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A Declarative Rendering Model for Multiclass Density Maps

Jaemin Jo, Frédéric Vernier, Pierre Dragicevic, and Jean-Daniel Fekete, Senior Member, IEEE
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Fig. 1: Design alternatives for a four-class density map. 1 shows small multiples where each density map is individually presented
with a unique color; 2 stacks the density maps and blends the color at each pixel; 3 shows the color of the pixel with the highest
density; 4 - 6 use regular and irregular weaving patterns; 7 shows a contour plot for each class; and 8 – 14 use rebinning (binning
and aggregation over the density maps) with tiles produced by a random Voronoı̈ tessellation. The aggregated values are rendered in

8 with a flat color showing the highest density, 9 with hatching, 10 with proportional bars, 11 with regular weaving, 12 with a dot
density plot, 13 with bar-chart glyphs, and 14 with circle sizes.

Abstract—Multiclass maps are scatterplots, multidimensional projections, or thematic geographic maps where data points have a

categorical attribute in addition to two quantitative attributes. This categorical attribute is often rendered using shape or color, which

does not scale when overplotting occurs. When the number of data points increases, multiclass maps must resort to data aggregation

to remain readable. We present multiclass density maps: multiple 2D histograms computed for each of the category values. Multiclass

density maps are meant as a building block to improve the expressiveness and scalability of multiclass map visualization. In this

article, we first present a short survey of aggregated multiclass maps, mainly from cartography. We then introduce a declarative

model—a simple yet expressive JSON grammar associated with visual semantics—that specifies a wide design space of visualizations

for multiclass density maps. Our declarative model is expressive and can be efficiently implemented in visualization front-ends such as

modern web browsers. Furthermore, it can be reconfigured dynamically to support data exploration tasks without recomputing the raw

data. Finally, we demonstrate how our model can be used to reproduce examples from the past and support exploring data at scale.

Index Terms—Scalability, multiclass scatterplots, density maps, aggregation, declarative specification, visualization grammar

1 INTRODUCTION

In this article, we are interested in methods to increase the scalability
and expressiveness of 2D multiclass maps (i.e., visual representations
of data that consist of two quantitative attributes, which are mapped
to (x,y), and one categorical attribute). 2D multiclass maps include
scatterplots, multidimensional projections, and thematic geographic
maps, altogether called maps. These maps are supported by all the
multidimensional data visualization and cartographic systems, attesting
their popularity and effectiveness. In nonaggregated maps, the categori-
cal attribute is depicted using a categorical visual variable at each point,
such as color or shape. However, when the number of points increases,
the maps become unreadable because of excessive overplotting, which
can result from structural properties of the data (e.g., multiple points
being heavily clustered), or simply because of the sheer number of
points.
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Massive datasets suitable to be visualized as multiclass maps are
easily available, for example, the RTI U.S. Synthetic Household Popu-
lation™ [50] containing one point per person in the United States (300
million) with their age, sex, race, income, and house location. Large
multiclass maps can also be easily generated by computing the projec-
tion of millions of multidimensional multiclass points using modern
scalable projection systems [39, 48].

To scale scatterplots, several approaches have been proposed, such
as adaptive opacity [15, 30, 32] and aggregation [13, 53]. However,
adaptive opacity does not scale well with the number of categories
since multiple categorical colors become ambiguous when blended,
and aggregation methods such as density plots are limited to purely
bivariate quantitative data. Few techniques have been described to
support the visualization of aggregated multiclass maps, and to our
knowledge, no system supports their visualization in a flexible way.

