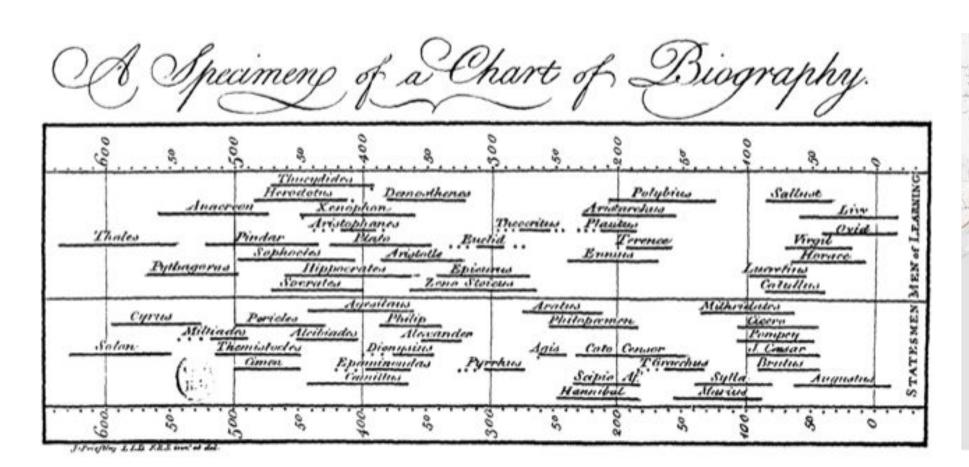
Information Visualization

Temporal Data

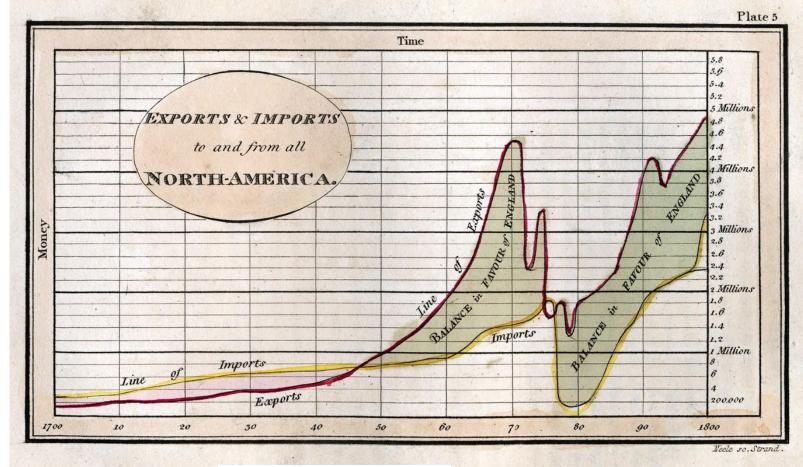
Dr. David Koop

Temporal Data



Events

Мо	Tu	We	Th	Fr	Sa	Su
		1	2	3	4	5
6	7	8	9	10	11	12
13	14	15	16	17	18	19
20	21	22	23	24	25	26
27	28	29	30	31		



