For instance, the most recently added elements can be located
on top of the pile. For efficiency, one can also form a group from
multiple selected items. While multi-select grouping does not result
in intermediate groupings, the sequence of selected items can still be
reflected, given the order of selected items. In contrast, parallel group-
ing techniques allow two or more items to be piled up at the same time.
For instance, many piling interfaces support region-based grouping via
lasso techniques [1, 31]. Parallel grouping does not afford temporal
organization as the order in which multiple items are grouped together
is not explicitly defined. A special form of grouping, which can be
treated as parallel or sequential, is swiping [31], where the user moves
the mouse cursor or pen over each item to be grouped. Swiping enables
more precise selections in dense arrangements like cluster plots.

Automatic. Many piling interfaces support automatic grouping to
improve scalability. Layout-driven grouping is based on an explicitly-
or implicitly-defined layout. Items that are located within the same
unit of the layout can then be grouped. Such units can, for instance,
be the rows, columns, or grid cells [31]. Proximity-based grouping
uses the Gestalt principle of “proximity,” which states that nearby
items implicitly form groups perceptually. However, implicit grouping
can cause uncertainty in subsequent pile interactions [35] as it is not
always possible to infer the grouping state as perceived by the user [6].
Therefore, most piling interfaces only use proximity to trigger explicit
grouping, e.g., by outlining the pile bounds [5, 50] or merging nearby
items [30]. Finally, in similarity-based grouping, items are merged
automatically based on some notion of similarity. While there are many
different ways of measuring similarity, fundamentally, the similarity
can be derived from the items [3, 28, 31, 42] or related metadata [31].

4.2 Arrangement
For arrangements (T2), we consider the relative positioning of items
on a pile and the absolute positioning of piles (Fig. 3 Arrangement).

Visual Piling Goals/Tasks
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while assigning label LOW if the mean is between both per-
centiles. Analogous rules are used for HIGH and HIGHEST.
As rule of thumb, we use default values g ¼ 12 and d ¼ 25.
Among all the attribute labels, we use the one in the low-
est/highest percentile as the final state label. If no such label
exists, we attempt to generate time-based labels.

The second phase generates labels based on time by mak-
ing use of the Time histograms presented earlier. It scans the
histograms at each granularity (e.g., daily, weekly, etc.)
searching for cyclically continuous peaks. We consider the
kth bin a peak, if it contains more mass than the average
bin: bk >

P
bj=n, where n represents the total number of

bins in the histogram and bk the value of bin k. Two conse-
cutive peaks are considered a single peak. If a single peak
with more than z mass (with default z ¼ 0:7) is found, the
peaks’ time range is considered as a candidate label. Among
all the candidate time-based labels, we select the one with
its peak containing the most mass. For example, from the
yearly histogram this would produce a label of the form
May - Jun like the brown state in Fig. 8.

5 USE CASES

We use three datasets of varying complexity to demonstrate
how StreamStory can be used to perform the analytics tasks
listed at the beginning of the paper. With all the examples,
we provide an interpretation demonstrating how tomap ele-
ments of the abstract representation back to domain-specific
concepts. We use a weather dataset to illustrate how to find
and interpret the long-term behavior of the data and a wind
dataset to demonstrate how finding the appropriate scales
can reveal structure in the data. We present three patterns
which are typical when exploring data using StreamStory
using a GPS dataset. To illustrate the multiscale structure,
we show three different scales for each example. We note
that the sub-figures were scaled independently and so
should not be directly compared. Finally, we discuss feed-
back gathered from experts during the development of the
tool and compare StreamStory to related techniques.

5.1 Weather Data
We begin with a weather dataset used as an illustrative
example throughout the paper. The dataset consists of aver-
age monthly temperature and rainfall readings collected at
Nottingham Castle, UK over 20 years between 1920 and
1940. We demonstrate how StreamStory can be used to
identify the main states of the dataset, find long-term recur-
rent behavior and map the abstractions back to domain-
specific concepts.

We construct a representation with 12 initial states. In
addition to the rainfall and temperature, we include the pre-
vious months’ values in the feature vectors as explained in
Section 3.6, raising the dimension to 4. Fig. 9 shows the
model at three different scales along with the original data.

At a coarse scale, we identify three main high-level states
corresponding to different parts of the year. In Fig. 9a we
see two large states with a transition state between them.
The labels indicate the right state represents rainy weather
while the left state represents low rainfall. Checking the
individual states, we observe that the left state also has a
lower temperature distribution (Fig. 10a) as opposed to the
right state (Fig. 10b).

This suggests the right state represents summer while the
left state represents winter. We confirm this using the yearly
histograms showing the left state lasts from November to

Fig. 9. In the weather dataset we observe a cyclical pattern, indicating
periodic long-term behavior with the main states corresponding to differ-
ent parts of the year. The yearly periodicity appears at the middle (b)
and fine (c) scales. In this case, this can be confirmed directly by the par-
allel plot (bottom-left).

Fig. 10. The Attribute histograms indicate that the purple Rainfall LOW-
EST and green Rainfall HIGHEST states in Fig. 9a correspond to winter
and summer months respectively. This is indicated by a low distribution
of temperature and rainfall in the Rainfall LOWEST state (a) and a high
distribution of temperature and rainfall in the Rainfall HIGHEST state (b).

Fig. 11. The distribution of Rainfall (in mm) confirms that the states on
the right of Fig. 9b are rainier than the states on the left. The same view
for Temperature is almost identical suggesting a high correlation
between the attributes (we only show the view for Rainfall).

STOPAR ET AL.: STREAMSTORY: EXPLORING MULTIVARIATE TIME SERIES ON MULTIPLE SCALES 1797
StreamStory at Different Scales
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ABSTRACT 
Users often rely on realtime predictions in everyday con-
texts like riding the bus, but may not grasp that such predic-
tions are subject to uncertainty. Existing uncertainty visual-
izations may not align with user needs or how they natural-
ly reason about probability. We present a novel mobile in-
terface design and visualization of uncertainty for transit 
predictions on mobile phones based on discrete outcomes. 
To develop it, we identified domain specific design re-
quirements for visualizing uncertainty in transit prediction 
through: 1) a literature review, 2) a large survey of users of 
a popular realtime transit application, and 3) an iterative 
design process. We present several candidate visualizations 
of uncertainty for realtime transit predictions in a mobile 
context, and we propose a novel discrete representation of 
continuous outcomes designed for small screens, quantile 
dotplots. In a controlled experiment we find that quantile 
dotplots reduce the variance of probabilistic estimates by 
~1.15 times compared to density plots and facilitate more 
confident estimation by end-users in the context of realtime 
transit prediction scenarios.  

Author Keywords 
End-user visualization; transit predictions; mobile interfaces; 
dotplots; uncertainty visualization. 

