
Information Visualization

Temporal Data

Dr. David Koop

D. Koop, CSCI 628, Fall 2021

Calendar

Events Trajectories

Time series

Temporal Data

2

[B. Bach]
D. Koop, CSCI 628, Fall 2021

https://datavis2020.github.io/slides/DataVis2020_7-TemporalData.pdf

1077-2626 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2016.2614803, IEEE
Transactions on Visualization and Computer Graphics

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. X, 201X 2

Linear Radial SpiralGrid Arbitrary

Chrono–
logical

Relative Logarithmic Sequential Sequential +
Interim

Duration

Unified
(single

timeline)

Faceted
(multiple
timelines)

Segmented
timeline

Faceted +
Segmented

Re
p
re
se
nt
a
tio
n

Sc
a
le

La
yo
ut

Fig. 1. The three dimensions of our design space for expressive story-
telling with timelines: representation, scale, and layout.

ations with respect to using different timeline designs in coherent
stories, including whether and how smooth animated transitions
are appropriate for presenting a series of varied narrative points.

The contribution of this paper is twofold. The first contribution
is the introduction and analysis of a design space for storytelling
with timelines. Our analysis ties together five disparate threads
of previous work for the first time: the history of timelines over
the centuries, bespoke interactive timelines presenting a specific
dataset, manually illustrated static timeline infographics, the cur-
rently deployed set of software tools for timeline authoring, and
the visualization research literature. Our second contribution is
a realization of viable timeline designs from our design space
within a sandbox environment, which we used to produce seven
example timeline stories; these stories feature a variety of narrative
points and illustrate the benefits of incorporating multiple timeline
designs linked together by animated transitions. Ultimately, our
work is intended to both ground and inspire the design of future
interactive tools for producing visual timeline stories.

2 BACKGROUND AND RELATED WORK

This section provides background information with regards to
timelines, data-driven storytelling, and the use of animated transi-
tions for preserving context.

2.1 Timelines

A timeline depicts a sequence of events, or interval event data
using the precise terminology of Aigner et al. [5], which is to
be distinguished from instant or continuous quantitative time-
series data. A simple timeline indicates the types of events being
depicted, the number of events, and the order in which they
occurred. A more detailed timeline may indicate when the events
occurred in chronological time, how long they lasted, and whether
any of the events overlapped. Typically, an event is visually
encoded using some graphical mark, such as a line or an icon. The
placement of this mark in relation to an axis representing time and
to other event marks will indicate when the event occurred.

Fig. 2. The linear, chronological form of Joseph Priestley’s Chart of
Biography (1765) dominates the design of contemporary timelines.

2.1.1 Historical Context
Consider Joseph Priestley’s Chart of Biography [74], first pub-
lished in 1765, which is shown in Figure 2. Priestley has drawn
lines along a horizontal chronological axis, running from left to
right, indicating the lifespans of nearly sixty people, and he has
annotated these lines with their names. The vertical positions of
these lines are not meaningful: the lines and annotations are placed
to avoid overlap.

Though most timelines appearing since the late 18th century
bear some resemblance to Priestley’s form, it is by no means the
only and best timeline design [76]. By broadening the scope to
consider timelines produced throughout history [77], one may
encounter a number of visual representations that differ from
Priestley’s design: timelines have taken the form of circles, spirals,
grids, tabular ledgers, pictographic unit charts, and even arbitrary
shapes that evoke spatial metaphors; consider, for instance, the
phrase “an event that changed the course of history.” The events
themselves have also been represented with a variety of graph-
ical marks, including dots, lines, arcs, icons, or polygons. We
reconsider several of these representations in our discussion of
the design space below. While many narratives involving timelines
follow the linear chronological progression of time, some narrative
points refer to patterns or differences in the duration, distribution,
or periodicity of events, or to event sequences and synchronicities.
For example, linear representations can better support points
relating to chronology and sequence, while representations that
evoke analog clock faces or calendars can be more effective in
supporting points about periodic repetition.

2.1.2 Timeline Authoring
Timeline infographics often appear in newspapers, magazines,
textbooks, or online. Unlike the hand-drawn timelines produced
in previous centuries [77], most timeline infographics today are
produced using illustration software. This production medium
allows for considerable expressiveness, and while many timeline
infographics adopt aspects of Priestley’s linear chronological
form, many infographics deviate from this tradition (e.g., [3],
[75], [91]). However, these timelines remain static, and thus it is
difficult to integrate them into larger data-driven stories comprised
of multiple narrative points.

As an alternative to static infographics, timeline authoring
tools (e.g., [13], [39], [45], [48], [65], [68], [83], [98]) allow
a storyteller to easily generate a curated interactive timeline.
TimelineJS [68] and TimelineSetter [83] are two of these tools
that go a step further in that they generate a slideshow presentation
of the timeline with full text descriptions for each event; with

Timeline Design Space

3

[M. Brehmer et al.]
D. Koop, CSCI 628, Fall 2021

https://timelinesrevisited.github.io

Time Curves: Folding Time to Visualize
Patterns of Temporal Evolution in Data

Benjamin Bach, Conglei Shi, Nicolas Heulot, Tara Madhyastha, Tom Grabowski, Pierre Dragicevic

1 2 3 4 5 6 7

1

2
3

4

5

6

7

Timeline: Time difference

1
2 3

4 5

6
7

1

2 3

4
5

6

7

Circles are data cases with a time stamp.

Folding:

Time curve: Similarity

The temporal ordering of data cases is preserved.
Spatial proximity now indicates similarity.

Similar colors indicate similar data cases.

(a) Folding time

1

2

3

4
5

6 7

A

B

C

(b) History of the Wikipedia article on Palestine

Fig. 1. The time curve principle: a) a timeline is folded into itself in such a way that similar time points end up being close to each
other; b) Example: a time curve showing the evolution of a Wikipedia article.

Abstract—We introduce time curves as a general approach for visualizing patterns of evolution in temporal data. Examples of
such patterns include slow and regular progressions, large sudden changes, and reversals to previous states. These patterns can
be of interest in a range of domains, such as collaborative document editing, dynamic network analysis, and video analysis. Time
curves employ the metaphor of folding a timeline visualization into itself so as to bring similar time points close to each other. This
metaphor can be applied to any dataset where a similarity metric between temporal snapshots can be defined, thus it is largely
datatype-agnostic. We illustrate how time curves can visually reveal informative patterns in a range of different datasets.

Index Terms—Temporal data visualization, information visualization, multidimensional scaling

1 INTRODUCTION

A large portion of the information we produce is temporal: video
recordings, revision histories, meteorological records, brain scans, or
any digital collection that contains entities recorded at different times.
All such information artefacts reflect dynamic processes with possibly
complex patterns of evolution. For example, an article being writ-
ten can stagnate or progress quickly, or can undergo reversals in case
of a disagreement between multiple authors. Brain activity can vary
between different states, reflecting changing external stimuli and cog-
nitive processes. Weather is chaotic in the short run but follows steady

• Benjamin Bach is with Microsoft Research-Inria Joint Centre. E-mail:
benj.bach@gmail.com.

• Conglei Shi is with the IBM T.J, Watson Research Center, Yorktown
Height, NY. E-mail: shiconglei@gmail.com.

• Nicolas Heulot is with IRT SystemX: nicolas.heulot@irt-systemx.fr
• Pierre Dragicevic is with Inria: pierre.dragice@gmail.com
• Tara Madhyastha is with the Department of Radiology at University of

Washington. E-mail: madhyt@u.washington.edu.
• Tom Grabowski is with the Department of Radiology and Neurology at

University of Washington. E-mail: tgrabow@u.washington.edu.

Manuscript received 31 Mar. 2015; accepted 1 Aug. 2015; date of
publication xx Aug. 2015; date of current version 25 Oct. 2015.
For information on obtaining reprints of this article, please send
e-mail to: tvcg@computer.org.

cyclic patterns on a larger scale (seasons), and trends on an even larger
scale (climate). All such temporal patterns that can be of great interest
to domain experts or to a more general audience.

Many temporal data exploration tools have been developed that can
help better understand such patterns (for reviews see [2, 5, 8]), but
they are typically domain-specific or assume a particular data struc-
ture, such as multidimensional tabular data. Yet information artefacts
are diverse and many of them are largely unstructured (e.g., plain text
or photos). Developing specialized visualization tools for each possi-
ble domain and type of dataset can be costly and impractical. Thus we
need to develop more visual representations of temporal data that can
be applied to a range of datasets. Such visual representations can not
only help to reduce production costs, but can also be learned once for
all and become part of the repertoire of charts routinely used in pub-
lic communication. By introducing time curves, we show that while
each temporal dataset is different, many such datasets share similar
high-level patterns of temporal evolution that do not necessarily re-
quire elaborate and specialized techniques to be seen.

The time curve technique is a generic approach for visualizing tem-
poral data based on self-similarity. It only assumes that the underly-
ing information artefact can be broken down into discrete time points,
and that the similarity between any two time points can be quantified
through a meaningful metric. For example, a Wikipedia article can be
broken down into revisions, and the edit distance can be used to quan-
tify the similarity between any two revisions. A time curve can be seen

Time Curves

4D. Koop, CSCI 628, Fall 2021

Fig. 2. Wikipedia article on Chocolate showing an edit war in stage (2).
Blue halos indicate identical revisions.

Progress and Stagnation—Every Wikipedia article has a unique
story, and thus a unique time curve. For example, the time curve in
Figure 1(b) reveals that the article on Palestine underwent three stages,
including turbulences in the form of zig-zag patterns suggesting a con-
troversial stage. The controversy is then resolved and revisions be-
come large and clustered, suggesting maturity. The time curve in Fig-
ure 2 (Chocolate) is stable overall, except for a stage where the curve
alternates between the exact same revisions (blue halos), suggesting a
so-called “edit war”.

A time curve can give Wikipedia readers a rapid overview of an
article’s writing process, and possibly give them cues as to whether
the article can be trusted [11]. As articles never stop being edited,
time curves can also benefit contributors who monitor specific articles
over time. Time curves make it easy to spot patterns that can be further
examined using “detail-on-demand” techniques. Our web app does not
support such techniques, thus for our scenarios we used Wikipedia’s
history system to examine differences between revisions of interest.

Similar and Identical Revisions—Clusters are groups of highly
similar revisions which only differ by minor edits. In clusters, dots
can overlap significantly. To improve legibility and clearly show clus-
ter cardinality, time curves implement an overlap removal mechanism.
This can be seen in the final stage of Figure 1. Dots which have been
spread apart are displayed with a gray halo, reinforcing the visual im-
pression of a cluster. If exact positions are important, overlap removal
can be disabled globally or through an interactive lens. For example,
the inset B on Figure 1(b) shows that the final stage of Palestine under-
goes a gradual progression with a dense cluster at the end suggesting
a stabilization.

Overlap removal is not applied to identical revisions. Instead, these
are superimposed and shown with a blue halo – the darker the blue,
the more points have been superimposed. In Figure 2, the two blue ha-
los are rather dark, suggesting a long edit war. One of the opponents
finally won and the article continued to progress. The oscillation pat-
tern at the bottom left of Figure 1(b) shows an “informal edit war”. No
explicit revert was employed, but instead portions of the article were
repeatedly changed back to previous versions. Thus, there is still a
progression, but a very inefficient one. Finally the community did not
give way and the article mostly went back to where it was. This article
contains occasional blue halos, which correspond to minor formatting
changes not captured by our similarity metric.