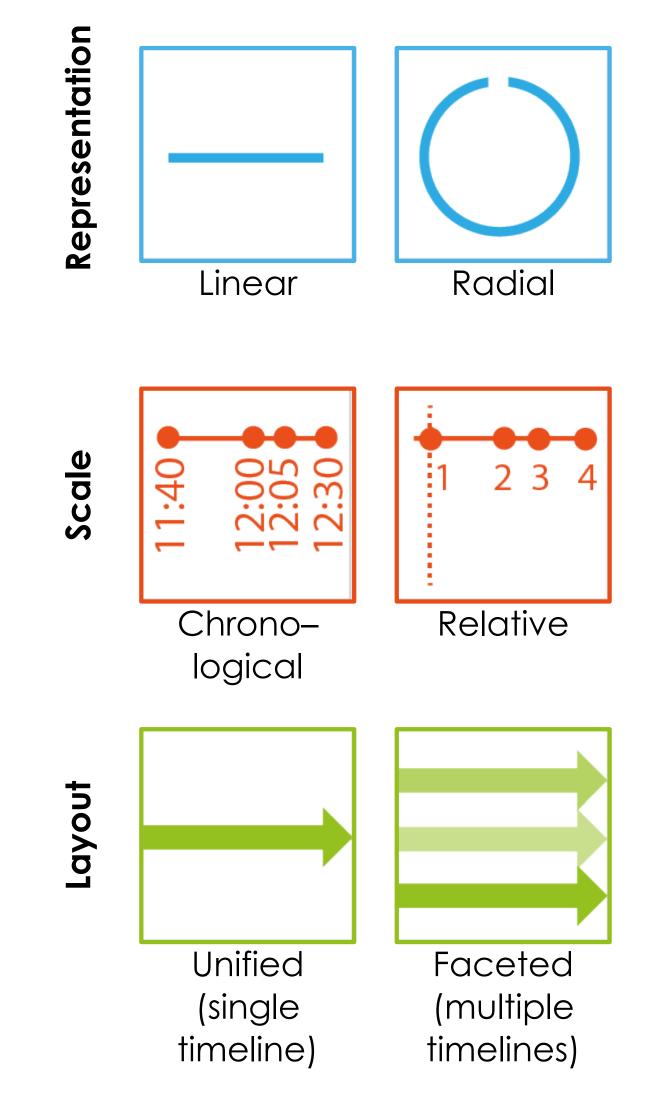
Calendar

D. Koop, CSCI 628, Fall 2021

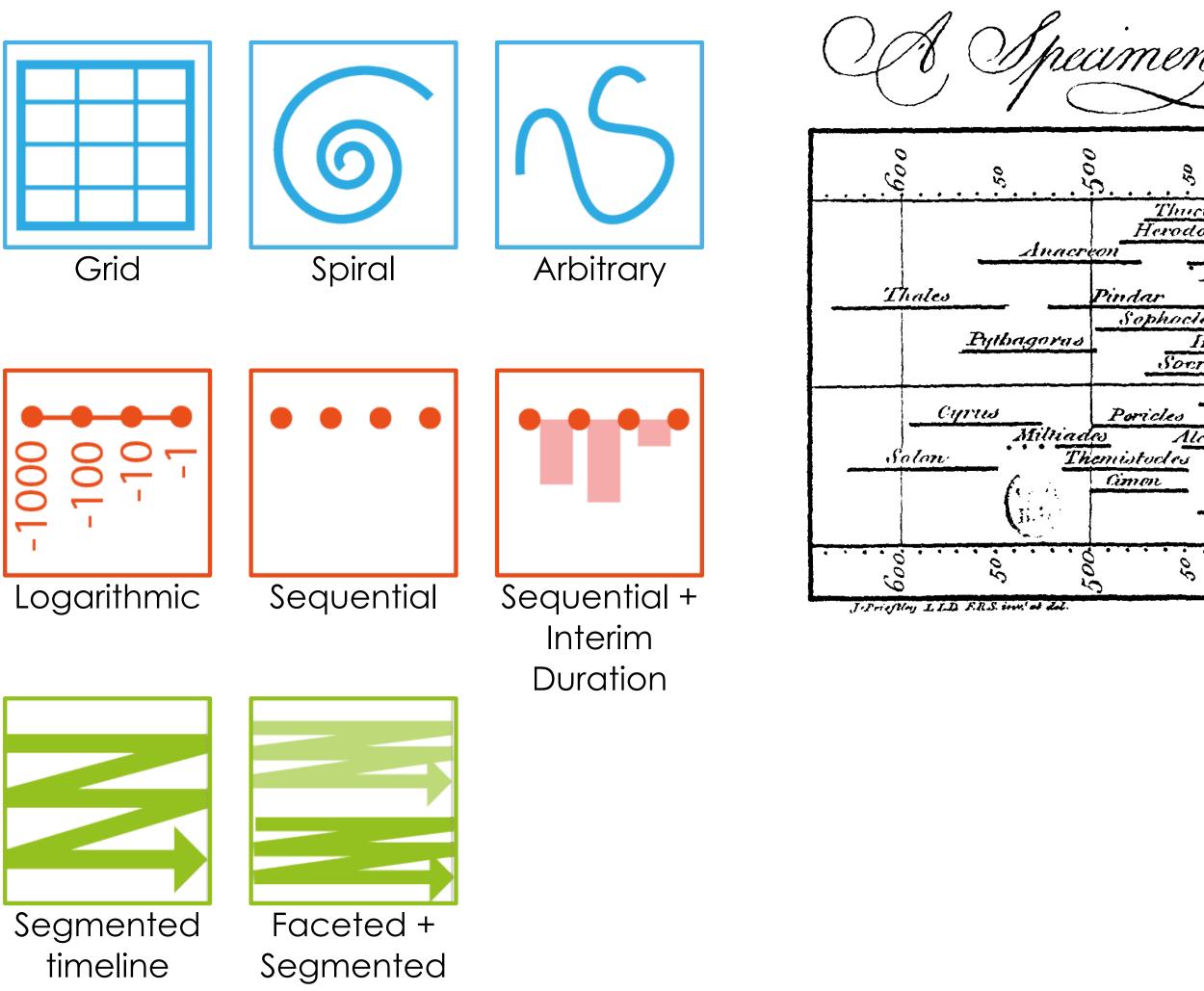
Trajectories

Time series

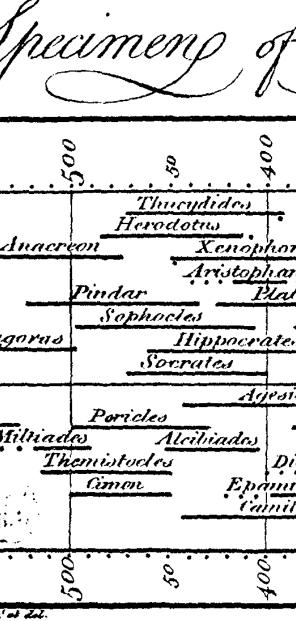
Timeline Design Space



D. Koop, CSCI 628, Fall 2021



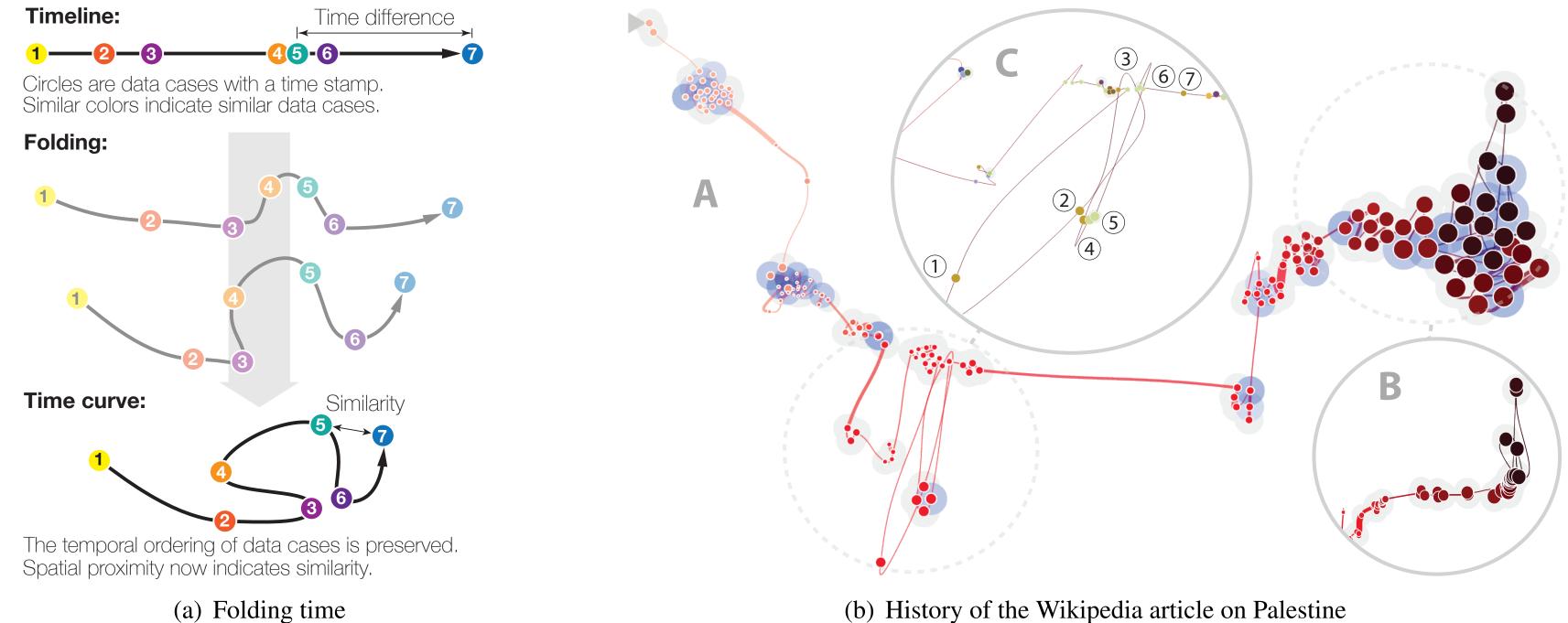
NIU



Time Curves

Time Curves: Folding Time to Visualize Patterns of Temporal Evolution in Data

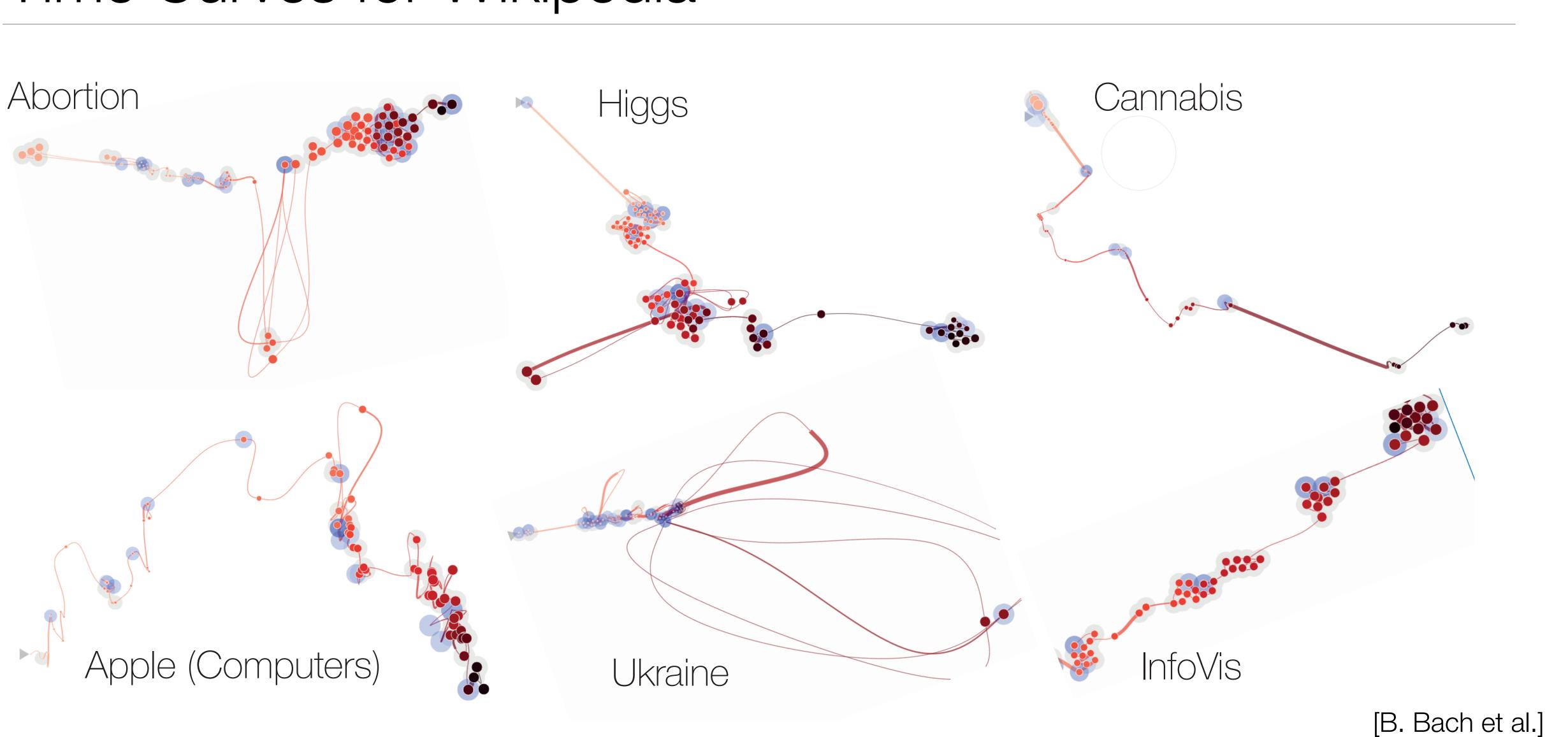
Benjamin Bach, Conglei Shi, Nicolas Heulot, Tara Madhyastha, Tom Grabowski, Pierre Dragicevic