ACM Classification Keywords 
H.5.m. Information interfaces and presentation (e.g., HCI): 
Miscellaneous 

INTRODUCTION 
Quantitative predictions are increasingly ubiquitous in eve-
ryday life. Many such data come in the form of point esti-
mates designed to aid decision-making, such as when the 
next bus is going to arrive, how long a road trip will take, 
whether and when it will rain, or what the high temperature 
will be. Often, people access these predictions on their mo-
bile phones to make in-the-moment decisions that are time-

constrained (providing little opportunity for training, inter-
pretation, or complex interaction) using interfaces that are 
space-constrained (due to screen size).  

For example, Susan might refer to a bus’s predicted arrival 
time on a smartphone application to check if she has time to 
get coffee before her bus to work arrives. She sees that the 
bus is running a few minutes late and is predicted to arrive 
in five minutes. There is no line at the coffee shop, so she 
steps in to order. However, the bus makes up lost time and 
arrives only two minutes later: Susan, still waiting for cof-
fee, misses her bus and is late for a meeting.  

Susan based her decision on a point estimate of arrival time, 
as presented in many predictive systems for bus arrival, 
flight time, or car travel. Her decision is reasonable given 
the point prediction she saw, but real-world predictions are 
subject to uncertainty (e.g., her bus is most likely to come 
in 5 minutes but may come in as little as 1 minute or as 
much as 9 minutes). Designers and analysts are responsible 
for reporting uncertainty with predictions to help people 
make decisions that align with their goals [5,33], yet most 
visualizations of predictions present the data as if it were 
true (Finger & Bizantz [10] as cited in Cook & Thomas 
[5]). Had Susan’s application presented her with a more 
complete representation of the predicted arrival time—
perhaps noting that arrival times earlier than 5 minutes are 
also quite probable—she may not have risked getting cof-
fee. 

Many attempts to communicate uncertainty rely on com-
plex visual representations of probability distributions. For 
example, error bars and probability densities require prior 
experience with statistical models to correctly interpret 
[2,6]. People can better understand probabilistic infor-
mation when it is framed in terms of discrete events. For 
instance, Hoffrage & Gigerenzer [16] found that more med-
ical experts could accurately estimate the positive predic-
tive value (precision) of a test when presented with discrete 
counts or outcomes. Discrete-event representations have 
been used to improve patient understanding of risk, e.g., by 
showing the uncertainty in a medical diagnosis as discrete 
possible outcomes (number of true positive, false positives, 
false negatives, and true negatives) [11]. However, visualiz-
ing discrete approaches to presenting probability distribu-
tions typically requires a large amount of space or time to 
communicate the set of possible outcomes [17]. It is not 
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Probabilistic estimate of arrival status: For example, 
what is the chance the bus has already arrived? Among 
questions not currently supported by OneBusAway, survey 
respondents most wanted support for this question (status 
probability), and commonly reported worst experiences 
related to it. 

Data freshness: Because OneBusAway does not currently 
give probabilistic estimates, one of the only available sig-
nals for expert users to assess risk is the freshness of the 
data: OneBusAway indicates the time of the last update for 
realtime predictions and whether the current prediction is 
based on realtime data (it reflects the scheduled arrival time 
when realtime data is not available). This freshness infor-
mation should either be provided to users in a redesigned 
interface, or should be incorporated into any models driving 
probabilistic estimates. 

We believe these design elements will address each goal 
identified in the user survey with the exception of the goal 
of knowing schedule frequency. We felt that this goal is 
better addressed through a separate interface, such as a trip 
planner or schedule explorer in a mapping application. 
Schedule frequency is less relevant to in-the-moment deci-
sion-making than it is to long-term planning (can I rely on a 
bus arriving within some amount of time?). When schedule 
frequency is relevant to in-the-moment decisions, it typical-
ly reduces to other goals, like time to next bus. 

DESIGN 
We conducted an iterative design process focused on the 
design requirements set out above. This process began with 
a wide exploration of ideas through sketching, followed by 
paper prototyping in increasing fidelity, and culminated in 
digital mockups. These phases were informed by ongoing 
user feedback gained through informal down-the-hall test-
ing with a total of 24 users. During informal testing, we 
presented users with hypothetical scenarios of use and 
asked them to think aloud as they interpreted the display. 

Many of the design issues we encountered are somewhat 
orthogonal to specific of encodings of probability: given a 
particular timeline layout, for example, we could encode 
probability in many ways (e.g., as area, discrete events, a 
gradient). We first present our proposed set of designs and 
their rationale, then discuss possible techniques for encod-
ing probability on small screens. 

Proposed designs and rationale 
Our proposed designs, instantiated with one particular visu-
alization of uncertainty (density plot) out of several possi-
ble, are shown in Figure 1. Here we describe decisions we 
made to resolve design tensions and to match user goals. 

Different layouts better serve different use cases 
We developed two alternative layouts, bus-timeline and 
route-timeline. The bus-timeline layout gives a timeline for 
a single bus on each row, similar to how the existing One-
BusAway app displays a single row per bus, sorted by pre-
dicted time to arrival. This simplifies understanding and 

navigation, but is less compact in addressing problems like 
assessing schedule frequency, and, once the probabilistic 
visualizations are added, less compact than the current ap-
plication. Route-timeline, by contrast, creates a more com-
plex display and navigation (requiring navigation in two 
dimensions), but more easily aids understanding of sched-
ule frequency (how often is the bus) and schedule oppor-
tunity (since if one is considering the risk associated with 
missing the next bus, it is easier to see how soon the bus 
after that is coming and factor that into one’s decision).  

Point estimates and probabilistic  
estimates should coincide spatially 
We explored several tradeoffs between prominent point 
estimates versus probabilistic estimates, what we call the 
glanceability/false precision tradeoff. A too-prominent 
display of the point estimate causes users to ignore the 
probabilistic one, thus still giving a false sense of precision; 
a less-glanceable point estimate will be difficult to skim and 
frustrating to use. We want a display that is glanceable but 
which also does not convey false precision. To resolve this, 
we concluded that these two elements should coincide spa-
tially: that is, looking at the point estimate should encour-
age the user to also be looking at the probabilistic estimate. 
We had considered designs in which the point estimate was 
along the right-hand edge of the display (Figure 3), as in the 
original OneBusAway. We concluded that this facilitated 
glanceability, but also allowed users to pay too little atten-
tion to the probabilistic estimates. Moving the point esti-
mate onto the probability distribution resolved this tension. 

Annotated timelines give probabilistic  
estimates of status “for free” 
While we considered designs that more explicitly com-
municate the probability that the bus has arrived, we real-
ized that an annotated timeline combined with probabilistic 
predictions communicates this implicitly. By denoting areas 
that correspond to “departed”, “now”, and “on the way” on 
the timeline, users can directly read these probabilities from 
the distributions depicted; see the timeline annotations 
across the top of Figure 1.  