User Contributions—The Wikipedia version of time curves can
allocate colors to users and show who is responsible for each change.
Inset C in Figure 1(b) is a zoomed-in view of the informal edit war
in the middle of the curve. Mostly two users were involved: Brown
and Green. The history on Wikipedia reveals that 1 Brown changed
a specific paragraph; 2 Brown then reintroduced part of the origi-
nal text but kept his insertions; 3 Green then removed most changes
made by Brown and 4 Brown reintroduced them; 5 Perhaps with-
out noticing Brown’s edits, Green made a minor change elsewhere in
the article; 6 After noticing, Green removed Brown’s edits again; Fi-
nally, 7 Brown gives up and inserts a single sentence stating that the
topic is still debated.

Figure 3(a) on Erich Honecker shows another example. Initially,
the article was edited almost exclusively by user Blue, in a cumulative
fashion. The final edits are minor clarifications and rewordings by
other contributors. The time color encoding (Figure 3(b)) reveals that
Blue’s edits were made in a very short amount of time (all points are

bright pink), while the later minor edits spanned a longer time period.
Thus this is a non-controversial article that quickly stabilized.

Fig. 3. Wikipedia article about former leader of German Democratic
Republic Erich Honecker, using different color encodings for nodes.

Vandalism—In cases of “vandalism”, parts or the entire article are
removed or replaced by irrelevant content. Acts of vandalism are vis-
ible as extreme outliers on a time curve. Figure 4 shows the curve for
Crimea, where a user deleted the entire article and inserted a redirect
to Putin.

Fig. 4. Vandalism on the Wikipedia article Crimea. The time point on
the right (very small) is a revision that contains a single link only.

Visual Signatures—Figure 5 shows time curves for multiple
Wikipedia articles. Even though the curves are scaled down, their
main visual characteristics are maintained. Time curves can thus serve
as visual signatures or thumbnails when navigating across multiple
datasets. We can see that the majority of the depicted Wikipedia ar-
ticles contains clusters of minor revisions, while approximately half
of them exhibit a monotonic progression. The other half involves
vandalism or edit wars. Such visualizations could, for example,
help Wikipedia administrators navigate collections of articles within
a given category and monitor anomalies.

Abortion

Apple (Computers)

Higgs Cannabis

Ukraine InfoVis

Fig. 5. Time curve signatures of different Wikipedia articles.

3.2 Video Recordings
Video recordings seem to have little in common with document revi-
sion histories, yet they are also information artefacts reflecting changes
over time. Thus video time curves can be produced where time points
are video frames or groups of adjacent videos frames, and their sim-
ilarity is estimated through image similarity computation. Questions
related to video analysis include: “when do sudden changes happen in
this security camera footage?” or “how is this movie structured?”.

Surveillance Videos—Surveillance videos often consist in mostly
static scenes, or scenes with constant motion such as highways, side-
walks or counters. Interesting moments typically appear as outliers on
a time curve. Figure 6 shows a one-minute footage from a security
camera.2 In this figure and all following figures, annotations on time
points (labels and photos) are by us. In the central cluster (e.g., time

2https://www.youtube.com/watch?v=L8WV9wLBzdg

Time Curves for Wikipedia

5

[B. Bach et al.]
D. Koop, CSCI 628, Fall 2021

point 86), only minor changes happen, such as slight changes in illu-
mination or moving leaves. Outlier dots indicate frames where peo-
ple cross the scene (e.g., time points 42 and 44). The original footage
shows a complex scene, recorded in bad quality and in black and white.
We found that the time curve shows outlying frames more clearly than
the video stills.

86

42

44

Fig. 6. A surveillance video of a street. Outliers are passing pedestrians.

Movie Analysis—Figure 7 shows an eight-minute animated film.3
Although the curve is much harder to follow, a structure can be seen.
Different scenes appear as clusters. The movie mostly employs scene
cuts, without camera motion or transition effects. Some scenes are vis-
ited twice, such as at time points 55 and 105. The large-scale structure
of the movie can be inferred from dot colors. The brightest and darkest
dots are clumped together on the top left, suggesting little action at the
beginning and at the end of the movie. In contrast, red dots undergo
large changes, with frequent scene cuts. This seems to follow a com-
mon pattern in dramaturgy. See Pless [37] for other examples of video
analysis using a similar method. Video time curves can give an initial
rough overview of the dynamic structure of a movie. They may also
be useful as visual signatures (see Figure 5), or serve as mental maps
to navigate videos. Compared to a straight timeline or seeker bar, a
time curve could facilitate video navigation by providing recognizable
visual landmarks that can help seek, memorize and revisit scenes of
interest [14].

Fig. 7. Animated movie. Scenes appear as clusters. Video stills are not
ordered chronologically, but placed next to the corresponding time point
on the curve, showing similar scenes and scenes that get revisited.

3.3 Analyzing Dynamic Visualizations
There exist temporal datasets that are hard to access or visualize, but
for which dynamic visualizations exist and are easily available. One
example is weather data, for which animated map visualizations are
regularly created and made available to the public. By treating such
visualizations as videos, it is possible to create time curves that un-
cover patterns and features in the data that are not necessarily visible
on the visualizations themselves. Such an approach essentially con-
sists of generating overviews of complex dynamic datasets by using
existing animated visualizations as proxies to the underlying data.

Precipitation Patterns—The time curve in Figure 8 summarizes a
video of cloud coverage and precipitations over one year.4 It reveals
large-scale changes across the entire year, with oscillations of about
a week. January and August are two extremes. On December, the
weather does not come back to where it was on January, but instead to
where it was on April. Although the video itself provides much more
spatial and temporal details, variations occurring at multiple scales are
hard to see (right of Figure 8).

3https://www.youtube.com/watch?v=pePhP-qRzSc
4http://tinyurl.com/colorado-global

Fig. 8. Worldwide cloud coverage and precipitation over one year, as
shown by an animated map visualization.

Figure 9 similarly shows precipitation across the United States over
the course of one year (averaged 1981-2010).5 The curve closes it-
self at the end of the year, suggesting a yearly cycle. It also crosses
itself, revealing that geographical precipitation patterns around Octo-
ber/November were the same as in March/April. In contrast to the
previous example, the curve does not show local oscillations. We can
also see three extrema: (i) low precipitation in the center of the country
but high on the coasts (Nov to March), (ii) generally high precipitation
(May to June), and (iii) low precipitation on the West part, and high
on the East part (July to Sep). From the video alone, it is hard to
spot these three extrema, as well as the relatively smooth transitions
between them.

Fig. 9. Precipitation in the US across one year.

Temperature Patterns—Figure 10 shows data on a much larger
scale, i.e., annual temperature world maps from 1884 to 2012.6 The
time curve shows three major stages with rapid transitions between
them. The first two stages cover roughly 50 years each (1884-1935 and
1942-1991). The first stage is clearly less stable than the second, which
suggests that world temperature underwent multiple alternations [18]
before starting its current monotonic progression; the last stage (1991-
2012) shows a rapid progression during a relatively short period of
time (21 years).

Fig. 10. Evolution of global temperature between 1884 and 2012. The
backtracking is an artefact of video analysis (see stills on the right).

5https://www.youtube.com/watch?v=pz2DsQeF_UM
6http://tinyurl.com/nasa-temperatures

Time Curves for Video

6

[B. Bach et al.]
D. Koop, CSCI 628, Fall 2021

point 86), only minor changes happen, such as slight changes in illu-
mination or moving leaves. Outlier dots indicate frames where peo-
ple cross the scene (e.g., time points 42 and 44). The original footage
shows a complex scene, recorded in bad quality and in black and white.
We found that the time curve shows outlying frames more clearly than
the video stills.

Fig. 6. A surveillance video of a street. Outliers are passing pedestrians.

Movie Analysis—Figure 7 shows an eight-minute animated film.3
Although the curve is much harder to follow, a structure can be seen.
Different scenes appear as clusters. The movie mostly employs scene
cuts, without camera motion or transition effects. Some scenes are vis-
ited twice, such as at time points 55 and 105. The large-scale structure
of the movie can be inferred from dot colors. The brightest and darkest
dots are clumped together on the top left, suggesting little action at the
beginning and at the end of the movie. In contrast, red dots undergo
large changes, with frequent scene cuts. This seems to follow a com-
mon pattern in dramaturgy. See Pless [37] for other examples of video
analysis using a similar method. Video time curves can give an initial
rough overview of the dynamic structure of a movie. They may also
be useful as visual signatures (see Figure 5), or serve as mental maps
to navigate videos. Compared to a straight timeline or seeker bar, a
time curve could facilitate video navigation by providing recognizable
visual landmarks that can help seek, memorize and revisit scenes of
interest [14].

Fig. 7. Animated movie. Scenes appear as clusters. Video stills are not
ordered chronologically, but placed next to the corresponding time point
on the curve, showing similar scenes and scenes that get revisited.

3.3 Analyzing Dynamic Visualizations
There exist temporal datasets that are hard to access or visualize, but
for which dynamic visualizations exist and are easily available. One
example is weather data, for which animated map visualizations are
regularly created and made available to the public. By treating such
visualizations as videos, it is possible to create time curves that un-
cover patterns and features in the data that are not necessarily visible
on the visualizations themselves. Such an approach essentially con-
sists of generating overviews of complex dynamic datasets by using
existing animated visualizations as proxies to the underlying data.

Precipitation Patterns—The time curve in Figure 8 summarizes a
video of cloud coverage and precipitations over one year.4 It reveals
large-scale changes across the entire year, with oscillations of about
a week. January and August are two extremes. On December, the
weather does not come back to where it was on January, but instead to
where it was on April. Although the video itself provides much more
spatial and temporal details, variations occurring at multiple scales are
hard to see (right of Figure 8).

3https://www.youtube.com/watch?v=pePhP-qRzSc
4http://tinyurl.com/colorado-global

Fig. 8. Worldwide cloud coverage and precipitation over one year, as
shown by an animated map visualization.

Figure 9 similarly shows precipitation across the United States over
the course of one year (averaged 1981-2010).5 The curve closes it-
self at the end of the year, suggesting a yearly cycle. It also crosses
itself, revealing that geographical precipitation patterns around Octo-
ber/November were the same as in March/April. In contrast to the
previous example, the curve does not show local oscillations. We can
also see three extrema: (i) low precipitation in the center of the country
but high on the coasts (Nov to March), (ii) generally high precipitation
(May to June), and (iii) low precipitation on the West part, and high
on the East part (July to Sep). From the video alone, it is hard to
spot these three extrema, as well as the relatively smooth transitions
between them.

Fig. 9. Precipitation in the US across one year.

Temperature Patterns—Figure 10 shows data on a much larger
scale, i.e., annual temperature world maps from 1884 to 2012.6 The
time curve shows three major stages with rapid transitions between
them. The first two stages cover roughly 50 years each (1884-1935 and
1942-1991). The first stage is clearly less stable than the second, which
suggests that world temperature underwent multiple alternations [18]
before starting its current monotonic progression; the last stage (1991-
2012) shows a rapid progression during a relatively short period of
time (21 years).