In this article, we present a declarative model to specify multiclass
density maps, multiple density plots with different classes, applicable
to an arbitrary number of points. Our contributions are:

• a review of visualization techniques for multiclass density maps,
• a conceptual model for describing a wide range of visualizations

of multiclass density maps, and
• a concise declarative grammar and its interpreter to specify their

rendering.
Our model relies on the creation of multiple aggregated data buffers

by visualization library back-ends, while a front-end system (e.g., a
web browser) allows interactively configuring and combining the data

MDM Gallery
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Fig. 3. These plots are based on the Tree Cover in Colorado dataset. It has seven different tree types: spruce and fir, lodgepole pine,

ponderosa pine, cottonwood / willow, aspen, douglas fir, and krummholz. In the scatterplot (a), details about the distribution of classes

are hard to discern due to overplotting. The second visualization (b) is created using binned aggregation. It allows to compare bin density encoded

by the pie sizes. In addition, class diversity is also shown by the pie charts. The third visualization (c) shows class identity within each bin and

provides better information about minority classes. The fourth visualization (d) shows distributions for two classes ( and ) based on a bar chart

design. It allows us to compare their respective distributions.

each bin, sampled based on the distribution of classes within the
bin, but at least one data point per class. It allows us to see classes
that have very low frequency compared to others.

From Figure 3c we can see that the most prominent type
of trees in an environment varies with elevation level. We then
wonder whether elevation level can help us separate between
different tree types (task 12: identify correlation – class). While
there is a lot of overlap generally between types, we can see from
Figure 2c, for example, that ponderosa pines do not grow above
2800m, while krummholz starts to appear at about 3300m.
Figure 2b also allows us to quickly spot regions of high (or low)
density—such as the high concentration of trees at 2800–3200
meters, very close to the nearest water source (task 13: numerosity
comparison – bin).

The next questions we might ask is whether both tree types
in the area contribute equally to this peak, or whether this is due
to one particular type (task 14: numerosity comparison – class).
From unnormalized frequencies in Figure 3d, we can see that
there are actually two overlapping density peaks in lodgepole
pines, and, at slightly higher altitude levels spruce/fir that both
combine to this peak in tree density. Another question we might

have for the dataset are general boundaries of tree growth (task
15: understand distances – bin). From Figure 3c we can see that
cottonwood, douglas firs, and and ponderosa pines need water
close by (700 meters to the nearest water source), while the other
four types are much less dependent on close surface water. The
plot also shows that most trees have a preferred elevation range
in which they grow, with bands of roughly 500-600 meters of
altitude and large overlaps between the different tree types across
those regions (task 16: understand distances – class).

5 DESIGN SPACE

To collect designs for binned scatterplots, we searched for existing
solutions from publications in the visualization and cartography
fields. We then systematically created extensions and adaptions of
them to cover additional data and tasks. For each of the designs
discussed that have been used previously, we refer to relevant
publications. In addition, we also discuss studies and other sources
that provide insight about the effectiveness of design aspects.

What about other techniques?
• Are there other possibilities? 
• Does the grammar cover these? 
• How do we evaluate how well these 

techniques work?
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Task Bin-centric Class-centric

Explore neighborhood 1 Explore properties of bins in a neighborhood 2 Explore properties of classes in a neighborhood
Search for known motif 3 Find known pattern across bins 4 Find known pattern across classes

br
ow

si
ng

Explore data 5 Unusual patterns within or across bins, global trends
between bins

6 Unusual patterns within or across classes, global
trends within or between classes

Characterize distribution 7 Do bins close to each other have similar properties?
Or within a certain area or range of values?

8 Does a class occupy certain areas of the plot? Does
its distribution have a particular shape? Do classes
correlate in certain areas?

Identify anomalies 9 Identify bins that are outliers based on the general
distribution

10 Identify classes or subsets of classes that are outliers
in a certain region

Identify correlation 11 Determine level of correlation of bin properties
along both dimensions

12 Determine level of correlation for class members
along both dimensions

Numerosity comparison 13 Compare density in different regions of the space 14 Compare class density in different regions of the
space

ag
gr

eg
at

e-
le

ve
l

Understand distances 15 Understand a given spatialization and the coverage
of the bins

16 Understand a given spatialization and the coverage
of classes

TABLE 1

Tasks for binned scatterplots, based on the general scatterplot tasks compiled and categorized by Sarikaya and Gleicher [55]. We reduced the

original, larger set of tasks to those that capture high-level data characteristics according to the definition by Schulz et al. [57]. For binned

scatterplots, each of the resulting tasks can have a bin-centric or a class-centric scope.

and design guidelines with associated tasks from examples in the
literature.