 
Figure 1. Alternative layouts we developed. (a) Bus Timeline: 
Each row (timeline) shows one predicted bus. (b) Route Time-
line: Each row shows all predicted buses from a given route. 
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the row height. Traditional solutions include horizon charts 
[15] (which we suspect are unfamiliar to lay users), or nor-
malizing all density plots to the same height (which makes 
comparison difficult). This problem is most pronounced on 
buses with tight variance, i.e., the most precise predictions. 
Consequently, for density plots we adopted the compromise 
approach of scaling down the max height only when it ex-
ceeds the row height. This adjustment affects only the pre-
dictions of which the model is most certain, so fine-grained 
resolution of probability becomes less important to most 
goals. This adjustment is required only for density, dotplot-
50, and dotplot-100 (in the dense dotplots, instead of scal-
ing we reduce the dot-spacing). Dotplot-20 and stripeplot 
have the advantage of a consistent representation of proba-
bility in tight densities: they need not be modified. 

Countability may vary from tails to body  
Care must be taken in deciding how many hypothetical 
draws (quantiles) to include in discrete plots. Figure 4 com-
pares some of the tradeoffs here: With few draws, as in 
dotplot-20, it is easy to count the dots in the tails and body 
of the distribution, but the density is less well-resolved. 
With many dots, as in dotplot-100, counting in the tails is 
often still easy, but in the body overwhelming; however, 
density is very well-resolved.  

Selected encodings 
To select the encodings to evaluate for our final design, we 
constructed the matrix shown in Figure 4 comparing vari-
ous properties of the encodings. We selected density, 
stripeplot-50, dotplot-20, and dotplot-100 as representing a 
wide range of possible trade-offs suggested by this matrix. 
EXPERIMENT 
We conducted an online survey to evaluate the effective-
ness of our designs in conveying uncertainty. The goal of 
this survey was to assess how well people can interpret 
probabilistic predictions from the visualizations and to elicit 
their preferences for how the data should be displayed.  

Method 
To assess how well people can judge probability from our 
visualizations, we adopted an approach similar to that of 
Ibrekk and Morgan [18], who presented various representa-
tions of uncertainty for weather forecasts and asked subjects 
to report probabilities (e.g., snowfall >2 inches, or between 
2 and 12 inches).  

We created four scenarios based on the goals identified in 
our user survey, each with two questions about the proba-
bility of bus arrival. For example, in one scenario the re-
spondent is waiting for a bus, and must decide if they have 
enough time to get coffee before the bus arrives. They are 
asked what the chance is that the bus will arrive 10 minutes 
or earlier, and respond using a visual analog scale, a 100-
point slider from 0/100 to 100/100. We call their response 
the estimated p (in contrast to the true p, which we calculate 
from the underlying probability distribution). A bubble on 
the response slider shows this chance expressed in all three 
denominators used by the various visualization types (e.g. 

“20/100, 10/50, 4/20”), so that participants do not have to 
do mental arithmetic in the dotplot and stripeplot condi-
tions. The predictions in each scenario were generated from 
models based on Box-Cox t distributions [29] fit to ~2 
weeks worth of arrival time data for actual buses in Seattle, 
but the buses were given fake route names. Participants are 
also asked how confident they are in each probability they 
estimate. At the end of the survey they rate the ease of use 
and visual appeal of each visualization. All subjective rat-
ings are made on 100-point visual analog scales. 

Scenario order was randomized between participants. Each 
participant saw each visualization type (density, stripeplot, 
dotplot-20, or dotplot-100) once. Before each scenario, they 
were also given a brief tutorial explaining the encoding they 
were about to use. Pairings between scenario and visualiza-
tion type were also randomized. Participants were also ran-
domly assigned to see all visualizations in the bus-timeline 
or route-timeline layout. A full version of the survey can be 
found in the supplementary material. 

Participants 
We recruited participants from a variety of locations, in-
cluding department mailing lists, a local transit blog, and a 
local forum on reddit.com. Participants were entered into a 
raffle for 1 $100 Amazon.com gift card and an additional 

 
Figure 5. The four types of visualizations selected for evaluation.  
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Figure 4. Comparison of various encodings of probability we 

considered for use in our designs. 
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Uncertainty
• Uncertainty shows up in science all the time 
- Measuring 
- Modeling 
- Forecasting 

• People know there is uncertainty in data analysis, but don't actually 
understand most ways of communicating the amount of uncertainty
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Figure 1.1: A subset of the graphical annotations used to show properties of a distribution and mappings of probabil-
ity/confidence to visual variables. The visual variables that require color printing were excluded (e.g., color hue, color
value, and color saturation). The examples are adapted from prior work: violin and gradient plots [9], hypothetical
outcome plots [10], quantile dotplot [11], ensemble plot [12], icon array [13], fuzziness transparency [14], contour
boxplot [15], and probability density and interval plot [7].
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Uncertainty Visualization Theories
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Theory Summary Visualization Techniques

Frequency
Framing [30] (Section 1.2)

Uncertainty is more intuitively understood
in a frequency framing (1 out of 10) than
in a probabilistic framing (10%)

icon array [13], quantile dotplot [11],
hypothetical outcome plots [10]

Attribute Substitution [31] -
Deterministic Construal
Error [32] (Section 1.2)

If given the opportunity, viewers will
mentally substitute uncertainty
information for data that are easier to
understand

hypothetical outcome plots [10]

Visual Boundaries =
Cognitive Categories [21]
(Section 1.2)

Ranges that are represented by boundaries
lead people to believe that data inside and
outside the boundary are categorically
different

ensemble display [12], error bar
alternatives [7, 9]

Visual Semiotics [14]
(Section 1.2)

Some encoding techniques naturally map
onto uncertainty

fuzziness, transparency, location,
etc. [14], value-suppressing color
pallet [25]

Table 1.1: Summary of uncertainty visualization theory detailed in this chapter.

Frequency Framing
The frequency framing hypothesis was initially proposed by Gerd Gigerenzer [30] in response to popular theories,
which argued that human reasoning systematically deviates from rational choice according to mathematical rules
(e.g., [33]). Gigerenzer hypothesized that our decisions seem flawed when we are provided with confusing informa-
tion, such as probabilities communicated as percentiles (e.g., 10% chance). However, individuals can make rational
choices if provided with information in a format they can understand easily, such as in frequencies or ratios (e.g., 1
out of 10). Gigerenzer argued that percentiles do not match the way people encounter probability in the world, and
therefore lead to errors. Instead, it is more intuitive to depict probability as a frequency, as we have more exposure
to these types of ratios (e.g., I hit traffic on this road 7 out of 10 times. I will take a different route tomorrow.) The
frequentist framing hypothesis has substantial support from studies that find we can relatively automatically and ac-
curately understand frequency formats, whereas probabilities are time consuming and highly error prone (for review
and caveats, see [34]).