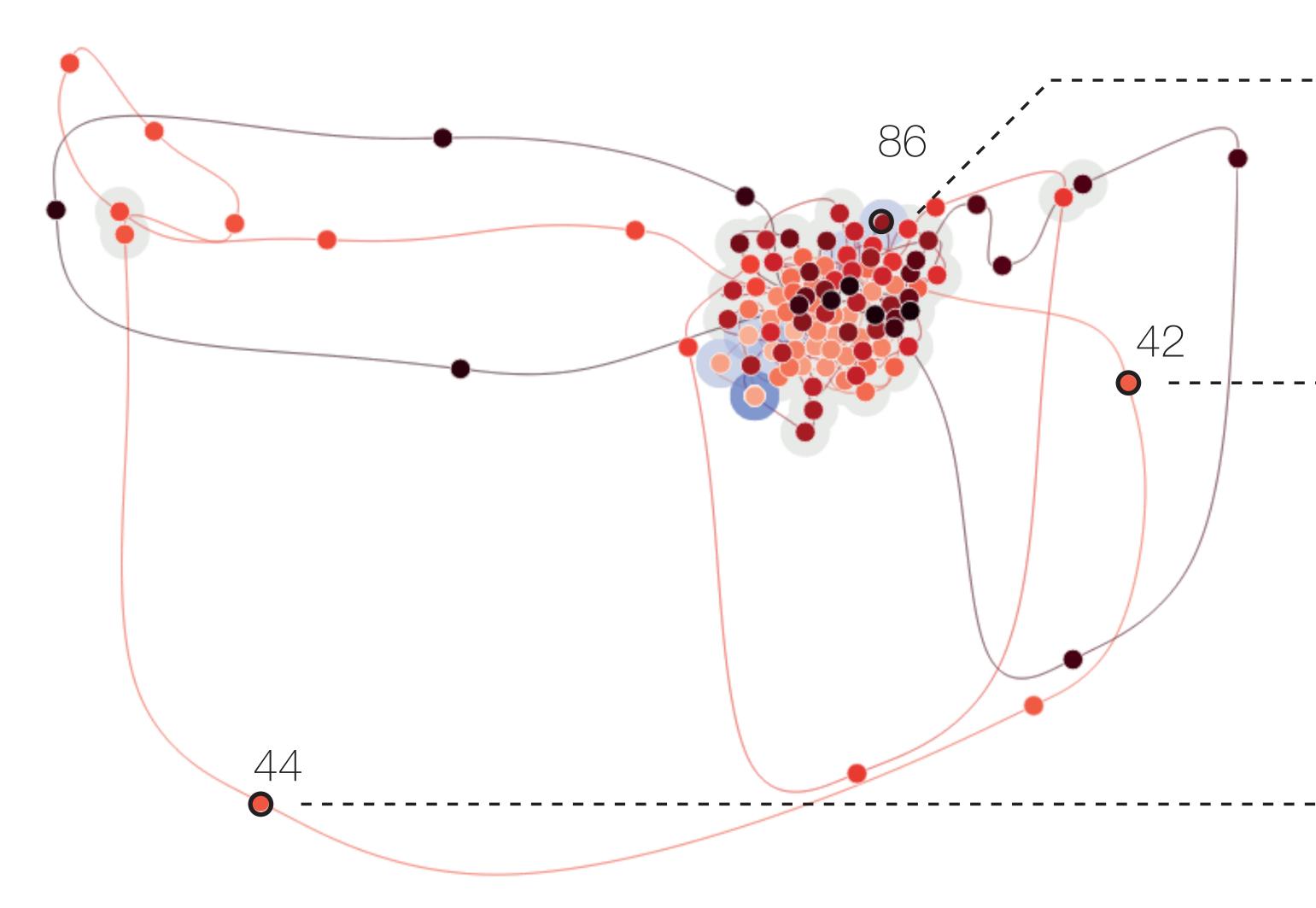
D. Koop, CSCI 628, Fall 2021

(b) History of the Wikipedia article on Palestine

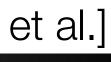
Time Curves for Wikipedia



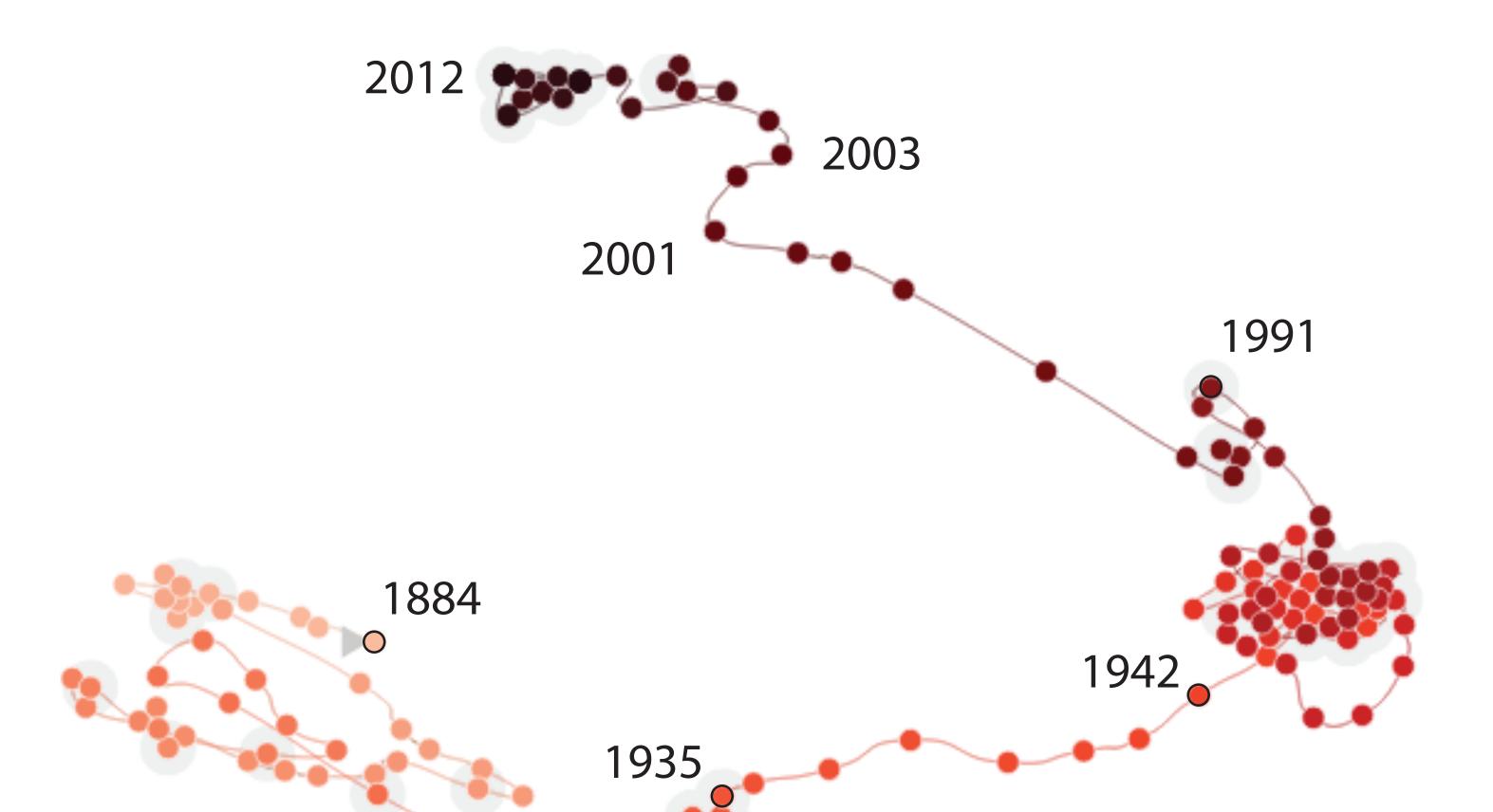
Time Curves for Video



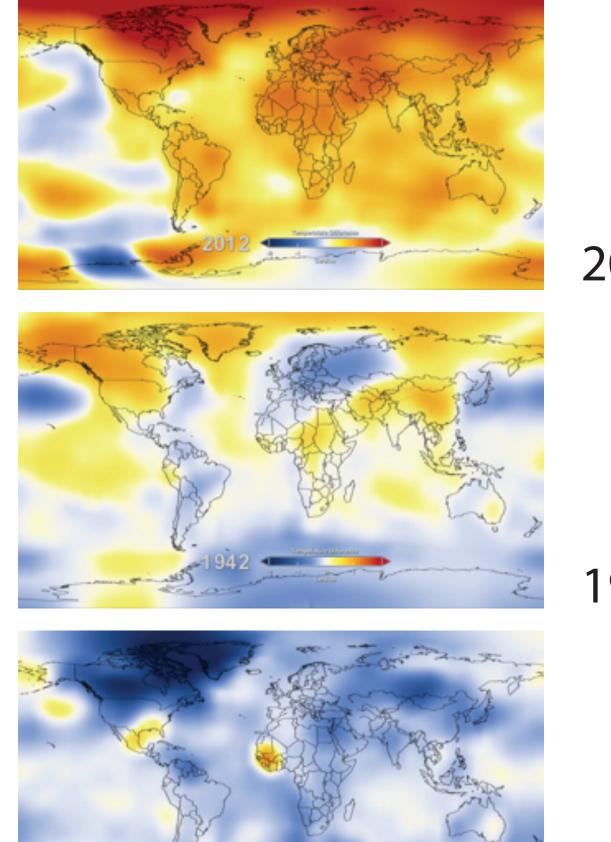
D. Koop, CSCI 628, Fall 2021