Informed by the guidelines in Kerracher and Kennedy [32],
we validate our task classification through examining existing
taxonomies and instantiating abstract tasks on concrete analyses.
Closely related to our paper, Sarikaya and Gleicher [55] provide a
space of analysis tasks, data characteristics, and design decisions
derived from existing examples in the literature. Their guidance is
generalized to the entire space of scatterplot designs, suggesting a
need for more specific analysis for particular scenarios such as for
multi-class binning. Jo et al. [29] generate a grammar for deriving
numerous binned designs, highlighting decisions of encoding type
and normalization. This work, however, stops short of drawing
relationships between design decisions and the types of analysis
tasks they support. We seek to fill this gap with this work.

4 TASKS FOR BINNED 2D DATA

In this section, we derive the task definitions listed in Table 1
based on a set of abstract tasks. We then ground each of these
tasks in an example using a dataset.

4.1 Task List
Tasks for 2D point data that was aggregated by binning are con-
nected to the more general tasks for regular scatterplots, for which
an analysis and categorization of tasks has been published [55].
The task space that we derive and discuss in this section, is
an extended subset of this larger collection of tasks that can be
supported by general, unbinned scatterplots. We refine the derived
set of tasks according to the task design space of Schulz et al. [57],
and ground each of these abstract tasks in a concrete example from
the previously introduced data sets.

Based on a review of relevant literature, Sarikaya and Gle-
icher [55] collect and categorize a set of 12 tasks that users
do with scatterplots. Those tasks are grouped into three differ-
ent categories, comprising object-centric tasks, browsing, and
aggregate-level tasks. The first type, object-centric, focuses on
single data objects, and includes identifying and finding the
location of a particular object. In other words, object-centric tasks
cover all the low-level data characteristics of Schulz et al.’s task

design space [57]. The second category, browsing, comprises tasks
focused on either single data items or higher level structures
such as clusters, and thus targets low- as well as high-level data
characteristics. The third category, aggregate-level tasks, focus
entirely on high-level data characteristics. When working with
binned scatterplots, the data analyst has decided that aggregating
the data is the best way to perform the task at hand. Since the
aggregation step abstracts away from single items, leaving only
high-level data characteristics, we can reduce the set of potential
tasks supported by a binned scatterplot to browsing and aggregate-
level tasks.

Binned representations of multi-class data introduces two new
visual elements that analysis tasks can target, bins and classes. The
dimension that captures this is called the scope (or cardinality) of
a task [57]. Each of the tasks in our space can either be targeted
at bins (bin-centric), or at classes (class-centric). Extending the
task set along this dimension is helpful for tasks supported by
binned representation of 2D data, since it significantly influences
the adequacy of designs to serve a task. Table 1 lists all resulting
tasks and diversifies them into a bin-centric and a class-centric
version. In addition, a more extensive table, mapping all of the
abstract tasks to high-level data characteristics and example tasks
discussed in the following section is available as supplemental
material (see also §7 for a discussion of task completeness).

4.2 Task Examples

We have already seen examples for the first six tasks from Table 1
back in §2. Here, we introduce two additional datasets and show
designs and examples for the remaining tasks.
Early Modern Drama Collection contains the full text of 1,242
dramas from the years 1576–1700. The texts are categorized into
nine different genres, including tragedy, tragicomedy, and
others (see caption of Figure 2). Both dimensions have been
generated using topic modeling to extract eight distinct topics
based on the document-level co-occurrences of words across the
corpus. A topic is represented as a list of weighted words that
are used in documents to talk about the topic. We then picked
two topics as dimensions to lay out the documents, based on the
amount of words that each of the documents contains from the

What about Tasks? (Bin and Class Tasks)
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Project Proposal Feedback
• Posted in Blackboard 
• Most have strong background in what has been done or the problem area, 

and the starts of ideas on where to go 
• Try to more critically think about what the problem is and how you will 

address it through visualization 
• Focus on visualization!