One of the most effective ways to implement frequency framing of uncertainty information is with visualizations,
and in this section we will detail two promising frequency-framing techniques. Researchers, predominantly in health-
care communication, have extensively studied the use of icon arrays (see Figure 1.1) to display ratios and have found
strong evidence that they are useful for communicating forecasted probabilities of event outcomes. The second notable
use of frequency formats in visualization is within the emerging study of quantile dotplots (see Figure 1.1). Whereas
quantile dotplots are relatively new and have not received as much examination as icon arrays, they capitalize on the
theoretical benefits of frequency framing and have demonstrated positive results in laboratory studies.

Icon arrays

A substantial body of research demonstrates that icon arrays are one of the most effective ways to communicate a
single probabilistic value and can outperform textual descriptions of probabilities and frequencies [27, 35–42]. One
of the key benefits of icon arrays is that they offload cognition by allowing a viewers visual system to compare the
denominator and the numerator in a frequency probability format. Visual comparisons of this nature are easier and
faster than numerical calculations.

The difficulty in comparing ratios can produce common errors, such as individuals focusing on the numerator
of each ratio and neglecting the denominator, called denominator neglect (for review see [43]). For example, when
comparing a cancer with a mortality rate of 1,286 of 10,000 people to a cancer with a mortality rate of 24 of 100
people, participants in a laboratory study incorrectly reported that the former cancer was riskier [44]. Researchers
propose that individuals pay more attention to the relative differences in numerators (in this case, 1,286 vs. 24 deaths),
even though they should consider the relative ratios (12.86% vs. 24% mortality) (e.g., [43, 44]). Several studies
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Response to HOPs
• Distributions have: 
- Spread: the range across which the 

values are distributed) 
- Central Tendency: a measure of the 

distribution’s center) 
- Shape: the pattern that is formed 

by the set of values when arranged 
from lowest to highest) 

• These don't rely on counting during 
animation 

• Would a sentence suffice instead?
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Hypothetical Outcome Plots Help Untrained Observers Judge
Trends in Ambiguous Data

Alex Kale, Francis Nguyen, Matthew Kay, and Jessica Hullman

Fig. 1. We present two experiments (E1 and E2) evaluating four different uncertainty visualizations (from left to right): bar graphs with
error bars, bar hypothetical outcome plots (HOPs), static line ensembles, and line HOPs.

Abstract—Animated representations of outcomes drawn from distributions (hypothetical outcome plots, or HOPs) are used in the
media and other public venues to communicate uncertainty. HOPs greatly improve multivariate probability estimation over conven-
tional static uncertainty visualizations and leverage the ability of the visual system to quickly, accurately, and automatically process
the summary statistical properties of ensembles. However, it is unclear how well HOPs support applied tasks resembling real world
judgments posed in uncertainty communication. We identify and motivate an appropriate task to investigate realistic judgments of un-
certainty in the public domain through a qualitative analysis of uncertainty visualizations in the news. We contribute two crowdsourced
experiments comparing the effectiveness of HOPs, error bars, and line ensembles for supporting perceptual decision-making from
visualized uncertainty. Participants infer which of two possible underlying trends is more likely to have produced a sample of time
series data by referencing uncertainty visualizations which depict the two trends with variability due to sampling error. By modeling
each participant’s accuracy as a function of the level of evidence presented over many repeated judgments, we find that observers
are able to correctly infer the underlying trend in samples conveying a lower level of evidence when using HOPs rather than static
aggregate uncertainty visualizations as a decision aid. Modeling approaches like ours contribute theoretically grounded and richly
descriptive accounts of user perceptions to visualization evaluation.

Index Terms—uncertainty visualization, hypothetical outcome plots, psychometric functions

1 INTRODUCTION

Effective communication of uncertainty, probability, and random sam-
pling is necessary for scientific literacy among the public and for the
practice of reproducible science. For example, confusing presenta-
tions of uncertainty in weather forecasts may lead people to discount
uncertainty in the forecast, inducing a false sense of security about
predicted outcomes. This kind of misunderstanding erodes public
trust in science [7, 39]. Among scientists, misunderstandings of sam-
pling error and the likelihood of replicating experimental results con-
tribute to rampant use of underpowered studies and the “replication
crisis” [37, 62]. A core challenge in communicating uncertainty infor-
mation is how to help audiences recognize that estimates are subject
to variability in the process which produces them [21, 54, 60]. This is
especially difficult when audiences are unfamiliar with the statistical
abstractions commonly used to express these concepts.
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Data visualizations communicate complex information by offload-
ing cognitive work as to automatic perceptual processing [43]. Visual
metaphors could help audiences make sense of otherwise inaccessible
uncertainty information. However, commonly used uncertainty visu-
alizations often lead to misinterpretations. For example, error bars
encoding confidence intervals or standard errors are easily misunder-
stood [6, 31] perhaps because such frequentist statistics are misinter-
preted as indicating the probability of an estimate rather than the vari-
ability in the process which produced that estimate. Similarly, the
nuances of statistical abstractions make it hard for many people to in-
terpret probability density plots like gradient plots and violin plots.

Recently, Hullman et al. [36] defined a form of animated uncer-
tainty visualization called Hypothetical Outcome Plots (HOPs). HOPs
present uncertainty as a set of animated frames, each depicting a sam-
ple from a distribution of possible outcomes. Hullman et al. [36] found
that HOPs facilitate comparable and much better estimation of uni-
variate and multivariate distributional information, respectively, than
error bars and violin plots. Importantly, HOPs express shared vari-
ation among multiple variables via the correlation of samples across
animated frames, whereas static visualizations are not generally ex-
pressive of this shared variability. HOPs are especially flexible across
applications since they do not introduce additional graphical marks
(e.g., error bars) or encodings (e.g., color, transparency) to encode the
variability of a distribution.

However, it remains unknown whether HOPs also have advantages
for more applied tasks resembling real world judgments about data.
For a realistic investigation of comprehension, we must go beyond the
ability to read probabilities from a visualization and look at judgment
tasks where people must choose between alternative interpretations of
uncertain data (i.e., models that generated the data) in order to act. We
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ing cognitive work as to automatic perceptual processing [43]. Visual
metaphors could help audiences make sense of otherwise inaccessible
uncertainty information. However, commonly used uncertainty visu-
alizations often lead to misinterpretations. For example, error bars
encoding confidence intervals or standard errors are easily misunder-
stood [6, 31] perhaps because such frequentist statistics are misinter-
preted as indicating the probability of an estimate rather than the vari-
ability in the process which produced that estimate. Similarly, the
nuances of statistical abstractions make it hard for many people to in-
terpret probability density plots like gradient plots and violin plots.