1884

1935

1942

1991

2003

2001

2012

1942

1884

2012

Fig. 10. Evolution of global temperature between 1884 and 2012. The
backtracking is an artefact of video analysis (see stills on the right).

5https://www.youtube.com/watch?v=pz2DsQeF_UM
6http://tinyurl.com/nasa-temperatures

Time Curves for Visualizations

7

[B. Bach et al.]
D. Koop, CSCI 628, Fall 2021

4.4 Informal User Feedback and Future Directions

Our investigations have shown that time curves seem to hold promise
in neuroscience and may become a powerful addition to the neurosci-
entist’s visualization toolbox. During our collaboration with T.M., we
received encouraging feedback regarding the usability and usefulness
of time curves. When we initially showed and explained time curves
to her, she appeared to immediately understand the metaphor. Before
even loading her datasets, she explained to us which patterns she was
expecting to see, and what they would mean to her. While more ex-
tensive studies are needed before we can establish the utility of time
curves in this particular domain, we consider our experience as anec-
dotal evidence that time curves can deliver quick insights on complex
datasets to domain experts who are initially not used to the method.

In the future, we plan to use time curves to examine and compare
different measures for brain connectivity and its states, and which are
more likely to sensitively distinguish the physiological status of indi-
viduals. Time curves may also be particularly useful for visualizing
data from various subjects in longitudinal studies. In situations where,
e.g., subjects are imaged every month or once a year. Metrics could
then be computed from their scans, yielding a single connectivity ma-
trix for each time point (scan). One might thus imagine comparing a
group of subjects having a neurodegenerative disease with a group of
matched controls.

5 TIME CURVE CHARACTERISTICS AND PATTERNS

Across several examples, we showed how an analyst can read visual
characteristics from a time curve and found that some visual patterns
kept reoccurring. Here, we provide a more systematic typology of
these characteristics and patterns and discuss their possible interpre-
tations. Such a typology is necessarily incomplete and subjective, as
time curves are continuous by nature and cannot be fully described
in discrete terms. Our goal is not to provide a formal procedure to
extract time curve patterns and characteristics, and map them to fea-
tures in data, but rather to offer an informal descriptive terminology
that can help novices learn how to read time curves, and analysts to
capture and communicate insights. This also gives a better idea of the
expressiveness and generality of time curves.

5.1 Time Point Distances

A

B
Spatial

Fig. 14. Distances
between time points.

Any two time points geometrically relate in
three different ways. For any pair of (not nec-
essarily adjacent) time points A and B, we re-
fer to rank distance as the number of time
points between A and B along the curve, plus
1; curvilinear distance as the length of the
curve segment between A and B (see Figure
14); and spatial distance as the 2D Euclidean
distance between A and B.

All three distances are informative. Rank distance gives informa-
tion on how far A and B are in the sequence of time points (e.g., how
many revisions apart in the edit history), and is roughly linked to tem-
poral distance. Curvilinear distance reflects the cumulated amount of
changes, or activity, irrespective of how efficient the process is (e.g.,
all cumulated edits between two revisions). Since curvilinear distance
is greater than cumulative pairwise distance and sensitive to the curve
drawing algorithm (see Section 6.4), their relationship is necessarily
approximative. Spatial distance reflects effective changes or activity
(e.g., the difference between any two revisions), and is closely linked
to data distance, i.e., the distance in the data’s similarity matrix.

How the three distances relate can be very informative. A tempo-
ral process is perfectly linear (or maximally effective) when spatial
distance equals curvilinear distance, i.e., when the curve is straight.
The larger the curvilinear distance compared to the direct distance, the
more non-linear and ineffective the process is. If the spatial distance
between two points is null and the rank distance is 1, no change oc-
curred (Figures 1(b), 6); If the rank distance is higher, there was a
reversion to a previous state, such as in an edit war (Figure 2).

Point density
sparse dense

Self-intersection
no intersection

many
intersections

Degree of oscillation
no oscillation

large
oscillations

Degree of stagnation
progressing stagnating

Irregularity
regular irregular

Fig. 15. Five geometric characteristics of time curves.

5.2 Geometric Characteristics of Curves
For any two (possibly remote) points connected with a curve whose
length is greater than their spatial distance, geometric characteristics
of the curve can convey information on the nature of the non-linear
process. Such characteristics include (Figure 15):

• Degree of stagnation. A straight or smooth curve indicates pro-
gression (e.g., Figure 10), whereas a curve that does not exhibit any
long-term change in location is indicative of a stagnating process.

• Degree of oscillation. A curve with no oscillation suggests a stable
process, while a high degree of oscillation suggests a process that
is unstable or alternates between states. Examples include edit wars
in Wikipedia (Figure 1(b)) or weather patterns (Figure 8).

• Self-intersection. A curve with many self-intersections is indica-
tive of an ineffective or highly non-linear process with many re-
versals (e.g., Figure 12). Although self-intersection is correlated
with stagnation, it is possible for stagnating curves to have no self-
intersection, and for progressing curves to have self-intersections.
Since the exact number of self-intersections is sensitive to the curve
drawing algorithm used (see Section 6.4), this characteristic is not
meant to be interpreted literally but rather taken as an indication.

• Point density. Point density refers to the ratio between the number
of time points along a curve and the curve’s length: high density in-
dicates series of small changes, while low density indicates few ma-
jor changes. Variations in density are indicative of either a change
in the process’ speed or a change in its sampling rate.

• Irregularity. Regular curves have predictable characteristics, e.g.,
an oscillation of fixed periodicity and amplitude, or consistent
changes in point density. They suggest lawful processes. Irregu-
lar curves are unpredictable and suggest chaotic processes.

These are just a few examples of time curve characteristics that
cover common cases present in the examples discussed in Sections
3 and 4. Any such typology is necessarily incomplete, since possi-
ble variations in curve shape are numerous and their interpretation can
differ depending on the choice of distance metric, dimensionality re-
duction method, and curve drawing algorithm.Still, the five character-
istics we discussed so far allow us to offer a (rough) definition of a
time curve’s complexity: generally, the higher a time curve is on any
of the five axes of Figure 8, the more complex it is. A time curve is all
the more complex if it is high on several axes simultaneously.

5.3 Combinations of Characteristics
Figure 16 shows how two characteristics can be expressed simultane-
ously. The left panel shows combinations of oscillation and irregular-
ity. The middle panel shows how stagnation can combine with point
density, and the last panel shows how it can combine with oscillation.
The curve on the top left oscillates but is still progressing, suggesting a
trend of progression on a large scale, but minor fluctuations on a small
scale. In contrast, the curve on the top right does not progress because
it alternates between the same versions.

Time Curve Characteristics
• Show chronology and similarity at

the same time
• Distances
- Rank: order
- Curvilinear: quantitative time
- Spatial: similarity

• Use MDS

8

[B. Bach et al.]
D. Koop, CSCI 628, Fall 2021

Patterns

9

[B. Bach et al.]
D. Koop, CSCI 628, Fall 2021

O
sc
illa
tio
n

Irregularity

De
ns
ity

Stagnation

O
sc
illa
tio
n

Stagnation

Fig. 16. Examples of combinations of curve characteristics.

A time curve can also combine several geometric characteristics in
sequence, and such a curve can be thought of as segmented into sep-
arate stages. For example, in Figure 1(b) we can identify a stage of
fast and high-amplitude oscillations, that visually differs from the pre-
vious and next curve segments by its degree of oscillation. Similarly,
the curve in Figure 3 can be visually segmented according to point
density, i.e., broken down into separate “clusters”.

Although some of this segmentation process could be in principle
delegated to computer algorithms, we see more benefits in showing
the time curve as is, and letting users visually inspect and interpret the
meaning of visual patterns using their domain knowledge and exter-
nally available contextual information.

5.4 Patterns
Extreme characteristics or specific combinations of characteristics can
yield visually recognizable patterns (Figure 17). While characteris-
tics are on a continuous scale, patterns are discrete and recognizable.

Cluster Transition Cycle U-Turn Outlier Oscillation Alternation

Fig. 17. Examples of visual patterns in time curves.

Clusters appear if a curve segment has a significantly denser set
of points than its neighborhood, or when it has a significantly higher
degree of stagnation. Examples can be found in Figure 6 (a video
scene where nothing happens), and Figure 3 (a period of constant mi-
nor revisions). Related to clusters are transitions, i.e., curve segments
between clusters with a high degree of progression. Transitions can be
sparse in time points (Figure 1(b)) or dense (Figure 10). The presence
of multiple clusters and transitions evoke a dynamic process with dif-
ferent states. A cycle refers to the situation where a time curves comes
back to a previous point after a long progression. Figure 8 shows a
single cycle, while Figure 2 shows multiple cycles. Complex patterns
of cycles can be seen in Figures 7 and 6. Other examples of prominent
patterns include u-turns indicating reversal in the process, outliers in-
dicating anomalies such as acts of Wikipedia vandalism (Figure 4), pe-
riods of high oscillation that indicate informal edit wars (Figure 1(b)),
or periods of alternation that can indicate literal edit wars (Figure 2).

5.5 Multiscale Characteristics
Time curves can exhibit different characteristics at different scales. For
example, the curve in Figure 8 is cyclical on a large scale, is progress-
ing on a medium scale, and is oscillating on a smaller scale. Similarly,
in Figure 12 the entire curve is stagnating, but locally, it is progressing.
Two different time curves can exhibit opposite multiscale characteris-
tics. For example, a curve can be progressing globally but stagnating
locally, in contrast with the previous example. If no restriction is im-
posed on the number of time points, a curve can in principle possess
an arbitrary number of scales and even exhibit fractal characteristics.

6 IMPLEMENTING TIME CURVES

We now discuss implementation considerations by drawing from our
past experience in building prototypes over the course of four years.
We implemented four time curve prototypes (see Figure 18):
• Prototype #1 is an early Java version using force-directed MDS,
• Prototype #2 is an interactive d3 implementation based on classical

MDS and with support for alternative views (matrix and timeline),
• Prototype #3 is an extension supporting thumbnails and animations,
• Prototype #4 is the simplified Web version featured in Section 3.

We first define key terms, including the notion of temporal simi-
larity dataset, that defines the class of datasets compatible with time
curves. We then discuss how to construct distance matrices, position
time points, draw the curve, and enrich or improve the legibility and
the usability of time curves.

6.1 Definitions
Consistently with previous frameworks [34], we define a temporal
dataset as a set of time points P = p0, p1, ..., pn, where each time point
consists in a timestamp ti 2 R and a data snapshot si 2 S at time ti:
pi = (ti,si),0 i n. The data snapshot domain S can be of any
type, and thus si can be a single quantitative value, a high-dimensional
vector, a bitmap, a network or adjacency matrix, a tree, a text, etc.

From a temporal dataset P one can define a distance matrix D =
[di j] that contains all pairwise distances between snapshots. Such a
matrix can be constructed from a well-formed distance metric d : S2 !
R+ or derived from similarity measurements [43, 24]. A temporal
similarity dataset PD is a temporal dataset P with a distance matrix D.

Assuming D is ordered such that 8(i, j), i > j) ti � t j, D is enough
to construct a time curve. ti, . . . tn can be further used to convey quan-
titative time, e.g., through dot coloring.