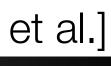
Time Curves for Visualizations



D. Koop, CSCI 628, Fall 2021



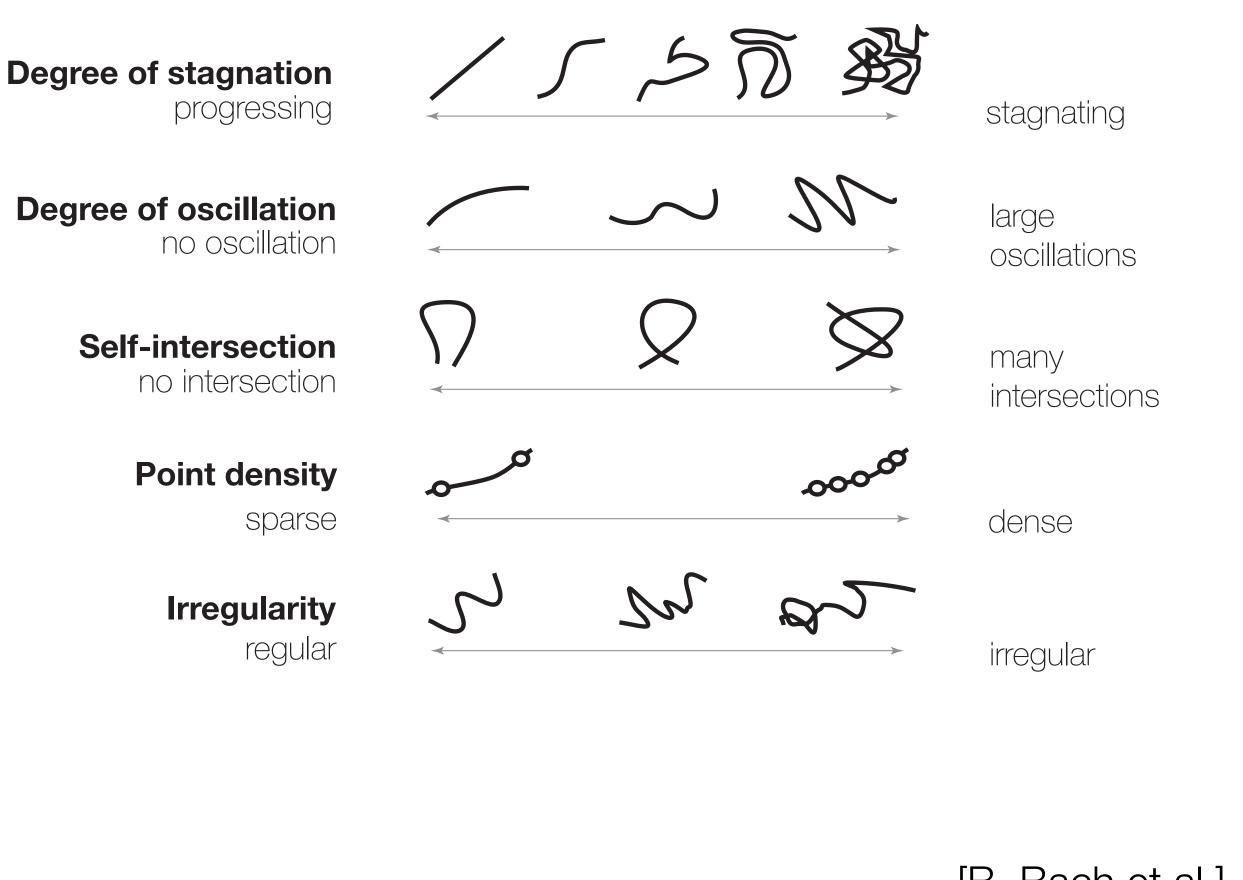
1884



Time Curve Characteristics

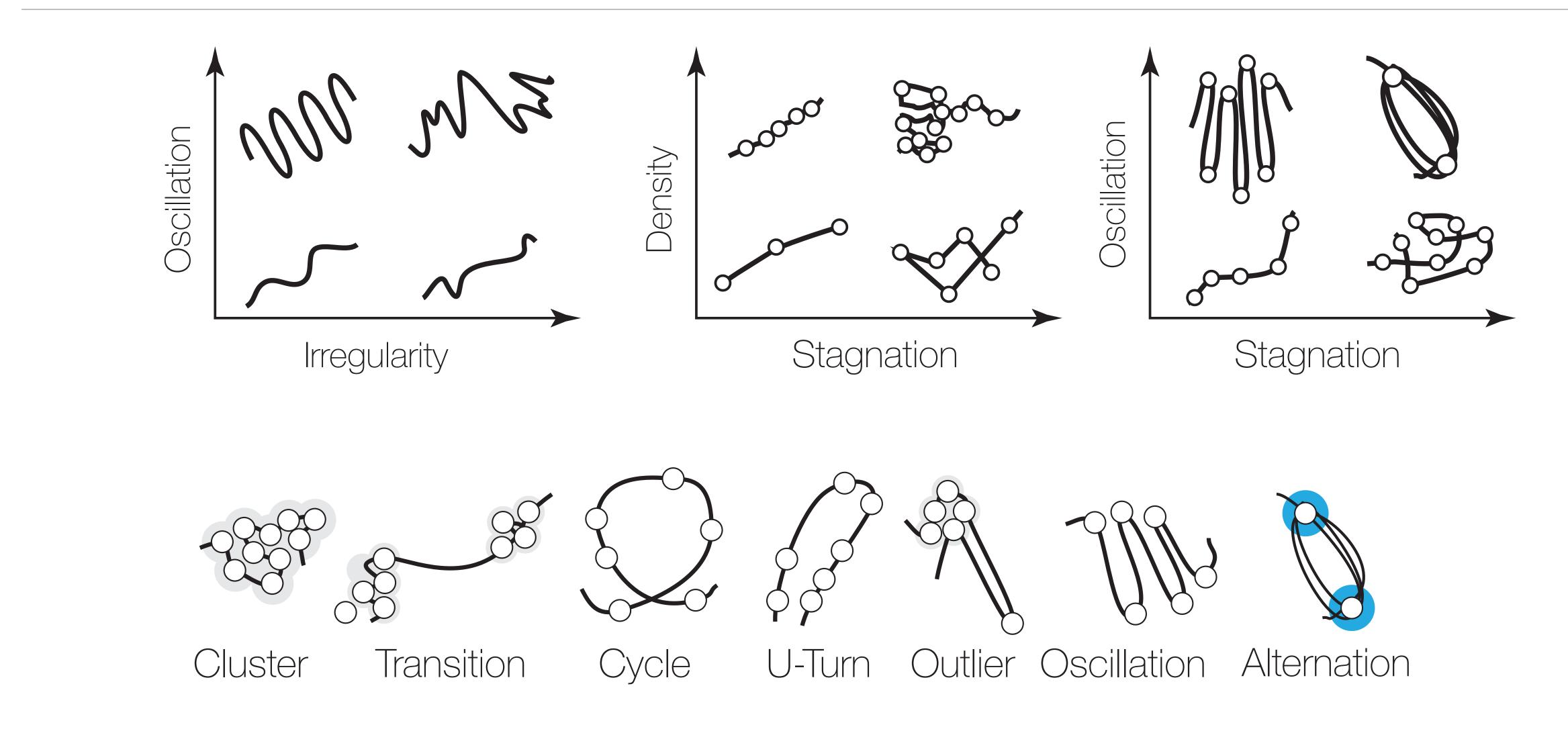
- Show chronology and similarity at the same time
- Distances
 - Rank: order
 - Curvilinear: quantitative time
 - Spatial: similarity
- Use MDS