Recently, Hullman et al. [36] defined a form of animated uncer-
tainty visualization called Hypothetical Outcome Plots (HOPs). HOPs
present uncertainty as a set of animated frames, each depicting a sam-
ple from a distribution of possible outcomes. Hullman et al. [36] found
that HOPs facilitate comparable and much better estimation of uni-
variate and multivariate distributional information, respectively, than
error bars and violin plots. Importantly, HOPs express shared vari-
ation among multiple variables via the correlation of samples across
animated frames, whereas static visualizations are not generally ex-
pressive of this shared variability. HOPs are especially flexible across
applications since they do not introduce additional graphical marks
(e.g., error bars) or encodings (e.g., color, transparency) to encode the
variability of a distribution.

However, it remains unknown whether HOPs also have advantages
for more applied tasks resembling real world judgments about data.
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through ensemble processing in 56 (64.4%) cases, and could be read
through shape perception in 60 (69.0%) cases. This shows that design-
ers often encode relevant information in multiple different ways (e.g.,
providing a trend line as well as individual data points).

We observed 19 (21.8%) questions that were primarily about cen-
tral tendency and 34 (39.1%) questions that were primarily about un-
certainty. Only 33 of the questions (37.9%) were concerned with both
central tendency and uncertainty without one clearly dominating the
task. This suggests that judgments about uncertainty in news contexts
are often framed as separate tasks from judgments of central tendency.
Empirical evidence in uncertainty visualization [36, 47, 52, 53] and
cognitive science [39, 63] suggests that effective uncertainty visual-
ization should promote the integration of both central tendency and
uncertainty information because otherwise people tend to substitute
biased heuristics for more nuanced judgments of uncertainty.

Of the 87 questions examined, 64 (73.6%) involved comparisons
between individual data points and/or distributions, and 72 (82.8%)
involved inferences about information not directly encoded in the vi-
sualizations. Both comparison and inference seem to be common cog-
nitive operations required to interpret uncertainty visualizations in the
news. This suggests that when designing and evaluating uncertainty
visualizations for a broad audience, it is not sufficient to simply mea-
sure ability of observers to extract directly encoded individual values.

3.3.3 Selecting a Representative Uncertainty Judgment Task

We wanted a task for our experiments that required more sophisticated
forms of judgment than simply reading directly encoded values. We
also wanted to choose a task that required considering both uncertainty
and central tendency. We used the results of our coding to identify a
concrete question from a visualization and article originally presented
by the NYT: “How not to be Misled by the Jobs Report” [55]2. In our
adaptation of this task (Fig. 3), participants decide which of two under-
lying trends, growth or no growth in the job market, is more likely to
have produced an observed sample of job growth numbers. The choice
between trends requires the participant to consider how variance due
to sampling error impacts samples of hypothetical jobs numbers. The
participant must visually extract the trend in a hypothetical sample
of jobs numbers through either ensemble processing or shape percep-
tion. Then, considering the central tendency and variance of the two
possible trends based on uncertainty visualizations, participants make
inferences about the likelihood of a given sample under each trend.
Thus, our task entails reasoning spanning all of our distinctions except
for the direct reading of individually encoded values.

The task we selected is representative not only of how uncertainty
visualization is used in the news but of tasks that are implicated in sta-
tistical literacy. By asking participants to make inferences from sam-
ples of noisy data, our task engages core statistical competencies. In
order to understand applications of statistics in science, people must
recognize that samples may not always resemble the model or pop-
ulation from which they are produced [21, 23]. In our task and in
public-facing presentations of statistics (e.g., election models), there
are components of variance in sampling which are accounted for by
underlying trends (signal) and components of variance which are due
to sampling error and other random processes (noise). The ability to
recognize and parse these sources of variance is implicated in our task
and is important to the comprehension of statistics [21, 23].

4 EXPERIMENT 1

Experiment 1 mirrors the visualization design and data-interpretation
context of the NYT article “How not to be Misled by the Jobs Re-
port” [38]. We evaluate how well HOPs facilitate accurate percep-
tual decision-making compared to a more conventional encoding of
uncertainty— error bars. We choose error bars as the control visual-
ization for this task because (1) they are a common static encoding of
uncertainty and (2) they can be used to add uncertainty information to

2https://www.nytimes.com/2014/05/02/upshot/how-not-to-be-misled-by-
the-jobs-report.html

Fig. 3. A depiction of the task interface used in our studies (stimuli for
Experiment 1 are shown). The chart that participants judge on the cur-
rent trial is on the left side of the display. The reference uncertainty
visualizations for the “no growth” and “growth” trends are on the right
side of the display. Underneath the uncertainty visualizations, the par-
ticipant uses radio buttons to indicate which trend is more likely and the
slider to rate their confidence.

the bar encoding used in the NYT, enabling a controlled comparison
that remains faithful to the original presentation.

In a crowdsourced experiment on MTurk, we ask participants to
discriminate which of two possible underlying trends is more likely
to have produced hypothetical samples of jobs added to the economy
each month of a simulated year (Fig. 3). Thus, we embed the visu-
alizations from the NYT [38] into a traditional two-alternative forced
choice (2AFC) psychophysics experiment.

4.1 Methods

4.1.1 Procedure

Upon accepting the Human Intelligence Task (HIT), participants were
redirected to a web page containing instructions on the task. Partici-
pants were told they would play the role of a newspaper editor who is
presented with a bar chart of jobs added to the economy each month
of a simulated year and asked decide on a headline about the growth
trend in the job market for that year (Fig. 3). On each trial, the par-
ticipant made a 2AFC judgment (“growth” or “no growth”) about one
bar chart and provided a rating of their confidence in this judgment on
a scale of 50 (random guess) to 100 (absolutely certain). Each par-
ticipant completed a block of 60 trials using error bars as a decision
aid and another block of 60 trials with HOPs as a decision aid, where
the order of the visualization conditions was counterbalanced across
observers. At the end of 120 trials, each participant completed a brief
demographic survey, including questions about familiarity with statis-
tics and with the specific visualizations shown in the task. The HIT
carried a reward of $8 ($29.32 per hour on average).

4.1.2 Measures and Hypotheses

Our dependent measures are parameter estimates derived from psy-
chometric functions (PFs, Fig. 5) and a related approach to modeling
confidence data. These are inferential models of perceptual decision-
making based on signal detection theory (SDT, Fig. 2).