6.2 Obtaining Distance Matrices
There are many ways the distance matrix D can be obtained, and the
right method depends on the data type considered, its meaning, and the
questions at hand. This issue is long known in the MDS community
and has been extensively discussed [43, 24, 46]. In this section, we
report on the methods we used for our scenarios in Section 3:

• Wikipedia histories: We retrieved document revisions in plain text
format using the Wikipedia API. We then computed a diff between
all possible pairs of revisions and measured the edit distance as the
number of characters inserted or deleted [10]. More elaborate text
distance metrics can be used [26].

• Videos: For videos, we first sampled video frames on regular inter-
vals, e.g., one frame per second. We then estimated pairwise frame
distance by computing normalized absolute pixel difference [1].
This naive approach does not account for large camera motions but
already yields informative time curves, as could be seen in Sec-
tion 3. A wide range of far more elaborate approaches exist, from
color histogram comparison [30, 31] to local feature matching [32].
For his “video trajectories”, Pless [37] experimented with a variety
of metrics – including our naive pixel difference approach – and
found that most of them generally produced satisfactory results.

• Dynamic networks: For the brain connectivity application, we cal-
culated the Euclidean distance between adjacency matrices, i.e., the
square root of the sum of squared cell differences. This method is
effective when node labelling is stable across time. When this is not
the case, algorithms involving inexact graph matching need to be
employed [12, 41].

6.3 Positioning Time Points
There are many ways to position high-dimensional data points in a
two-dimensional space while trying to preserve their metric structure
[47]. MDS approaches are well-suited to time curves since they take
distance matrices as input [46]. In our early prototype #1, we imple-
mented a force-directed MDS by using the JBox2D physics engine
and connecting all pairs of time points with springs whose ideal length
was given by the matrix D. This method gives more control over the
results (as we will later see) but is computationally ineffective and hard
to tune. In our prototypes #2 to #4, we used the so-called “classical”
MDS algorithm, which converges much faster [46].

More sophisticated multidimensional projection methods exist, but
their downside is that they often make more assumptions about the
data and have free parameters. For example, the ISOMAP method [25]
used by Pless [37] assumes that topological neighborhood information
is sufficient to describe the data and requires setting a neighborhood
parameter. In addition, many of Pless’ examples involve 3D curves,
while we chose to stick to 2D projections for usability reasons [45, 42].

Fig. 16. Examples of combinations of curve characteristics.

A time curve can also combine several geometric characteristics in
sequence, and such a curve can be thought of as segmented into sep-
arate stages. For example, in Figure 1(b) we can identify a stage of
fast and high-amplitude oscillations, that visually differs from the pre-
vious and next curve segments by its degree of oscillation. Similarly,
the curve in Figure 3 can be visually segmented according to point
density, i.e., broken down into separate “clusters”.

Although some of this segmentation process could be in principle
delegated to computer algorithms, we see more benefits in showing
the time curve as is, and letting users visually inspect and interpret the
meaning of visual patterns using their domain knowledge and exter-
nally available contextual information.

5.4 Patterns
Extreme characteristics or specific combinations of characteristics can
yield visually recognizable patterns (Figure 17). While characteris-
tics are on a continuous scale, patterns are discrete and recognizable.

Cluster Transition Cycle U-Turn Outlier Oscillation Alternation

Fig. 17. Examples of visual patterns in time curves.

Clusters appear if a curve segment has a significantly denser set
of points than its neighborhood, or when it has a significantly higher
degree of stagnation. Examples can be found in Figure 6 (a video
scene where nothing happens), and Figure 3 (a period of constant mi-
nor revisions). Related to clusters are transitions, i.e., curve segments
between clusters with a high degree of progression. Transitions can be
sparse in time points (Figure 1(b)) or dense (Figure 10). The presence
of multiple clusters and transitions evoke a dynamic process with dif-
ferent states. A cycle refers to the situation where a time curves comes
back to a previous point after a long progression. Figure 8 shows a
single cycle, while Figure 2 shows multiple cycles. Complex patterns
of cycles can be seen in Figures 7 and 6. Other examples of prominent
patterns include u-turns indicating reversal in the process, outliers in-
dicating anomalies such as acts of Wikipedia vandalism (Figure 4), pe-
riods of high oscillation that indicate informal edit wars (Figure 1(b)),
or periods of alternation that can indicate literal edit wars (Figure 2).

5.5 Multiscale Characteristics
Time curves can exhibit different characteristics at different scales. For
example, the curve in Figure 8 is cyclical on a large scale, is progress-
ing on a medium scale, and is oscillating on a smaller scale. Similarly,
in Figure 12 the entire curve is stagnating, but locally, it is progressing.
Two different time curves can exhibit opposite multiscale characteris-
tics. For example, a curve can be progressing globally but stagnating
locally, in contrast with the previous example. If no restriction is im-
posed on the number of time points, a curve can in principle possess
an arbitrary number of scales and even exhibit fractal characteristics.

6 IMPLEMENTING TIME CURVES

We now discuss implementation considerations by drawing from our
past experience in building prototypes over the course of four years.
We implemented four time curve prototypes (see Figure 18):
• Prototype #1 is an early Java version using force-directed MDS,
• Prototype #2 is an interactive d3 implementation based on classical

MDS and with support for alternative views (matrix and timeline),
• Prototype #3 is an extension supporting thumbnails and animations,
• Prototype #4 is the simplified Web version featured in Section 3.

We first define key terms, including the notion of temporal simi-
larity dataset, that defines the class of datasets compatible with time
curves. We then discuss how to construct distance matrices, position
time points, draw the curve, and enrich or improve the legibility and
the usability of time curves.

6.1 Definitions
Consistently with previous frameworks [34], we define a temporal
dataset as a set of time points P = p0, p1, ..., pn, where each time point
consists in a timestamp ti 2 R and a data snapshot si 2 S at time ti:
pi = (ti,si),0 i n. The data snapshot domain S can be of any
type, and thus si can be a single quantitative value, a high-dimensional
vector, a bitmap, a network or adjacency matrix, a tree, a text, etc.

From a temporal dataset P one can define a distance matrix D =
[di j] that contains all pairwise distances between snapshots. Such a
matrix can be constructed from a well-formed distance metric d : S2 !
R+ or derived from similarity measurements [43, 24]. A temporal
similarity dataset PD is a temporal dataset P with a distance matrix D.

Assuming D is ordered such that 8(i, j), i > j) ti � t j, D is enough
to construct a time curve. ti, . . . tn can be further used to convey quan-
titative time, e.g., through dot coloring.

6.2 Obtaining Distance Matrices
There are many ways the distance matrix D can be obtained, and the
right method depends on the data type considered, its meaning, and the
questions at hand. This issue is long known in the MDS community
and has been extensively discussed [43, 24, 46]. In this section, we
report on the methods we used for our scenarios in Section 3:

• Wikipedia histories: We retrieved document revisions in plain text
format using the Wikipedia API. We then computed a diff between
all possible pairs of revisions and measured the edit distance as the
number of characters inserted or deleted [10]. More elaborate text
distance metrics can be used [26].

• Videos: For videos, we first sampled video frames on regular inter-
vals, e.g., one frame per second. We then estimated pairwise frame
distance by computing normalized absolute pixel difference [1].
This naive approach does not account for large camera motions but
already yields informative time curves, as could be seen in Sec-
tion 3. A wide range of far more elaborate approaches exist, from
color histogram comparison [30, 31] to local feature matching [32].
For his “video trajectories”, Pless [37] experimented with a variety
of metrics – including our naive pixel difference approach – and
found that most of them generally produced satisfactory results.

• Dynamic networks: For the brain connectivity application, we cal-
culated the Euclidean distance between adjacency matrices, i.e., the
square root of the sum of squared cell differences. This method is
effective when node labelling is stable across time. When this is not
the case, algorithms involving inexact graph matching need to be
employed [12, 41].

6.3 Positioning Time Points
There are many ways to position high-dimensional data points in a
two-dimensional space while trying to preserve their metric structure
[47]. MDS approaches are well-suited to time curves since they take
distance matrices as input [46]. In our early prototype #1, we imple-
mented a force-directed MDS by using the JBox2D physics engine
and connecting all pairs of time points with springs whose ideal length
was given by the matrix D. This method gives more control over the
results (as we will later see) but is computationally ineffective and hard
to tune. In our prototypes #2 to #4, we used the so-called “classical”
MDS algorithm, which converges much faster [46].

More sophisticated multidimensional projection methods exist, but
their downside is that they often make more assumptions about the
data and have free parameters. For example, the ISOMAP method [25]
used by Pless [37] assumes that topological neighborhood information
is sufficient to describe the data and requires setting a neighborhood
parameter. In addition, many of Pless’ examples involve 3D curves,
while we chose to stick to 2D projections for usability reasons [45, 42].

Evaluation
• + Shows amount of change
• + Signatures can be useful
• + Can compare different curves
• - Details are often obscured
• - Projection leads to artifacts
• - Position only shows similarity
• - Chronology has no direction

10

[B. Bach et al.]
D. Koop, CSCI 628, Fall 2021

Survey Paper
• Due Tuesday, October 19
• Categorize references
• Tables to organize references
• Not all references will fit nicely into one categorization!
• Find themes in existing research
• Uncover unanswered research questions

11D. Koop, CSCI 628, Fall 2021

Next Paper

12D. Koop, CSCI 628, Fall 2021

When (ish) is My Bus? User-centered Visualizations of
Uncertainty in Everyday, Mobile Predictive Systems

Matthew Kay
CSE | dub

University of Washington
mjskay@uw.edu

Tara Kola
Computer Science
Tufts University

tara.kola@tufts.edu

 Jessica R. Hullman
 iSchool | dub

University of Washington
jhullman@uw.edu

Sean A. Munson
HCDE | dub

University of Washington
smunson@uw.edu

ABSTRACT
Users often rely on realtime predictions in everyday con-
texts like riding the bus, but may not grasp that such predic-
tions are subject to uncertainty. Existing uncertainty visual-
izations may not align with user needs or how they natural-
ly reason about probability. We present a novel mobile in-
terface design and visualization of uncertainty for transit
predictions on mobile phones based on discrete outcomes.
To develop it, we identified domain specific design re-
quirements for visualizing uncertainty in transit prediction
through: 1) a literature review, 2) a large survey of users of
a popular realtime transit application, and 3) an iterative
design process. We present several candidate visualizations
of uncertainty for realtime transit predictions in a mobile
context, and we propose a novel discrete representation of
continuous outcomes designed for small screens, quantile
dotplots. In a controlled experiment we find that quantile
dotplots reduce the variance of probabilistic estimates by
~1.15 times compared to density plots and facilitate more
confident estimation by end-users in the context of realtime
transit prediction scenarios.

Author Keywords
End-user visualization; transit predictions; mobile interfaces;
dotplots; uncertainty visualization.

ACM Classification Keywords
H.5.m. Information interfaces and presentation (e.g., HCI):
Miscellaneous

INTRODUCTION
Quantitative predictions are increasingly ubiquitous in eve-
ryday life. Many such data come in the form of point esti-
mates designed to aid decision-making, such as when the
next bus is going to arrive, how long a road trip will take,
whether and when it will rain, or what the high temperature
will be. Often, people access these predictions on their mo-
bile phones to make in-the-moment decisions that are time-

constrained (providing little opportunity for training, inter-
pretation, or complex interaction) using interfaces that are
space-constrained (due to screen size).