6D. Koop, CSCI 628, Fall 2021



Annotated Bibliography
• Likely related to your project, but can be another subject area 
• Wider breadth than just the related work of your project 
• Find 30-40 references, and write a few sentences on how they relate to your 

work/ideas 
- Ok to include papers that show novel variations of a technique, even if the 

paper is not mostly about the subject area! 
- Your annotations are not the abstract of the paper, include relationship with 

the subject area you're focusing on 
• Due Thursday

7D. Koop, CSCI 628, Fall 2021



Paper Presentations
• Primary: Provide necessary background, present core ideas, step through 

techniques, discuss experiments and results 
- Channel the original authors as much as possible 

• Secondary: Provide critique: what is problematic, what could be improved, 
where could techniques be extended 

- Channel the reviewers as much as possible 
• Everyone: Read the paper, come with questions and discussion points 
• Starts Thursday
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Paper Critique
• Those not presenting (i.e. not primary or secondary) should prepare a short 

(1-2 paragraphs) critique of the Time Curves paper, and come with at least 
one question about it 

• Submit via Blackboard before class on Thursday
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Time Curves: Folding Time to Visualize
Patterns of Temporal Evolution in Data

Benjamin Bach, Conglei Shi, Nicolas Heulot, Tara Madhyastha, Tom Grabowski, Pierre Dragicevic
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Time curve: Similarity
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(b) History of the Wikipedia article on Palestine

Fig. 1. The time curve principle: a) a timeline is folded into itself in such a way that similar time points end up being close to each
other; b) Example: a time curve showing the evolution of a Wikipedia article.

Abstract—We introduce time curves as a general approach for visualizing patterns of evolution in temporal data. Examples of
such patterns include slow and regular progressions, large sudden changes, and reversals to previous states. These patterns can
be of interest in a range of domains, such as collaborative document editing, dynamic network analysis, and video analysis. Time
curves employ the metaphor of folding a timeline visualization into itself so as to bring similar time points close to each other. This
metaphor can be applied to any dataset where a similarity metric between temporal snapshots can be defined, thus it is largely
datatype-agnostic. We illustrate how time curves can visually reveal informative patterns in a range of different datasets.

Index Terms—Temporal data visualization, information visualization, multidimensional scaling

1 INTRODUCTION

A large portion of the information we produce is temporal: video
recordings, revision histories, meteorological records, brain scans, or
any digital collection that contains entities recorded at different times.
All such information artefacts reflect dynamic processes with possibly
complex patterns of evolution. For example, an article being writ-
ten can stagnate or progress quickly, or can undergo reversals in case
of a disagreement between multiple authors. Brain activity can vary
between different states, reflecting changing external stimuli and cog-
nitive processes. Weather is chaotic in the short run but follows steady

• Benjamin Bach is with Microsoft Research-Inria Joint Centre. E-mail:
benj.bach@gmail.com.

• Conglei Shi is with the IBM T.J, Watson Research Center, Yorktown
Height, NY. E-mail: shiconglei@gmail.com.

• Nicolas Heulot is with IRT SystemX: nicolas.heulot@irt-systemx.fr
• Pierre Dragicevic is with Inria: pierre.dragice@gmail.com
• Tara Madhyastha is with the Department of Radiology at University of

Washington. E-mail: madhyt@u.washington.edu.
• Tom Grabowski is with the Department of Radiology and Neurology at

University of Washington. E-mail: tgrabow@u.washington.edu.

Manuscript received 31 Mar. 2015; accepted 1 Aug. 2015; date of
publication xx Aug. 2015; date of current version 25 Oct. 2015.
For information on obtaining reprints of this article, please send
e-mail to: tvcg@computer.org.

cyclic patterns on a larger scale (seasons), and trends on an even larger
scale (climate). All such temporal patterns that can be of great interest
to domain experts or to a more general audience.

Many temporal data exploration tools have been developed that can
help better understand such patterns (for reviews see [2, 5, 8]), but
they are typically domain-specific or assume a particular data struc-
ture, such as multidimensional tabular data. Yet information artefacts
are diverse and many of them are largely unstructured (e.g., plain text
or photos). Developing specialized visualization tools for each possi-
ble domain and type of dataset can be costly and impractical. Thus we
need to develop more visual representations of temporal data that can
be applied to a range of datasets. Such visual representations can not
only help to reduce production costs, but can also be learned once for
all and become part of the repertoire of charts routinely used in pub-
lic communication. By introducing time curves, we show that while
each temporal dataset is different, many such datasets share similar
high-level patterns of temporal evolution that do not necessarily re-
quire elaborate and specialized techniques to be seen.