Psychometric Functions (PFs): For each participant’s 2AFC re-
sponses under each visualization condition, we fit a PF [42] estimating
two parameters: (1) the JND, which is the level of evidence at which
the participant is expected to perform with mean accuracy on the task;
and (2) the spread of the PF, which describes the noise in the partic-
ipant’s perception of evidence in the task (Fig. 5). We predicted that
when uncertainty due to sampling error was visualized using HOPs, as
compared to error bars, subjects would have smaller estimated JNDs
on average, indicating that observers require less evidence to distin-
guish the trend underlying a sample from noisy data. We also pre-
dicted that users would have smaller estimated PF spreads, indicating
that they find stimuli ambiguous across a narrower range of evidence.

Confidence Fitness: Existing approaches to confidence analysis in
uncertainty visualization evaluation tend to either assume that more
confidence is better (e.g., [8]) or analyze the correlation between con-
fidence and accuracy over a set of judgments (e.g., [14]). However,
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Fig. 4. Example stimuli judged by participants in our task. Scan across
the figure to get a concrete sense of how our units of evidence translate
into the appearance of a stimulus. Units of evidence are the log ratio
of the probability that each stimulus was produced by the growth vs no
growth trends, given shared variability due to sampling error. We take
the absolute value of the log likelihood ratio so that units of evidence
have the same sign regardless of which trend produced the stimulus.

both approaches may be inadequate to deal with the complexity of con-
fidence as a construct; for example, research in judgment and decision-
making describes how confidence reporting is often noisy and may not
adhere to the laws of probability (i.e., [51]). To overcome these limita-
tions, we adapt an approach from psychophysics [56] which explicitly
models the noise in an observer’s confidence reporting process.

Confidence fitness can be interpreted as an estimate of the degree to
which confidence ratings are coherent with a probabilistic interpreta-
tion. The model is based on SDT and assumes that confidence ratings
from the ideal observer should reflect the accuracy of their judgments
at the given level of evidence [56]. To estimate a ground truth for
confidence, we simulated many trials for each observer based on their
PF. We estimate the ideal confidence of an observer as the accuracy of
these simulated noisy judgments at each level of evidence. Confidence
fitness is a latent parameter of the model ranging from 0 to 1 which es-
timates the degree to which actual confidence reporting is random or
ideal. We had no strong a priori predictions about confidence fitness.

4.1.3 Stimuli and Trial Generation
Stimuli, Units of Evidence, and Task Difficulty: The PF fitting process
requires a single measure of stimulus intensity which approximates the
difficulty of the judgment task for each stimulus. Stimulus intensity
is used as a ground truth to determine whether or not judgments are
correct. In our task, the intensity measure should quantify the strength
of the evidence in favor of a growth or no growth interpretation of a
given sample of jobs numbers. We calculate the intensity based the
probability of each possible trend having produced the sample of jobs
numbers. For any given stimulus (set of hypothetical job numbers),
strength of evidence is the log likelihood ratio describing the relative
likelihood that the stimulus was produced by the no growth or growth
trend in the job market (Fig. 4). This produces a log-linear intensity
scale where positive values represent evidence in favor of no growth
(e.g., bottom row of Fig. 4), negative values represent evidence in favor
of growth (e.g., top row of Fig. 4), and zero is the point of maximum
uncertainty. Because our measure of intensity should be consistent
whether the evidence more strongly favors the growth or the no-growth
trend, we take the absolute value of this log likelihood ratio.

evidence =| log10(Pr(sample|noGrowth)/Pr(sample|growth)) |

Here, sample is a given set of job growth numbers, noGrowth is a trend
in which the jobs added each month are normally distributed about
150k with a standard deviation (SD) of 95k, and growth is a trend
in which there is a linear increase of 15k jobs per month from 150k
in January to 350k in December, with a SD of 95k jobs each month
(Fig. 3, right side). For both trends, we matched the mean job growth
for each month to the NYT article [38]. However, we differed from
the NYT article by using a SD of 95k jobs instead of 55k. We chose
this SD to guarantee that there were many visually distinct stimuli to
sample for which the underlying trend was ambiguous.

Staircase Sampling Procedure: A major challenge in obtaining
valid PF fits is making sure that the observer completes enough trials
at stimulus intensities which are ambiguous. Choosing stimuli which

the participant can judge correctly, but which are not easy, reduces the
uncertainty in the fitting process [57]. However, the researcher must
not present too many trials, otherwise issues of participant attrition
and fatigue arise. Adaptive sampling procedures are the best solution
to this problem. These algorithms sample stimuli at levels of evidence
which are ambiguous but not uninformative based on the participant’s
past performance. We used a three-down, one-up staircase (suggested
in [22]) in which the level of evidence was incremented (i.e., made
easier) by 3 absolute log likelihood ratio units each time the partici-
pant guessed wrong, and the level of evidence was decremented (i.e.,
made harder) every third time the participant was correct. In order to
avoid autocorrelation in performance resulting from participants notic-
ing the sampling procedure, we randomly interleaved 25 trials each
from two different staircases (suggested in [13]) as well as 10 gold
standard trials at an absolute log likelihood ratio of 9 (very easy). The
two staircases differed only in their decrementing step sizes of 2.22
and 1.65 absolute log likelihood ratio units, respectively. Step sizes
were chosen based on pilot data and recommendations from simula-
tion studies on how to create staircases with stable convergence [22]
and how to sample in order to minimize uncertainty in the parameter
estimates from PFs [57]. These staircases promoted meaningful PF
fits in a minimal number of trials.

Uncertainty Visualizations: In our task, participants use different
uncertainty visualizations as a decision aid showing the no growth and
growth trends (Fig. 3, right side). HOPs were generated by repeat-
edly sampling 12-month sets of jobs added to the economy from each
underlying trend, plotting these numbers in bar charts, and animating
transitions between frames. Animated transitions between bar values
were 500 ms in duration with a 10 ms delay between each bar and a
frame rate of 45 hz. Each sample was displayed for 1500 ms in be-
tween the animated transitions. Animation parameters followed those
used by the NYT. We used a cubic easing function for animated tran-
sitions, which was consistent with the NYT visualization.

4.1.4 Participants

We recruited 62 MTurk Masters workers, each located in the United
States and with a HIT approval greater than 95%, to participate in
the study. A power analysis on pilot data suggested our target sample
size should be 50 within-subjects comparisons of HOPs and error bars,
where each participant completes a block of 60 trials for each visual-
ization condition and the condition order is counterbalanced across
participants. To achieve this, we iteratively sampled small batches
of participants (n < 10), alternating the starting visualization condi-
tion, and applying a set of a priori exclusion criteria to the data col-
lected. This was procedure was repeated until we had 50 participants
in our sample after exclusions, and condition order was counterbal-
anced across participants. During the iterative sampling procedure
(see Preregistration3), one participant was excluded due to exception-
ally poor performance, and five participants were excluded from anal-
ysis due to poorly converging psychometric function fits. We acciden-
tally collected six participants more than intended, so six participants
were chosen at random and excluded from analysis thereafter.