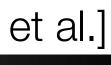
D. Koop, CSCI 628, Fall 2021



Northern Illinois University

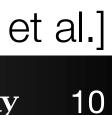
Patterns





Evaluation

- + Shows amount of change
- + Signatures can be useful
- + Can compare different curves
- Details are often obscured
- Projection leads to artifacts
- Position only shows similarity
- Chronology has no direction



Survey Paper

- Due Tuesday, October 19
- Categorize references
- Tables to organize references
- Not all references will fit nicely into one categorization!
- Find themes in existing research
- Uncover unanswered research questions

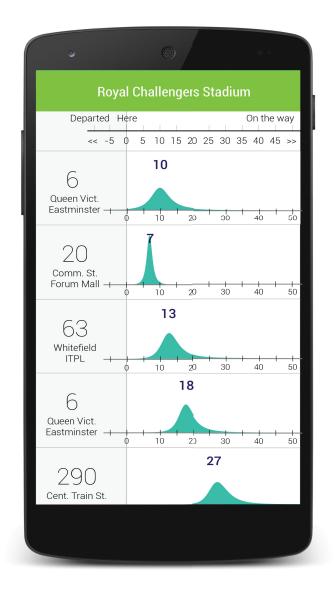
Next Paper

When (ish) is My Bus? User-centered Visualizations of **Uncertainty in Everyday, Mobile Predictive Systems**

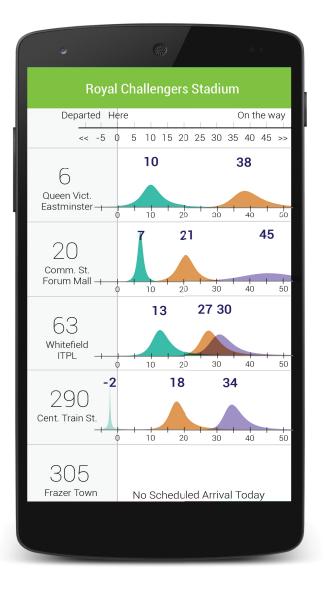
Matthew Kay CSE | dub University of Washington mjskay@uw.edu

Tara Kola Jessica R. Hullman Computer Science iSchool | dub Tufts University University of Washington tara.kola@tufts.edu jhullman@uw.edu

