Information Visualization

Temporal Data

Dr. David Koop

Multiclass Density Maps (MDMs) Scatterplots Density Maps

Uniclass

D. Koop, CSCI 628, Fall 2021

"Multiclass Density Maps (MDM)"

2

MDM Gallery

D. Koop, CSCI 628, Fall 2021

Rebinned and Aggregated

3

What about other techniques?

- Are there other possibilities?
- Does the grammar cover these?
- How do we evaluate how well these techniques work?

[F. Heimerl et al., Tech Report]

Northern Illinois University

What about Tasks? (Bin and Class Tasks)

	Task	Bin-centric	Class-centric			
browsing	Explore neighborhood	1 Explore properties of bins in a neighborhood	2 Explore properties of classes in a neighborhood			
	Search for known motif	3 Find known pattern across bins	4 Find known pattern across classes			
	Explore data	5 Unusual patterns within or across bins, global trends between bins	6 Unusual patterns within or across classes, global trends within or between classes			
aggregate-level	Characterize distribution	7 Do bins close to each other have similar properties? Or within a certain area or range of values?	8 Does a class occupy certain areas of the plot? Does its distribution have a particular shape? Do classes correlate in certain areas?			
	Identify anomalies	9 Identify bins that are outliers based on the general distribution	10 Identify classes or subsets of classes that are outliers in a certain region			
	Identify correlation	11 Determine level of correlation of bin properties along both dimensions	12 Determine level of correlation for class members along both dimensions			
	Numerosity comparison	13 Compare density in different regions of the space	14 Compare class density in different regions of the space			
	Understand distances	15 Understand a given spatialization and the coverage of the bins	16 Understand a given spatialization and the coverage of classes			

Project Proposal Feedback

- Posted in Blackboard
- Most have strong background in what has been done or the problem area, and the starts of ideas on where to go
- Try to more critically think about what the problem is and how you will address it through visualization
- Focus on visualization!

Annotated Bibliography

- Likely related to your project, but can be another subject area
- Wider breadth than just the related work of your project
- Find 30-40 references, and write a few sentences on how they relate to your work/ideas
 - Ok to include papers that show novel variations of a technique, even if the paper is not mostly about the subject area!
 - Your annotations are not the abstract of the paper, include relationship with the subject area you're focusing on
- Due Thursday

Paper Presentations

- Primary: Provide necessary background, present core ideas, step through techniques, discuss experiments and results
 - Channel the original authors as much as possible
- Secondary: Provide critique: what is problematic, what could be improved, where could techniques be extended
 - Channel the reviewers as much as possible
- Everyone: Read the paper, come with questions and discussion points
- Starts Thursday

Paper Critique

- one question about it
- Submit via Blackboard before class on Thursday

• Those not presenting (i.e. not primary or secondary) should prepare a short (1-2 paragraphs) critique of the Time Curves paper, and come with at least

Thursday: Next Paper

Time Curves: Folding Time to Visualize Patterns of Temporal Evolution in Data

Benjamin Bach, Conglei Shi, Nicolas Heulot, Tara Madhyastha, Tom Grabowski, Pierre Dragicevic

(a) Folding time

D. Koop, CSCI 628, Fall 2021

(b) History of the Wikipedia article on Palestine

Temporal Data

Temporal Data References

- <u>B. Bach's Lecture Slides</u>: much of this lecture's structure
- <u>Timelines Revisited</u>, M. Brehmer et al.

Temporal Data Techniques

B. Bach

Temporal Data

- Events: position and duration
- Trajectories: position changes over time
- Calendar: cyclic, relationship to human structures (weeks, months)
- Time Series: quantitative values over time

Temporal Data Tasks

- Statistics: min/max, trends, outliers
- Difference and rate of change
- Order & variation
- Noise vs. signal
- Correlations (including with events)
- Space and Time relationships

Connected Scatterplot

relationship between driving habits

D. Koop, CSCI 628, Fall 2021

Northern Illinois University

Connected Scatterplot

Miles driven per capita each year 🛶 5.000 mi. 6,000 mi.

Connected Scatterplot

D. Koop, CSCI 628, Fall 2021

Northern Illinois University

January	February	March	April	May	June	July	Augus
Thanks Halloween	TUC C			MAR UNDER TA			LOO OFP
		APPLE					
Halloween	TUC C			MAR YOK			LOD OFF
	P	UMPK	IN				

D. Koop, CSCI 628, Fall 2021

18

Timelines Revisited

M. Brehmer, B. Lee, B. Bach, N. H. Riche, and T. Munzner

Design Space

New Designs (Not Found in Survey)

Thursday: Remember Critique

Time Curves: Folding Time to Visualize Patterns of Temporal Evolution in Data

Benjamin Bach, Conglei Shi, Nicolas Heulot, Tara Madhyastha, Tom Grabowski, Pierre Dragicevic

D. Koop, CSCI 628, Fall 2021

(b) History of the Wikipedia article on Palestine