4.1.5 Analysis Approach

Psychometric Function Estimation: We used a maximum likelihood
optimization algorithm to fit a cumulative Gaussian distribution to
model accuracy as a function of the level of evidence presented in
each stimulus (Fig. 5). Recall that evidence is the degree to which the
data in a stimulus informs the forced choice between the two possible
underlying trends of growth and no growth. The lower asymptote of
this cumulative Gaussian was set to a guess rate of 0.5 (Fig. 5, lower
left), which would be achieved in theory if the participant guessed on
each trial. The upper asymptote of the cumulative Gaussian was set
to one minus some lapse rate (Fig. 5, upper right), the base rate of
stimulus-independent errors due to lapses of attention. Following rec-
ommendations from a simulation study on PF fitting [65], we estimate

3https://osf.io/975us/register/5771ca429ad5a1020de2872e
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Conclusions
• Designers need to make sure people perceive uncertainty accurately 
• HOPs help provide more interpretable reading 
• Tension between showing all outcomes (ensembles) and dealing with 

occlusion/density vs. attention blindness
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ABSTRACT 
Users often rely on realtime predictions in everyday con-
texts like riding the bus, but may not grasp that such predic-
tions are subject to uncertainty. Existing uncertainty visual-
izations may not align with user needs or how they natural-
ly reason about probability. We present a novel mobile in-
terface design and visualization of uncertainty for transit 
predictions on mobile phones based on discrete outcomes. 
To develop it, we identified domain specific design re-
quirements for visualizing uncertainty in transit prediction 
through: 1) a literature review, 2) a large survey of users of 
a popular realtime transit application, and 3) an iterative 
design process. We present several candidate visualizations 
of uncertainty for realtime transit predictions in a mobile 
context, and we propose a novel discrete representation of 
continuous outcomes designed for small screens, quantile 
dotplots. In a controlled experiment we find that quantile 
dotplots reduce the variance of probabilistic estimates by 
~1.15 times compared to density plots and facilitate more 
confident estimation by end-users in the context of realtime 
transit prediction scenarios.  

Author Keywords 
End-user visualization; transit predictions; mobile interfaces; 
dotplots; uncertainty visualization. 

ACM Classification Keywords 
H.5.m. Information interfaces and presentation (e.g., HCI): 
Miscellaneous 

INTRODUCTION 
Quantitative predictions are increasingly ubiquitous in eve-
ryday life. Many such data come in the form of point esti-
mates designed to aid decision-making, such as when the 
next bus is going to arrive, how long a road trip will take, 
whether and when it will rain, or what the high temperature 
will be. Often, people access these predictions on their mo-
bile phones to make in-the-moment decisions that are time-

constrained (providing little opportunity for training, inter-
pretation, or complex interaction) using interfaces that are 
space-constrained (due to screen size).  

For example, Susan might refer to a bus’s predicted arrival 
time on a smartphone application to check if she has time to 
get coffee before her bus to work arrives. She sees that the 
bus is running a few minutes late and is predicted to arrive 
in five minutes. There is no line at the coffee shop, so she 
steps in to order. However, the bus makes up lost time and 
arrives only two minutes later: Susan, still waiting for cof-
fee, misses her bus and is late for a meeting.  

Susan based her decision on a point estimate of arrival time, 
as presented in many predictive systems for bus arrival, 
flight time, or car travel. Her decision is reasonable given 
the point prediction she saw, but real-world predictions are 
subject to uncertainty (e.g., her bus is most likely to come 
in 5 minutes but may come in as little as 1 minute or as 
much as 9 minutes). Designers and analysts are responsible 
for reporting uncertainty with predictions to help people 
make decisions that align with their goals [5,33], yet most 
visualizations of predictions present the data as if it were 
true (Finger & Bizantz [10] as cited in Cook & Thomas 
[5]). Had Susan’s application presented her with a more 
complete representation of the predicted arrival time—
perhaps noting that arrival times earlier than 5 minutes are 
also quite probable—she may not have risked getting cof-
fee. 

Many attempts to communicate uncertainty rely on com-
plex visual representations of probability distributions. For 
example, error bars and probability densities require prior 
experience with statistical models to correctly interpret 
[2,6]. People can better understand probabilistic infor-
mation when it is framed in terms of discrete events. For 
instance, Hoffrage & Gigerenzer [16] found that more med-
ical experts could accurately estimate the positive predic-
tive value (precision) of a test when presented with discrete 
counts or outcomes. Discrete-event representations have 
been used to improve patient understanding of risk, e.g., by 
showing the uncertainty in a medical diagnosis as discrete 
possible outcomes (number of true positive, false positives, 
false negatives, and true negatives) [11]. However, visualiz-
ing discrete approaches to presenting probability distribu-
tions typically requires a large amount of space or time to 
communicate the set of possible outcomes [17]. It is not 
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Probabilistic estimate of arrival status: For example, 
what is the chance the bus has already arrived? Among 
questions not currently supported by OneBusAway, survey 
respondents most wanted support for this question (status 
probability), and commonly reported worst experiences 
related to it. 

Data freshness: Because OneBusAway does not currently 
give probabilistic estimates, one of the only available sig-
nals for expert users to assess risk is the freshness of the 
data: OneBusAway indicates the time of the last update for 
realtime predictions and whether the current prediction is 
based on realtime data (it reflects the scheduled arrival time 
when realtime data is not available). This freshness infor-
mation should either be provided to users in a redesigned 
interface, or should be incorporated into any models driving 
probabilistic estimates. 

We believe these design elements will address each goal 
identified in the user survey with the exception of the goal 
of knowing schedule frequency. We felt that this goal is 
better addressed through a separate interface, such as a trip 
planner or schedule explorer in a mapping application. 
Schedule frequency is less relevant to in-the-moment deci-
sion-making than it is to long-term planning (can I rely on a 
bus arriving within some amount of time?). When schedule 
frequency is relevant to in-the-moment decisions, it typical-
ly reduces to other goals, like time to next bus. 

DESIGN 
We conducted an iterative design process focused on the 
design requirements set out above. This process began with 
a wide exploration of ideas through sketching, followed by 
paper prototyping in increasing fidelity, and culminated in 
digital mockups. These phases were informed by ongoing 
user feedback gained through informal down-the-hall test-
ing with a total of 24 users. During informal testing, we 
presented users with hypothetical scenarios of use and 
asked them to think aloud as they interpreted the display. 