For example, Susan might refer to a bus’s predicted arrival
time on a smartphone application to check if she has time to
get coffee before her bus to work arrives. She sees that the
bus is running a few minutes late and is predicted to arrive
in five minutes. There is no line at the coffee shop, so she
steps in to order. However, the bus makes up lost time and
arrives only two minutes later: Susan, still waiting for cof-
fee, misses her bus and is late for a meeting.

Susan based her decision on a point estimate of arrival time,
as presented in many predictive systems for bus arrival,
flight time, or car travel. Her decision is reasonable given
the point prediction she saw, but real-world predictions are
subject to uncertainty (e.g., her bus is most likely to come
in 5 minutes but may come in as little as 1 minute or as
much as 9 minutes). Designers and analysts are responsible
for reporting uncertainty with predictions to help people
make decisions that align with their goals [5,33], yet most
visualizations of predictions present the data as if it were
true (Finger & Bizantz [10] as cited in Cook & Thomas
[5]). Had Susan’s application presented her with a more
complete representation of the predicted arrival time—
perhaps noting that arrival times earlier than 5 minutes are
also quite probable—she may not have risked getting cof-
fee.

Many attempts to communicate uncertainty rely on com-
plex visual representations of probability distributions. For
example, error bars and probability densities require prior
experience with statistical models to correctly interpret
[2,6]. People can better understand probabilistic infor-
mation when it is framed in terms of discrete events. For
instance, Hoffrage & Gigerenzer [16] found that more med-
ical experts could accurately estimate the positive predic-
tive value (precision) of a test when presented with discrete
counts or outcomes. Discrete-event representations have
been used to improve patient understanding of risk, e.g., by
showing the uncertainty in a medical diagnosis as discrete
possible outcomes (number of true positive, false positives,
false negatives, and true negatives) [11]. However, visualiz-
ing discrete approaches to presenting probability distribu-
tions typically requires a large amount of space or time to
communicate the set of possible outcomes [17]. It is not

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from
Permissions@acm.org.
CHI'16, May 07 - 12, 2016, San Jose, CA, USA
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3362-7/16/05 $15.00
DOI: http://dx.doi.org/10.1145/2858036.2858558

Probabilistic estimate of arrival status: For example,
what is the chance the bus has already arrived? Among
questions not currently supported by OneBusAway, survey
respondents most wanted support for this question (status
probability), and commonly reported worst experiences
related to it.

Data freshness: Because OneBusAway does not currently
give probabilistic estimates, one of the only available sig-
nals for expert users to assess risk is the freshness of the
data: OneBusAway indicates the time of the last update for
realtime predictions and whether the current prediction is
based on realtime data (it reflects the scheduled arrival time
when realtime data is not available). This freshness infor-
mation should either be provided to users in a redesigned
interface, or should be incorporated into any models driving
probabilistic estimates.

We believe these design elements will address each goal
identified in the user survey with the exception of the goal
of knowing schedule frequency. We felt that this goal is
better addressed through a separate interface, such as a trip
planner or schedule explorer in a mapping application.
Schedule frequency is less relevant to in-the-moment deci-
sion-making than it is to long-term planning (can I rely on a
bus arriving within some amount of time?). When schedule
frequency is relevant to in-the-moment decisions, it typical-
ly reduces to other goals, like time to next bus.

DESIGN
We conducted an iterative design process focused on the
design requirements set out above. This process began with
a wide exploration of ideas through sketching, followed by
paper prototyping in increasing fidelity, and culminated in
digital mockups. These phases were informed by ongoing
user feedback gained through informal down-the-hall test-
ing with a total of 24 users. During informal testing, we
presented users with hypothetical scenarios of use and
asked them to think aloud as they interpreted the display.

Many of the design issues we encountered are somewhat
orthogonal to specific of encodings of probability: given a
particular timeline layout, for example, we could encode
probability in many ways (e.g., as area, discrete events, a
gradient). We first present our proposed set of designs and
their rationale, then discuss possible techniques for encod-
ing probability on small screens.

Proposed designs and rationale
Our proposed designs, instantiated with one particular visu-
alization of uncertainty (density plot) out of several possi-
ble, are shown in Figure 1. Here we describe decisions we
made to resolve design tensions and to match user goals.

Different layouts better serve different use cases
We developed two alternative layouts, bus-timeline and
route-timeline. The bus-timeline layout gives a timeline for
a single bus on each row, similar to how the existing One-
BusAway app displays a single row per bus, sorted by pre-
dicted time to arrival. This simplifies understanding and

navigation, but is less compact in addressing problems like
assessing schedule frequency, and, once the probabilistic
visualizations are added, less compact than the current ap-
plication. Route-timeline, by contrast, creates a more com-
plex display and navigation (requiring navigation in two
dimensions), but more easily aids understanding of sched-
ule frequency (how often is the bus) and schedule oppor-
tunity (since if one is considering the risk associated with
missing the next bus, it is easier to see how soon the bus
after that is coming and factor that into one’s decision).

Point estimates and probabilistic
estimates should coincide spatially
We explored several tradeoffs between prominent point
estimates versus probabilistic estimates, what we call the
glanceability/false precision tradeoff. A too-prominent
display of the point estimate causes users to ignore the
probabilistic one, thus still giving a false sense of precision;
a less-glanceable point estimate will be difficult to skim and
frustrating to use. We want a display that is glanceable but
which also does not convey false precision. To resolve this,
we concluded that these two elements should coincide spa-
tially: that is, looking at the point estimate should encour-
age the user to also be looking at the probabilistic estimate.
We had considered designs in which the point estimate was
along the right-hand edge of the display (Figure 3), as in the
original OneBusAway. We concluded that this facilitated
glanceability, but also allowed users to pay too little atten-
tion to the probabilistic estimates. Moving the point esti-
mate onto the probability distribution resolved this tension.

Annotated timelines give probabilistic
estimates of status “for free”
While we considered designs that more explicitly com-
municate the probability that the bus has arrived, we real-
ized that an annotated timeline combined with probabilistic
predictions communicates this implicitly. By denoting areas
that correspond to “departed”, “now”, and “on the way” on
the timeline, users can directly read these probabilities from
the distributions depicted; see the timeline annotations
across the top of Figure 1.

Figure 1. Alternative layouts we developed. (a) Bus Timeline:
Each row (timeline) shows one predicted bus. (b) Route Time-
line: Each row shows all predicted buses from a given route.

Bus Timeline Route Timeline

the row height. Traditional solutions include horizon charts
[15] (which we suspect are unfamiliar to lay users), or nor-
malizing all density plots to the same height (which makes
comparison difficult). This problem is most pronounced on
buses with tight variance, i.e., the most precise predictions.
Consequently, for density plots we adopted the compromise
approach of scaling down the max height only when it ex-
ceeds the row height. This adjustment affects only the pre-
dictions of which the model is most certain, so fine-grained
resolution of probability becomes less important to most
goals. This adjustment is required only for density, dotplot-
50, and dotplot-100 (in the dense dotplots, instead of scal-
ing we reduce the dot-spacing). Dotplot-20 and stripeplot
have the advantage of a consistent representation of proba-
bility in tight densities: they need not be modified.

Countability may vary from tails to body
Care must be taken in deciding how many hypothetical
draws (quantiles) to include in discrete plots. Figure 4 com-
pares some of the tradeoffs here: With few draws, as in
dotplot-20, it is easy to count the dots in the tails and body
of the distribution, but the density is less well-resolved.
With many dots, as in dotplot-100, counting in the tails is
often still easy, but in the body overwhelming; however,
density is very well-resolved.

Selected encodings
To select the encodings to evaluate for our final design, we
constructed the matrix shown in Figure 4 comparing vari-
ous properties of the encodings. We selected density,
stripeplot-50, dotplot-20, and dotplot-100 as representing a
wide range of possible trade-offs suggested by this matrix.
EXPERIMENT
We conducted an online survey to evaluate the effective-
ness of our designs in conveying uncertainty. The goal of
this survey was to assess how well people can interpret
probabilistic predictions from the visualizations and to elicit
their preferences for how the data should be displayed.

Method
To assess how well people can judge probability from our
visualizations, we adopted an approach similar to that of
Ibrekk and Morgan [18], who presented various representa-
tions of uncertainty for weather forecasts and asked subjects
to report probabilities (e.g., snowfall >2 inches, or between
2 and 12 inches).

We created four scenarios based on the goals identified in
our user survey, each with two questions about the proba-
bility of bus arrival. For example, in one scenario the re-
spondent is waiting for a bus, and must decide if they have
enough time to get coffee before the bus arrives. They are
asked what the chance is that the bus will arrive 10 minutes
or earlier, and respond using a visual analog scale, a 100-
point slider from 0/100 to 100/100. We call their response
the estimated p (in contrast to the true p, which we calculate
from the underlying probability distribution). A bubble on
the response slider shows this chance expressed in all three
denominators used by the various visualization types (e.g.

“20/100, 10/50, 4/20”), so that participants do not have to
do mental arithmetic in the dotplot and stripeplot condi-
tions. The predictions in each scenario were generated from
models based on Box-Cox t distributions [29] fit to ~2
weeks worth of arrival time data for actual buses in Seattle,
but the buses were given fake route names. Participants are
also asked how confident they are in each probability they
estimate. At the end of the survey they rate the ease of use
and visual appeal of each visualization. All subjective rat-
ings are made on 100-point visual analog scales.

Scenario order was randomized between participants. Each
participant saw each visualization type (density, stripeplot,
dotplot-20, or dotplot-100) once. Before each scenario, they
were also given a brief tutorial explaining the encoding they
were about to use. Pairings between scenario and visualiza-
tion type were also randomized. Participants were also ran-
domly assigned to see all visualizations in the bus-timeline
or route-timeline layout. A full version of the survey can be
found in the supplementary material.

Participants
We recruited participants from a variety of locations, in-
cluding department mailing lists, a local transit blog, and a
local forum on reddit.com. Participants were entered into a
raffle for 1 $100 Amazon.com gift card and an additional

Figure 5. The four types of visualizations selected for evaluation.

0 10 20 30 40 50

3810

0 10 20 30 40 50

10

002000000001111

0 10 20 30 40 50

3810

0 10 20 30 40 50

10
0 10 20 30 40 50

3810

0 10 20 30 40 50

10
0 10 20 30 40 50

3810

0 10 20 30 40 50

10

Bus Timeline Route Timeline

Density

Dotplot
(20)

Dotplot
(100)

Stripeplot
(50)

Figure 4. Comparison of various encodings of probability we

considered for use in our designs.

Density Stripeplot Density+
Stripeplot Dotplot(20) Dotplot(50) Dotplot(100)

shows discrete,
countable events

fast counting
in tails

fast counting
in body

directly estimate
density

directly estimate
quantlies

tight densities
drawn consistently

project to
axis

easily assess
range (min/max)

easily assess
mode

13

Progress Reports

D. Koop, CSCI 628, Fall 2021

A Generic Framework and Library for
Exploration of Small Multiples through Interactive Piling
Fritz Lekschas, Xinyi Zhou, Wei Chen, Nils Gehlenborg, Benjamin Bach, and Hanspeter Pfister

Other Examples of Piles

B

to identify
trends and differences

Browse & Compare

to aggregate
the drawings...