The time curve technique is a generic approach for visualizing tem-
poral data based on self-similarity. It only assumes that the underly-
ing information artefact can be broken down into discrete time points,
and that the similarity between any two time points can be quantified
through a meaningful metric. For example, a Wikipedia article can be
broken down into revisions, and the edit distance can be used to quan-
tify the similarity between any two revisions. A time curve can be seen

Thursday: Next Paper
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Temporal Data References
• B. Bach's Lecture Slides: much of this lecture’s structure 
• Timelines Revisited, M. Brehmer et al.
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Temporal Data Techniques

B. Bach
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Temporal Data
• Events: position and duration 
• Trajectories: position changes over time 
• Calendar: cyclic, relationship to human structures (weeks, months) 
• Time Series: quantitative values over time
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Temporal Data Tasks
• Statistics: min/max, trends, outliers 
• Difference and rate of change 
• Order & variation 
• Noise vs. signal 
• Correlations (including with events) 
• Space and Time relationships
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Connected Scatterplot
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Connected Scatterplot
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Connected Scatterplot

17

[M. Stefaner]
D. Koop, CSCI 628, Fall 2021

https://truth-and-beauty.net/projects/remixing-rosling/


APPLE STEW QUINCE

PUMPKIN FEIJOA MAITAKE

What are the most common patterns?

January February March April May June July August September October November December

NowNowNow NowNowNow NowNowNow

NowNowNow NowNowNow

In North America,
feijoa grows on the
East Coast from April
to June, and on the
West Coast from
October to December.

NowNowNow

Cyclic Data
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Fig. 1. The three dimensions of our design space for expressive story-
telling with timelines: representation, scale, and layout.

ations with respect to using different timeline designs in coherent
stories, including whether and how smooth animated transitions
are appropriate for presenting a series of varied narrative points.

The contribution of this paper is twofold. The first contribution
is the introduction and analysis of a design space for storytelling
with timelines. Our analysis ties together five disparate threads
of previous work for the first time: the history of timelines over
the centuries, bespoke interactive timelines presenting a specific
dataset, manually illustrated static timeline infographics, the cur-
rently deployed set of software tools for timeline authoring, and
the visualization research literature. Our second contribution is
a realization of viable timeline designs from our design space
within a sandbox environment, which we used to produce seven
example timeline stories; these stories feature a variety of narrative
points and illustrate the benefits of incorporating multiple timeline
designs linked together by animated transitions. Ultimately, our
work is intended to both ground and inspire the design of future
interactive tools for producing visual timeline stories.

2 BACKGROUND AND RELATED WORK

This section provides background information with regards to
timelines, data-driven storytelling, and the use of animated transi-
tions for preserving context.

2.1 Timelines

A timeline depicts a sequence of events, or interval event data
using the precise terminology of Aigner et al. [5], which is to
be distinguished from instant or continuous quantitative time-
series data. A simple timeline indicates the types of events being
depicted, the number of events, and the order in which they
occurred. A more detailed timeline may indicate when the events
occurred in chronological time, how long they lasted, and whether
any of the events overlapped. Typically, an event is visually
encoded using some graphical mark, such as a line or an icon. The
placement of this mark in relation to an axis representing time and
to other event marks will indicate when the event occurred.

Fig. 2. The linear, chronological form of Joseph Priestley’s Chart of
Biography (1765) dominates the design of contemporary timelines.

2.1.1 Historical Context
Consider Joseph Priestley’s Chart of Biography [74], first pub-
lished in 1765, which is shown in Figure 2. Priestley has drawn
lines along a horizontal chronological axis, running from left to
right, indicating the lifespans of nearly sixty people, and he has
annotated these lines with their names. The vertical positions of
these lines are not meaningful: the lines and annotations are placed
to avoid overlap.