Many of the design issues we encountered are somewhat 
orthogonal to specific of encodings of probability: given a 
particular timeline layout, for example, we could encode 
probability in many ways (e.g., as area, discrete events, a 
gradient). We first present our proposed set of designs and 
their rationale, then discuss possible techniques for encod-
ing probability on small screens. 

Proposed designs and rationale 
Our proposed designs, instantiated with one particular visu-
alization of uncertainty (density plot) out of several possi-
ble, are shown in Figure 1. Here we describe decisions we 
made to resolve design tensions and to match user goals. 

Different layouts better serve different use cases 
We developed two alternative layouts, bus-timeline and 
route-timeline. The bus-timeline layout gives a timeline for 
a single bus on each row, similar to how the existing One-
BusAway app displays a single row per bus, sorted by pre-
dicted time to arrival. This simplifies understanding and 

navigation, but is less compact in addressing problems like 
assessing schedule frequency, and, once the probabilistic 
visualizations are added, less compact than the current ap-
plication. Route-timeline, by contrast, creates a more com-
plex display and navigation (requiring navigation in two 
dimensions), but more easily aids understanding of sched-
ule frequency (how often is the bus) and schedule oppor-
tunity (since if one is considering the risk associated with 
missing the next bus, it is easier to see how soon the bus 
after that is coming and factor that into one’s decision).  

Point estimates and probabilistic  
estimates should coincide spatially 
We explored several tradeoffs between prominent point 
estimates versus probabilistic estimates, what we call the 
glanceability/false precision tradeoff. A too-prominent 
display of the point estimate causes users to ignore the 
probabilistic one, thus still giving a false sense of precision; 
a less-glanceable point estimate will be difficult to skim and 
frustrating to use. We want a display that is glanceable but 
which also does not convey false precision. To resolve this, 
we concluded that these two elements should coincide spa-
tially: that is, looking at the point estimate should encour-
age the user to also be looking at the probabilistic estimate. 
We had considered designs in which the point estimate was 
along the right-hand edge of the display (Figure 3), as in the 
original OneBusAway. We concluded that this facilitated 
glanceability, but also allowed users to pay too little atten-
tion to the probabilistic estimates. Moving the point esti-
mate onto the probability distribution resolved this tension. 

Annotated timelines give probabilistic  
estimates of status “for free” 
While we considered designs that more explicitly com-
municate the probability that the bus has arrived, we real-
ized that an annotated timeline combined with probabilistic 
predictions communicates this implicitly. By denoting areas 
that correspond to “departed”, “now”, and “on the way” on 
the timeline, users can directly read these probabilities from 
the distributions depicted; see the timeline annotations 
across the top of Figure 1.  

 
Figure 1. Alternative layouts we developed. (a) Bus Timeline: 
Each row (timeline) shows one predicted bus. (b) Route Time-
line: Each row shows all predicted buses from a given route. 

Bus Timeline Route Timeline

the row height. Traditional solutions include horizon charts 
[15] (which we suspect are unfamiliar to lay users), or nor-
malizing all density plots to the same height (which makes 
comparison difficult). This problem is most pronounced on 
buses with tight variance, i.e., the most precise predictions. 
Consequently, for density plots we adopted the compromise 
approach of scaling down the max height only when it ex-
ceeds the row height. This adjustment affects only the pre-
dictions of which the model is most certain, so fine-grained 
resolution of probability becomes less important to most 
goals. This adjustment is required only for density, dotplot-
50, and dotplot-100 (in the dense dotplots, instead of scal-
ing we reduce the dot-spacing). Dotplot-20 and stripeplot 
have the advantage of a consistent representation of proba-
bility in tight densities: they need not be modified. 

Countability may vary from tails to body  
Care must be taken in deciding how many hypothetical 
draws (quantiles) to include in discrete plots. Figure 4 com-
pares some of the tradeoffs here: With few draws, as in 
dotplot-20, it is easy to count the dots in the tails and body 
of the distribution, but the density is less well-resolved. 
With many dots, as in dotplot-100, counting in the tails is 
often still easy, but in the body overwhelming; however, 
density is very well-resolved.  

Selected encodings 
To select the encodings to evaluate for our final design, we 
constructed the matrix shown in Figure 4 comparing vari-
ous properties of the encodings. We selected density, 
stripeplot-50, dotplot-20, and dotplot-100 as representing a 
wide range of possible trade-offs suggested by this matrix. 
EXPERIMENT 
We conducted an online survey to evaluate the effective-
ness of our designs in conveying uncertainty. The goal of 
this survey was to assess how well people can interpret 
probabilistic predictions from the visualizations and to elicit 
their preferences for how the data should be displayed.  

Method 
To assess how well people can judge probability from our 
visualizations, we adopted an approach similar to that of 
Ibrekk and Morgan [18], who presented various representa-
tions of uncertainty for weather forecasts and asked subjects 
to report probabilities (e.g., snowfall >2 inches, or between 
2 and 12 inches).  

We created four scenarios based on the goals identified in 
our user survey, each with two questions about the proba-
bility of bus arrival. For example, in one scenario the re-
spondent is waiting for a bus, and must decide if they have 
enough time to get coffee before the bus arrives. They are 
asked what the chance is that the bus will arrive 10 minutes 
or earlier, and respond using a visual analog scale, a 100-
point slider from 0/100 to 100/100. We call their response 
the estimated p (in contrast to the true p, which we calculate 
from the underlying probability distribution). A bubble on 
the response slider shows this chance expressed in all three 
denominators used by the various visualization types (e.g. 

“20/100, 10/50, 4/20”), so that participants do not have to 
do mental arithmetic in the dotplot and stripeplot condi-
tions. The predictions in each scenario were generated from 
models based on Box-Cox t distributions [29] fit to ~2 
weeks worth of arrival time data for actual buses in Seattle, 
but the buses were given fake route names. Participants are 
also asked how confident they are in each probability they 
estimate. At the end of the survey they rate the ease of use 
and visual appeal of each visualization. All subjective rat-
ings are made on 100-point visual analog scales. 

Scenario order was randomized between participants. Each 
participant saw each visualization type (density, stripeplot, 
dotplot-20, or dotplot-100) once. Before each scenario, they 
were also given a brief tutorial explaining the encoding they 
were about to use. Pairings between scenario and visualiza-
tion type were also randomized. Participants were also ran-
domly assigned to see all visualizations in the bus-timeline 
or route-timeline layout. A full version of the survey can be 
found in the supplementary material. 

Participants 
We recruited participants from a variety of locations, in-
cluding department mailing lists, a local transit blog, and a 
local forum on reddit.com. Participants were entered into a 
raffle for 1 $100 Amazon.com gift card and an additional 

 
Figure 5. The four types of visualizations selected for evaluation.  
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Figure 4. Comparison of various encodings of probability we 

considered for use in our designs. 
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