Group into Piles

to gain an
overview...

Arrange by Similarity

... and many more

Small Multiples

A

Fig. 1. Exploring Small Multiples through Visual Piling. (A) An example of thousands of necklace sketches from Google Quick-
draw [25] displayed as small multiples. The interactive arrangement, grouping, and aggregation of small multiples into piles support the
discovery and comparison of reoccurring patterns. (B) Other types of small multiple visualizations grouped and aggregated into piles,
including (from left to right) natural and immunofluorescence microscopy images, matrices, area charts, and scatterplots.

Abstract— Small multiples are miniature representations of visual information used generically across many domains. Handling large
numbers of small multiples imposes challenges on many analytic tasks like inspection, comparison, navigation, or annotation. To
address these challenges, we developed a framework and implemented a library called PILING.JS for designing interactive piling
interfaces. Based on the piling metaphor, such interfaces afford flexible organization, exploration, and comparison of large numbers of
small multiples by interactively aggregating visual objects into piles. Based on a systematic analysis of previous work, we present a
structured design space to guide the design of visual piling interfaces. To enable designers to efficiently build their own visual piling
interfaces, PILING.JS provides a declarative interface to avoid having to write low-level code and implements common aspects of the
design space. An accompanying GUI additionally supports the dynamic configuration of the piling interface. We demonstrate the
expressiveness of PILING.JS with examples from machine learning, immunofluorescence microscopy, genomics, and public health.

Index Terms—Information visualization, small multiples, interactive piling, visual aggregation, spatial organization.

1 INTRODUCTION

In many disciplines, datasets consist of large numbers of elements,
pattern instances, or dimensions. For instance, in supervised machine
learning, researchers compile sets of photos to train and validate ma-
chine learning models; in genomics, computational biologists study
visual patterns that act as proxies for biological features; in public
health, medical experts try to correlate different measurements to health
conditions of their patient cohort.

Small multiples [46] are a widely used visualization technique to
display such datasets through a series of miniature visualizations that
show different facets or subsets of the data. However, as the number

• F. Lekschas and H. Pfister are with Harvard School of Engineering and
Applied Sciences, Cambridge, MA, USA.

• X. Zhou and W. Chen are with State Key Lab of CAD&CG, Zhejiang
University, Hangzhou, China.

• B. Bach is with the University of Edinburgh, Edinburgh, UK.
• N. Gehlenborg is with Harvard Medical School, Boston, MA, USA.
Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication

xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

of small multiples grows, comparison and exploration can become
inefficient due to the decreasing availability of screen real estate per
visualization and the increasing efforts for sequential scanning. Sub-
sampling or filtering can help to limit the number of small multiples
but might obscure important characteristics of the dataset. Summary
visualizations can alleviate this problem by aggregating subsets of the
data into a single visualization. However, the analyst needs to know
upfront how to organize the dataset into subsets. Without interactive
features, exploration with summary visualizations can be limited when
there are many potentially interesting facets or subsets to explore.

We propose a generic framework for exploring large numbers of
small multiples through interactive visual piling. Inspired by how
physical piles enable casual organization [35] of paper documents,
piling in visualization affords spatial grouping of visual elements into
piles that can be arranged, browsed, and aggregated interactively. By
combining the benefits of small multiples and visual aggregations with
interactive browsing, piling can be an effective technique for exploring
small multiples. For instance, in Fig. 1A, we demonstrate how piling
enables the discovery and comparison of shared concepts of necklace
sketches through interactive arrangements, groupings, aggregation, and
browsing. Currently, piling has been applied to matrix visualizations by
ad-hoc domain-specific methods to explore set typed data [43], dynamic

ar
X

iv
:2

00
5.

00
59

5v
2

 [c
s.H

C
]

15
 A

ug
 2

02
0

Visual Piling

14

[F. Lekschas et al., 2020]
D. Koop, CSCI 628, Fall 2021

https://arxiv.org/pdf/2005.00595.pdf

O
n

ly
It

e
m

sCover Item

Preview Items

P
il

e
s

Occlusion & ConnectednessElements Identity Cohesion

P
il

e

Fig. 2. Elements and Properties of Visual Piles. To illustrate key
properties of piles, we differentiate between individual items and piles.

rather than to just consume a static grouping state. However, this does
not mean that piles cannot persist.

3.2 Goals and Tasks
Even though the application-specific goals differ, we identify two over-
arching goals for interactive visual piling interfaces from related work.
(G1) Visual piling is a tool for organizing data collections into subsets
to reduce complexity. This includes, for example, to sort items into
groups, categorize groups based on their content, or filter out subsets
of items for quality control. (G2) Beyond organization, visual piles are
a means to explore and compare individual items and groups of items
to each other. Specifically, one might want to determine the primary
topic of a group, identify outliers, or discover trends.

To identify the common tasks needed to support organization, ex-
ploration, and comparison, we systematically reviewed related work.
Following an open-coding approach, the first two authors coded all
17 piling-related papers from Sect. 2 according to their application-
specific tasks independently. We focused our coding efforts on the role
of interactive piling to not confuse piling-specific with unrelated tasks.
After coding the papers, the first two authors resolved disagreements.
Subsequently, we generalized the assigned codes into five high-level
analytic tasks that any interactive visual piling interface should support.

T1 Grouping: manually or automatically sort items into piles.
T2 Arrangement: position items and piles relative to each other in

an orderly, randomized, gridded, or unconstrained layout.
T3 Previewing: identify and locate items on a pile using in-place,

gallery, foreshortened, combining, and indicating previews.
T4 Browsing: search, explore, and navigate within and between piles

through in-place, dispersive, layered, and hierarchical browsing.
T5 Aggregation: summarize a pile into a synthesized, representative,

or abstract representation.

To study how different visual encoding and interaction approaches
support the exploration of small multiples, we use these five analytical
tasks to structure the design space exploration (Sect. 4) and to guide
future piling designs.

3.3 Usage Scenario
To exemplify how visual piling enhances the exploration of small
multiples, we describe a typical usage scenario following the example
of necklace sketches from Google Quickdraw [25] (Fig. 1A), which we
also demonstrate in the supplementary video. One goal in analyzing
large collections of visual objects is to identify and compare trends
within the dataset. Inspired by Forma Fluens [37], we are trying to
find reoccurring pattern concepts. Visualizing the sketches as small
multiples (Fig. 1A1 left) allows us to assess and compare individual
sketches, but it does not support the discovery of shared concepts.
A common approach to uncover similarities within large and high-
dimensional data collections is to arrange (T2) the items as a two-
dimensional embedding for cluster analysis (Fig. 1A2). We arranged
the items by a UMAP [38] embedding of image features that were
learned with a convolutional autoencoder. In the resulting cluster plot,
items can be represented as a symbol (e.g., a dot) or a small thumbnail.
While symbol-based cluster plots are highly scalable, they do not reveal
the visual details of a cluster. On the other hand, thumbnail-based

cluster plots do not scale to large datasets due to overplotting issues.
Visual piling provides a trade-off by grouping (T1) spatial clusters,
i.e., clusters formed by items in relative proximity (Fig. 1A3). By
aggregating (T5) all sketches into an average and showing this average
as the pile cover, we can discover and browse overarching concepts
effectively. For instance, after manually refining the grouping and
arrangement of four piles (Supplementary Figure S1), we can see
that people are sketching a necklace as an open beaded necklace, a
necklace worn around a neck, an open pendant necklace, or a closed
pendant necklace (Fig. 1A4). Visual piling also affords the encoding
of additional information beyond the individual items. For instance, in
Fig. 1A4, we visualize the relative distribution of geographic regions
across a pile using small bar charts below each pile.

4 A DESIGN SPACE FOR VISUAL PILING

This is the first design space (Fig. 3) for visual piling. For each of the
five analytical tasks (Sect. 3.2), we derived general approaches and
common solutions from previous work through multiple discussions
among the co-authors. The resulting subcategories cover overarching
approaches of each task. We generalize these approaches to highlight
conceptual differences. Multiple approaches can be combined to offer
different ways of organizing and exploring small multiples. In our
design space, we cover the relevant visual encodings and interactions.
We also describe common gestures for triggering interactions but do
not attempt to provide a complete overview of all possible gestures.

4.1 Grouping
We distinguish between manual and automatic grouping (T1), as ex-
emplified in Fig. 3 Grouping. Manual grouping requires the user to
interactively determine which items should be grouped and, potentially,
in which order. Automatic grouping follows a specific procedure to
group multiple items at once.

Manual. Sequential grouping is the simplest form of manual group-
ing. It requires the user to group items interactively, one at a time. This
is typically achieved with a drag-and-drop gesture [1,3,5,31,35,43,50].
While sequential grouping requires more time, it enables temporal orga-
nization. For instance, the most recently added elements can be located
on top of the pile. For efficiency, one can also form a group from
multiple selected items. While multi-select grouping does not result
in intermediate groupings, the sequence of selected items can still be
reflected, given the order of selected items. In contrast, parallel group-
ing techniques allow two or more items to be piled up at the same time.
For instance, many piling interfaces support region-based grouping via
lasso techniques [1, 31]. Parallel grouping does not afford temporal
organization as the order in which multiple items are grouped together
is not explicitly defined. A special form of grouping, which can be
treated as parallel or sequential, is swiping [31], where the user moves
the mouse cursor or pen over each item to be grouped. Swiping enables
more precise selections in dense arrangements like cluster plots.

Automatic. Many piling interfaces support automatic grouping to
improve scalability. Layout-driven grouping is based on an explicitly-
or implicitly-defined layout. Items that are located within the same
unit of the layout can then be grouped. Such units can, for instance,
be the rows, columns, or grid cells [31]. Proximity-based grouping
uses the Gestalt principle of “proximity,” which states that nearby
items implicitly form groups perceptually. However, implicit grouping
can cause uncertainty in subsequent pile interactions [35] as it is not
always possible to infer the grouping state as perceived by the user [6].
Therefore, most piling interfaces only use proximity to trigger explicit
grouping, e.g., by outlining the pile bounds [5, 50] or merging nearby
items [30]. Finally, in similarity-based grouping, items are merged
automatically based on some notion of similarity. While there are many
different ways of measuring similarity, fundamentally, the similarity
can be derived from the items [3, 28, 31, 42] or related metadata [31].

4.2 Arrangement
For arrangements (T2), we consider the relative positioning of items
on a pile and the absolute positioning of piles (Fig. 3 Arrangement).

Visual Piling Goals/Tasks

15

[F. Lekschas et al., 2020]
D. Koop, CSCI 628, Fall 2021

Fig. 13. Microscopy Cell Instances. Small multiples of different cell
types (1) from an immunofluorescence microscopy image [12] where
green shows total mRNA and blue represents nuclei. Visual piling (2)
allows for simultaneous exploration of the cell phenotype and related
gene expression profiles (black and white heatmap) as highlighted in (3).

annotations, we can arrange (T2) the images in a two-dimensional grid
by their primary category (x-axis) and relative size of the annotation in
pixels2 (y-axis). Google Facets [21] allows for similar arrangements
but requires zooming as the number of items increases. With PILING.JS
we can instead group all items that are located within the same grid cell
into piles, which provides visual cues about the groups’ content and the
ability to compose new groups manually.