Though most timelines appearing since the late 18th century
bear some resemblance to Priestley’s form, it is by no means the
only and best timeline design [76]. By broadening the scope to
consider timelines produced throughout history [77], one may
encounter a number of visual representations that differ from
Priestley’s design: timelines have taken the form of circles, spirals,
grids, tabular ledgers, pictographic unit charts, and even arbitrary
shapes that evoke spatial metaphors; consider, for instance, the
phrase “an event that changed the course of history.” The events
themselves have also been represented with a variety of graph-
ical marks, including dots, lines, arcs, icons, or polygons. We
reconsider several of these representations in our discussion of
the design space below. While many narratives involving timelines
follow the linear chronological progression of time, some narrative
points refer to patterns or differences in the duration, distribution,
or periodicity of events, or to event sequences and synchronicities.
For example, linear representations can better support points
relating to chronology and sequence, while representations that
evoke analog clock faces or calendars can be more effective in
supporting points about periodic repetition.

2.1.2 Timeline Authoring
Timeline infographics often appear in newspapers, magazines,
textbooks, or online. Unlike the hand-drawn timelines produced
in previous centuries [77], most timeline infographics today are
produced using illustration software. This production medium
allows for considerable expressiveness, and while many timeline
infographics adopt aspects of Priestley’s linear chronological
form, many infographics deviate from this tradition (e.g., [3],
[75], [91]). However, these timelines remain static, and thus it is
difficult to integrate them into larger data-driven stories comprised
of multiple narrative points.

As an alternative to static infographics, timeline authoring
tools (e.g., [13], [39], [45], [48], [65], [68], [83], [98]) allow
a storyteller to easily generate a curated interactive timeline.
TimelineJS [68] and TimelineSetter [83] are two of these tools
that go a step further in that they generate a slideshow presentation
of the timeline with full text descriptions for each event; with

Design Space
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TABLE 2
Coverage of the 263 items in our survey with respect to 20 viable timeline designs that we identify. Note that some visualization tools may be

capable of producing multiple timeline designs according to our classification. The final column indicates items that cannot be characterized as
one of the 20 viable timeline designs that we identify.

Survey Count

Initial 145 31 60 3 8 1 2 9 10 2 3 3 1 2 3 6 8 6
Validation 118 21 20 2 2 1 1 26 3 1 1 2 1 35 5

Total 263 52 80 5 10 2 3 35 13 2 4 3 2 2 2 3 6 1 43 11

1 2

Fig. 4. Two viable timeline designs that we did not encounter in our survey. 1: A segmented radial chronological timeline of Category 4 and 5
hurricanes between 1960 and 2010, affording comparisons of hurricane severity and periodicity between decades. 2: Faceted radial sequential
timelines depicting the daily routines of famous creative people, affording comparisons of the number and variation of events between people.

+ + ( || ) Relative scales are par-
ticularly appropriate when

combined with a faceted layout to facilitate the comparison of
categorically distinct timelines aligned to a common baseline
event, such as a person’s birth or a patient’s admittance to a
hospital. A unified or segmented relative timeline is functionally
equivalent to a corresponding chronological timeline, albeit one
that begins at time zero, such as in Neurath’s timeline indicating
the average lifespan of various animals [67].

+ +
Grid representations are inherently seg-
mented; consider the common Month-

Week-Day calendar, which has been segmented into these gran-
ularities of time. Without segmentation, a unified grid is reduced
to a single cell corresponding to a single granule of time, being
functionally equivalent to a unified linear sequential timeline.

4.4.3 Opportunities for Innovation in Timeline Design
The remaining combinations of representation, scale, and layout
present opportunities for future research and design innovation.
They provide many potential opportunities for researchers to
propose and evaluate purposeful, interpretable, and generalizable
implementations for these points in the design space. Among them
are 6 combinations represented by 10 items in our survey corpus
that did not satisfy our interpretable or generalizable criteria. The
other combinations that we did not encounter in the survey may
fail to address all three criteria.