Bus Timeline

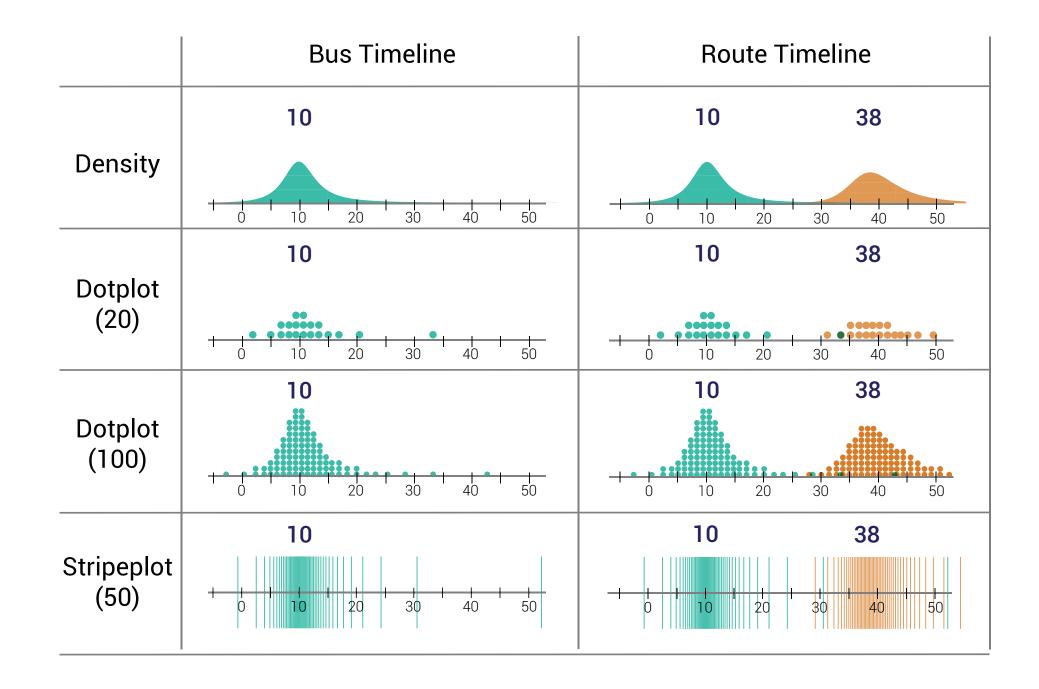


Route Timeline



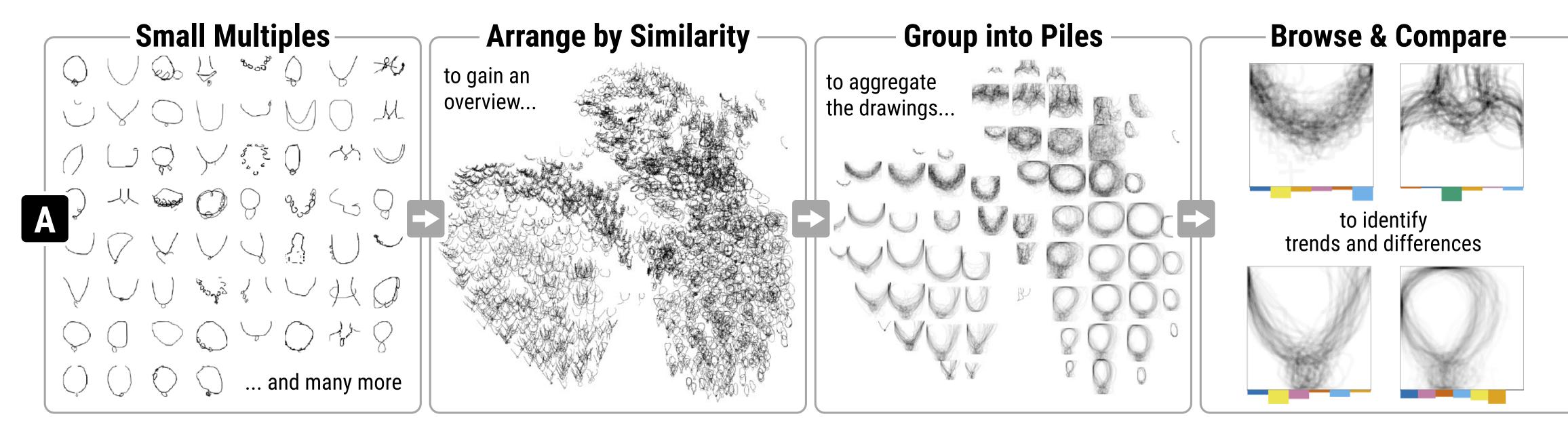
D. Koop, CSCI 628, Fall 2021 p

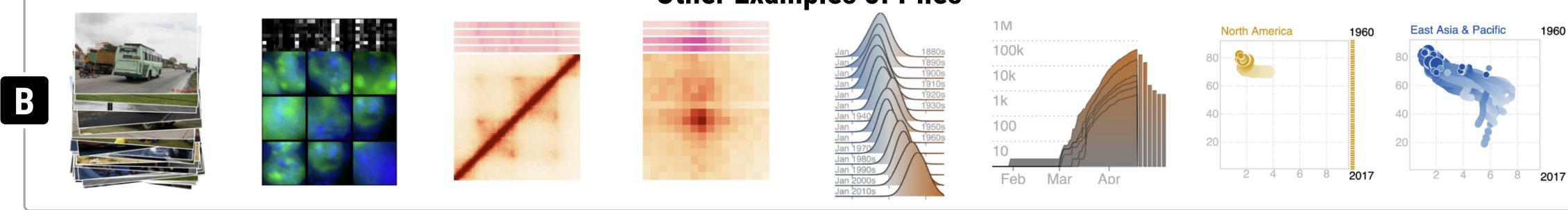
Sean A. Munson HCDE | dub University of Washington smunson@uw.edu



Progress Reports

Visual Piling





D. Koop, CSCI 628, Fall 2021

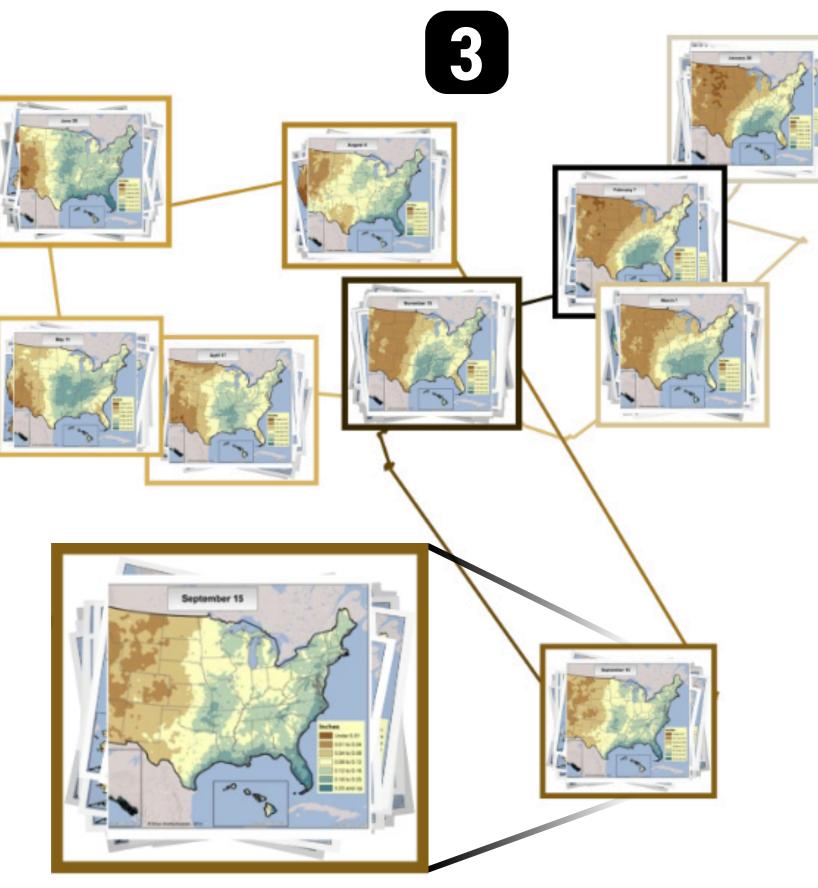
Other Examples of Piles

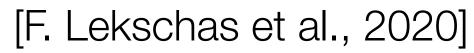
[F. Lekschas et al., 2020]

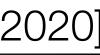
Visual Piling Goals/Tasks

- **T1** Grouping: manually or automatically sort items into piles.
- **T2** Arrangement: position items and piles relative to each other in an orderly, randomized, gridded, or unconstrained layout.
- **T3** Previewing: identify and locate items on a pile using *in-place*, gallery, foreshortened, combining, and indicating previews.
- **T4 Browsing:** search, explore, and navigate within and between piles through *in-place*, *dispersive*, *layered*, and *hierarchical* browsing.
- **T5** Aggregation: summarize a pile into a synthesized, representative, or abstract representation.