Exploring Instance Annotations in Large Images. One aspect
of analyzing large image data involves the exploration of instance
annotations. For example, in cell biology, researchers annotate cell
boundaries in immunofluorescence microscopy data of tissues or cell
cultures. The goal of visual exploration is to compare and organize
cells to each other for quality control and stratification (T1). Using a
conventional small-multiples approach can be limiting when there are
several potentially-interesting arrangements. In Fig. 13 we show an
exploration of a microscopy image from Codeluppi et al. [12]. Since
the cells were clustered based on their gene expression profiles, we
arranged cells by the gene expression data reported in the original paper
(T2). As the cell bodies do not align well, we show a gallery preview of
representative images (Fig. 13 2 and 3) as the pile cover to highlight the
diversity of cell images across the pile (T5). Additionally, we preview
individual cell annotations as one-dimensional heatmaps (T3) above
the cover, which show the cells’ gene expression profiles. This enables
us to correlate the cell morphology to the gene expression data.

Comparing Repeated One-Dimensional Measurements. Com-
paring one-dimensional repeated measurements with small multiples
typically involves the alignment of items along a shared axis to dis-
cover patterns (T2). For large numbers of repeated measurements, it
can be beneficial to explicitly group measurements to emphasize trends
and to interactively change the grouping to highlight different patterns
between subsets of the data. For example, in Fig. 14, we loaded the
global surface temperature anomaly dataset from NASA [18, 32]. This
dataset contains surface temperature measurements for each month
across 14 decades (the 1880s to 2010s) that is normalized by the mean
temperature of 1951-1980. We plotted the mean temperature deviations

M
on

th
s

Decades
1880 1950 2010

-1.5° 0° 1.5°

1 32

Fig. 14. Global Temperature Anomalies. Surface temperature devia-
tions from -1.5 to +1.5 degrees Celsius across decades. Piling enables
the dynamic creation of ridge plot-like piles (2 and 3) from small multiples
(1) for interactive comparison of decennial (2) and monthly (3) trends.

1 2 3

Fig. 15. Annual Precipitation Cycle. Displaying movie frames as small
multiples (1) does not uncover similar scenes well. After arranging the
frames by their similarity (2) to show clusters and grouping the frames
into piles, we can identify nine distinct states (3).

from -1.5 to +1.5 degrees Celsius for each month of the 14 decades
(Fig. 14.1). Grouping the plots by decades or months, and arranging
them by a vertical offset enables us to dynamically create ridge plot-like
piles. Positioning the piles next to each other makes it easy to compare
decennial (Fig. 14.2) and monthly trends (Fig. 14.3). We can now
immediately see how the temperature increased over the last 140 years.

Movie Analysis. When analyzing movies, it can be insightful to
study the visual similarity of scenes. To compare the similarity between
frames, Bach et al. [4] folded a linear curve, called a time curve, in
2D space using a dimensionality reduction technique. In Fig. 15.1, we
loaded 365 frames from a movie showing the annual precipitation cycle
of the United States [11] (one frame per day). Based on the similarity
between each frame, we embedded the frames into a two-dimensional
space with UMAP [38] (Fig. 15.2). After arranging the frames by their
embedding (T2), we can highlight the annual precipitation cycle and
several clusters of highly similar frames. Visualizing the frames as
thumbnails shows what these clusters represent. As the high number of
frames makes it hard to compare individual frames, we grouped over-
lapping frames into piles to simplify the view (T1), which highlights
nine visually distinct precipitation patterns (Fig. 15.3). Additionally,
we encode the frame order via the border color (which ranges from
light gray (January) to black (December)) and connect the piles with a
line visualization to foster the connection to the underlying sequence
of the movie. This line visualization is realized with D3 [9] and linked
to the pile interface.

Time Series Analysis. When dealing with time series, an important
task is to identify overall trends and variations. To see and make sense
of any trends, one must be able to compare individual items. Visual
piling can address this challenge through content-aware browsing (T4).
In Fig. 16, we plot the fertility rate (x-axis) against life expectancy
(y-axis) from Worldbank [52] from 1960 to 2017 as small multiples,
resolved by country and colored according to the geographic region.
After grouping (T1) European countries (Fig. 16.2), we can see that,
over time, the fertility rate lowers while the life expectancy increases,
as shown by color gradient going from bright (1960) to dark (2017). To
support comparing individual years without having to split the groups,

Fig. 16. Fertility Rate vs. Life Expectancy. We group small multiples
(1) into a pile (2) to compare changes over time, which we browse by
leafing through the indicating previews (3). Manual grouping (bottom)
allows us to compare East Asia (blue) against North America (yellow).

Precipitation Data

16

[F. Lekschas et al., 2020]
D. Koop, CSCI 628, Fall 2021

Fig. 13. Microscopy Cell Instances. Small multiples of different cell
types (1) from an immunofluorescence microscopy image [12] where
green shows total mRNA and blue represents nuclei. Visual piling (2)
allows for simultaneous exploration of the cell phenotype and related
gene expression profiles (black and white heatmap) as highlighted in (3).

annotations, we can arrange (T2) the images in a two-dimensional grid
by their primary category (x-axis) and relative size of the annotation in
pixels2 (y-axis). Google Facets [21] allows for similar arrangements
but requires zooming as the number of items increases. With PILING.JS
we can instead group all items that are located within the same grid cell
into piles, which provides visual cues about the groups’ content and the
ability to compose new groups manually.

Exploring Instance Annotations in Large Images. One aspect
of analyzing large image data involves the exploration of instance
annotations. For example, in cell biology, researchers annotate cell
boundaries in immunofluorescence microscopy data of tissues or cell
cultures. The goal of visual exploration is to compare and organize
cells to each other for quality control and stratification (T1). Using a
conventional small-multiples approach can be limiting when there are
several potentially-interesting arrangements. In Fig. 13 we show an
exploration of a microscopy image from Codeluppi et al. [12]. Since
the cells were clustered based on their gene expression profiles, we
arranged cells by the gene expression data reported in the original paper
(T2). As the cell bodies do not align well, we show a gallery preview of
representative images (Fig. 13 2 and 3) as the pile cover to highlight the
diversity of cell images across the pile (T5). Additionally, we preview
individual cell annotations as one-dimensional heatmaps (T3) above
the cover, which show the cells’ gene expression profiles. This enables
us to correlate the cell morphology to the gene expression data.

Comparing Repeated One-Dimensional Measurements. Com-
paring one-dimensional repeated measurements with small multiples
typically involves the alignment of items along a shared axis to dis-
cover patterns (T2). For large numbers of repeated measurements, it
can be beneficial to explicitly group measurements to emphasize trends
and to interactively change the grouping to highlight different patterns
between subsets of the data. For example, in Fig. 14, we loaded the
global surface temperature anomaly dataset from NASA [18, 32]. This
dataset contains surface temperature measurements for each month
across 14 decades (the 1880s to 2010s) that is normalized by the mean
temperature of 1951-1980. We plotted the mean temperature deviations

M
on

th
s

Decades
1880 1950 2010

-1.5° 0° 1.5°

1 32

Fig. 14. Global Temperature Anomalies. Surface temperature devia-
tions from -1.5 to +1.5 degrees Celsius across decades. Piling enables
the dynamic creation of ridge plot-like piles (2 and 3) from small multiples
(1) for interactive comparison of decennial (2) and monthly (3) trends.

Fig. 15. Annual Precipitation Cycle. Displaying movie frames as small
multiples (1) does not uncover similar scenes well. After arranging the
frames by their similarity (2) to show clusters and grouping the frames
into piles, we can identify nine distinct states (3).

from -1.5 to +1.5 degrees Celsius for each month of the 14 decades
(Fig. 14.1). Grouping the plots by decades or months, and arranging
them by a vertical offset enables us to dynamically create ridge plot-like
piles. Positioning the piles next to each other makes it easy to compare
decennial (Fig. 14.2) and monthly trends (Fig. 14.3). We can now
immediately see how the temperature increased over the last 140 years.

Movie Analysis. When analyzing movies, it can be insightful to
study the visual similarity of scenes. To compare the similarity between
frames, Bach et al. [4] folded a linear curve, called a time curve, in
2D space using a dimensionality reduction technique. In Fig. 15.1, we
loaded 365 frames from a movie showing the annual precipitation cycle
of the United States [11] (one frame per day). Based on the similarity
between each frame, we embedded the frames into a two-dimensional
space with UMAP [38] (Fig. 15.2). After arranging the frames by their
embedding (T2), we can highlight the annual precipitation cycle and
several clusters of highly similar frames. Visualizing the frames as
thumbnails shows what these clusters represent. As the high number of
frames makes it hard to compare individual frames, we grouped over-
lapping frames into piles to simplify the view (T1), which highlights
nine visually distinct precipitation patterns (Fig. 15.3). Additionally,
we encode the frame order via the border color (which ranges from
light gray (January) to black (December)) and connect the piles with a
line visualization to foster the connection to the underlying sequence
of the movie. This line visualization is realized with D3 [9] and linked
to the pile interface.

Time Series Analysis. When dealing with time series, an important
task is to identify overall trends and variations. To see and make sense
of any trends, one must be able to compare individual items. Visual
piling can address this challenge through content-aware browsing (T4).
In Fig. 16, we plot the fertility rate (x-axis) against life expectancy
(y-axis) from Worldbank [52] from 1960 to 2017 as small multiples,
resolved by country and colored according to the geographic region.
After grouping (T1) European countries (Fig. 16.2), we can see that,
over time, the fertility rate lowers while the life expectancy increases,
as shown by color gradient going from bright (1960) to dark (2017). To
support comparing individual years without having to split the groups,

Pile up 1960 and 2017

Pile up 1960 to 2017 "Leaf" through the yearsIndicating Previews

1
2

3

Fig. 16. Fertility Rate vs. Life Expectancy. We group small multiples
(1) into a pile (2) to compare changes over time, which we browse by
leafing through the indicating previews (3). Manual grouping (bottom)
allows us to compare East Asia (blue) against North America (yellow).

Gapminder Data

17

[F. Lekschas et al., 2020]
D. Koop, CSCI 628, Fall 2021

into increasingly coarse representations creating a hierarchi-
cal partition of the ambient space. StreamStory enables the
user to interactively navigate this multiscale structure with
multiple visual cues establishing cross-scale relationships.
The tool supports several tasks:

1) based on the data, identify the main states of the
observed system and map these states to data-
specific concepts,

2) find high-level and long-term periodic and recurrent
behaviour in the dataset and

3) explore the dataset at multiple scales to identify at
which scales interesting phenomena occur.

To address these tasks, we present a methodology which
is based on the following pipeline: (1) the temporal informa-
tion is disregarded and data represented as a point cloud,
(2) regions of the ambient space are associated with concep-
tual states, (3) the temporal component is reintroduced and
the dynamics are modeled as transitions between the states
and (4) states and transitions are aggregated to obtain a
multiscale representation.

Based on this methodology, we construct an interface
which visualizes the representation at a single scale as a
graph (see the central panel of Fig. 1) augmented by multi-
ple connected views which map the visual elements back to
the data and help interpret the individual states and pat-
terns. For example, in Fig. 1, the bottom panel visualizes a
historical overview of the data over the entire multiscale
structure and the information on one of the states can be
seen in the right panel. Our main research contributions are:

1) A novel methodology for multivariate time series
visualization, multiscale exploration and interpreta-
tion. The methodology is based on hierarchical Mar-
kov chains and captures long term behavior of the
data through a simplified model of the dynamics as
a graph structure.