( || || ) + +
Logarithmic
scales are

notoriously difficult to interpret [36, p.200], and with the
exception of one particularly dense radial infographic depicting
the evolution of the known universe [50], we have yet to
encounter a logarithmic scale used in combination with a
non-linear representation. In a storytelling context, it cannot be
assumed that the audience has seen a logarithmic time scale
before and knows how to interpret one. As a consequence,
future research is needed to identify purposeful and interpretable
non-linear timelines that incorporate logarithmic scales.

+ +
A timeline that is both faceted and
segmented such as those generated by

Beard et al.’s EventViewer [14] involves a nested partitioning
of the timeline into rows of facets and columns of segments,
or vice versa. As a result, this layout may require a very large
display to accommodate the nested timelines or rely upon navi-
gation via panning and zooming. In a storytelling context, large
displays and navigation may not always be possible, and thus
additional research is needed to identify generalizable techniques
for partitioning timelines into facets and segments that remain
interpretable and appropriate for a storytelling context.

! ( ) + +
We have yet to encounter a time-
line incorporating a interim du-

ration scale aside from two linear timelines by Mercator and
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Time Curves: Folding Time to Visualize
Patterns of Temporal Evolution in Data

Benjamin Bach, Conglei Shi, Nicolas Heulot, Tara Madhyastha, Tom Grabowski, Pierre Dragicevic
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Circles are data cases with a time stamp.
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Time curve: Similarity

The temporal ordering of data cases is preserved.
Spatial proximity now indicates similarity.

Similar colors indicate similar data cases.
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(b) History of the Wikipedia article on Palestine

Fig. 1. The time curve principle: a) a timeline is folded into itself in such a way that similar time points end up being close to each
other; b) Example: a time curve showing the evolution of a Wikipedia article.

Abstract—We introduce time curves as a general approach for visualizing patterns of evolution in temporal data. Examples of
such patterns include slow and regular progressions, large sudden changes, and reversals to previous states. These patterns can
be of interest in a range of domains, such as collaborative document editing, dynamic network analysis, and video analysis. Time
curves employ the metaphor of folding a timeline visualization into itself so as to bring similar time points close to each other. This
metaphor can be applied to any dataset where a similarity metric between temporal snapshots can be defined, thus it is largely
datatype-agnostic. We illustrate how time curves can visually reveal informative patterns in a range of different datasets.

Index Terms—Temporal data visualization, information visualization, multidimensional scaling

1 INTRODUCTION

A large portion of the information we produce is temporal: video
recordings, revision histories, meteorological records, brain scans, or
any digital collection that contains entities recorded at different times.
All such information artefacts reflect dynamic processes with possibly
complex patterns of evolution. For example, an article being writ-
ten can stagnate or progress quickly, or can undergo reversals in case
of a disagreement between multiple authors. Brain activity can vary
between different states, reflecting changing external stimuli and cog-
nitive processes. Weather is chaotic in the short run but follows steady
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cyclic patterns on a larger scale (seasons), and trends on an even larger
scale (climate). All such temporal patterns that can be of great interest
to domain experts or to a more general audience.

Many temporal data exploration tools have been developed that can
help better understand such patterns (for reviews see [2, 5, 8]), but
they are typically domain-specific or assume a particular data struc-
ture, such as multidimensional tabular data. Yet information artefacts
are diverse and many of them are largely unstructured (e.g., plain text
or photos). Developing specialized visualization tools for each possi-
ble domain and type of dataset can be costly and impractical. Thus we
need to develop more visual representations of temporal data that can
be applied to a range of datasets. Such visual representations can not
only help to reduce production costs, but can also be learned once for
all and become part of the repertoire of charts routinely used in pub-
lic communication. By introducing time curves, we show that while
each temporal dataset is different, many such datasets share similar
high-level patterns of temporal evolution that do not necessarily re-
quire elaborate and specialized techniques to be seen.

The time curve technique is a generic approach for visualizing tem-
poral data based on self-similarity. It only assumes that the underly-
ing information artefact can be broken down into discrete time points,
and that the similarity between any two time points can be quantified
through a meaningful metric. For example, a Wikipedia article can be
broken down into revisions, and the edit distance can be used to quan-
tify the similarity between any two revisions. A time curve can be seen
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