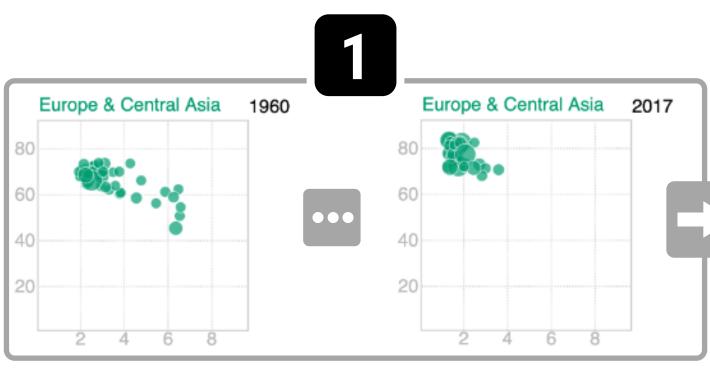
Precipitation Data



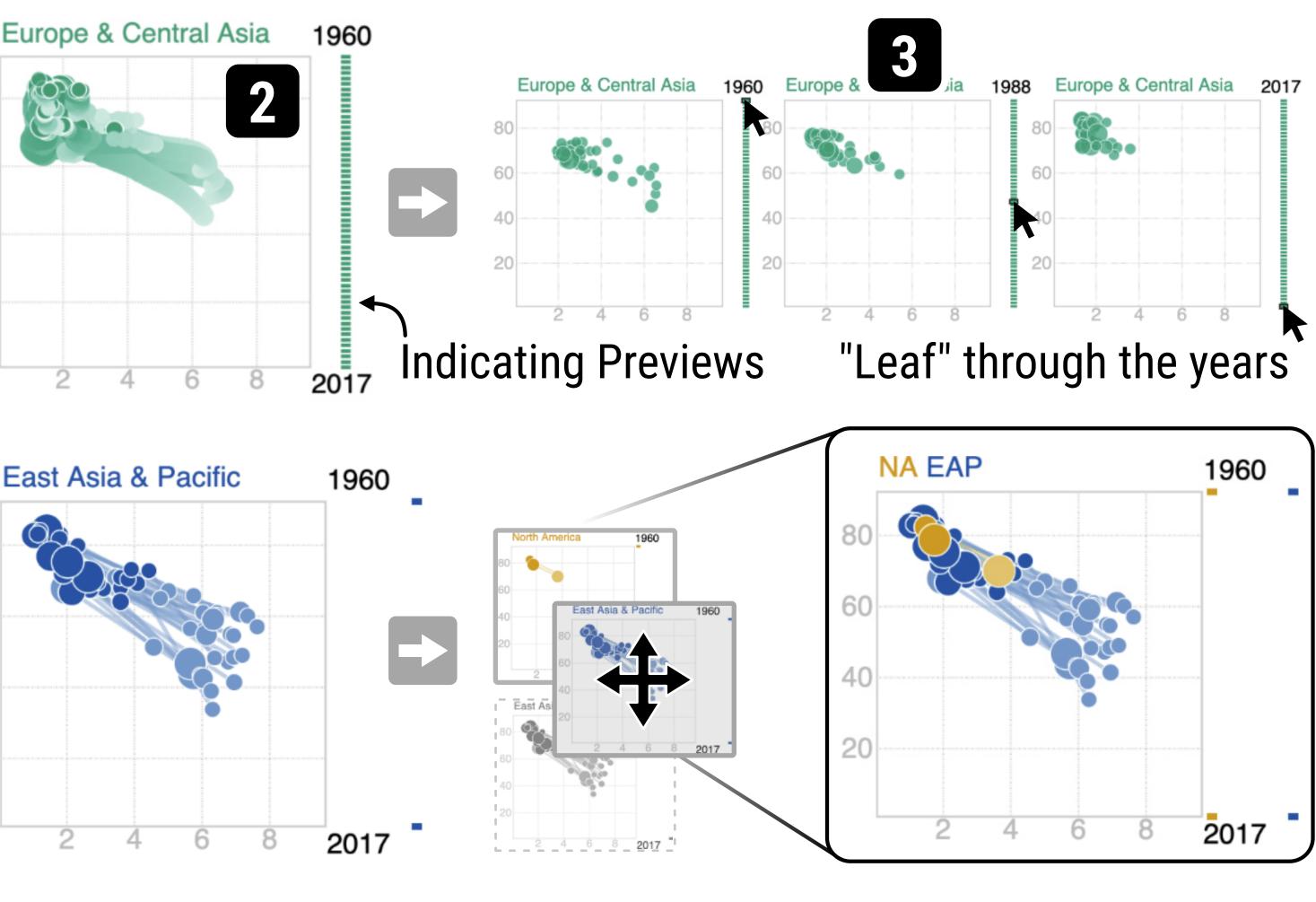


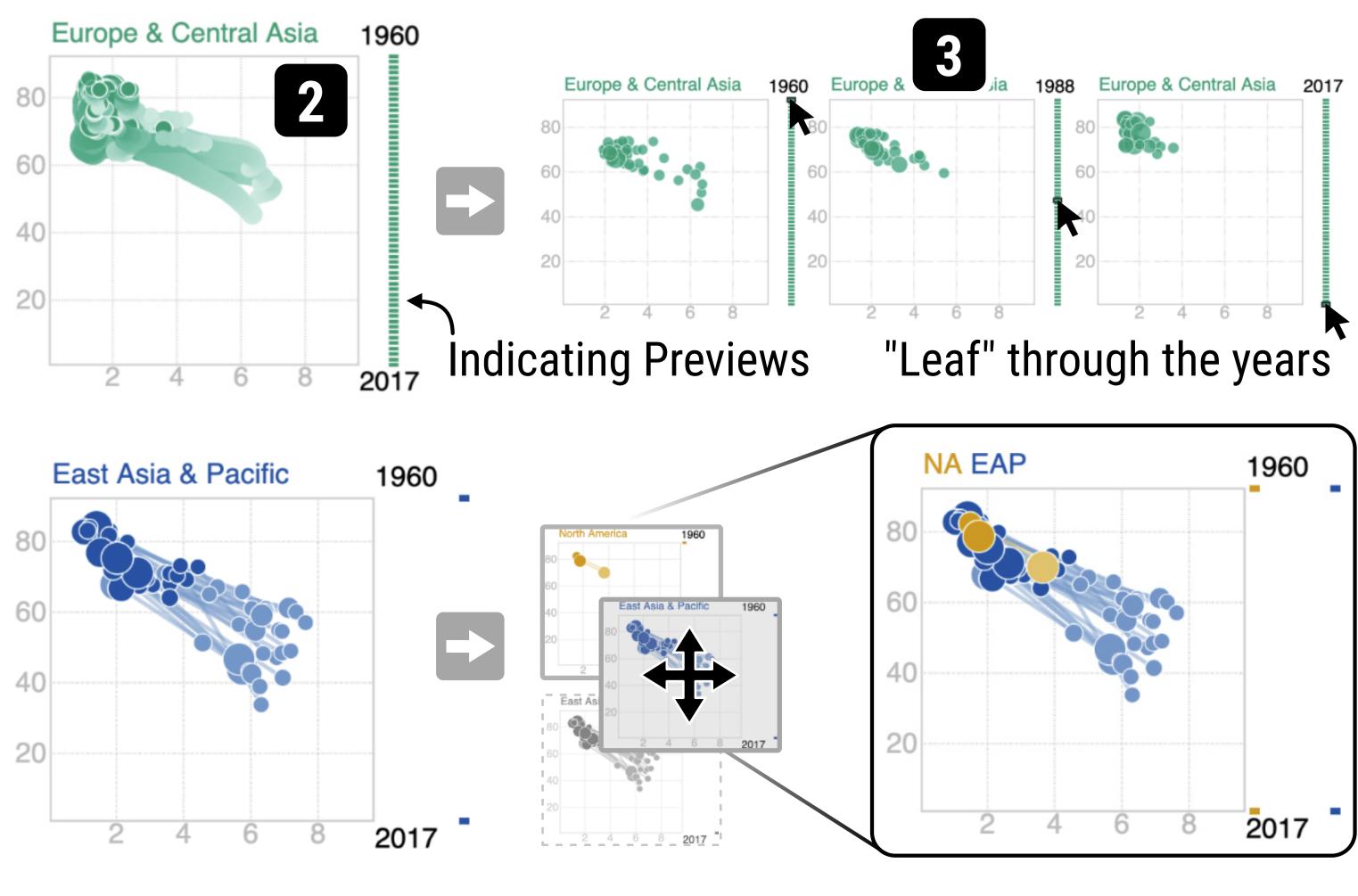


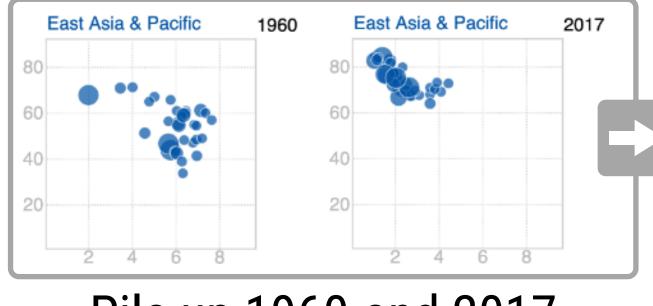
Gapminder Data



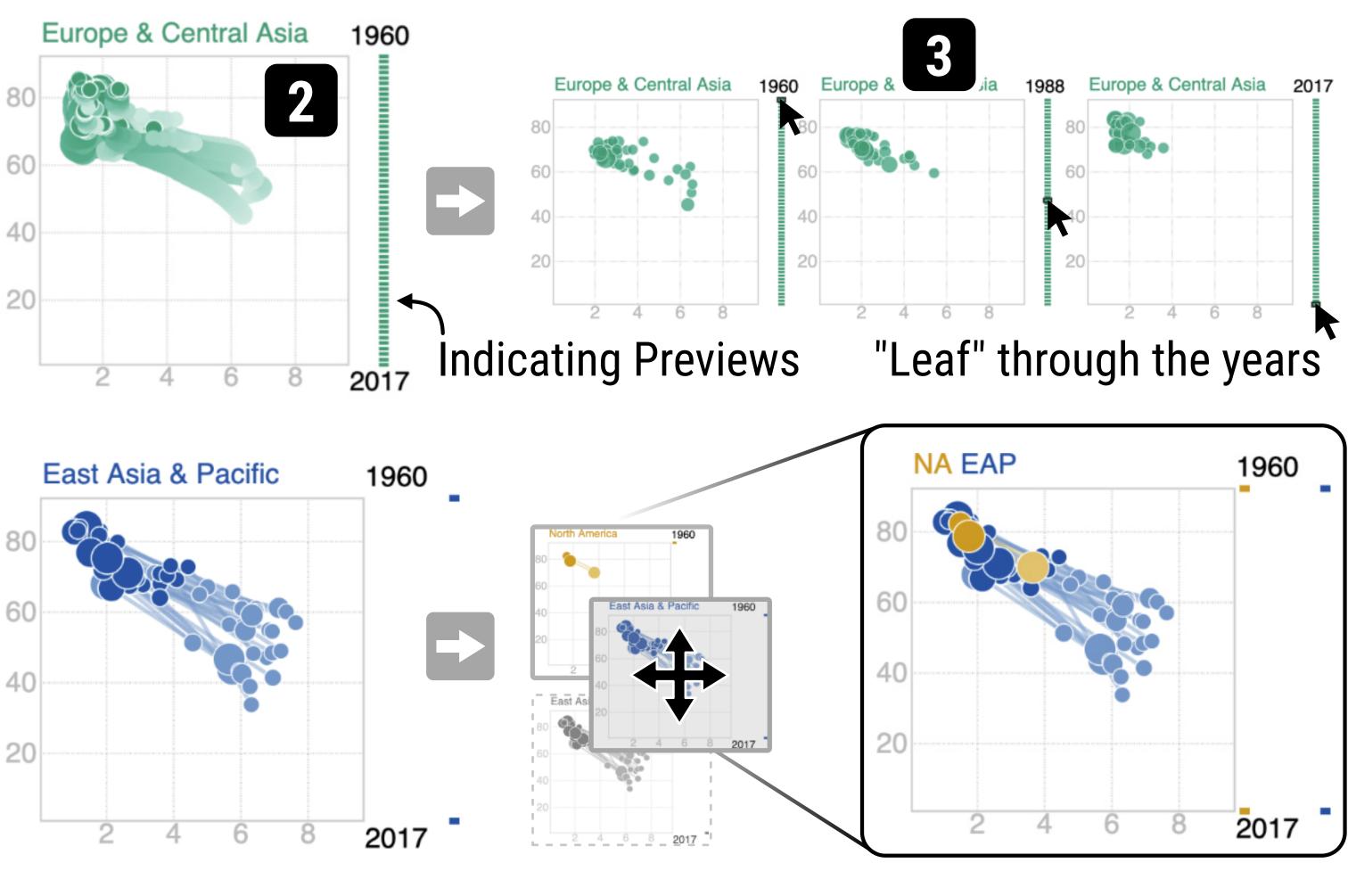
Pile up 1960 <u>to</u> 2017







Pile up 1960 <u>and</u> 2017



D. Koop, CSCI 628, Fall 2021

NIU

Northern Illinois University

<u>StreamStory</u>

StreamStory Algorithm

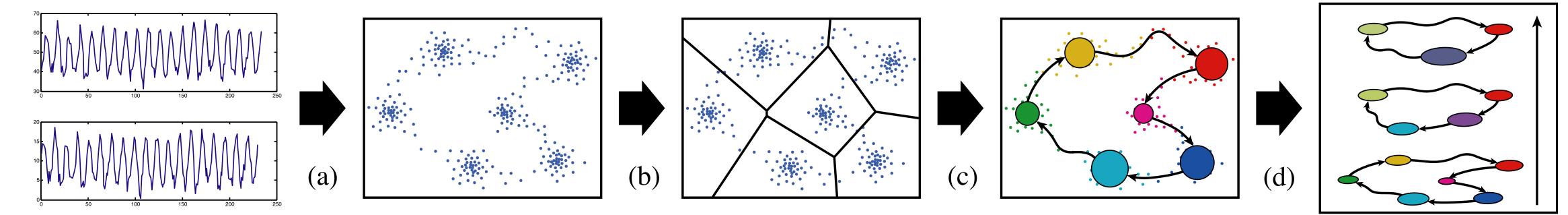
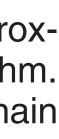
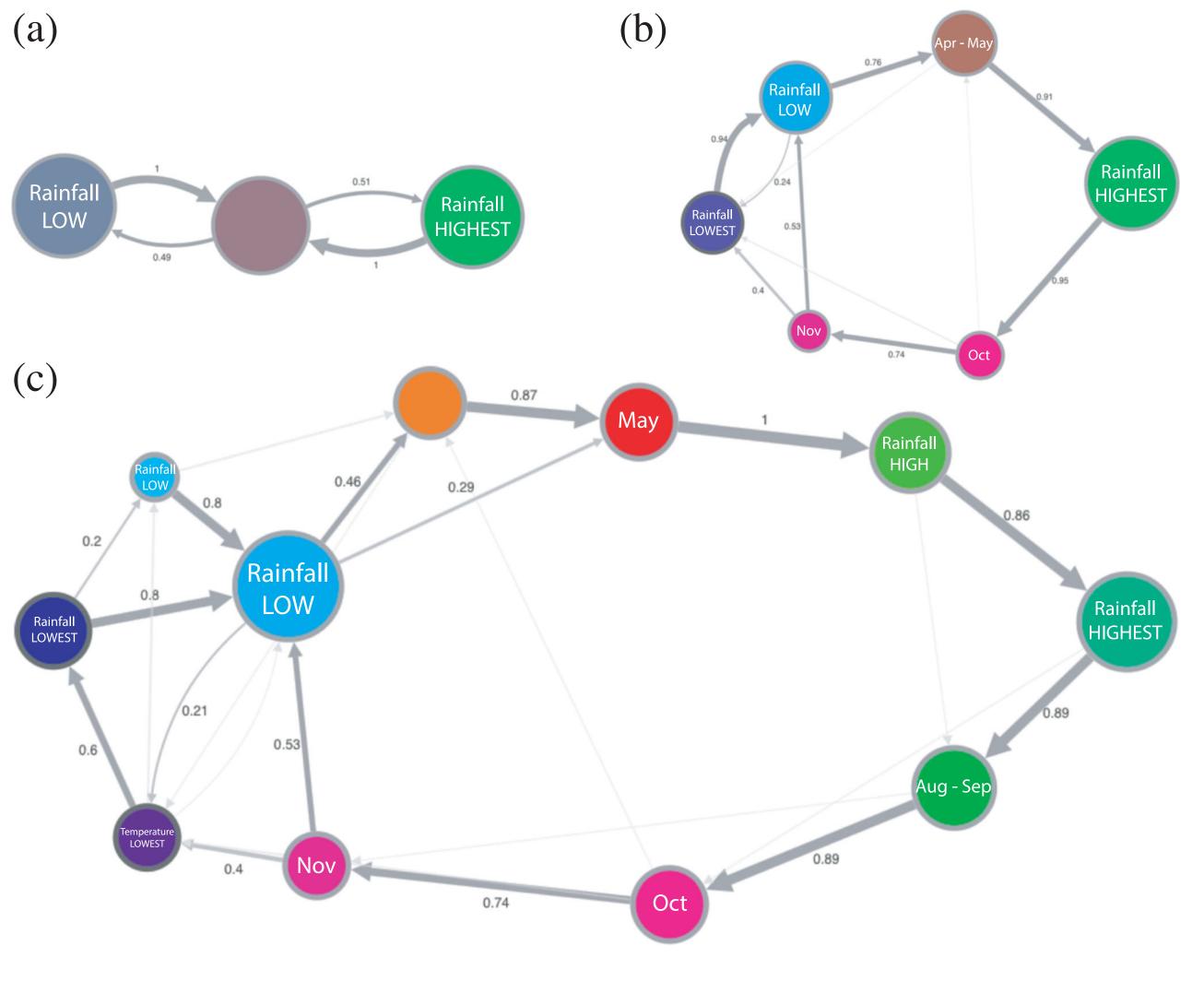


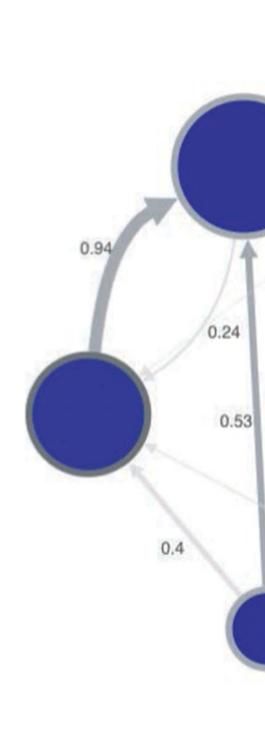
Fig. 2. Overview of the methodology. (a) The multivariate time series is first represented as a point cloud. As an example, we show two noisy approximately periodic signals mapped to points in 2D. (b) The states are constructed by partitioning the ambient space using a clustering algorithm. (c) Transitions are modeled by translating the partition into a Markov chain, with each state representing a partition cell. (d) Finally, the Markov chain model is simplified by iteratively aggregating states into a hierarchy, giving a multiscale view of the model.



StreamStory at Different Scales



D. Koop, CSCI 628, Fall 2021



[L. Stopar et al., 2019]