2) A novel visualization approach which allows the
user to explore the structure of the dataset. Based on
the methodology, the approach uses visual cues, sev-
eral connected views and auxiliary tools to help the
user to identify patterns and map the abstract repre-
sentation back to meaningful domain concepts.

3) A fully interactive, web-based visualization tool,
StreamStory, which integrates our methodology and
is publicly available at http://streamstory.ijs.si. The
tool remains useable and interactive even for large
datasets as the high level of abstraction prevents
clutter and the use of Markov chains as the underly-
ing model makes it computationally efficient (and so
highly scalable).

StreamStory is designed for individuals who may not
have expertise in data analysis or may be dealing with data
they are unfamiliar with. Its abstractions are designed to
help such users identify and investigate recurrent behavior
in temporal data as recurrence is recognizable as a cycle in
the diagram. The system also provides automatically gener-
ated suggestions of possible interpretations. Examples of
the types of behavior captured include periodic yearly
weather patterns as well as intermittent or irregular recur-
rences. For instance, in Fig. 1 there is a cycle present

Fig. 1. On the move: A multi-scale summary of GPS coordinates collected over the course of three and a half years using a smartphone. StreamStory
qualitatively summarizes the dataset using states and transitions. It shows a centralized structure with a large state in the middle, representing the
researcher’s home location (Slovenia), and many smaller satellite states representing trips to several locations in Europe (e.g., Germany, Portugal,
Sweden, and Slovenia) as well as the US, China, and India. The selected state (with a blue border) is NYC (New York City, see right panel - Latitude:
40:89!, Longitude:"73:92!). The bottom panel shows a timeline where NYC is highlighted. It shows several distinct short trips to NYC and one longer
stay shown in the middle (June-Oct. 2014), corresponding to a summer internship.

STOPAR ET AL.: STREAMSTORY: EXPLORING MULTIVARIATE TIME SERIES ON MULTIPLE SCALES 1789StreamStory

18

[L. Stopar et al., 2019]
D. Koop, CSCI 628, Fall 2021

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8340877&tag=1

onto a lower-dimensional space [20], [21], usingmultidimen-
sional projection to approximate the structure of the clusters
relative to each other, using visual attributes to describe the
shape of a state [22] and using auxiliary widgets to help in
the interpretation of the states [23], [24]. In addition, we gen-
erate qualitative descriptions of states in the form of auto-
matic state labels and narrative descriptions shown in
tooltips. Both help users quickly identify regions of interest
as well as interpret the graph-based representation.

We create a multiscale representation to allow users to
interactively select informative scales. The literature sug-
gests other multiscale approaches. Woodring et al. [25] visu-
alize temporal volumetric data in a multiscale manner by
modeling each point in the volume as a time series, trans-
forming it with wavelets and clustering by coefficients (i.e.,
frequency bands). The clusters are visualized in spreadsheet
format with a separate view for details. The spreedsheet for-
mat can be overwhelming and is not appropriate for users
who do not specialize in data analysis. Luboschik et al. [26]
use the heterogeneity of subsequent scales as an indicator
for noteworthy information and highlight where a drill-
down to finer scales may be valuable. While we use a differ-
ent indicator to determine interesting scales, this type of
function can be incorporated into the system.

Finally, Auber et al. [27] visualize small world networks
by hierarchically decomposing it into highly connected
components and visualizing it in a two panel interface with
an overview and details panel. The approach identifies and
visualizes components of the graph, but it does not convey
temporal information. Stolte et al. [28] describe a generic
framework for visualizing multiscale datasets which repla-
ces the linear zoom with a graph-based zoom path. In their
framework, each node represents a specific visual and data
abstraction. An analyst can independently zoom on either
axis or independently change the level of detail in the data
or visual abstractions. We use a linear zoom, as this pro-
vides the simplest interpretation for non-expert users.

3 METHODOLOGY

3.1 Overview
The proposed methodology enables interactive multiscale
visualization, exploration and interpretation of large multi-
variate time series. Our goal is to identify recurrent behav-
iour in time series. This type of behaviour is characterized
as paths in the ambient spacewhich return to the same region
several times. These regions represent the typical states of
the time series. For instance, when describing traffic such
states may include a “day” state and a “night” state. These
high-level states can be decomposed onto finer-scale states
like “morning”, “afternoon”, “evening” and “night” with

the associated transitions following the daily cycle. Such
characterizations provide a qualitative summary making it
easier to describe the long-term behavior of the data.

Following this intuition, we propose a methodology
which abstracts data into conceptual states and transitions.
The methodology uses clustering to construct the states and
represents temporal dynamics as transitions between the
states using a Markov chain. The discretization of the sys-
tem into states has several advantages over directly visual-
izing the data. First, long term patterns are represented as
easily recognizable structures while preventing information
overload/clutter making the tool useful for large datasets.
Second, since the states and transitions are discrete, it can
be simpler to interpret and map the abstract states back to
the original measurements. This remains a difficult step and
in Section 4 we discuss tools which automatically suggest
possible interpretations of the representation. The main dis-
advantage of a discrete representation is that we lose some
finer grain information about the data. Therefore, we pro-
vide tools which allow the user to investigate the individual
states and transitions (Section 4). Further, in any discretiza-
tion, the choice of scale affects which behaviours are emp-
hasized, so we construct a hierarchy of representations
allowing the user to find patterns at multiple scales.

The methodology is comprised of several steps (Fig. 2):
(1) constructing a point cloud to represent the multivariate
time series, (2) constructing the states by partitioning the
ambient space, (3) modeling the transitions between the states
and (4) aggregating the states and transitions into a hierar-
chy. We describe these steps in the following sections and
conclude the section by presenting two techniques which
help highlight recurrent behavior.

3.2 Constructing the Point Cloud
The first step of the methodology considers the data as a
point cloud in multi-dimensional space by disregarding the
temporal component (Fig. 2a). Point clouds are commonly
used in machine learning, with each measurement (e.g.,
data associated to one timestamp) represented by a feature
vector. This allows us to use a wide array of machine learn-
ing algorithms in the following steps of the methodology.
We allow the user to select specific attributes which are not
used in later steps of the methodology but can still be
viewed in the final visualization. Superimposing attributes
which are not used in building the representation is useful
for studying correlations between the attributes.

3.3 Constructing the States
We next discretize the ambient space into non-overlapping
regions which we associate with conceptual states (Fig. 2b).

Fig. 2. Overview of the methodology. (a) The multivariate time series is first represented as a point cloud. As an example, we show two noisy approx-
imately periodic signals mapped to points in 2D. (b) The states are constructed by partitioning the ambient space using a clustering algorithm.
(c) Transitions are modeled by translating the partition into a Markov chain, with each state representing a partition cell. (d) Finally, the Markov chain
model is simplified by iteratively aggregating states into a hierarchy, giving a multiscale view of the model.

STOPAR ET AL.: STREAMSTORY: EXPLORING MULTIVARIATE TIME SERIES ON MULTIPLE SCALES 1791

StreamStory Algorithm

19

[L. Stopar et al., 2019]
D. Koop, CSCI 628, Fall 2021

while assigning label LOW if the mean is between both per-
centiles. Analogous rules are used for HIGH and HIGHEST.
As rule of thumb, we use default values g ¼ 12 and d ¼ 25.
Among all the attribute labels, we use the one in the low-
est/highest percentile as the final state label. If no such label
exists, we attempt to generate time-based labels.

The second phase generates labels based on time by mak-
ing use of the Time histograms presented earlier. It scans the
histograms at each granularity (e.g., daily, weekly, etc.)
searching for cyclically continuous peaks. We consider the
kth bin a peak, if it contains more mass than the average
bin: bk >

P
bj=n, where n represents the total number of

bins in the histogram and bk the value of bin k. Two conse-
cutive peaks are considered a single peak. If a single peak
with more than z mass (with default z ¼ 0:7) is found, the
peaks’ time range is considered as a candidate label. Among
all the candidate time-based labels, we select the one with
its peak containing the most mass. For example, from the
yearly histogram this would produce a label of the form
May - Jun like the brown state in Fig. 8.

5 USE CASES

We use three datasets of varying complexity to demonstrate
how StreamStory can be used to perform the analytics tasks
listed at the beginning of the paper. With all the examples,
we provide an interpretation demonstrating how tomap ele-
ments of the abstract representation back to domain-specific
concepts. We use a weather dataset to illustrate how to find
and interpret the long-term behavior of the data and a wind
dataset to demonstrate how finding the appropriate scales
can reveal structure in the data. We present three patterns
which are typical when exploring data using StreamStory
using a GPS dataset. To illustrate the multiscale structure,
we show three different scales for each example. We note
that the sub-figures were scaled independently and so
should not be directly compared. Finally, we discuss feed-
back gathered from experts during the development of the
tool and compare StreamStory to related techniques.

5.1 Weather Data
We begin with a weather dataset used as an illustrative
example throughout the paper. The dataset consists of aver-
age monthly temperature and rainfall readings collected at
Nottingham Castle, UK over 20 years between 1920 and
1940. We demonstrate how StreamStory can be used to
identify the main states of the dataset, find long-term recur-
rent behavior and map the abstractions back to domain-
specific concepts.

We construct a representation with 12 initial states. In
addition to the rainfall and temperature, we include the pre-
vious months’ values in the feature vectors as explained in
Section 3.6, raising the dimension to 4. Fig. 9 shows the
model at three different scales along with the original data.

At a coarse scale, we identify three main high-level states
corresponding to different parts of the year. In Fig. 9a we
see two large states with a transition state between them.
The labels indicate the right state represents rainy weather
while the left state represents low rainfall. Checking the
individual states, we observe that the left state also has a
lower temperature distribution (Fig. 10a) as opposed to the
right state (Fig. 10b).

This suggests the right state represents summer while the
left state represents winter. We confirm this using the yearly
histograms showing the left state lasts from November to

Fig. 9. In the weather dataset we observe a cyclical pattern, indicating
periodic long-term behavior with the main states corresponding to differ-
ent parts of the year. The yearly periodicity appears at the middle (b)
and fine (c) scales. In this case, this can be confirmed directly by the par-
allel plot (bottom-left).

Fig. 10. The Attribute histograms indicate that the purple Rainfall LOW-
EST and green Rainfall HIGHEST states in Fig. 9a correspond to winter
and summer months respectively. This is indicated by a low distribution
of temperature and rainfall in the Rainfall LOWEST state (a) and a high
distribution of temperature and rainfall in the Rainfall HIGHEST state (b).

Fig. 11. The distribution of Rainfall (in mm) confirms that the states on
the right of Fig. 9b are rainier than the states on the left. The same view
for Temperature is almost identical suggesting a high correlation
between the attributes (we only show the view for Rainfall).

STOPAR ET AL.: STREAMSTORY: EXPLORING MULTIVARIATE TIME SERIES ON MULTIPLE SCALES 1797
StreamStory at Different Scales

20

[L. Stopar et al., 2019]
D. Koop, CSCI 628, Fall 2021

